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Automated detection and diagnosis of small lesions in breast MRI represents a challenge for the traditional computer-aided
diagnosis (CAD) systems. The goal of the present research was to compare and determine the optimal feature sets describing the
morphology and the enhancement kinetic features for a set of small lesions and to determine their diagnostic performance. For
each of the small lesions, we extracted morphological and dynamical features describing both global and local shape, and kinetics
behavior. In this paper, we compare the performance of each extracted feature set for the differential diagnosis of enhancing lesions
in breast MRI. Based on several simulation results, we determined the optimal feature number and tested different classification
techniques. The results suggest that the computerized analysis system based on spatiotemporal features has the potential to increase
the diagnostic accuracy of MRI mammography for small lesions and can be used as a basis for computer-aided diagnosis of breast
cancer with MR mammography.

1. Introduction

Breast cancer is one of the most common cancers among
women. Contrast-enhanced MR imaging of the breast was
reported to be a highly sensitive method for the detection of
invasive breast cancer [1]. Different investigators described
that certain dynamic signal intensity (SI) characteristics
(rapid and intense contrast enhancement followed by a wash
out phase) obtained in dynamic studies are a strong indicator
for malignancy [2]. Morphologic criteria have also been
identified as valuable diagnostic tools [3]. Recently, combi-
nations of different dynamic and morphologic characteristics
have been reported [4] that can reach diagnostic sensitivities
up to 97% and specificities up to 76.5%.

As an important aspect remains the fact that many of
these techniques were applied on a database of predomi-
nantly tumors of a size larger than 2 cm. In these cases, MRI

reaches a very high sensitivity in the detection of invasive
breast cancer due to both morphological criteria as well
as characteristic time-signal intensity curves. However, the
value of dynamic MRI and of automatic identification and
classification of characteristic kinetic curves is not well estab-
lished in small lesions when clinical findings, mammography,
and ultrasound are unclear. Recent clinical research has
shown that DCIS with small invasive carcinoma can be
adequately visualized in MRI [5] and that MRI provides
an accurate estimation of invasive breast cancer tumor size,
especially in tumors of 2 cm or smaller [6].

Visual assessment of morphological properties is highly
interobserver variable [7], while automated computation of
features leads to more reproducible indices and thus to a
more standardized and objective diagnosis. In this sense, we
present novel mathematical descriptors for both morphology
and dynamics and will compare their performance regarding
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small lesion classification based on novel feature selection
algorithms.

More than 40% of the false-negative MR diagnosis are
associated with pure ductal carcinoma in situ (DCIS) and
with small lesion size and thus indicating a lower sensitivity
of MRI for these cases. It has been shown that double reading
achieves a higher sensitivity but is time-consuming and as
an alternative a computer-assisted system was suggested [8].
The success of CAD in conventional X-ray mammography
[9–13] motivates further the research of similar automated
diagnosis techniques in breast MRI.

In the present study, we design and evaluate a computer-
ized analysis system for the diagnosis of small breast masses
with an average diameter of <1 cm.

The automated evaluation is a multistep system which
includes global and local features such as shape descriptors,
dynamical features, and spatiotemporal features combining
both morphology and dynamics aspects. Different classifi-
cation techniques are employed to test the performance of
the complete system. Summarizing, in the present paper,
a multifactorial protocol, including image registration, and
morphologic and dynamic criteria are evaluated in predom-
inantly small lesions of 1.0 cm or less as shown in Figure 1.

2. Material and Methods

2.1. Patients. A total of 40 patients, all females having an
age range 42–73, with indeterminate small mammographic
breast lesions were examined. All patients were consecu-
tively selected after clinical examinations, mammography in
standard projections (craniocaudal and oblique mediolateral
projections) and ultrasound. Only lesions BIRADS 3 and 4
were selected where at least one of the following criteria was
present: nonpalpable lesion, previous surgery with intense
scarring, or location difficult for biopsy (close to chest wall).
All patients had histopathologically confirmed diagnosis
from needle aspiration/excision biopsy and surgical removal.
Breast cancer was diagnosed in 17 out of the total 31 cases.
The average size of both benign and malignant tumors was
less than 1.1 cm.

2.2. MR Imaging. MRI was performed with a 1.5 T system
(Magnetom Vision, Siemens, Erlangen, Germany) with two
different protocols equipped with a dedicated surface coil to
enable simultaneous imaging of both breasts. The patients
were placed in a prone position. First, transversal images
were acquired with a STIR (short TI inversion recovery)
sequence (TR = 5600 ms, TE = 60 ms, FA = 90◦, IT = 150 ms,
matrix size 256 × 256 pixels, slice thickness 4 mm). Then a
dynamic T1 weighted gradient echo sequence (3D fast low
angle shot sequence) was performed (TR = 12 ms, TE = 5 ms,
FA = 25◦) in transversal slice orientation with a matrix size of
256 × 256 pixels and an effective slice thickness of 4 mm or
2 mm.

The dynamic study consisted of 6 measurements with
an interval of 83 s. The first frame was acquired before
injection of paramagnetic contrast agent (gadopentetate

dimeglumine, 0.1 mmol/kg body weight, Magnevist, Scher-
ing, Berlin, Germany) immediately followed by the 5 other
measurements. The initial localization of suspicious breast
lesions was performed by computing difference images, that
is, subtracting the image data of the first from the fourth
acquisition. As a preprocessing step to clustering, each raw
gray level time-series S(τ), τ ∈ {1, . . . , 6} was transformed
into a signal time-series of relative signal enhancement x(τ)
for each voxel, the precontrast scan at τ = 1 serving as
reference, in other words x(τ) = (x(τ)−x(1))/x(1). Thus, we
ensure that the proposed method is less sensitive to changing
between different MR scanners and/or protocols.

Automatic motion correction represents an important
prerequisite to a correct automated small lesion evaluation
[14]. Especially for small lesions, the assumption of correct
spatial alignment often leads to misinterpretation of the
diagnostic significance of enhancing lesions [15]. Therefore,
we performed an elastic image registration method based
on the optical flow method [16]. The employed motion
compensation algorithm is based on the Horn and Schunck
method [17] and represents a variational method for com-
puting the displacement field, the so-called optical flow, in
an image sequence. In contrast to optical flow, we do not
want to compute the displacement field in a projected image
of our data, but the actual displacement in 3D space. In our
work, however, we favor the original quadratic formulation,
since we explicitly need the filling-in effect of a nonrobust
regularizer to fill in the information in masked regions. To
overcome the problem of having a nonconvex energy in the
energy functional, we use the coarse-to-fine warping scheme
detailed in [16], which linearizes the data term as in [17] and
computes incremental solutions on different image scales.

We tested motion compensation for two and three
directions and found the optimal motion compensation
results in two directions [18]. Segmentation of the tumor
is semiautomatic and we define an ROI including all voxels
of a lesion with an initial contrast enhancement of ≥50%.
The center of the lesion was interactively marked on one
slice of the subtraction images and then a region growing
algorithm included all adjacent contrast-enhancing voxels
and also those from neighboring slices. Thus a 3-D form of
the lesion was determined. An interactive ROI was necessary
whenever the lesion was connected with diffuse contrast
enhancement, as it is the case in mastopathic tissue.

3. Computer-Aided Diagnosis (CAD) System

The small lesion evaluation is based on a multi-step system
that includes a reduction of motion artifacts based on
a novel nonrigid registration method, an extraction of
morphologic features, dynamic enhancement patterns as
well as mixed features for diagnostic feature selection and
performance of lesion evaluation. Figure 1 visualizes the
proposed automated system for small lesion detection.

3.1. Feature Extraction. The complexity of the spatio-tem-
poral tumor representation requires specific morphology
and/or kinetic descriptors. We analyzed geometric and
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Lesion segmentation

Dynamics: time-signal intensity curve types
Morphology: geometrical and topological texture features, moments

Simultaneous dynamics and morphology: scaling index method

Feature extraction

Image registration

(nonrigid optical flow in 2D or 3D)

Features classification

ROC analysis

Figure 1: Diagram of a computer-assisted system for the evaluation of small contrast enhancing lesions.

Krawtchouk moments and geometrical features as shape
descriptors, provided a temporal enhancement modeling for
kinetic feature extraction and the scaling index method for
the simultaneous morphological and dynamics representa-
tion.

3.1.1. Contour Features. To represent the shape of the tumor
contour, the tumor voxels having nontumor voxel as a
neighbor were extracted to represent the contour of the
tumor. In this context, neighbor voxels include diagonally
adjacent voxels, but not voxels from a different transverse
slice. Due to the different grid sizes in the three directions
of the MR images and possible gaps between transverse
slices, the tumor contour in one transverse slice does not
necessarily continue smoothly into the next transverse slice.
Considering tumor contours between transverse slices there-
fore introduces contour voxels that are completely in the
tumor interior in one slice. This is illustrated in Figure 2:
the dark voxels are contour voxels and the arrows indicate
the computed contour chain. If voxels in the tumor having
at least one non-tumor voxel as a neighbor on an adjacent
transverse slice were considered part of the contour, in this
example, the crossed-out voxels would belong to the contour.

Figure 3 shows an example for a tumor where the contour
shifts considerably from one transverse slice to another.

The contour in each slice was stored as an 1D chain
of the 3D position of each contour voxel, constituting a
“walk” along the contour. The chains of several slices were
spliced together end to end to form a chain of 3D vectors
representing the contour of the tumor.

Next, the center of mass of the tumor was computed as

v :=
1

n

n∑

i=1

vi, (1)

where n is the number of voxels belonging to the tumor,
and vi is location of the ith tumor voxel. Since the center
of mass was computed from the binary image of the tumor,
irregularities in the voxel gray values of the tumor were not
taken into account.

Knowing the center of mass, for each contour voxel ci,
the radius ri and the azimuth ωi (i.e., the angle between the
vector from the center of mass to the voxel ci and the sagittal
plane) were computed the following way:

ri := ‖ci − v‖2,

ωi := arcsin

⎛
⎜⎝ cix − vx

(cix − vx)2 +
(
ci y − vy

)2

⎞
⎟⎠,

(2)

where the subscripts x and y denote the position of the voxel
in sagittal and coronal direction, respectively. ωi was also
extended to the range from −π to π by taking into account
the sign of (ci y − vy).

From the chain of floating point values r1, . . . , rm, the
minimum value rmin and the maximum value rmax were
computed, as well as

the mean value r :=
1

m

m∑

i=1

ri, (3)

the standard deviation σr :=

√√√√ 1

m

m∑

i=1

(ri − r)2, (4)

the entropy hr := −
100∑

i=1

pi · log2

(
pi
)
. (5)
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Figure 2: Example of contour computation.

Figure 3: Left to right: tumor in adjacent transverse slices of a 512 × 512 × 32 voxel MR image.

The entropy hr was computed from the normalized
distribution of the values into 100 “buckets”, where pi is
defined as follows:

For 0 ≤ i ≤ 99:

pi :=

∣∣∣
{
r j | i ≤

(
r j − rmin

)
/
(
rmax − rmin

)
· 100 < i + 1

}∣∣∣
m

.

(6)

From the radius, rmin, rmax, r, σr , and hr were used as
morphological features of the tumor. From the azimuth, only
the entropy hω (computed for ω as in (5) and (6)) was used as
a feature, since the values ωmin and ωmax are always around π
and −π, respectively, and the value σω is not invariant under
rotation of the tumor image.

An additional measurement describing the compactness
of the tumor, which was also used as a feature, is the
number of contour voxels, divided by the number of all
voxels belonging to the tumor.

3.1.2. Morphological Features. The spatial and morphologi-
cal variations of a tumor can be easily captured by shape

descriptors. We analyze two modalities as shape descrip-
tors based on moments: the geometric and Krawtchouk
moments.

Geometrical Moments. We will employ low-order three-
dimensional geometrical moment invariants as described in
[19] because they have a low computation time and the
results are stable to noise and distortion. We will utilize the 6
low-order finite-term three-dimensional moment invariants
as described in [19]. There are one second-order and fourth-
order, two third-order and three fourth-order moment
invariants.

Krawtchouk Moments. Global and local shape description
represents an important field in 3D medical image analysis.
For breast lesion classification, there is a stringent need to
describe properly the huge data volumes stemming from
3D images by a small set of parameters which captures the
morphology (shape) well. However, very few techniques have
been proposed for both global and local shape description.
We employed Krawtchouk moments [20] as shape descrip-
tors for both malignant and benign lesions. Weighted 3-D
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Krawtchouk moments have several advantages compared to
other known methods: (1) they are defined in the discrete
field and thus do not introduce any discretization error like
Spherical Harmonics defined in a continuous field and (2)
low-order moments can capture abrupt changes in the shape
of an object. The weighted 3D Krawtchouk moments [20]
form a very compact descriptor of a tumor, achieved in a very
short computational time. Every tumor can be represented
by Krawtchouk moments since it is expressed as a function
f (x, y, z) in a discrete grid [0 · · ·N − 1] × [0 · · ·M − 1] ×
[0 · · ·L− 1].

Krawtchouk moments represent a set of orthonormal
polynomials associated with the binomial distribution [21].
The nth order Krawtchouk classical polynomials can be
expressed as a hypergeometric function:

Kn

(
x; p,N

)
=

N∑

k=0

ak,n,px
k = 2F1

(
−n,−x;−N ;

1

p

)
(7)

with x,n = 0, 1 · · ·N ; N > 0; p ∈ (0, 1) and the hypergeo-
metric function 2F1 is defined as

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
, (8)

and with (a)k being the Pochhammer symbol

(a)k = a(a + 1) · · · (a + k − 1) =
Γ(a + k)

Γ(a)
. (9)

The set of the Krawtchouk polynomials S = {Kn(x; p,N),
n = 0 · · ·N} has N + 1 elements. This corresponds to a set
of discrete basis functions with the weight function

w
(
x; p,N

)
=

(
N
x

)
px
(
1− p

)N−x
,

ρ
(
n; p,N

)
= (−1)n

(
1− p

p

)n
n!

(−N)n
.

(10)

We assume that f (x, y, z) is a 3-dimensional function
defined in a discrete field A = {(x, y, z) : x, y, z ∈ N , x =
[0 · · ·N − 1], y = [0 · · ·M − 1], z = [0 · · ·L − 1]}. The
weighted three-dimensional moments of order (n+m+ l) of
f are given as

Q̃mnl =

N−1∑
x=0

M−1∑
y=0

L−1∑
z=0

Kn

(
x; px,N − 1

)

· Km

(
y; py ,M − 1

)
K l

(
z; pz,L− 1

)

· f
(
x, y, z

)
,

(11)

with px, py , pz ∈ (0, 1). Local features can be extracted by the
appropriate selection of low-order Krawtchouk moments.
Kn(x; p,N) is given as

Kn

(
x; p,N

)
= Kn

(
x; p,N

)
√√√√w

(
x; p,N

)

ρ
(
n; p,N

) . (12)
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Figure 4: Schematic drawing of the time-signal intensity (SI) curve
types [2]. Type I corresponds to a straight (Ia) or curved (Ib) line;
enhancement continues over the entire dynamic study. Type II is a
plateau curve with a sharp bend after the initial upstroke. Type III
is a washout time course. In breast cancer, plateau or washout-time
courses (type II or III) prevail. Steadily progressive signal intensity
time courses (type I) are exhibited by benign enhancing lesions.

Km(y; py ,M − 1) and K l(z; pz,L − 1) are defined corre-
spondingly. Thus, every 3-dimensional function f (x, y, z) in
a 3-dimensional field can be decomposed into weighted 3-

dimensional Krawtchouk moments Q̃nml.
The tumor can be represented by Krawtchouk moments

since it is expressed as a function f (x, y, z) in a discrete space
[0 · · ·N − 1]× [0 · · ·M − 1]× [0 · · ·L− 1].

3.1.3. Dynamical Features. Lesion differential diagnosis in
dynamic protocols is based on the assumption that benign
and malignant lesions exhibit different enhancement kinet-
ics. In [2], it was shown that the shape of the time-
signal intensity curve represents an important criterion in
differentiating benign and malignant enhancing lesions in
dynamic breast MR imaging. The results indicate that the
enhancement kinetics, as represented by the time-signal
intensity curves visualized in Figure 4, differ significantly for
benign and malignant enhancing lesions and thus represent
a basis for differential diagnosis. In breast cancer, plateau or
washout-time courses (type II or III) prevail. Steadily pro-
gressive signal intensity time courses (type I) are exhibited by
benign enhancing lesions. Also, these enhancement kinetics
are not only present in benign tumors but also in fybrocystic
changes [2].

Computing the average signal intensity of the tumor
before contrast agent administration (SI) and after contrast
agent administration (SIC), the relative enhancement can be
computed as

∆SI(t) :=
SIC(t)− SI(t)

SI(t)
· 100%. (13)

To capture the slope of the curve of relative signal inten-
sity enhancement (RSIE) versus time in the late postcontrast
time, we computed the line (s = a · t + b) that approximates
the curve of the RSIE for the last three time scans. The values
a and b are the least square solutions of the overdetermined
system of equations a · ti + b = si, j for the three last points in
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time (i ∈ {3, 4, 5}), as well as for all tumor voxels j, with si, j
being the RSIE in voxel j at time scan i.

The solutions to these equations are given by

a =
3n
∑
tisi, j −

∑
ti
∑
si, j

3n ·
∑
t2
i − (

∑
ti)

2 ,

b =

∑
si, j
∑
t2
i −

∑
ti
∑
tisi, j

3n ·
∑
t2
i − (

∑
ti)

2 ,

(14)

where n is the number of voxels in the tumor, and
∑

is an
abbreviation for

∑3
j=1

∑n
i=1. The slope a was used as a feature

to describe the dynamics.

3.1.4. Simultaneous Morphology and Dynamics Representa-
tions. The scaling index method [22] is a technique that
is based on both morphology and kinetics. It represents
the local structure around a given point. In the context of
breast MRI, such a point consists of the sagittal, coronal, and
transverse position of a tumor voxel and its third time scan
gray value, and the scaling index serves as an approximation
of the dimension of local point distributions.

Mathematically, the scaling index represents the 2-D
image as a set of points in a three-dimensional state space
defined by the coordinates x, y, z and the gray value
f (x, y, z). For every point Pi with coordinates (xi, yi, zi) the
number of points in a sphere with radius r1 and a sphere with
radius r2 is determined and the scaling index αi is computed
based on the following equation:

αi =

(
logN(Pi, r2)− logN(Pi, r1)

)
(
log r2 − log r1

) , (15)

where N(Pi, r) is the number of points located within an n-
dimensional sphere of radius r centered at Pi. As radii, we
choose the bounds of the tumor shape. Thus, the obtained
scaling-index is a measure for the local dimensionality of the
tumor and thus quantifies its morphological and dynamical
features. There is a correlation between the scaling index and
the structural nature: α = 0 for clumpy structures, α = 1 for
points embedded in straight lines, and α = 2 for points in a
flat distribution.

For each of the three time scans (i ∈ {1, 3, 5}), the
standard deviation and entropy were determined and used
as a feature to capture the heterogeneous behavior of the
enhancement in a tumor.

3.2. Classification Techniques. The following section gives a
description of classification methods applied to evaluate the
effect of spatiotemporal features in breast MR images.

Discriminant analysis represents an important area of
multivariate statistics and finds a wide application in medical
imaging problems. The most known approaches are linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and Fisher’s canonical discriminant analysis.

Let us assume that x describes a K-dimensional feature
vector that is, there are J classes and there are N j samples
available in group j. The mean in group j is given by µ j and
the covariance matrix is given by Σ j .

3.2.1. Bayes Classification Based on LDA and QDA. The Bayes
classification [23] is based on estimating the prior probabili-
ties πi for each class which describe the prior estimates about
how probable a class is.

This classification method assigns each new sample to
the group with the highest a posterior probability. Thus, the
classification rule becomes

C j =
(

xi − µ j

)T(
Σ j

)−1(
xi − µ j

)
+ log

∣∣∣Σ j

∣∣∣− 2 logπ j ,

(16)

where µ j represent the means of the classes and Σ j the cor-
responding covariance matrix. The assignment to a certain
class j for a certain pattern is made based on the smallest
determined value of C j .

There are two cases to be distinguished regarding the
covariance matrices: if the covariance matrices are different
for each class, then we have a QDA (quadratic discriminant
analysis) classifier, while if they are identical for the different
classes, it becomes an LDA (linear discriminant analysis)
classifier.

3.2.2. Fisher’s Linear Discriminant Analysis. The underlying
idea of Fisher’s linear discriminant analysis (FLDA) is to de-
termine the directions in the multivariate space which allow
the best discrimination between the sample classes. FLDA is
based on a common covariance estimate and finds the most
dominant direction and afterwards searches for “orthogonal”
directions with the same property. The technique can extract
at most J − 1 components.

This technique identifies the first discriminating com-
ponent based on finding the vector a that maximizes the
discrimination index given as

a
T

Ba

aTWa
(17)

with B denoting the interclass sum-of-squares matrix and W

the intraclass sum-of-squares matrix.

4. Results

In the following, we will explore the results of the previ-
ously described features’ sets from different classification
techniques. The results will elucidate the descriptive power
of several tumor features for small lesion detection and
diagnosis.

4.1. Effectiveness of Krawtchouk Moments. The Krawtchouk
moments describe a representation of local shape parameters
and can thus describe the differences in morphology between
benign and malignant tumors. Since the obtained number of
Krawtchouk moments is very high (>200), we reduced their
dimension based on principal component analysis (PCA).
Table 1 shows the results for the Krawtchouk moments for
different classifiers and number of principal components. In
general, the quadratic discriminant analysis shows the best
results and for PC >10 they tend to deteriorate.
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Table 1: Classification results based on Krawtchouk moments for
different principal components (PC). Abbreviations: linear dis-
criminant analysis (LDA), naive Bayes linear discriminant analysis
(N.B.LDA), quadratic discriminant analysis (QDA), naive Bayes
quadratic discriminant analysis (N.B.QDA), and Fisher’s linear
discriminant (FLDA).

PC
Correctly classified (%)

LDA N.B.LDA QDA N.B.QDA FLDA

1 71.0 71.0 64.5 64.5 71.0

2 71.0 74.2 58.1 64.5 74.2

3 64.5 67.7 67.7 58.1 67.7

4 64.5 64.5 74.2 71.0 64.5

5 64.5 64.5 74.2 64.5 64.5

6 61.3 64.5 77.4 64.5 61.3

7 67.7 74.2 74.2 67.7 71.0

8 71.0 74.2 74.2 67.7 71.0

9 61.3 74.2 71.0 67.7 61.3

10 61.3 74.2 74.2 67.7 61.3

11 58.1 67.7 71.0 67.7 58.1

Table 2: Combined classification of the feature groups and
different classification methods. Abbreviations: linear discriminant
analysis (LDA), naive Bayes linear discriminant analysis (N.B.LDA),
quadratic discriminant analysis (QDA), naive Bayes quadratic
discriminant analysis (N.B.QDA), and Fisher’s linear discriminant
(FLDA).

Features
Correctly classified (%)

LDA N.B.LDA QDA N.B.QDA FLDA

Contour features 64.5 74.2 67.7 77.4 64.5

Scaling index features 67.7 71.0 61.3 51.6 67.7

Tumor RSIE features 64.5 74.2 74.2 77.4 64.5

Contour RSIE features 64.5 74.2 54.8 54.8 64.5

Geometric moments 51.6 54.8 51.6 64.5 51.6

Krawtchouk moments 71.0 74.2 77.4 71.0 74.2

4.2. Effectiveness of Combined Feature Groups. We now
examine not anymore every single feature but group the
features together in specific classes that contain the features
described in the previous sections. Table 2 shows the results
for five distinct classifiers assuming motion compensation in
2 directions. The Krawtchouk moments (reduced to a six-
dimensional vector by PCA) yield the best results since they
capture both local and global shape properties.

We perform receiver operating characteristic (ROC)
analysis to determine the sensitivity, specificity, and area
under the curve (AUC) of the CAD system. The results of
the sensitivity and specificity for the current data set based
on specific features selected based on their discrimination
capability and also in combination are shown in Table 3. The
scaling index entropy yields the highest sensitivity and the
5th geometric moment the highest specificity. This finding
is not surprising since the scaling index is a spatio-temporal
feature while the geometric moment is averaging over the
tumor’s shape. Since benign lesions tend to have smoother

Table 3: Sensitivity and specificity for specific features alone and in
combination based on linear naive Bayes classification.

Features
True positive

(%)
True negative

(%)

Contour feature (radius standard
deviation)

70.5 85.7

Scaling index features (entropy) 82.3 57.1

Tumor RSIE features (entropy
(time scan 4))

76.4 71.4

Contour RSIE features (entropy
(time scan 4))

76.4 71.4

Slope of RSIE 76.4 64.3

Geometric 5th moment 71.6 100

Bayes classification without
geometric moments

76.4 78.5

Bayes classification with
geometric moments

88.2 78.5

Table 4: AUC values for selected single features and all features
combined based on an FLDA classification.

Features AUC (%)

Contour feature (radius mean) 82.6

Scaling index features (mean) 79.6

Tumor RSIE features (entropy (time scan 3)) 81.5

Contour RSIE features (entropy (time scan 4)) 81.3

Slope of RSIE 72.7

FLDA classification with all features 84.7

surfaces than malignant, this feature can be used as a first-
step discriminator between those lesions. The inclusion of
geometric moments in the feature set increases the sensitivity
but leaves the specificity unchanged.

The best AUC-values for single features as well as for all
features combined can be found in Table 4.

The AUC-values demonstrate that the contour features
are very powerful descriptors and are able to capture the
spatio-temporal behavior of small lesions.

5. Conclusion

The goal of the presented study was the introduction of
new techniques for the automatic evaluation of dynamic
MR mammography in small lesions and is motivated to
increase specificity in MRI and thus improve the quality of
breast MRI postprocessing, reduce the number of missed or
misinterpreted cases leading to false-negative diagnosis.

Several novel lesion descriptors such as morphological,
kinetic and spatio-temporal are applied and evaluated in
context with benign and malignant lesion discrimination.
Different classification techniques were applied to the clas-
sification of the lesions. A surprisingly low number of
eight features proved to contain relevant information and
achieved for both Fisher’s LDA and LDA good classification
results. Krawtchouk moments proved to capture both the
local and global shape features and represent thus in term
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of classification the best shape descriptors. In terms of
spatio-temporal features, the scaling index entropy yields
the highest sensitivity demonstrating that the enhancement
pattern in small lesions has to be analyzed both in terms of
spatial and temporal information. The benign characteristics
are best described by geometric moments. The AUC-values
demonstrate that the contour features can capture very well
the spatio-temporal behavior of these small lesions.

The results suggest that quantitative diagnostic features
can be employed for developing automated CAD for small
lesions to achieve a high detection and diagnosis perfor-
mance. The performed ROC-analysis shows the potential of
increasing the diagnostic accuracy of MR mammography by
improving the sensitivity without reduction of specificity for
the data sets examined.
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