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Selection of Subsets of Regression Variables 

By ALAN J. MILLER 

CSIRO Division of Mathematics and Statistics, 
Melbourne, Australia 

[Read before the Royal Statistical Society on Wednesday, January 25th, 
1984, the President, Professor P. Armitage, in the Chair] 

SUMMARY 
Computational algorithms for selecting subsets of regression variables are discussed. 
Only linear models and the least-squares criterion are considered. The use of planar- 
rotation algorithms, instead of Gauss-Jordan methods, is advocated. The advantages 
and disadvantages of a number of "cheap" search methods are described for use when 
it is not feasible to carry out an exhaustive search for the best-fitting subsets. 

Hypothesis testing for three purposes is considered, namely (i) testing for zero 
regression coefficients for remaining variables, (ii) comparing subsets and (iii) testing 
for any predictive value in a selected subset. Three small data sets are used to illustrate 
these tests. Spjotvoll's (1972a) test is discussed in detail, though an extension to this 
test appears desirable. 

Estimation problems have largely been overlooked in the past. Three types of bias 
are identified, namely that due to the omission of variables, that due to competition 
for selection and that due to the stopping rule. The emphasis here is on competition 
bias, which can be of the order of two or more standard errors when coefficients are 
estimated from the same data as were used to select the subset. Five possible ways of 
handling this bias are listed. This is the area most urgently requiring further research. 

Mean squared errors of prediction and stopping rules are briefly discussed. Com- 
petition bias invalidates the use of existing stopping rules as they are commonly 
applied to try to produce optimal prediction equations. 

Keywords: SUBSET SELECTION; MULTIPLE REGRESSION; VARIABLE SELECTION; MEAN SQUARED 
ERRORS OF PREDICTION; MALLOWS' C AKAIKE'S INFORMATION CRITERIA; 
PREDICTION; LEAST SQUARES; CONDITIONAL LIKELIHOOD; STEPWISE REGRESSION 

1. INTRODUCTION, OBJECTIVES, STRATEGIES 
The extensive literature on selecting subsets of regressor variables was well reviewed by Hocking 
(1976). The literature, and Hocking's review, are largely on (i) computational methods for finding 
best-fitting subsets, usually in the least-squares sense, and (ii) mean squared errors of prediction 
(MSEP) and stopping rules. Hocking also discusses alternatives to using subset methods, such as 
using ridge regression, and using subsets of orthogonal linear combinations of all of the available 
predictor variables. There is little on inference or estimation, though in several places Hocking 
mentions that standard least-squares theory is not applicable when the model has not been deter- 
mined a priori, e.g. 

"The properties described here are dependent on the assumption that the subset of variables 
under consideration has been selected without reference to the data. Since this is contrary 
to normal practice; the results should be used with caution." 
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Thompson (1978) has also reviewed subset selection in regression, and Hocking (1983) has 
reviewed developments in regression as a whole over the period 1959-82. 

As stepwise regression is one of the most widely used of all statistical techniques, an 
examination of its methods and "folklore" is long overdue. Most of the criticism of subset 
regression methods in this paper applies also to the fitting of time series models in which the 
model has not been decided a priori. Though only linear models will be discussed here, the same 
ideas apply to all models, linear or non-linear, where the subset of predictor variables has not 
been decided a priori. Reasons for using only som-e of the available or possible predictor variables 
include: 
(i) to estimate or predict at lower cost by reducing the number of variables on which data are 

collected, 
(ii) to predict accurately by eliminating uninformative variables, 
(iii) to describe a multivariate data set parsimoniously. 
(iv) to estimate regression coefficients with small standard errors (particularly when some of the 

predictors are highly correlated). 
These objectives are of course not completely compatible. Prediction is probably the most 
common objective, and here the range of values of the predictor variables for which predictions 
will be required is important. The subset of variables giving the best predictions in some sense, 
averaged over the region covered by the calibration data, may be very inferior to other subsets for 
extrapolation beyond this region. For prediction purposes, the regression coefficients are not the 
primary objective, and poorly estimated coefficients can sometimes yield acceptable predictions. 
On the other hand, if process control is the objective then it is of vital importance to know 
accurately how much change can be expected when one of the predictors changes or is changed. 

Alternatives to using subset selection which may achieve some of the objectives include ridge 
regression and other shrinkage methods, the use of subsets of orthogonal (or other) linear 
combinations of the predictors, factor analysis, etc. Only when the statistical properties of subset 
regression methods are understood can we hope to compare these alternatives objectively. It may 
be appropriate to use some kind of shrinkage estimator in conjunction with subset regression. 

The many strategies of subset regression can be categorized conveniently by breaking them 
into the following phrases: 
(i) Decide the variable(s) to be predicted and the set of possible predictors, and then assemble 

or collect a data set. 
(ii) Find subsets of variables which fit the data well. 
(iii) Apply a stopping rule to decide how many predictors to use. 
(iv) Estimate regression coefficients. 
(v) Test how well the model fits, examine residuals, etc., possibly adding new variables at this 

stage (e.g. polynomial terms, interactions, transformations), and returning to phase (ii) above. 
The paper by Cox and Snell (1974) provides some useful advice on topic (i) in the context of 

medical statistics. The most widely used algorithm, due to Efroymson (1960) and often just 
termed stepwise regression, combines together phases (ii) and (iii) above, using false F-tests as 
the stopping rule. Computational algorithms are discussed in Section 2 of this paper. 

Hypothesis tests, particularly using the F-to-enter statistic, are often used as stopping rules, 
whether the objective is parsimonious model building or prediction. Inference and stopping 
rules in prediction are treated separately in Sections 3 and 5 respectively. 

The most important unresolved problem is that of estimation. Sources of bias and their 
treatment are discussed in Section 4. 

It will be assumed that we have an n x (k + 1) matrix X consisting of the n values of k pre- 
dictor variables, and a column of l's if a constant is being fitted, and a corresponding n x 1 vector 
Y of observed values of the variable to be predicted. It will be assumed that the relationship 
between Y and the predictors is 

Y= XB + e(X) + e, 
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where , is a (k + 1) x 1 vector of unknown regression coefficients (some of which may have zero 
value), e(X) is the deterministic error in the linear model and is defined to be orthogonal to X, 
and e is a vector of true but unknown residuals whose elements have zero expected value and are 
independently and identically distributed. 

2. FINDING SUBSETS WHICH FIT WELL 
Algorithms for finding best-fitting subsets of variables to a set of data requires (i) a search 

strategy, and (ii) a computational algorithm. Fitting linear models by least squares is the simplest 
case and the emphasis in this paper will be on this method. For this case, a wide range of 
combinations of search strategy and computational algorithm is available, and the feasibility of 
various combinations depends upon the numbers of predictors and observations. If non-linear 
models are being fitted, or the measure of goodness-of-fit is not a sum of squares, the same search 
strategies are theoretically still available but will often not be feasible because of the greatly 
increased computational complexity. Some examples of the use of criteria other than least squares 
include the fitting of log-linear models to categorical data (e.g. Goodman 1971; Brown, 1976; 
Benedetti and Brown, 1978), minimax or LO.-fitting (e.g. Gentle and Kennedy, 1978) and 
minimizing the sum of absolute deviations or L,-fitting (e.g. Roodman, 1974; Gentle and 
Hanson, 1977; Narula and Wellington, 1979; Wellington and Narula, 1981). 

Search strategies can be divided conveniently into (i) those which guarantee to find the best- 
fitting subsets of some or of all sizes, and (ii) the "cheap" methods which sometimes find the 
best-fitting subsets. 

Garside (1971a, b) and others have given methods for generating the residual sums of squares 
for all subsets for all sizes. All of the published algorithms known to the author use Gauss-Jordan 
methods operating upon sums of squares and products matrices. Alternatively, the planar-rotation 
algorithm of Gentleman (1973, 1974) can be used to change the order of variables within a 
triangular factorization, as described for instance by Elden (1972), Hammarling (1974), Dongarra 
et al. (1979) and Clarke (1981). In the author's experience this is only slightly slower (about 25 
per cent) than the Garside algorithm but far more accurate, and it can be used in single precision 
except for the most extremely ill-conditioned data sets. This method cannot return a negative 
calculated residual sum of squares, and can be used when the number of variables exceeds the 
number of observations. It is only feasible at present to evaluate the residual sums of squares for 
all possible subsets for k up to about 20. 

There are combinatorial algorithms for generating all subsets of p variables out of k, or all sub- 
sets of p or less out of k. One such algorithm has been given by Kudo and Tarumi (1974), though 
the basic algorithms for generating orderings to minimize the computational effort in going from 
one subset in the sequence to the next can be found in many texts on combinatorial methods (e.g. 
Reingold et al., 1977; Nijenhuis and Wilf, 1978). If a user has say 50 available predictors, the 
evaluation of all (250 - 1) = 1015 residual sums of squares is not feasible. However in such cases 
the user may be looking for subsets of say 5 predictors and 5?C5 = 2 x 106, which although a 
large number of subsets to consider, is just feasible with a fast computer. 

If only the best-fitting subset of p predictors is being sought. then many subsets can be 
skipped using a branch-and-bound technique. This seems to have been proposed first by Beale 
et al. (1967) and by Hocking and Leslie (1967). 

The branch-and-bound technique is particularly valuable in reducing the number of subsets to 
be considered in cases where there are "dominant" predictors such that there are no subsets which 
fit well which do not contain them. The technique is less useful when the number of predictors 
exceeds the number of observations. Furnival and Wilson (1974) have described a branch-and- 
bound algorithm for finding best-fitting subsets of all sizes, using Gauss-Jordan type methods 
and sums of squares and products matrices. To avoid the substantial computational cost of invert- 
ing most of the rows of a matrix to obtain the lower bounds required, they maintain two copies 
of the matrices, one with only a few rows inverted and the other with the remaining rows inverted. 

In searching for say the 10 or 20 best-fitting subsets of each size, then it is the current 10th or 
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20th best which is compared with the lower bound in deciding whether to eliminate a sub-branch. 
It is usually feasible to find say the ten best-fitting subsets of p or fewer variables out of k when 
the total number of different subsets to be considered is up to about 108. It is usually an advantage 
to use one of the "cheap" methods to be described next to find some fairly good bounds so that 
some of the unprofitable sub-branches can be eliminated early in the search. 

The common "cheap" methods such as forward selection, the Efroymson (1960) forward 
stepwise method, and backward elimination are described in most texts on regression and are well 
enough known not to merit further description here. Forward selection and the Efroymson 
algorithm can be used when there are more predictors than observations; backward elimination is 
usually not feasible in such cases. 

There are many who prefer subjective to automatic methods of variable selection. They may 
perhaps start by finding the simple correlations between the predictand and each of the predictors, 
and then look at scatter diagrams for those predictors with the largest correlations. This may 
show the need for a transformation, or adding polynomial terms, or the presence of outliers. 
After selecting one predictor, the process is repeated using the residuals from fitting this predictor, 
continuing until nothing more can be seen in the data. This approach is an extension of forward 
selection and suffers from the weaknesses of that method, though it does provide some protection 
against the selection of what might be considered stupid models. A formalized version of this 
procedure has been called "projection pursuit" by Friedman and Stuetzle (1981). Without 
enumeration of the family of potential models in advance, it is impossible to develop any 
statistical inference for such methods. The plotting and examination of residuals should of course 
be a part of any procedure. 

An alternative to the Efroymson algorithm, which often finds better-fitting subsets, is that of 
replacing predictors rather than deleting them. Suppose that we have 26 potential predictors 
denoted by the letters A to Z and that we are currently looking for subsets of four predictors. 
Let us start with the subset ABCD. Consider first replacing predictor A with that one from the 
remaining 22 which gives the smallest residual sum of squares in a subset with B, C and D. If no 
reduction can be obtained then A is not replaced. Then try replacing B, then C, then D, and then 
back to the new first predictor, continuing until no further reduction can be found. This 
procedure must converge, and usually converges rapidly, as the residual sum of squares 
decreases each time that a predictor is replaced, there is only a finite number of subsets of four 
predictors, and the residual sum of squares is bounded below. 

Many variations on the basic replacement algorithm are possible. As described above, the 
algorithm could converge upon a different final subset if started from subset DBAC instead of 
ABCD, that is if we carry out the replacement in a different order. A variation on the method is 
to find the best replacement for A, but not to make the replacement. Similarly the best replace- 
ments for B, C and D are found but only the best of the four replacements is implemented. The 
process is repeated until no further improvement can be found. A sequential replacement 
algorithm is possible, that is it is carried out sequentially for one, two, three, four predictors, 
etc., taking the final subset of (p - 1) predictors plus one other predictor as the starting point 
for finding a subset of p predictors. 

Another variation which is particularly useful when there is a large number of predictors is to 
use randomly chosen starting subsets of each size. On one problem in the use of near infra-red 
spectroscopy, there were 757 available predictors of which 6 were to be selected. From 100 
different random starts, the replacement algorithm converged upon 74 different final subsets. 
None of these was the best-fitting subset; an ad hoc procedure found one subset of six predictors 
which gave a residual sum of squares which was only two-thirds of the best found from the 100 
random starts. 

It should be emphasized that none of these "cheap" procedures guarantees to find the best- 
fitting subsets. Berk (1978a) constructed an artificial example with four predictors in which 
forward selection and backward elimination select the same subsets of all sizes, missing a subset 
of two predictors which gives a residual sum of squares equal to 1/90th of that for the selected 
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subset of two variables. In Berk's example, a replacement algorithm would have found the best- 
fitting subsets of all sizes. 

As an illustration of a case in which forward selection performs badly, consider the artificial 
data in Table 1. The Y-variable is exactly equal to (X1 - X2), but Y is orthogonal to X1 and 
almost orthogonal to X2. Forward selection picks variable X3 first. A negligible reduction in 
residual sum of squares is obtained if X2 is added to X3 and no reduction occurs if X1 is added 
to X3. Many automatic routines would then stop with only one subset, that containing only X3 
being selected. A similar situation to this often occurs in the physical sciences when a difference 
between two variables is a proxy for a rate of change in position or time. If such a situation is 
anticipated, it may be feasible to add all the pairs of differences which seem sensible, to the set of 
predictors. It will often be desirable though to leave the original variables in the set of available 
predictors. Some software using poor numerical methods will give problems though if X1, X2 and 
X1 -X2 are all included. 

TABLE 1. 
An artificial data set 

Predictors 
Observation 
number XI X X3 Y 

1 1000 1002 0 -2 
2 -1000 -999 -1 -1 
3 -1000 -1001 1 1 
4 1000 998 0 2 

All of the "cheap" methods discussed so far have involved adding, deleting or replacing one 
variable at a time. Algorithms which replace two variables at a time are much slower but they are 
usually still feasible even with hundreds of predictor variables, and they are more likely to find 
the best-fitting subsets than one-at-a-time algorithms. 

Gabriel and Pun (1979) have suggested that when there are too many predictors for an 
exhaustive search for best-fitting subsets to be feasible, it may be possible to break the predictors 
into groups within which the exhaustive search is feasible. The grouping is such that if two 
predictors A and B are in different groups, then their regression sums of squares are additive. To 
do this we need to find when regression sums of squares are additive. Is it only when the variables 
are orthogonal? It can be shown that if rAB, rAY, rBy are the sample product-moment co- 
relations between the variables A, B and the variable to be predicted, Y, then the condition is 
that 

1 rA2 = (1 -rArB Y/rAy) = (1 -rABrAy/rBy)2 (2.1) 
which has the two practical solutions rAB = 0, i.e. that A and B are orthogonal, and 

rAB=2rAyrBy/(r2Y + 2BY) (2.2) 
plus the trivial solution rAB = 1. At the moment, this is an interesting idea but it has not been 
implemented. 

In many practical cases, in using the above algorithms, some variables will be forced into all 
subsets, or conditions will be imposed, e.g. that interactions not be included without 
main effects, etc. Some users also reject subsets if the regression coefficients have the "wrong" 
signs. 

3. HYPOTHESIS TESTING 
The three types of hypothesis test which are needed are: 

(i) given a subset of predictors (not chosen a priori), are the data consistent with zero regression 
coefficients for all remaining predictors, 
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(ii) is one subset significantly better than another (e.g. for prediction), and 
(iii) is there any predictive value in the selected subset? 

Three sets of data will be used for illustration; these are the steam pressure data (STEAM) 
from Draper and Smith (1981, p. 616), the Detroit homicide data (DETROIT) of Fisher (1976) 
from Gunst and Mason (1980, p. 360) and the aircraft cost data (PLANES) given by Copas (1983). 

In the case of the DETROIT data, the homicide rate per 100 000 population will be used as the 
variable to be predicted; the accidental death rate and rate of assault will not be used. The 
predictors for this data set will be numbered from 1 to 11 in the order given in Gunst and Mason 
starting with the number of police per 100 000 population. 

The numbers of predictor variables and the numbers of observations for the three sets of data 
are: 

Data set No. of predictors No. of observations 
(k) (n) 

STEAM 9 25 
DETROIT 1 1 13 
PLANES 14 31 

The DETROIT data set is remarkable in that the first variable selected in forward selection is the 
first one eliminated in backward elimination. It is also a case in which a best-fitting subset fits 
very much better than the subsets of the same size found by forward selection and backward 
elimination. The best-fitting subset of three predictors gives a residual sum of squares of 6.77 
compared with residual sums of squares of 21.2 and 23.5 respectively for the subsets found by 
forward selection and backward elimination. 

A number of methods are in popular use for testing the hypothesis that the regression 
coefficients are zero for all of the variables which have not been selected. These include using the 
F-to-enter statistic, the use of added dummy variables, a permutation test of Forsythe et al. and 
using the lack-of-fit statistic. Except for the method using dummy variables, they all require the 
assumption that the p variables which have been selected at the time that the test is applied have 
all been chosen a priori; the effect of the selection process on these tests does not seem to have 
been considered. A test due to Spjqtvoll (1972a) does not suffer from this problem and can be 
used instead of these tests when the number of observations exceeds the number of predictors. 

If RSSp and RSSp+j are the residual sums of squares when linear models in p and (p + 1) 
predictors respectively have been fitted together with a constant, then we can define a variance 
ratio: 

RSSp - RSSp+1 
VRS= 1( - (3.1) 

RSSp+ 1 /(n - p - 2) 

This is the F-to-enter statistic. In forward selection and the Efroymson algorithm, the (p + 1)th 
predictor is that which maximizes VR, so that the F-to-enter is the first order-statistic from a 
sample of (k -p) variance ratios, or (n -p) if the number of predictors exceeds the number of 
observations, but where the variance ratios are usually not independent. With other subset 
selection strategies, the quantity (3.1) may be useful where some or all of the p predictors are not 
in the subset of (p + 1) predictors. 

The distribution of the maximum F-to-enter is of course not even remotely like an 
F-distribution. This was pointed out by Draper et al. (1971) and by Pope and Webster (1972). 
The true distribution of the maximum F-to-enter is a function of the values of the predictor 
variables. Draper et al. (1979) derive the distribution for the case of two orthogonal predictor 
variables when the wrong one is chosen, with the true value of the regression coefficient being 
zero for the chosen predictor. 

An approximation to the distribution of the maximum F-to-enter can be obtained using an 
order-statistic argument. If we assume that we have (k -p) independent variance ratios, then 
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the probability, a, that the largest exceeds some value Fo is 

a = 1-(1- a*)k--p (3.2) 

where a* is the tail probability for a value of F exceeding FO; the number of degrees of freedom 
of F are 1 and (n - p - 2). The approximation (3.2) is often used in meteorological applications 
to provide a stopping rule for subset selection following the recommendation by Miller (1962). 
If a value of e = 5 per cent is chosen, this may be found to correspond to a* = say 0.1 per cent 
and hence to using a limiting value for the F-to-enter in excess of 10. 

The distribution of the maximum F-to-enter under the null hypothesis for a particular case can 
be approximated using Monte Carlo methods. A crude way to do this would be to generate 
artificial values of the predictand, Y, using 

Y=XPP +E, 

where Xp is the n x p matrix of actual values of the p selected predictors, tp is an arbitrary vector 
of regression coefficients (zero values are the obvious choices) and the residuals, e, are generated 
from a normal distribution with arbitrary non-zero variance. The p selected predictors are then 
forced into the regression and the maximum F-to-enter is calculated. The whole process is repeated 
say 1000 times to estimate the required distribution. The amount of computation can be greatly 
reduced by using a reduction to a (k -p)-dimensional space (or (n -p) if the number of 
observations is less than the number of predictors) orthogonal to the space of the p selected 
predictors. 

An alternative method involves augmenting the set of predictors with dummy variables whose 
values are produced from a random number generator. When the first of these artificial variables 
is selected, it is assumed that there is no further useful information in the remaining predictors. 
Suppose that we have reached that stage in a selection procedure (though in practice we would 
have no way of knowing this), and that there are 10 remaining real predictors plus one artificial 
one. The chance that the artificial predictor will be selected next is then only 1 in 11. For this 
method to be useful we therefore need a moderate number of artificial predictors to ensure that 
selection stops at about the right place, say about the same number of artificial predictors as we 
have real ones. This immediately makes the method less attractive as the amount of computation 
required increases rapidly with the number of predictors. 

Table 2 shows the residual sums of squares for the five best-fitting subsets of each size for our 
three data sets with the following numbers of predictors: STEAM (9 + 9), DETROIT (11 + 1 1) 
and PLANES (14 + 11), where each pair contains the number of real predictors followed by the 
number of added artificial predictors. The asterisks in Table 2 indicate the number of artificial 
predictors in each subset. We note that in the case of the STEAM data, the closeness of the best- 
fitting subset of three predictors including an artificial predictor, to the best-fitting one, casts 
some doubt as to whether there is useful information after the first two predictors have been 
chosen. Similarly there must be considerable doubt in the case of the best-fitting subset of four 
predictors for the DETROIT data. 

A permutation test was proposed by Forsythe et al. (1973) especially for the case in which 
there are more predictors than observations. Suppose that we have k >p available predictors, and 
that the true model is 

Y=XAIA +C, 
where XA is an n x (p + 1) matrix consisting of the values of just p of the predictors and a column 
Of 1'S, ,BA is a (p + 1) x 1 vector of regression coefficients, and the true residuals, e, have variance 
o2. Let XB be an n x (k - p) matrix contain-ing the values of the remaining predictors. Form an 
orthogonal reduction of the kind: 

(XA, XB) = (QA, QB)R, (3.3) 
where the columns of QA and QB are mutually orthogonal and normalized, with QA spanning the 
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space of XA, and QB spanning that part of the space of XB which is orthogonal to XA. The matrix 
R is usually upper triangular in regression calculations, but that is not essential for our derivation. 

TABLE 2 
Residual sums of squares for the five best-fitting subsets of each 

size for three data subsets with artificial variables added 

Data set 
No. of 
predictors STEAM DETROIT PLANES 

2 8.98 33.83 10.80 
9.63 44.77 11.12 
9.78 54.46 11.17 

15.39* 55.49 11.45 
1 5.60 62.46 11.48 

3 7.34 6.77 7.56 
7.68 21.19 7.58 
7.81* 23.05 7.98 
8.29* 23.51 7.98 
8.29* 25.01* 8.00 

4 6.41** 3.79 5.79 
6.72* 4.08* 6.20 
6.80 4.58 6.25 
6.93 5.24 6.49 
7.02 5.38* 6.57 

5 4.97* 
5.15 
5.15 
5.27* 
5.33* 

Forsythe et al. used Householder reductions to achieve the factorization (3.3), but several other 
methods are widely used. Applying the same reduction to the vector of values of Y, we obtain: 

QB l 0 ? QBe 
1 

where I is a p x p identity matrix and 0 is a (k -p) x p matrix of zeros. The last (k -p) 
projections are then equal to QBe, a vector whose values have zero expected value and covariance 
matrix: 

E(QBYY'QB) =a2. 

That is, the projections in QB Y are uncorrelated and all have the same variance (unlike 
least-squares residuals). If the orthogonal reduction method used is that of planar rotations, 
then the projections have been shown by Farebrother (1978) to be identical with the "recursive" 
residuals of Brown et al. (1975), though the planar rotation method is a much more efficient 
way of calculating them. 

It is wrongly assumed by Forsythe et al. that as these projections all have the same mean and 
variance, they also have the same distribution. This only applies if the true residuals, e, have a 
normal distribution. 

Suppose we are at the stage at which p predictors have been selected. We can find that predictor 
from those remaining which gives the largest F-to-enter. If the projections are exchangeable then 
the last (k - p) projections can be permuted and the reduction in residual sum of squares for each 
one of the remaining (k - p) variables, if it were to be selected next, can be calculated for each 
permutation. This can be repeated say 1000 times to find the number of times that the original 
maximum F-to-enter is exceeded. If there is no further useful information from the remaining 
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predictors then the number of exceedances is equally likely to be any of the integers 0, 1, ... 
1000. 

In computation, the only difference from the maximum F-to-enter test is that the projections 
are permuted in this test; they are generated afresh for each case-in the maximum F-to-enter test. 
The permutation test is usually much faster. 

The main weakness of this test is that a large number of exceedances can occur when two (or 
more) remaining predictors can improve the fit substantially and are competing for selection next. 
Table 3 shows the results from applying this test to our three sets of data using 1000 permutations 
in each case. The selected subsets in this case are those picked using forward selection. 

TABLE 3 
Numbers of times out of 1000 that the maximum reduction in residual 

sum of squares was exceeded in a permutation test 

Number of previously selected predictors 

Data set 0 1 2 3 4 5 

STEAM 17 80 711 590 
DETROIT 13 10 269 378 447 101 
PLANES 27 485 311 77 739 

If we have fitted a linear model containing p out of k available predictors, then the lack-of-fit 
statistic is 

(RSSp - RSSk)/(k -p) 
LF = 

RSSk/(n-k - 1) 

provided that n > k + 1. If the subset of p variables had been chosen a priori then this statistic 
has an F-distribution if the true regression coefficients of the remaining (k - p) predictors are all 
zero, and of course subject to the usual conditions of independence, normality and homogeneity 
of variance of the true residuals. If (k - p) is large and there is only one further useful predictor 
to be found, then its contribution to RSSp tends to be "swamped" by the rest of the (k -p) 
so that the test lacks power compared with the maximum F-to-enter. However, if there are two 
or more remaining variables then, as RSSk rather than RSSp+l is used in the denominator, the 
lack-of-fit statistic is more powerful than the maximum F-to-enter. If the value of LF is 
appreciably less than 1.0 it can indicate that "over-fitting" has occurred in the selection of the 
first p predictors. 

Spj 6tvoll's (1 972a) test is of whether one subset fits better than another. The measure of good- 
ness-of-fit which he uses is the sum of squares of differences between the expected values of the 
predictand and the predictions. It will be assumed that the elements of Y are independently and 
normally distributed about an expected value vector 71(X). No assumptions will be made at this 
stage about the functional form of the relationship between t1 and X. Consider a subset A of the 
predictors and let XA be a matrix containing the columns of X for the predictors in A. Taking 

A = (XA XA )1X7, 
SpjqStvoll's measure of goodness-of-fit is 

(71 XA PA ) (71 XA PA ) = 7 7-71 XA (XA XA )XA 71 (3 *4) 
An alternative argument is to use the predicted values XAI3A instead of their expected values 

XA,BA. This adds an extra term 

a2 *trace [XA(XAXA) 'XA] (3.5) 
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to expression (3.4) where a2 is the variance of the predictand. Provided that there are no linear 
dependencies amongst the predictors in A, this is equal to (PA + 1)a2 where PA is the number 
of predictors in A. 

As the first term on the right-hand side of (3.4) does not vary when we change the subset A, 
Spjbtvoll chose to use as his measure of goodness-of-fit 

?7 XA (XA XA ) -1 XA X (3 .6a) 
which is similar to a regression sum of squares except that it uses q instead of Y. If prediction is 
our objective, then it would seem to be more appropriate to add the extra term given in (3.5) 
to give the quantity: 

77'XA(XAXA )1 XA - (PA + 1) a, (3.6b) 
A larger value of the measure for one subset than the other implies a better fit. For two subsets 
A and B we want then to make inferences about 

E'q [XA(XA ) X)'XA -XB(XBXB) XB r1 (PA 1?B) a, (3.7) 
where the last term was not used by Spjqtvoll. 

Spjotvoll's test is a Scheff6-type test. Suppose that Y = X,B + e, where the true residuals, c, are 
independently and normally distributed with variance a2, so that q = X3. That is that we have 
the true model if we use all of the available predictors, though an unknown number of the (3's 
may be zero. Using ,B to denote the least-squares estimate of ,B, then 

Pr [(,B- )'X'X(8-3) < (k + 1) S2Fa,k+l, n-klk] = 1-a (3.8) 
where Fo,k+1, snk-1 is the upper lOQa per cent point of the F-distribution with (k + 1) and 
(n - k - 1) degrees of freedom, and s2 is the usual estimate of the residual variance, i.e. 
RSSk/(n - k - 1). 

If the linear model in all the predictors does not include the true model, i.e. a # Xi, then 
(n - k - 1) s2 |a2 has a non-central x2 distribution and the probability in (3.8) is greater than 
(1 - a), as shown by Scheff e (1959, p. 136-137)., 

Substituting 7 = X13 in (3.7) and neglecting its last term for the moment, we want confidence 
limits for 

3'X' [XA(XA XA AX~ -XB(XBXB) 1'XB X( = O'C( (3.9) 
when ( satisfies the condition on the left-hand side of (3.8). If i1 = X,B is not the true relationship, 
that part of the space of iq which is orthogonal to X is also orthogonal to any subset, so that the 
projections in (3.7) of 71 onto the space of the subsets are identical with the projections of X, 
onto this space. Thus we want to find the largest and smallest values of the quadratic form 3'C(3 
given that the closeness of the unknown , -to the known ,Bis described by the ellipsoid defined in 
(3.8). An equivalent problem posed by C. R. Rao was solved by Forsythe and Golub (1965). 
Spjotvoll (1972b) gives a more detailed derivation for this particular problem. The formula for the 
100(1 - o) per cent confidence limits are contained in Theorem 1 on p. 1079 of Spjotvoll (1972a). 
The present author has derived an efficient computational method and FORTRAN code for find- 
ing these limits can be provided on request. 

An important feature of Spjqtvoll's confidence limits is that they are simultaneous limits for 
comparisons between all possible pairs of different subsets for the same data set. The confidence 
limits tend to be conservative, as is usual with Scheff6-type limits. The SpjOtvoll procedure 
requires very little computation compared with several of the other tests which have been 
described. Spjqtvoll's method can be used, as one referee has suggested, to find all subsets which 
do not differ signiftcantly from one another, though the number of such subsets will often be 
prohibitively large. 

Table 4 shows the upper and lower 90 per cent confidence limits, A1 and A2, for Spjbtvoll's 
measure of goodness-of-fit for a few selected pairs of subsets of interest for the STEAM data. 



1984] Subset Selection 399 

TABLE 4 
Upper and lower 90 per cent confidence limits, A1 and A2, for Spjqtvoll's 
measure for comparing the goodness-of-fit of pairs of subsets applied to 

the STEAM data 

Subset A Subset B RSSB-RSSA Al A2 

7 6 19.4 3.7 39.6 
7 5 27.2 -7.1 66.9 
7 3 31.2 8.1 62.0 
7 8 35.7 11.6 68.7 
7 1,7 -9.3 -30.4 -0.34 
7 4,5,7 -10.9 -33.3 -0.69 

1,7 4,5,7 -1.6 -14.3 10.1 
1,7 1-9 incl. -4.1 -20.1 0.0 

The differences in the residual sums of squares for subsets A and B are given for comparison with 
the confidence limits. This difference must lie between t'ie limits A1 and A2. We note that the 
best-fitting subset of two predictors (numbers 1 and 7) fits significantly better at the 10 per cent 
level than the best-fitting single predictor (number 7), though the reductions from adding further 
predictors are not significant. The single predictor comparisons are interesting. Predictor number 7 
gives a significantly better fit than the second, fourth and fifth-best predictors, but not 
significantly better than the third-best. The product-moment correlations between predictor 
number 7 and these other four predictors and the range of the confidence limits are: 

Predictor 6 5 3 8 
Correlation -0.86 -0.21 -0.62 -0.54 
Range 35.9 74.0 53.8 57.1 

Where there are high correlations, positive or negative, between the predictors in two subsets, 
they span almost the same space and so narrow confidence limits can be expected. In this example, 
we see a clear relationship between the correlations and the range of the confidence limits. 

If certain predictors are to be forced into all subsets then slightly narrower confidence limits 
can be obtained, as explained by Spjq5tvoll on p. 1085 of his paper. If r predictors are to be forced 
in, then (3.8) can be replaced with an equivalent statement in terms of the components of the 
remaining (k - r) predictors which are orthogonal to the r predictors forced in. The "k + 1 " which 
multiplies s2 is then replaced with (k + 1 - r), as also is the (k + 1) for the numerator degrees 
of freedom for F. In our example we have treated the constant as one such predictor. 

Some special cases of testing between subsets have also been considered by Aitkin (1974) and 
Tarone (1976), while Borowiak (1981) appears to have derived a similar result to SpjqStvoll's 
but for the case in which o2 is assumed known. 

The most-widely used statistic for testing whether there is any predictive value in a selected 
subset is the "coefficient of determination" or "multiple R2" defined as (RSSo - RSSP)/RSSO. 

An interesting example of the use of R2 is contained in a paper by McQuilkin (1976). Subset 
regression methods are used to predict tree heights as a function of soil and site conditions. Data 
were obtained on 50 predictors, many of which were polynomial or interaction terms, for trees 
in 81 plots along a ridge top. The 81 plots were divided into two groups with every third plot 
along the ridge, from a random start amongst the first three, going into the second group. Using 
an exhaustive search procedure on the data from the first group of 54 plots, a subset of 8 
predictors was selected for predicting the average height of trees in a plot. The value of R2 was 
0.66. Using least-squares estimates of the regression coefficients, the average heights were pre- 
dicted for the other 27 plots. The value of R2 for the regression of the actual and predicted 
heights was found to be only 0.01. I am grateful to Ken Berk for referring me to this example. 

There has been a number of empirical tabulations of the distribution of R2 when Y is 
normally distributed and independent of the predictors. Diehr and Hoflin (1974), and Lawrence 
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et al. (1975) have generated the distribution using respectively exhaustive research and forward 
selection for uncorrelated normally distributed predictors. Zurndorfer and Glahn (1977) and 
Rencher and Pun (1980) have looked at the case of correlated predictors using forward selection 
and the Efroymson algorithm respectively. It appears from both of these studies that higher 
values for R2 result when the predictors are uncorrelated. Wilkinson and Dallal (1981) considered 
the same case as Lawrence et al., but gave their tables in terms of the number of remaining pre- 
dictors, (k -p), and the F-to-enter value used as the stopping rule. 

Zirphile (1975) attempted to use extreme-value theory to derive the distribution of R2. 
Rencher and Pun developed this idea further and obtained a formula for the upper percentiles of 
R2 with two parameters which they adjusted to fit their tables. 

When the number of observations exceeds the number of available predictors, so that a valid 
unbiassed estimate of the residual variance is available, the use of Spjotvoll's test is adequate for 
most practical purposes and is easy to apply. The coefficient of determination is a popular measure 
and can be used as an alternative to Spjbtvoll's test for testing whether there is any predictive 
value in a selected subset, using empirical tables or the formula given by Rencher and Pun. When 
there are more predictors than observations, the only valid test known to the author is that of 
adding artificial variables to the set of available predictors; this does not though provide any way 
of testing whether one subset fits better than another. 

4. ESTIMATION 
If least squares is used to estimate regression coefficients for a subset of predictors when that 

subset has been selected using the same data, then the regression coefficients will be biassed. 
This has been known for a long while, e.g. Miller (1962), yet it is still almost the only method 
of estimation used. Biassed estimators are widely used in many areas of statistics, and provided 
that the properties of the estimators are known, this usually causes little concern. For instance, 
few statisticians use unbiassed estimates of standard deviations. In this section, this bias will be 
examined in a simple case, and several methods of estimation will be considered. 

Let X = (XA, XB) be a sub-division of the set of available predictors into two subsets A and 
B, and let , = (PA, OB) be the corresponding sub-division of the regression coefficients. If the 
sub-division has been carried out independently of the observed values of Y, then the expected 
values of the least-squares coefficients, bA, for subset A are 

E(bA) = PA + (XAXA) 'XXBI3B. (4.1) 
This is the vector of unconditional expected values of the regression coefficients for subset A. 
The second term on the right-hand side of (4.1) could be considered the bias in estimating OA 
arising from the omission of the predictors in subset B. In many cases in which subset regression 
is used, all or most of the predictors are random variables, and it is then convenient to think of 
the model in subset A predictors as 

Y=XAjA3 +e(X)+ [(I-XA(XAXA) 1 X )XBI3B +e] (4.2) 
where PA is given by (4.1), and that part of XBPB which is orthogonal to XA is treated as 
additional random variation augmenting e. This is the model which would be used if the values of 
the variables in subset B were not available. 

If subset A is chosen conditional upon the subset fitting better than certain others, then E(bA) 
will in general be different from (4.1) if selection and least-squares estimation are from the same 
data. This difference will be called the selection bias. It may be convenient to think of this 
selection bias as being due to two causes, the, first is competition for selection amongst several 
subsets containing the same numbers of predictors, and the second arises from the stopping rule 
which is applied to decide the number of predictors to use. Thus we now have the three kinds 
of bias: 
(i) omission bias, equal to the second term on the right-hand side of (4.1), 
(ii) competition bias, in choosing between subsets of the same size, and 
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(iii) stopping-rule bias, in choosing the number of predictors to use. 
Stopping-rule bias has been considered in detail by Kennedy and Bancroft (1971) for the case 

in which the subsets of each size are pre-specified, as for instance is usually the case in fitting 
polynomial regressions of progressively higher degree or in adding the next higher lag in fitting 
auto-regressive models. Copas (1983, Section 6) considered the bias in the case of orthogonal 
predictors; the bias in that case was a combination of competition and stopping-rule bias. These 
are special cases of an area of statistics known as pre-test estimation, see, for example, Bancroft 
and Han (1977) or Judge and Bock (1978). 

Let us look at the simple case of two competing predictors, and suppose that it has been 
decided to use only one of them. Suppose that the true model is 

Y= O3X1 + :2X2 + e, (4.3) 
where the residuals, e, have zero mean and E(e2)= o2. later we will also need to make 
assumptions about the distribution of the residuals. The least-squares estimate, bl, of the 
regression coefficient for the simple regression of Y upon X1 is then 

b =X1Y/X1 X1 
and hence 

E(b1) -j3l + f32X X2/X1X1 

l31 say, 
with a similar definition for O3. Note that these are the expected values over all samples, no 
selection has been considered so far. The difference between j3 and i31, and similarly that between 
:2* and 2, is what we called earher the omission bias. 

Variable X1 is selected when it gives the smaller RSS, or equivalently, when it gives the larger 
regression sum of squares. That is, when 

X'X b 2> X2X2b2. (4.4) 

If we let f(b1, b2) denote the joint probability density of b1 and b2, then the expected value of 
b, when variable X1 is selected is 

b1f(bl, b2)db1 db2 
E(b, jX1 selected) , (4.5) 

| |f(bl,b2)db1 db2 

where the region R in the (b I, b2)-space is that in which condition (4.4) is satisfied. The 
denominator of the right-hand side of (4.5) is the probability that variable X1 is selected. The 
region R can be re-expressed as that in which I b1 I > C I b2 I where C- (X2X2/XXXl As the 
boundaries of this region are straight lines, it is relatively straightforward to evaluate (4.5) 
numerically for any assumed distribution of b, and b2, given the sample values of X'Xl and 
X2X2. Similarly, by replacing the b, in the numerator of the right-hand side of (4.5) with bj, 
we can calculate the rth moment of b, when X1 is selected. 

As b1 and b2 are both linear, in the residuals, e, it is feasible to calculate f(b1 , b2) for any 
distribution of the residuals. If the residuals have a distribution which is close to normal then, by 
the Central Limit Theorem, we can expect the distribution of b, and b2 to be closer to normal, 
particularly if the sample size is large. The results which follow are for the normal distribution. 

Given the values of X1 and X2, the covariance matrix of bI, b2 is 
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l- (X'X x) X-1 XX2 (X'Xl ) -1 (X2 X2) - 

X1X2 (X1X1) -1(xX2) - X (X2 X2 ) -1 
Without loss of generality, it will be assumed that X1 and X2 have been scaled so that 

V=2[ j ], where p=X'X2. 

The joint probability density of b, and b2 is then 

exp{f-j-(b -..p*)' V'(b -p) 
f(bl,b2)= 2I t(1p)V 

Let A(b2) = 31 + P(b2 - t2), then we need to evaluate integrals of the form 
00 

exp [-(b2 -,3*)2/2u2] br exp{- [bI - p(b2)] /[22 (l -P)] db2db 
exp= J dba( .p)4 1d 2, (4.6) 

-00 (2g)'R(b:2) 
{ T2( 

21 

where the regions of integration for the hiner integral are bI > I b2 1 and b1 <- I b2 1. The inner 
integral can be evaluated easily for low moments. Numerical integration can then be used to 
determine Ir. Unfortunately, none of the derivatives of the kernel of (4.6) is continuous at 
b2 = 0, so that normal Hermite integration cannot be used. However, the kernel is well behaved 
on each side of b2 = 0 so that integration in two parts can easily be carried out using half-Hermite 
integration. Tables for half-Hermite integration have been given by Steen et al. (1969), and by 
Kahaner et al. (1982). 

Table 5 contains some values of the mean and standard deviation of b1 when variable X1 
is selected. In this table the unconditional expected value of b1 is held at 1.0. 

TABLE 5 
Values of the expected value, E(b1 I sel.), and standard deviation, 
st. dev. (b1 I sel.), of b1 when variable X1 is selected, with O* 1.0 

aX0.3 u=0.5 

E(b1 I sel.) St. dev. (b, I sel.) E(b, I sel.) St. dev. (b, I sel.) 

p =-0.6 0.0 1.02 0.28 1.11 0.43 
0.5 1.08 0.25 1.21 0.39 
1.0 1.21 0.21 1.36 0.35 
1.5 1.39 0.18 1.53 0.32 
2.0 1.60 0 16 1.72 0.30 

p 0.0 0.0 1.01 0.29 1.10 0.45 
0.5 1.05 0.28 1.15 0.44 
1.0 1.17 0.25 1.28 0.42 
1.5 1.35 0.23 1.46 0.40 
2.0 1.57 0.22 1.66 0.38 

p =0.6 0.0 1.02 0.28 1.11 0.43 
0.5 1.01 0.29 1.09 0.46 
1.0 1.11 0.28 1.17 0.48 
1.5 1.30 0.27 1.34 0.51 
2.0 1.53 0.27 1.52 0.58 

Fig. 1 is intended to give a geometric interpretation of selection bias. The ellipses are for two 
different cases, and are ellipses of constant probability density in (bl, b2) such that most pairs 
of values of (bl, b2) are contained within them. For this figure, it is assumed that X1 and X2 
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Fig. 1. Illustrating regions for selection in the space of the regression 
coefficients when one variable out of two is to be selected. 

have both been scaled to unit length so that the regions in which X1 and X2 are selected are 
bounded by lines at 45 degrees to the axes. Thus XI is selected if (b1, b2) is in regions to the left 
and right of the origin, and X2 is selected in the top or bottom regions. 

Ellipse A represents a case in which b1 is positive and b2 is usually positive. The thin horizontal 
and vertical lines running from the centroid of the ellipse are at the unconditional expected values 
of b1 and b2. When X2 is selected, (b1, b2) is in the small sliver to the top left of the ellipse or 
just above it. Most of the sliver is above the expected value of b2, so that b2 is biassed 
substantially in those rare cases in which it is selected. As the few cases in which X1 is not selected 
give values of b1 less than its expected value, b1 is biassed slightly on the high side when X1 is 
selected. 

Ellipse B represents a case in which the principal axis of the ellipse is perpendicular to the 
nearest selection boundary. In this case, far more of the ellipse is on the "wrong" side of the 
boundary and the biasses in both b1 and b2, when their corresponding variables are selected, are 
relatively large. 

In both case A and case B, the standard deviations of b1 and b2 when their variables are 
selected, are less than the unconditional standard deviations. This applies until the ellipses con- 
taining most of the joint distribution include the origin. It can be seen that when P* and P* have 
the same signs and are well away from the origin, the biasses are smallest when p > 0 and largest 
when p < 0. The case p = 0, that is when the predictor variables are orthogonal, gives an inter- 
mediate amount of bias. The popular belief that orthogonality gives protection against selection 
bias is fallacious; highly correlated variables can give more protection. 

The above derivations have been of the properties of the regression coefficients. A similar 
exercise can be carried out using the joint distribution of the RSS's for the two variables, to 
find the distribution of the minimum RSS. This is somewhat simpler as both RSS's must be 
positive or zero, and the boundary is simply the straight line at which the two RSS's are equal. 

The case of competition between two variables has been studied in greater detail by 
Christenson (1982) who used a cost function decision rule to pick 0, 1 or 2 variables. 

To extend the above theory to the case of k competing predictors when only one is to be 
selected is. not difficult; the condition (4.4) which defines the region of selection is replaced with 
(k - 1) such conditions, and the bivariate integration in (4.5) becomes a k-dimensional 
integration. However, once we try to extend it to the case of the best-fitting two or more pre- 
dictors out of k, the conditions in (4.4) involve general quadratic forms so that the limits of the 
inner integrals are no longer linear but are in terms of the solutions of quadratic equations. 
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If the predictors are orthogonal, as for instance when the data are from a designed experiment 
or when the user has constructed orthogonal variables from which to select, then we can easily 
derive upper limits for the competition bias. If we scale all the predictors to have unit length, then 
the worst case is when the expected values of the regression coefficients are all the same in 
absolute value. If all of the regression coefficients have expected value equal to ? with sample 
standard deviation equal to a (a < 3), then if we pick just one predictor, that with the largest 
regression coefficient in absolute value, the expected value of the absolute value of its regression 
coefficient is ,B + 1 a, where t, is the first-order statistic for a random sample of k values from 
the standard normal distribution, where k is the number of predictors available for selection. If 
we pick the three predictors which give the best fit to a set of data, then the bias in the absolute 
values of the regression coefficients will have expected value equal to a(Q1 + t2 + 63)/3, where 
ti is the ith normal order statistic. Thus, if we have say 25 available predictors, the bias in the 
regression coefficient of a single selected predictor will be about 1.97 standard deviations. 

The order-statistic argument gives only a rough guide to the likely size of the competition bias 
in general, though it does give an upper limit when the predictors are orthogonal. The competition 
bias can be higher than the order-statistic limit for correlated predictors. In the author's 
experience, competition biasses of over two standard deviations are fairly common in real life 
problems, particularly when an exhaustive search has been used to select the chosen subset of 
predictors. If forward selection is used, the competition bias is usually smaller, but then the 
selected subsets may be much inferior to those from an exhaustive search. 

Simulation could yield a useful empirical formula for the bias in the regression coefficients. 
As most of the bias results from the competition for selection, some index of the extent of 
competition would have to be the main ingredient in such a formula. 

What can be done to overcome this bias? Amongst possible methods are: 
(i) Use only half of the available data to select the predictors, and the other half for estimation. 

If the halves are chosen randomly, the regression coefficients will be unbiassed. By only 
using part of the data, the chances of finding the best-fitting subset are reduced. In many 
situations, this is unimportant; we merely require a subset which gives good predictions, 
though the smaller the set of data used, the more likely we are to pick a poor subset. In many 
fields, sample sizes are not large enough to make this method practical. 

(ii) A jack-knife method. The results for competition between two variables, and the order- 
statistic argument for orthogonal predictors both suggest that the competition bias is of order 
nf 2, where n is the sample size. If b(n) is the vector of sample regression coefficients for the 
selected variables using n observations, the estimate 

I I 

n 2 b(n) - (n - r) f b(n - r) 

n2 -(n -r)2 

where r is the number of omitted observations, removes a bias of order n- . In using this 
method, r could be taken as say 10 per cent of n. The estimate b(n -r) is used only if the 
same selection and stopping rule as were used for the full data set selects the same subset 
of variables. Thus, in say 100 sets of (n - r) out of n observations, it may be found that only 
70 of them result in the selection of the original subset. No investigation has been made of 
properties of this method. The idea depends very heavily upon the assumption that the bias 
is of O(n 2 ). If this is not so, the use of this version of the jack-knife could make the bias 
problem worse. Several readers of drafts of this paper have also suggested the use of boot- 
strap methods. 

(iii) Shrunken estimators. Either ridge regression or a Stein-type estimator will often reduce the 
bias of most of the regression coefficients, for suitable values of the parameter controlling 
shrinkage. For two hybrid estimators which combine some of the properties of a ridge 
estimator with subset selection, see Hemmerle and Carey (1983). 
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(iv) Use Monte Carlo methods to estimate the bias, using estimates of the regression coefficients 
as if they were population values. The bias can then be subtracted from the estimates. This is 
a straightforward method which may be adequate in many cases. The first set of corrected 
estimates can be used as new population values, and the process repeated iteratively. 

(v) Maximum likelihood. Given n observations of Y and of all k available predictors, and assum- 
ing normality, the unconditional likelihood is 

n 

H '(Y[ - z 4i3xi)/u], 

where 0 is the standard normal probability density. We want to estimate regression 
coefficients when a particular subset has been selected by some procedure (stepwise 
regression, exhaustive search, etc.). Many vectors of values of Y are then impossible as they 
lead to the selection of other subsets. For the population of ali vectors of n values of the 
Y-variable such that our subset is selected, the likelihood for the actual sample is 

n 

f= 1 

... (above density) dy 1 ...dYn 

where the region R is that part of the space of Y in which our subset is selected; the likeli- 
hood is zero outside of this region. The denominator is the probability of selection of our 
subset, which is a function of the selection procedure and stopping rule used. This likelihood 
involves all k predictors, not just those in the selected subset. Note that the boundaries of 
R are not functions of the regression coefficients, so that small-sample likelihood theory 
applies. 

Substituting for 0, the logarithm of the conditional likelihood is then 

.n 

-(n/2) log, (2 irXT (2) E (iSX,,)2 -log, (P), (4.7) 
i= 1 

where P is the probability of selection of our subset. Maximizing (4.7) yields estimates of the 
regression coefficients for all k available predictors, and by projection onto the space of our 
subset of predictors, regression coefficients for those variables can be obtained. 

Clearly, the estimation of the probability of selection is the main obstacle to the use of 
this method. A number of methods have been tried, and the author believes that he now has a 
feasible method. This will be reported elsewhere when its development is complete. Prelimi- 
nary results indicate a substantial reduction in competition bias. No attempt has been made 
to allow for stopping-rule bias at this stage. 

5. MEAN SQUARED ERRORS OF PREDICTION AND STOPPING RULES 
Let us write 

Y=XA,A + e(XA) + e, (5.1) 
where the subscript A denotes a particular subset of variables, XA and ,BA are the design matrix 
and linear regression coefficients for this subset, e(XA) is the deterministic error in this model 
(e.g. from assuming a linear instead of a non-linear model, or from neglecting interactions) and e 
is the residual variation, some of which is from omitted variables. The deterministic error will 
be defined to be orthogonal to XA. Further assume that the residuals have zero mean, constant 
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variance AA, and are independent of each of the predictors in subset A. 
Let XA be a vector of values of the selected variables for which we want to obtain a prediction. 

If bA is our sample estimate (not necessarily using least squares) of BA, then suppose we predict 
Y as 

Y(XA) =XAbA. 

The expected value of the squared prediction error is then 

E[Y- Y(xA)]2 =X [(bias) (bias)'+ V(bA )XA + 2x (bias) e (xA ) + e2 (XA) + A, (5.2) 
(A) (B) (C) (D) (E) 

where "bias" = E(bA -,BA), V(bA) is the covariance matrix for the sample regression coefficients 
and e(xA) is the deterministic error at the point XA. 

In most derivations of mean squared errors of prediction (MSEP), only the terms (B) and (E) 
are considered. The values of these terms are usually averaged over either the set of values of XA 
in the design matrix, or over a multivariate normal distribution with the same covariance matrix 
as for the design matrix. Either gives a simple result for the expected value of (B). By assuming 
that the sample residual variance estimate, say SA provides an unbiassed estimate of A a 
stopping rule is obtained by finding the size of subset which minimizes an estimate of (5.2). This 
is the basic method which yields Mallows' Cp and several similar quantities (see, for example, 
Thompson, 1978). Alternatively, likelihood arguments can be used leading to Akaike's 
Information Criterion (AIC) and variants upon it. 

Mallows' Cp is 

RSS~ 
CP - 2 + 2p -n, 

where s2 = RSSk/(n - k - 1). At its minimum we have that CP < Cp+1, and hence 

RSSp-RRSSP+1 <2 

This quantity will often be nearly equal to the F-to-enter for the (p + 1)st variable, so that 
minimizing Mallows' Cp is roughly equivalent to using an F-to-enter of 2.0, or equivalently a 
t-value of about 1.4, as the stopping rule. Similar calculations for the AIC show that at its 
maximum, 

RSSp - RSSp+1 

RSSp+l l(n - p -- 2) (n-p-2(el-1) 

Providing that n > 2, this means that maximizing the AIC is roughly equivalent to using an 
F-to-enter of [2 - 2(p + 2)/n] . When Mallows' Cp or the AIC is plotted against p, there are often 
several local minima so that minimizing or maximizing such quantities cannot be exactly equated 
to the use of an F-to-enter test. Bendel and Afifi (1977) show that minimizing the AIC is close 
to the optimal stopping rule for prediction when unbiassed estimates of regression coefficients 
and of the residual variance are available. 

As we have seen, the competition bias can easily be of the order of two standard errors when 
selection and estimation are from the same data. This means that term (A) in (5.2) can be of the 
order of four times the size of term (B). The usual residual variance estimate is an estimate of 
(D) + (E) and will usually be biassed on the low side. As the deterministic error has been defined 
to be orthogonal to XA, the term (C) will usually be small except for extrapolation. Hence the 
vast literature on stopping rules (see Breiman and Freedman, 1983 or Kohn, 1983 for recent 
references) is an irrelevant academic exercise until the problems of estimation have been overcome. 

To illustrate the effect of neglecting the estimation bias, the PLANES data have been used. 
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The sample estimates of the regression coefficients and the residual variance were taken as 
population values for the generation of 250 artificial data sets, each consisting of the same 31 sets 
of predictors with random normal noise added. For each set of artificial data, the best-fitting 
subsets of all sizes were found. For each best-fitting subset, the residual variance, 2A was 
estimated using S2 = RSSp/(n -p -1) where p = the number of predictors in the subset excluding 
the constant. The MSEP for that subset was estimated for the values of XA in the original design 
matrix, ignoring estimation bias, using 

MSEP (false) = [1 + (p +1)/n] S2, 

and compared with an estimate of (5.2) obtained by using the known true value of AA, and 
estimating (A) + (B) using (bA - OA )'(bA - OA). Fig. 2 shows the outcome. In this case, the true 
MSEP is a minimum when all 14 predictors are included. The horizontal line in Fig. 2 is at the 
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F-ig. 2. True and false MSEP against the number of predictors, for the PLANES data set. 

level of the residual variance for the full model (0.221). As the false MSEP almost reaches this 
line, it means that the estin~ates sA are less than this for some subsets. The numbers of different 
best-fitting subsets of each size for the 250 data sets were: 

Size of subset 1 2 3 4 5 6 7 8 9 10 11 12 13 
No. of different 6 16 32 83 97 133 148 169 169 168 136 67 14 
"best" subsets 

Notice that the true and false MSEP are close together when there is little competition for 
selection. Even though 6 different single variables were picked, variable number 2 was selected in 
233 out of the 250 data sets. The true MSEP decreases monotonically with increasing subset size 
in this case. It is probable that it can have a local maximum when there are a few dominant pre- 
dictors which are always picked first and do not compete amongst each other, and many other 
less useful predictors. It can be anticipated that the true and false MSEP's will come closer 
relatively as sample sizes increase and the competition bias decreases. 

Similar results to the above have previously been reported by Berk (1978b) and Copas (1983). 
Berk used two different estimates of the MSEP, both of which under-estimated the true MSEP by 
a factor greater than 3 in the centre of the MSEP versus p curve, for a data set with 14 predictors. 
Hjorth (1982) has proposed a method of estimating the true MSEP by sequentially using a 
subset procedure to fit a model to part of the data, estimating the next observation, then using 
the subset procedure again with the new observation included to predict the next point. This does 
not help in finding a good prediction equation, but it does give a much better idea of how bad the 
subset regression predictor really is. 
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The most important problem in subset selection is that of handling competition bias. As this 
bias is squared in (5.2), if the bias can only be halved, the importance of term (A) is substantially 
reduced, and subset selection may become competitive for prediction with either shrunken 
estimators or using the full model. 

6. CONCLUSIONS 
1. In finding best-fitting subsets, the use of replacement algorithms, particularly two-at-a-time 

replacement, will sometimes find much better-fitting subsets than forward selection or the 
Efroymson algorithm, though an exhaustive search with branch-and-bound is recommended 
when feasible. It is recommended that the best 10 or 20 subsets of each size, not just the 
best one, should be saved. The closeness of fit of these competitors gives an indication of the 
likely bias in least-squares regression coefficients. 

2. Most classical hypothesis tests are only valid when the hypothesis has been determined a 
priori. A test due to Spjotvoll has been described which is valid provided that there are more 
observations than available predictors. 

3. Three sources of bias are identified, namely those due to omission, competition and the appli- 
cation of a stopping rule. Biases of the order of 1-2 standard errors are common in regression 
coefficients when the same data have been used for both model selection and estimation. 
This is the area of this subject which most needs further research; five possible ways of reduc- 
ing the bias are suggested in the paper. 

4. It is shown that the theory behind most derivations of the mean squared error of prediction, 
Mallows' Cp and Akaike's Information Criterion are not valid when model selection and 
estimation are from the same data. 
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DISCUSSION OF DR MILLER'S PAPER 
Professor J. B. Copas (University of Birmingham): I welcome Dr Miller to the Society, con- 

gratulate him on his presentation tonight, and thank him for bringing his paper out of his Private 
Bag into the public arena of one of our Ordinary Meetings. Dr Miller is surely right in saying that 
stepwise regression is one of the most widely used of statistical techniques. Thus tonight's review 
and analysis of the method is very much to be welcomed, and particularly so if, as I think it 
should, the paper helps to show that in many practical cases reliance on subset selection is mis- 
leading, wrong and foolish. Beloved of writers of statistical packages and users alike, subset 
selection is sadly lacking in a firm theoretical base. A discussion of the problems in this whole 
area is surely long overdue. 

The most important aspect of tonight's paper is Dr Miller's repeated emphasis on these 
difficulties; simple selection methods fail to deliver, the usual significance tests are misleading, 
estimated regression coefficients are biased. Whilst agreeing with his emphasis on these difficulties, 
let me say why I think he should have gone further. 

The lack of a firm theoretical base makes analysis of the properties of these methods almost 
impossible. I would welcome clarification from Dr Miller on what models are being assumed in the 
various parts of his paper. Surely the null hypothesis of zero regression coefficients for the omitted 
variables has itself depended on the data. How can we discuss estimation when the coefficient in 
question may or may not actually be estimated? In his likelihood method, Dr Miller conditions 
on the selected subset -but what justification can be given for this, bearing in mind that the choice 
of subset depends on the very same unknown parameters? More gene7ally, I suggest that greater 
attention is needed to objectives. Are we assuming that the data are in fact generated by one 
particular subset, and that we are trying to discover which subset it is? Are we interested in which 
x's influence y? Is it prediction, and if so is it prediction at some given x or over some future 
population of x's? This last objective is by far the simplest, and some progress can be made as 
proposed in my own paper read to the Society last year (Copas, 1983). The earlier objectives, 
however, are quite a different matter. Required reading is Box's paper (Box, 1966), with its 
emphasis on the need for design when identifying the effects of individual regressors. No mention 
of design is made at all in tonight's paper, and I assume that most of the examples Dr Miller has in 
mind are observational in nature. 

The root of many of the difficulties lies in the enormous scope for selection. Dr Miller takes 
the example of a search over (550) subsets, saying that this large number, 2 x 106, is not beyond 
the powers of a modern computer. With somewhat fewer than 2 X 106 independent observations, 
perhaps 30 or 40, can we expect anything sensible at all to emerge? To translate this into a 
problem I can understand, suppose we have 2 x 106 observations from a normal distribution. We 
must not be surprised if a search reveals an observation 5 standard deviations from the mean. To 
explain such an observation as mere random error plays havoc with statistical intuition. 

The most favourable model for subset selection is when the x's are orthogonal and when there 
is a clear distinction between one subset in which the p ,B's are all equal to ,B*, say, and the comple- 
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mentary subset in which all 3's are zero. Supposing that all the x's have mean 0 and variance 1, 
we have in the usual notation 

N/no'i/a X, N(--/n,Bi/u, 1), i = 1, ... ., k. 

Put ,B v/n13*Ia. Then the probability that the selected subset of size p will be the correct one is 

P( min I, pi> max I3 1) = P { (- t-, 1) + t(-- tB)}P- 

{24)(I t-p |) -1 k*-p 0(t) d t, 
where JD and 0 are the distribution and density functions of N(O, 1) respectively. Note that the 
population multiple correlation coefficient is 

R = corr (y, E(y I x)) =V\/(p32 /(p132 + n)). 
For example, taking n- 100, the graphs of Fig. Dl show this probability as a function of k 

and R at p = 5 and 10. When R = 1 the correct subset is always uncovered, but the probability 
falls away rapidly as R reduces from 1, and as k increases. For small R the situation is hopeless, 
with the selected subset almost certainly being wrong. Subset selection is perhaps used most 
frequently on social and medical data, for which R = 0.5 is certainly not unrealistically low, and in 
such cases it appears that almost no competition amongst x's can be tolerated. This analysis, of 
course, relates to a very special model, but practical situations are probably worse, with their wide 
spectra of values of the non-zero coefficients, with the search being over p as well as over subsets 
of size p, and with the added complexities of correlated x's. 

Could research along these lines lead us to ban the use of subset selection altogether if R falls 
below some threshold defined in terms of p, k and n? Perhaps a warning message should be built 
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into all subset regression programmes. My guess is that, were this to be done, users would obtain 
the warning more often than they would obtain any actual answers. It has been said: "If you 
torture the data for long enough, in the end they will confess." Errors of grammar apart, what 
more brutal torture can there be than subset selection? The data will always confess, and the 
confession will usually be wrong. 

Perhaps I am being unduly pessimistic. There are many counter examples in the literature which 
show how misleading subset selection can be, but where are the success stories? Dr Miller himself 
has estimated. that something of the order of 105 multiple regressions are carried out per day 
worldwide, many of these using subset selection. If the method is of any value, there must surely 
be many interesting case studies which would prove me wrong. Where are they? 

Dr Miller has challenged us tonight to consider a frequently used, a frequently abused and a 
little understood method of applied statistics. If his paper sparks off further research leading to 
a clearer understanding of subset selection and of when the method should and should not be 
used, it will have earned its place as an important contribution to the statistical literature. I have 
much pleasure in proposing the vote of thanks. 

Professor M. Stone (University College, London): In 1924, R. A. Fisher, doing something 
about the weather at Rothamsted, wrote: 

"A still more insidious source of illusory high correlations lies in the fact that the particular 
varieties, chosen for correlation with the crop figures, are often chosen because they appear 
in fact to be associated with the crop." 
Fisher then characteristically posed, and uncharacteristically failed to solve, a precise problem 

concerning this selection process, namely, the distribution of R for the best subset of size q < n 
in the spherically random case. In the same decade, American psychometricians were addressing 
the same question and, by the 1940s, were proposing split-half assessment as a technique for 
encouraging realism in the selection of variables for test construction. 

If only Fisher-or someone-had solved some even vaguely relevant, null problem and pro- 
duced a set of significance tables, it is possible that the naive exploitation in this area of the 
computer power of recent decades would never have occurred. 

I must confess I very nearly contributed-on the naivety side-by some picking and choosing 
of subsets of variables on an IBM 1620, generating the dubious inference of negative marginal 
utility of land to Irish farmers, suggesting it might be worth Irish farmers paying someone to steal 
some of their land. Fortunately, the paper was not accepted for publication. As it was, the need 
to do your own selection did allow some feelings of reservation about the output to surface. 

The next generation of computers and packages, however, with their solemn and 
methodologically vacuous prescriptions, encouraged users to suppress any such reservations. It is 
this tide of misuse that Dr Miller's paper is so rightly concerned to confront. 

My main comment on the paper is that it does not discuss the possibility that the best hope 
for dealing with the problem is not to wait for a theoretical solution of either Fisher's or any 
similar problems in mathematical statistics-which are always likely to be problem specific- 
but to arm the latest generation of computers with refinements of the psychometrician's split- 
half technique. And, where such refinements cannot usefully be implemented, perhaps to con- 
cede with Irwin Bross (1982) that "in practice the alternative to a simple analysis is not 
necessarily a more sophisticated analysis, it may well be no analysis at all". 

I have some specific comments that would have been preferably put directly to the author, had 
I refereed the paper. So I will merely list them as bald assertions, and invite Dr Miller to accept or 
refute them in his last words on the discussion. 
(i) The emphasis of the paper on least squares is not innocuous. The admission of other 

estimators can, at the cost of increased prior input, affect drastically the need for selection. 
(ii) Condition (2.1) defies the sufficiency of "Pythagoras"., 
(iii) The "alternative method" of randomly generated dummy predictors has the zany logic 

of a radio monitor who tries to refresh his analysis of a weak, noisy signal by listening to 
some pure white noise for comparison. 

(iv) In (5.2), e(xA) is undefined: e(XA) is a vector defined anew for each XA. 
(v) The Hjorth paper goes much further than is suggested by Dr Miller's dismissive comment. 

Mention of the findings of Hjorth brings me full circle-to the cross-validators of the 1930s! 
Additional evidence of the value of that approach in controlling-without assumptions-the 
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excesses of any proposed selection process is to be found in Mabbett et al. (1980) in the area 
of medical diagnosis and in O'Brien et al. (1984) in the context of radio-activation analysis. The 
book of Breiman et al. (1983), which I have not yet seen in its final form, promises a general 
framework for interesting applications. 

Dr Miller has been thoroughly provocative in his review of what may be the most pressing 
problem area in Statistics-and I am happy to second the vote of thanks. 

The vote of thanks was carried by acclamation. 

Dr R. L. Plackett (Retired): Dr Miller's critical examination of this field is very welcome, in 
view of the many methods that have been proposed. I have learned much from his paper, and from 
a selected subset of the references. 

His assumption (1.1) raises the question of how exactly the deterministic error e(X) is defined, 
and the comments in different sections point in different directions. Thus Section 1 refers to the 
best prediction in some sense, averaged over a region, and suggests that the underlying model is a 
least squares regression function derived. from a general relationship, whereas Section 5 indicates 
that e(X) arises from non-linearity or the omission of interactions. The matter is rather puzzling, 
and I would welcome clarification of what it is that the subsets fit well if the vector of residuals is 
zero. 

I would like to turn next to the discussion of bias, which Dr Miller has illuminated with careful 
analysis and stimulating ideas. Method (v) in Section 5 looks formidable, but even when the 
difficulties are overcome there is no reason why maximum likelihood should give unbiased 
estimates of the regression coefficients when the model is selected by processing the data. 
However, there are various reasons for thinking that the effects of bias can be exaggerated. The 
illustration in Section 5 is based on a sample of size 31 which for most purposes would be con- 
sidered small. Even so, inspection of Fig. 2 suggests that both true and false MSEP leads to the same 
conclusion if we agree to stop when further reductions are either small or cease altogether. Those 
of us who toil in the fields of categorized data have long been accustomed to biased estimators and 
tests that are valid only asymptotically. Methods which distinguish between the distribution of F 
and X2 are more refined but less robust. Models for contingency tables always include the term 
e(X) that makes fleeting appearances in the paper, and the selection is usually made from the class 
of hierarchical models. The number of such models is unknown except for tables of small 
dimensionality. 

Notwithstanding the many interesting results given here, I disagree with Dr Miller's concluding 
comment that further research is needed on the reduction of bias, and not only for the reasons 
given. If variable elimination has not been sorted out after two decades of work assisted by high- 
speed computing, then perhaps the time has come to move on to other problems. 

Professor M. A. Aitkin (University of Lancaster): It is a pleasure to welcome Dr Miller to 
tonight's meeting, and to be able to comment on his interesting paper. Dr Miller notes that there 
are several different reasons for using variable subsets. The main distinction is between description 
and prediction. 

For description the aim is parsimony. Different subsets of variables may provide adequate 
representations of the data, especially in small samples with correlated explanatory variables. In 
such cases it is important to present the different candidate subsets and not to draw strong 
conclusions. 

The determination of adequate subsets through a simultaneous test procedure was given in 
Aitkin (1974). Here all subsets are being compared with the full model, not with each other as in 
the Spjotvoll test, because if two different subsets are both adequate representations of the data, 
their direct comparison is of no interest. The set of adequate models can be characterized by the 
minimal adequate subsets, which themselves have no proper adequate subsets. 

In the STEAM data, for example, there are 9 predictors and 25 observations. For the full model 
the residual sum of squares is 4.87 on 15 d.f. with R2 = 0.924. A simultaneous test of size ae rejects 
any model as adequate if its residual sum of squares exceeds (1 + 9Fg,15) 4.87. Taking 
o- 1 -(0.95)9 = 0.369, or a= 0.35, the limit is 8.45, corresponding to R2 = 0.868. None of the 
two-variable sets in Table 2 provides an adequate description at this level (the best is just adequate 
if a = 0.275). The subset comparisons in Table 4 are thus of little interest: either both subsets A 
and B are adequate, in which case we cannot choose between them except on the grounds of 
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parsimony, or A and/or B is not, in which case the inadequate ones would not be used. 
For prediction, a Spjotvoll-type test is valuable because we do want to compare different 

subsets to find those with small MSPE. The STP in Aitkin (1974) only compares subsets with the 
full model, which is not sufficient. In evaluating the MSPE, it seems preferable to condition on 
the new x rather than to average over it. This should give smaller MSPE for each new observation, 
at the expense of more computation, since the subset to be used for prediction may depend on 
the new x, as Dr Miller noted in his presentation. 

Professor D. V. Lindley (Somerset): There are many who think that to have a coherent 
philosophy about a subject is a luxury for cloistered academics and that operators can get by with 
strictly pragmatic considerations. Tonight's paper is a good counter-example because the lack of 
a coherent view, and the failure to cite references to that view, leads to many unsatisfactory argu- 
ments. Here are three examples. 

The paper uses least squares: yet this method has been known for 27 years to be inadmissible. 
Its efficiency can be as low as 2/k for k predictors. 

As a consequence of using least squares, troubles arise in selecting a subset. Breiman and 
Freedman (1983) show that least squares leads to a best subset and that the inclusion of variables 
outside that set will increase the error of prediction. Let Fk be the class of linear predictors using 
k variables. Clearly ,Fk-l is a proper subclass of 9;k obtained by putting the coefficient of Xk 
in the latter zero. Consequently any function minimized over Fk-l cannot reach a lower value 
than over Fk and prediction using k - 1 cannot be better than with k. The fallacy arises because 
least squares gets worse as k increases. The last argument shows that the more variables the better. 
Selection can only be justified on utility or loss considerations which are entirely lacking from the 
pap er. 

Thirdly, consider the question of bias in Section 4. If data D have been used to select X1 and 
discard X2 the prediction of Y given X1 coherently requires the calculation of p(Y I X1, D). This 

i l 4P(Y I X1I X2, I 3l,2, D) P(X2,13 02 I Xl ,D) dX2do,dI2 

= j'P(YIX1lX2, 132)P(X2 IXl,D)p(131, 2 ID) dX2do, df2 

under reasonable assumptions (a) of exchangeability between the prediction set and D, and (b) 
that X1, X2 give no information about I31, 02. This tells us what to do. Clearly it is not equivalent 
to the prediction b1X1. Omission bias is allowed for: competition and stopping-rule biases do not 
enter. One of the more difficult problems in life is to recognize what questions are sensible to ask. 
Attempts to answer unsatisfactory questions are bound to be unsatisfactory. Questions of bias 
are exactly of this sort and do not arise in a coherent view. 

Whilst the emphasis in this paper is wrong, the author has thought a lot about the problems in 
this difficult field and the paper contains many insights that are valuable in any understanding of 
it. Some of the bricks are excellent: the cement is a bit cracked or even lacking in places. 

Professor E. M. L. Beale (Scicon Ltd): Dr Miller's valuable paper reminds us that, even though 
multiple regression is very useful for summarizing data and suggesting models, it may be misleading 
if given a precise statistical interpretation. 

Dr Miller criticizes Gauss-Jordan methods for selecting subsets as numerically inaccurate. But 
they need not be. We all now know that we must not select a variable that is highly correlated with 
those already selected. But we must also not select a variable that would make any previously 
selected variable highly correlated with the others. Frane (1977), and more explicitly Clarke 
(1 982), show how to test for this when using Gauss-Jordan methods. With QR methods, 
subsequent calculations are not affected by the inadvertent selection of a linearly dependent 
subset, but the test should still be made and is much more laborious. 

Dr Miller refers to Furnival and Wilson (1974), who changed the optimum subsets algorithm of 
Beale et al. (1967) in three main ways. One is to select the best 10 or so equations with each 
number of variables. Another is to keep k + 1 versions of the partially inverted correlation matrix, 
rather than just 2, to avoid repeating steps. These I thoroughly accept. The paper does not 
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explicitly discuss linear dependencies among the independent variables: when detected, these make 
the algorithm more cumbersome but are not disastrous. The other change is to omit the row and 
column for a variable once it has been selected. This I do not like, because it prevents both the use 
of the Frane check and the rejection of physically meaningless negative regression coefficients. 

When k > 20, one should be able to limit the number of alternative equations explored with 
each number of variables, and to accept the best solutions found so far: such facilities are widely 
used in the related discipline of integer programming as a way of controlling the computing cost. 

Section 5 discusses mean square prediction errors when non-significant regression coefficients 
are set to zero. These can easily be computed as functions of the true regression coefficients 
when a2 is known and XTX is diagonal. They are maximized when all the true values are near their 
significance levels. Sprevak (1976) studied the bivariate case when XTX is not diagonal, and 
showed that the maximum mean square error is not greatly increased. This is encouraging, 
although one would like to see the work extended to higher dimensions. 

Dr I. T. Jolliffe (University of Kent at Canterbury): The idea, mentioned in Section 2, of 
breaking the predictors into groups and performing searches only within each group is an interest- 
ing one. A naive approach would be to consider including only one variable from each group, 
provided that all variables within a group are highly correlated. 

A frustrating aspect of variable selection in regression or elsewhere is that for any potential 
method, except those involving an exhaustive search of all subsets, it seems possible to construct 
simple examples for which the method does not work. The artificial data set in Table 1 of the 
paper is a good example; not only does it demonstrate the points discussed in Section 2, but it 
also shows that the naive approach outlined above, is flawed, the crucial feature of the example 
being that X1, X2 are highly correlated and are therefore in the same group. 

It is not, however, necessary for X1, X2 to have a large correlation for the other properties of 
the example to hold. It is possible to construct a simple example for which Y = X- X2 and 
X1, X2 are uncorrelated, but another variable X3 is picked first, with an insignificant reduction in 
residual sums of squares when either X1 or X2 is added to X3. Such behaviour should not cause 
problems in small examples where an exhaustive search is possible, but they illustrate serious 
potential difficulties if X1, X2, X3 are part of a much larger set of variables. 

Another suggestion in Section 2 is to add, delete or replace variables two at a time. In a recent 
PhD thesis, Dr R. E. Kempson of Wye College has shown that forward selection of variables in 
discriminant analysis can, in some circumstances, be substantially improved, with relatively little 
additional computing cost, by adding variables two or three at a time rather than the usual one-at- 
a-time. However, deletion of more than one variable at a time in backward elimination was 
generally less effective. 

Dr R. W. Farebrother (University of Manchester): Dr Miller's use of p differs from that of 
Mallows (1973) so that his definition of Cp should be formally increased by two. With this 
modification s2CP = RSSp + (2p + 2 - n)s2 is an unbiased estimator of E 1 Xf3- XAbA 112 
provided that X = [XA XB ] has been partitioned independently of y. However, if we choose the 
partition which minimizys Cp then the optimal partition is a function of y and the use of the 
criterion destroys the foundations on which it was erected. 

This criticism may be lodged against all estimators of the form ,3 D*X'y where D. is chosen 
to minimize 

Ml = :b) W( - b) + S2 tr WD X XD 
or 

M2-(3-b) W('W -b) + s2tr Wt 2D-(X'X)Y' 
subject to constraints on the form of D and where M1 is a biased estimator and M2 an unbiased 
estimator of 

MO =E(3-) W(-O. 
If W = X X and D = diag {(XAXA)-, k-P } then 2 is the subset estimator and M4 2 Cp, see 
Farebrother (1980). 

The subset estimator is also the limiting member (h -+ oo) of the class of partitioned ridge 
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OA (h) XAXA XAXB XAY 

[B (h) XB XA XB XB + hIk_ p lXBY 

Dr J. R. Green (University of Liverpool): Congratulations are due for this excellent 
exposition of the "state of the art" covered by the title of this paper, with its masterly 
examination of the rival methods that are-or may be used in this area. 

I wish to mention a further "cheap method" that appears in a related paper by Mustaffer 
Al-Bayatti and myself which has been submitted .o Mathematische Operationsforschung und 
Statistik, Series Statistics, entitled, "Selection of regressor variables when E(Y) is an unknown 
nonlinear function". This paper approximates to the unknown hypersurface of EY in terms 
of the x's by a set of hyperplanes, and then the Beale-Kendall-Mann procedure for selection of 
regressors is employed in that situation. Some criticisms of many methods used apply to our 
paper too. However, as in the ordinary linear situation (only more so), there are sometimes too 
many regressors to handle, so a screening method is suggested. Here those regressors are 
removed for which the increase in the sum of squared residuals, when each is removed from the 
full set of regressors one at a time, is sufficiently small. The residual sum of squares for the 
remaining subset, after removing all those rejected regressors, is then compared with the RSS 
of the full regression as a check. 

Dr R. F. Gunst (Southern Methodist University, Dallas, USA): My remarks address only one 
aspect of Dr Miller's discussion of variable selection, the influence of collinearities on competition 
for selection. Collinear predictor variables necessarily compete for inclusion in "best" subset 
algorithms because by their very nature they are redundant, at least in the data set being analysed. 
Collinearities can accentuate the effects of competition for selection. For instance, 9 of the 11 
predictors in the Detroit homicide data have at least one strong pairwise collinearity with 
I r I > 0.90. The biases evident in Table 5 neither reflect correlations as large as this nor do they 
account for multiple collinearities. 

No variable selection technique has demonstrated the ability to consistently identify the 
"best" subsets in repeated sampling when predictor variable are highly collinear. Least squares 
in particular has been shown to be ineffective. Likewise the several examples in Section 3 
illustrate the failure of least squares algorithms to produce consistent results on a single data set. 
The replacement algorithms suggested in this article are major improvements over one-at-a-time 
selection algorithms, but they too have pragmatic limitations. Not only are r-variate replacement 
algorithms difficult to code, they suffer from defects similar in nature to those of one-variate 
selection routines; e.g. r-variate replacement algorithms can fail to detect (r + 1)-variate 
synergistic effects. 

The identification of collinearities not only alerts the analyst to the presence of collinearities 
but it also suggests tradeoffs which most variable selection techniques do not identify. For 
example, if the pairwise correlation between two variates is, say, as large as 0.99, either variate 
should be a candidate for selection regardless of the preference of variable selection procedures 
(provided that at least one of the two is selected). Note too that identification of collinear 
variates can reduce the amount of variable selection that need be performed because there 
generally is consistency in the selection of influential non-collinear variates with most of the 
variable selection techniques discussed in this article. 

A final caution about collinear effects on competition for selection concerns the fitting of 
polynomial regression models. Severe collinearities can be induced and competition bias can be 
overwhelming when polynomial or interaction terms are added to linear terms in a regression 
model. A good example is provided by the nitrous oxide data set in Gunst and Mason (1980, 
p. 362). 

Professor D. A. Harville (Iowa State University, Ames, USA): Dr Miller's paper provides many 
valuable insights into the problem of selecting regression variables. Research on this problem seems 
to have been plagued by confusion as to the nature of the objectives. My discussion concerns these 
objectives and their implications. 
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In the subset-selection problem, we use the data to choose a subset S from k regression 
variables xl,. . ., xk and then, for example, in predicting the realization of a random variable y, 
adopt a pr,sedictor of the genpral form 9 = bo + Wjes b x . Corresponding to the predictor y is an 
estimator j of Pi defined by 1 = b1, if j E S, and O, if jS. 

In his S1ection 1, Dr Miller lists possible reasons, numbered (i)-(iv), for using only a subset of 
the regression variables. It would seem that the procedure for choosing S and the formulas for the 
coefficients bo, b1 (I E S) should be determined on the basis of a criterion that is consistent with 
the relevant reasons. Yet, such an approach seems seldom to be taken. 

It is evident that unless the criterion includes a penalty for choosing S to be the set 
{1, ..., k} of all regression variables, it will not distinguish, to any meaningful extent, between 
two predictors like 1 + xl and 1 +xI + 10 3?(x2 + .. . +Xk). When Dr Miller's reason (i) is 
relevant, the criterion should reflect the lower cost that results from observing a smaller number 
of regression variables. For example, following Lindley (1968), we could proceed on the basis 
of the loss function (9 -y)2 + CS, where cS is a real cost associated with observing the values of 
xl ( E S). The same criterion could be used in conjunction with Dr Miller's reason (iii), except now 
cS would represent an artificial cost that reflects non-parsimony, ratner than a real cost. 

A setting in which Dr Miller's reason (ii) or (iv) is relevant would seem to call for a criterion, 
like (true) MSE, that does not include an explicit penalty for large subsets. As is evident from 
Dr Miller's simulation study of the PLANES example, it is important to account for selection 
biases when evaluating the MSE of any predictor or estimator that incorporates subset selection. 

For a satisfactory resolution of the subset-selection problem, we can look to the class of 
(proper and improper) Bayes procedures. The Bayes approach was considered by Lindley (1968), 
in a paper which I regard as the most important yet to appear on subset selection. A frequentist 
can choose from the class of Bayes procedures on the basis of their frequentist properties (or can, 
by employing an empirical Bayes approach, allow the data to make the choice). 

Professor M. J. R. Healy (London School of Hygiene): The accepted wisdom on the selection 
of regression variables has changed over the years in an interesting way. Early on, the use of R 
(or equivalently, the residual sum of squares) as a criterion suggested that adding a variable always 
improved the situation. Very soon it was realized that a more realistic criterion was the residual 
mean square (or R adjusted by shrinkage); now adding a variable might make things better but 
could not (on average) be detrimental. The next step was the use of Cp and AIC which indicated 
that more could actually mean worse. Now Dr Miller and Professor Copas both appear to tell us 
that we should expect prediction to go on improving as variables are added and that the apparent 
advantages of parsimony are illusory. If I understand Professor Lindley, he holds this result to be 
self-evident on logical grounds. 

I think two qualifications are needed to these findings. Dr Miller's Fig. 2, which shows a 
steadily decreasing MSEP as x's are added, is based on empirical data. In such data it is highly 
unlikely that any of the x's is completely unrelated to the predictand, and Professor Lindley's 
argument holds. Variable selection methods using t or F criteria are really aiming to eliminate 
x-variables whose true coefficients are exactly zero (ust as do the orthodox significance tests from 
which they arise). The implausibility of the occurrence of such variables in practical situations is 
another argument against the appropriateness of these methods. 

If in practice more means better, if logically it cannot mean worse, where is the argument for 
parsimony, needed as it is to back up one's intuition that going onr adding x's indefinitely cannot 
be a very sensible thing to do? I think the argument must be based on a realistic appreciation 6f 
the fact that providing the values of x-variables and using them for prediction and control are not 
cost-free activities. A parsimonious regression formula may pay for a suboptimal level of 
prediction or control by economies in data collection and manipulation. In the absence of some 
such approach, I agree with Dr Miller that much of a massive literature is of little relevance to 
practical data analysis. 

Dr Urban Hjorth (Linkbping Institute of Technology): I congratulate Alan Miller on a very 
interesting paper about model selection in regression. Some years ago one branch of model 
selection seemed to have come to an end with the development of Akaike's AIC criterion and 
some consistent refinements. To me some regression problems in connection with meteorological 
data, with several predictors involved, clearly demonstrated the very strong bias of the usual 
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estimates of mean square error of prediction (MSEP). Like Miller we also found that AIC and 
related criteria did not give relevant correction of this bias. For this estimation problem we have 
good experiences of using cross validation and forward validation (Hjorth and Holmqvist, 1981; 
Hjorth, 1982). Miller addresses in Section 4 a different problem, namely the bias in the regression 
coefficients themselves and mentions five approaches to remove this bias. I appreciate Miller's 
clear distinction between various sources of bias (due to omission, competition and stopping) and 
I quite agree with his statement that competition bias is very important and far more serious than 
stopping rule bias in most situations of interest. 

An interesting question is the effect of the five methods in Section 4 on the MSEP. Can data 
split into halves ever be efficient in this respect? Jack-knife, bootstrap and the Monte Carlo 
approach (iv) all seem to suffer from the complication that the selected set of predictors will 
vary. If many predictors are involved a quite small proportion of the results may be useful if we 
"condition" on the same selected set of predictors. That shrinking can reduce the MSEP was 
recently demonstrated to the Society by Copas (1983). The conditional likelihood approach is 
interesting. Can we expect more from this method than from shrunken estimators in terms of 
MSEP, and can this method handle more than small problems? Miller's paper poses several interest- 
ing questions and will no doubt stimulate further research about subset selection and estimation 
methods. I want to thank him for this opportunity to read and comment upon his excellent paper. 

Dr C. L. Mallows (AT & T Bell Laboratories, NJ, USA): It is somewhat disturbing to have 
one's work both unreferenced and dismissed as invalid. In my 1973 paper I derived the C statistic 
(scaled by Uej ) as an unbiased estimate of the MSEP (except for the (es term), when the subset of 
variables used is held fixed, and bias terms (such as those in Miller's (5.2)) are allowed for. No 
claim was made that the minimum realized Cp was an estimate of the MSEP of any 
(selection+prediction) rule; in fact in my Section 4 I went to some pains to point out that this 
quantity, using the minimum-Cp rule for selection, could differ considerably from the minimum 
Cp estimand. I agree that it is disappointing that we do not know how to estimate the MSEP, when 
the selection effect is allowed for, but I would give higher priority to finding a good selection rule 
than to finding a good estimate of the expected performance of a possibly inferior rule. 

Absolute priorities are another matter. When the situation is ambiguous, and inspection of the 
Cp plot will show this, no (selection+l.s.prediction) rule can do well. Also, the context of the 
problem must enter into the choice of a predictor. 

I also gave (in Section 3 of my paper) a "valid" calibration of the Cp plot, using standard 
hypothesis-testing methods. 

I do not see the point of distinguishing three sources of bias. All can be ascribed to 
inappropriate selection. 

Dr C. A. Platt (San Francisco State University): The author is to be congratulated for 
providing a most provocative and stimulating paper. As he indicates, estimation bias results from 
using the same data set for both selection of variables and estimation of parameters. This bias has 
been decomposed into omission bias and selection bias, with the latter further decomposed into 
competition bias and stopping-rule bias. The author alludes to but does not develop the potential 
usefulness of the bootstrap resampling plan in reducing both types of selection bias. 

The bootstrap substitutes computing power for statistical theory, thereby obviating the need to 
make distributional assumptions in assessing properties of a population from a sample data set. 
This is accomplished through simulations in which uniform random drawings with replacement 
from the sample data set serve as proxies for independent samples drawn from the -underlying 
population. Statistics associated with these multiple samplings form a basis for inferences concern- 
ing population parameters. The only necessary assumption is that the simulated replicates bear the 
same resemblance to the distribution of sample data from which it is drawn that the sample (and 
other samples, if available) bears to the underlying population. 

The bootstrap can be applied several ways in the present regression context. If it is used only 
for variable selection or only for parameter estimation, or if it is used for both but separate 
resampling plans are employed for each, bias from using the same set of data for both purposes 
will be reduced. It could be applied to estimate the true but unknown number of variables which 
properly should enter the model, possibly through examination of bootstrap replicates from a 
"cheap" method such as the Efroymson forward stepwise algorithm. Knowing this parameter, it 
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usually is feasible to examine all possible subsets of that specified size. If either problem size or 
computing constraints prevent an examination of all possible subsets, and if branch-and-bound 
algorithms are not of sufficient assistance in the selection of variables, the bootstrap could again be 
employed. One possible strategy would be to examine the variable selection scheme from stepwise 
regressions based upon bootstrap resamplings of the data. Among those runs in which the 
previously estimated correct number of variables entered, identify that variable which entered 
most frequently, then that variable which entered most frequently those models that also include 
the first variable, and so on until the specified number of variables have been selected. 

Dr D. A. Preece (Rothamsted Experimental Station): Just before the meeting, Dr Miller said 
to me that his earlier estimate of 100 000 multiple regression analyses per day was probably an 
underestimate-perhaps even by a factor of ten. He would make no estimate, however, of the 
proportion of sensible and worthwhile analyses! Whether that proportion be one in a hundred or 
one in a hundred thousand, there must still be a lot of multiple regressions around that merit 
statisticians' critical attention-and this leads to a difficult question: How could a set of examples 
be compiled that might in some sense be "representative" of all the multiple regressions that 
thinking scientists and economists wish to do? Such a set is desirable both for illustrating papers 
such as Dr Miller's and for teaching. 

The monthly STEAM data, for instance, have several features to distinguish them from other 
examples. These data are clearly for twenty-five consecutive months, January to January. Obvious 
preliminary questions are: (i) Might it be better to use only a "balanced" set of twenty-four con- 
secutive months?, and (ii) Ought there be at least one x-variate to take account of the time- 
sequence? Dr Miller's predictors 1, 2, .. ., 9 are (I think) Draper and Smith's X2, X3, . . ., X10 
respectively. -Of these, X9 is (apart from some dotty rounding) the square of X4; bringing X9 into 
a model before X4 (Dr Miller's Table 4) therefore needs comment, at the least. Of the eight pre- 
dictors excluding X9, four happen to be discrete, each with few distinct values; these four are X5 
(no. of calendar days), X6 (no. of operating days), X7 (no. of days with freezing temperatures) 
and X10 (no. of "startups"). The main feature of X6 is the annual holiday for about half of each 
July; variate X7 too is very skew, with zero values throughout each summer; variate X10 has values 
2, 3, 4, 5 and 6 only. Some comment on all this is needed, I believe, if the data are to be used for 
an "illustrative" example: data with four such discrete variates and four continuous ones may be 
"representative" of something, but of what? Also, knowledge of what the variates are, makes it 
unlikely that the y-variate X1 (pounds of steam used) truly depends on X5, and very unlikely 
indeed that X1 has any dependence on X5 that is not covered by dependence on X6 (again cf. 
Dr Miller's Table 4); to do multiple regression analyses and discuss them without naming the 
variates and taking account of the names is at the very least a risky "illustrative" exercise. 

The Author replied later, in writing, as follows. 
I would like to thank all of those who contributed to the discussion, including some with whom 

I do not completely agree. Subset selection in regression has often been described colourfully as, 
for example, fishing expeditions, torturing the data until it confesses, or data dredging, so I did not 
expect to be treated quite as politely! However, as so much of this data dredging is being done, I 
feel that it is time that someone documented its problems and limitations, and the practice is 
either abandoned or put on a sound theoretical footing. I do not claim to have achieved this, but 
I hope that my paper and this discussion at least disturbs a few of the practitioners and stimulates 
research in this field. 

In my oral presentation, I said that my paper was vulnerable as I was not addressing one specific 
objective of subset selection in model building, and was trying to provide something for all users 
while satisfying none. Several discussants have chosen to speak on the subject of objectives, parti- 
cularly Professor Harville who has partially quantified the four objectives which I listed.In any 
particular application, the choice of a subset must depend upon what is to be done with the 
model, and in some situations two or more subsets should be chosen for different objectives even 
though the same calibration data are being used in each case. For instance, the work of Galpin and 
Hawkins (1982) suggests that, when the objective is prediction with no cost for the measurement 
of variables, it will sometimes be desirable to use different subsets in different regions of the 
(total) X-space. My own work shows that a quite different stopping rule will usually be necessary 
if least-squares estimates of regression coefficients are used rather than estimates which make an 
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allowance for selection bias. 
Unfortunately, the PLANES data were not published in Copas (1983) though the data were 

in the draft which I received. 
Both Professor Stone and Professor Plackett asked about the definition of e(X), which first 

appears at the end of Section 1. If the true relationship is 

Y = 71(X) + e, 

and we approximate the regression function, 71(X), by X,B, then ,B could be defined as 

3 = (X 'X) -1 X '7(X), 
leaving the deterministic error as 71(X) - Xj. 

Professors Copas and Healy discuss the hypothesis that pi= 0 for the variables which are not 
selected. In most practical cases it will be unrealistic to assume no relationship at all for the 
omitted variables, and I prefer the approach of Spjqtvoll of placing confidence limits on the con- 
tribution of these variables to the regression sum of squares, rather than on the significance-testing 
approach. While Professor Copas's derivation of the probability of correct selection is interesting, 
I would think that it is rarely sensible to think in terms of a correct model; indeed that in itself 
is a contradiction of what constitutes a model. There is some literature on the elimination of poor 
subsets in such a way that the probability of eliminating the "true" or "best" subset is guaranteed 
to be small. This is often only a feasible approach when the number of available predictors is fairly 
small. The most recent reference which I have in this area is Huang and Panchapakesan (1982), 
which contains references to earlier work. Spjqtvoll's method appears to provide a good alternative 
method for eliminating the inferior subsets. 

In expressing the hypothesis in the form 

H: f3i = 0 for all variables not selected by procedure XYZ, 

I was attempting to say what hypothesis I thought the users of F-to-enter's and such-like tests are 
attempting to test. There is no conceptual difficulty in using this form of hypothesis, provided 
that the test statistic and procedure XYZ are precisely specified, though it may well be almost 
impossible to derive the distribution of the statistic under the null hypothesis in most cases. 

I appreciate Professor Copas's difficulties in accepting my likelihood method. The decision to 
choose a particular subset has no place in likelihood theory, and yet I am trying to bend the likeli- 
hood idea so that it compensates for a decision which is probably wrong. The only crude 
justification that I can give is that if L is the log-likelihood defined in (4.7), then E(JLlaiO) 0 O for 
any parameter 0, where the expectation is taken using the conditional density over the region R. 
The fact that this measure of central tendency is unbiased does not mean that the estimates are un- 
biased, but it does give grounds for being optimistic that the bias resulting from maximizing (4.7) 
may be smali. This likelihood, if it can be called that, appears to be very well behaved. It appears 
to have only one maximum, despite attempts on my part to construct cases with a second local 
maximum; it has no discontinuities and all of its derivatives exist. My limited practical experience 
to date suggests that it reduces the selection bias by about 60 per cent. 

A practical solution to the problem of finding the distribution of R, or rather of R2 for the 
spherically random case mentioned by Professor Stone, has been given by Rencher and Pun 
(1980), as mentioned in the paper. I think I have convinced the authors of one statistical package 
to incorporate this test in its stepwise procedure. The Rencher and Pun formula is for the 
Efroymson algorithm and with predictors correlated in a particular way. It is a relatively straight- 
forward exercise to obtain similar formulae for other cases. For instance, a colleague recently 
wanted to know the distribution of R2 under the null hypothesis when forward selection with an 
F-to-enter of 1.0 and the condition that the sample regression coefficients must have the "right" 
sign were used. I suspect that the non-significance of values of R2 could kill off many of the step- 
wise regressions which must be the basic output of most statistical packages. 

I apologize to Dr Hjorth if my brief reference to his work is dismissive as Professor Stone says. 
In the antipodes we see journals several months after the rest of the world, and I had not read his 
paper (Hjorth, 1982) at the time I submitted the first draft of this paper. Hjorth's paper illustrates 
the extent to which prediction errors can be underestimated using formulae for mean squared 
errors of prediction which make no allowance for selection, and also looks at the problems in 
applying cross-validation techniques. A report by Hjorth (1983) extends his results to model 
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selection in general, e.g. in choosing a distribution to fit to a data set. 
The method of splitting the calibration data set into random halves is obviously inefficient, as 

Dr Hjorth comments. I too have worked with meteorological data in recent years, and this is one 
of the few fields in which there are often sufficient data for splitting to be reasonable. It has been 
very educational to use one half of the data to select a subset, to calculate the least-squares 
estimates of regression coefficients and the usual estimated standard errors (which assume the 
model was chosen a priori), and then to compare these with the regression coefficients estimated 
for the same subset of variables but using the other half of the data. As the standard errors are 
underestimated, the shrinkage of the regression coefficients has often been by 6 or more of these 
standard errors even though the sample sizes were in hundreds. 

The "zany" method, as Professor Stone describes it, of adding extra artificial variables is fairly 
widely used in my experience, and hence its inclusion in the paper even though I do not know of a 
reference in the scientific literature. 

It is difficult to believe that the condition (2.1) can be new, but so far nobody has told me of 
its prior discovery. Let me further "defy the sufficiency of Pythagoras" with a simple geometric 
explanation. In Fig. D2, Yp is the projection of Y upon the plane of two non-orthogonal pre- 
dictors X1 and X2. The point 0 is the origin so that the regression sum of squares is the square 
of the length of OYp. If we consider the regression upon X2 first, then the projection of Y upon 
its direction is the length of OB. Alternatively, if we regress upon X1 first (projection is OA), then 
the projection upon X2 is AYp which has the same length as OB. Thus the regression sum of 
squares for X2 is the same whether it or X1 is the first variable entered. As the correlations 
between variables equal the cosines of the angles between their directions, the result (2.1) can 
easily be verified. The method of planar rotations applied to the Cholesky factorization to change 
the order of variables in a regression, provides a third way of deriving the result. I may have 
defied the necessity of Pythagoras but not its sufficiency. 

x2 

Fig. D2. Illustration showing the alternative case in which regression sums of squares are 
additive but in which the predictors are not ortholonal. 

I welcome Professor Aitkin's contribution to the discussion. I believe that his adequate subsets 
method is identical with Spjotvoll's method where the two are both applicable, though his is much 
simpler to apply. His use of a 35 per cent level of significance leaves me rather baffled. The 
arithmetic he uses to arrive at this figure, or actually at the 0.369, is of the kind which is used for 
independent tests, not for simultaneous tests. 

The efficiency of 2/k which Professor Lindley quotes is for the estimation of regression 
coefficients, not for predictions. When Dr Farebrother was in Melbourne a few years ago, he 
demonstrated very effectively that while huge reductions in mean squared errors of regression 
coefficients are sometimes possible using shrunken estimators, the same estimators often give 
marginal reductions in mean squared errors of prediction. The family of estimators suggested 
by Dr Farebrother, i.e. ,B-DlX'y seems attractive, once we can adequately approximate or 
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bound the influence of selection on the objective function, such as his M2. Perhaps an estimator 
can be found which gives good mean squared error performance for selection biases in the least- 
squares regression coefficients in the range 0-2 standard errors, where the bias is in the direction 
which makes the regression coefficient too large in absolute value. The following argument leads to 
this form of shrinkage. Consider the orthogonal reduction, X = QR, where Q'Q = I and R is upper 
triangular. The projections of Y upon the orthogonal columns of Q are then the elements of 
Q'Y. Let us suppose that a subset A of p variables has been selected on some criterion, and that 
the columns of X have been ordered so that the first p columns correspond to those of subset 
A. The first p projections in Q'Y will be biased on the high side, with the extent of the bias 
depending upon the amount of competition for selection. The least-squares estimates of the 
regression coefficients for this subset are given by 

A 

13A=(R O) Q'Y. 
If we shrink each projection by varying amounts by multiplying by a diagonal (or non-diagonal) 
matrix D, then we obtain 

PA =(RA1 O)DQ'Y 

-(Rj' , 0) DR TX'Y. 

The amount of shrinkage applied to each projection is then a combination of the shrinkage 
required to overcome the selection bias, plus that required to reduce the mean squared error of 
either the regression coefficients or the predictions, depending upon the application. 
Unfortunately the diagonal form of D will not -generally be preserved when the order of variables 
in A is changed, and the diagonal form is perhaps appropriate only in the case of forward selection 
with the variables in the order of selection. 

Professor Lindley's main point is that competition bias and stopping-rule bias do not enter in 
his derivation of his p(Y I X1, D). This is far from obvious, at least to me. It appears that he would 
use the same methods whether X1 had been selected independently of the data or not. Suppose we 
divide the set of all possible sets of data (let us suppose the sample size is fixed) into two sets D1 
and D2, such that if D E D1 then X1 is the selected variable, otherwise X2 is selected. Now using 
my pragmatic operator's approach to estimate ((1, (32), if I ignore the selection process and i,se a 
likelihood which does not integrate to one over D1 or D2, whichever was selected, then my i31 is 
biased on the high side and I2 on the low side in D1 and vice versa in D2. Alternatively I can use 
the kind of conditional likelihood which I use in Section 4 of the paper. Similar scope appears to 
exist for Professor Lindley in deciding what to do in estimating his p(G3l, ,32 1 D). Let us extend 
the argument. Suppose there are 10 available predictors but we will only be able to afford to 
measure one of them in future. If we pick the one which fits best in the calibration sample, that 
is we pick a first-order statistic though probably it is not amongst equal variables, would 
Professor Lindley still use the same methods as he would if that variable had been picked 
independently of the calibration data? 

Professor Beale has raised the topic of accuracy in least-squares calculations. The test for a 
singularity is much easier, not more laborious, for QR methods than for Gauss-Jordan methods. 
Consider the constructed data set shown in Table D1. 

TABLE Dl 

XI X2 X3 X4 Xs 

1 1 0.47619 10.1 1 
2 4 1.23809 39.9 1 
3 9 2.28571 90.1 2 
4 16 3.61905 159.9 2 
5 25 5.23810 250.1 2 
6 36 7.14286 359.9 2 
7 49 9.33333 490.1 1 
8 64 11.80952 639.9 1 

In this example, X3 = X1 /3 + X2 /7 except for rounding errors. With a column of ones inserted 
as a left-hand column, a QR factorization carried out in double precision gave the R-matrix shown 
in Table D2. 



1984] Discussion of Dr Miller's Paper 423 

TABLE D2 

Const. Xi X2 X3 X4 Xs 

Const. 2.828 12.73 72.12 14.55 721.2 4.243 
X1 6.48 58.33 10.49 583.2 3.E-17 
X2 12.96 1.85 129.6 -1.234 
X3 8.E-6 0.011 0.309 
X4 0.276 -0.013 
x5 0.617 
1iX Ill 2.828 14.28 93.66 18.03 936.5 4.472 

The columns contain the projections of that variable on consecutive orthogonal directions. The 
first direction spans the space of X1, the second spans that part of X2 which is orthogonal to X1, 
etc. Looking down the X3 column, we see the value 8.E-6 on the diagonal indicating that it is 
linearly dependent upon some combination of the previous variables, at least up to about 5 
decimal places after which the variable was rounded. On the other hand, Xs is exactly orthogonal 
to the space of the constant and X1, and the value 3.E-17 is the rounding error in the computer's 
computation. Variable X4 is almost 10 times X2, and we see that after the third row the pro- 
jections in the X4 column are small. As the L2-norm for X4 is 936.5, about 3.5 decimal digits 
of cancellation error will have occurred in the calculation of the final projection of 0.276 in the 
X4 column. Using a QR algorithm, the difference between a true singularity and high correlation 
is much more easily differentiated than with Gauss-Jordan methods. If we look at that part of the 
sum of squares and products matrix for variables X2 and X4, we have 

8772 87716.4 

87716.4 877128.08 

The elimination of variable X2 in the Gauss-Jordan method then requires the subtraction 

877128.08 

-877128.001477 

in which the first 7 decimal digits cancel. Problems arise with QR algorithms because of the non- 
uniqueness of the Cholesky factorization when there are singularities. These problems have not 
been described in the literature, as far as I am aware, but there is not space here to deal with them. 

I am grateful to Professor Beale for drawing my attention to the treatment of the two-variable 
competition case by Sprevak (1976). 

The experience of Dr Kempson in adding or deleting two variables at a time is interesting. My 
only experience, however, with two-at-a-time algorithms has been with replacement. With a large 
number of available predictors, the number of combinations of 2 out of k can of course be large, 
but it only increases quadratically with k, not exponentially as for the exhaustive search. 

Several discussants have expressed views of the kind, "If the predictors are highly correlated 
amongst themselves, then some of them are redundant." While this may often be true in practice, 
it can be completely false; the artificial example in my Table 1 illustrates a case which I have quite 
often encountered. The data in the paper by Fearn (1983) provide a further illustration in which 
all of the correlations between the predictors exceed 0.9. 

Professor Gunst notes that my Table 5 does not extend to correlations of ?0.9. Below is part 
of the table for a = 0.3. The strange behaviour for p = +0.9 can easily be understood by reference 
to Fig. 1 by imagining ellipse A stretched out so that it is very long and thin and crosses the other 
boundary. 

p =-0.9 p = +0.9 

29 E(b1 I sel.) St. dev. E(b, I sel.) St. dev. 

0.0 1.03 0.27 1.08 0.34 
0.5 1.10 0.23 1.03 0.37 
1.0 1.23 0.19 1.07 0.40 
1.5 1.41 0.15 0.96 0.74 
2.0 1.62 0.13 -0.59 0.13 
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Dr Mallows feels that I have dismissed his work as invalid, though I cannot see this. In his 
paper (Mallows, 1973), he considers the case in which the subsets have been chosen independently 
of the data. This is the approach of many others who have derived similar formulae, such as 
Bendel and Afifi (1977) and Breiman and Freedman (1983), while the paper by Kohn (1983) 
contains asymptotic results. Formulae for the MSEP when the subsets have been chosen a priori 
would be applicable, for instance, to the fitting of polynomials or of auto-regressive models when 
there is a pre-determined order in which variables will be added, though once a measure such as 
Cp has been used as a stopping rule, some bias will be introduced. The PhD thesis of Bendel (1973) 
contains a considerable discussion of the various biases introduced by selection. Dr Mallows 
derivation makes no allowance for- the terms (A) and (C) in my formula (5.2), but there is no 
selection bias when the subset has been chosen a priori so that these terms are zero in the case he 
considers. The reason for separately identifying selection bias is that if we can find an alternative 
to least-squares estimation which removes most of the selection bias then Mallows' Cp and the 
AIC can be used as stopping rules when the subsets of variables have not been determined 
independently of the data. The results of Hannan and Quinn (1 979) indicate that the "2p" in 
Mallows' Cp, or more strictly the corresponding penalty for subset size in the AIC, should be 
Cnp, where Cn increases very slowly with n, say as log(log n). 

Professor Platt discusses various ways in which bootstrap methods could be applied. A paper on 
this subject by Professor Platt (1982) gives more details. The idea of applying the bootstrap 
method is appealing and seems worthy of further investigation. 

The "cheap" method mentioned by Dr Green appears to be backward elimination with a lack- 
of-fit test. I am not clear as to whether this is used just as a pruning technique before going on to 
use the Beale, Kendall and Mann algorithm. The example he quotes, of fitting hyperplanes is one 
in which ill-conditioning can be a serious problem with some software. 

Dr Preece discusses the problem of collecting "good" regression examples. In preparing this 
paper I made a conscious decision not to use any examples on which I had personally been 
involved. It is very difficult to find real problems which can be considered to be "typical" 
problems of a particular kind, and which do not also involve other problems which provide 
substantial distractions from illustrating the target technique. The examples which I have given 
at public lectures on subset selection in regression have often been described as untypical, for 
instance, they have often contained more predictors than observations. At the moment I am 
working with a large data set which has 9500 observations, but that has the complications of 
hundreds of missing values for some of the predictors and high auto-correlations. Dr Preece notes 
that a quadratic term is selected before the corresponding linear term for the STEAM data. In 
many practical cases, constraints will be applied say to stop this kind of thing happening, though 
it is not necessarily undesirable. I do not share his concern with the discrete nature of most of the 
predictors in this data set. I found the DETROIT data set far more interesting, and did do a con- 
siderable amount of experimenting with the addition of time as one of the variables, and with the 
incorporation of autoregressive terms, but that subset of three variables still came out a long way 
ahead of all that I tried. 

Professor Plackett has commented that if variable selection has not been sorted out after two 
decades then we should move onto other problems. However, in my opinion, only a very small 
number of people have been looking at the statistical problems and then for only a small number 
of years. Most of the effort expended in this field in the past two decades has gone into com- 
putational methods, and almost all of that has neglected advances in least-squares methods which 
have occurred during the same period. If subset selection should be abandoned, then we should 
put a health warning on every statistical package which can be used for empirical model selection. 
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