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We prove for a class of nonlinear Schrédinger systems (NLS) having two nonlinear bound
states that the (generic) large time behavior is characterized by decay of the excited
state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our
analysis elucidates the mechanism through which initial conditions which are very near
the excited state branch evolve into a (nonlinear) ground state, a phenomenon known
as ground state selection. Key steps in the analysis are the introduction of a particular
linearization and the derivation of a normal form which reflects the dynamics on all time
scales and yields, in particular, nonlinear master equations. Then, a novel multiple time
scale dynamic stability theory is developed. Consequently, we give a detailed description
of the asymptotic behavior of the two bound state NLS for all small initial data. The
methods are general and can be extended to treat NLS with more than two bound states
and more general nonlinearities including those of Hartree—Fock type.
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1. Introduction and Statement of Main Results

In this paper we study the detailed dynamics of the nonlinear Schrédinger equation
with a potential (NLS):

i0i¢ = Ho + No|*¢. (1.1)

Here, H = —A + V(x) is a self-adjoint operator on L?(R?®) and X is a coupling
parameter, assumed real and of order one. When V' (z) is nonzero, Eq. (1.1) is also
known as the time-dependent Gross-Pitaevskii equation.® We assume that V' (x) is
a smooth potential, which decays sufficiently rapidly as |z| tends to infinity (short
range). Finally, we assume that the operator H has no zero energy resonance [24, 31],
a condition which holds for generic V.

2In a similar way, one can treat nonlinear terms of the form AK[|$|3], which can be local or
nonlocal. Typical examples are: K[|¢|2] = |¢|P and K[|¢|?] = K % |$|?, for some convolution
kernel, I, Hartree—Fock type.
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NLS is a Hamiltonian system with conserved Hamiltonian energy functional:
Hald = [ 19600 + V@Is@) + o) ds (1:2)
and additional conserved integral
Njo] = [ [6(o)de. (13)

These conserved integrals are continuous in the H!(R3) topology. An extensive
discussion of the well-posedness theory can be found in [6,22,52]. In particular,
NLS is well-posed globally in time in the space H*(R?), for initial data, ¢o, which
is sufficiently small in H*.

Throughout this paper we shall assume that ¢ has sufficiently small H' norm.
We shall use the notation:

Eo = ol 7 - (1.4)

For V(x) which decays sufficiently rapidly as |z| tends to infinity (short range
potentials) the spectrum of H [35] consists of discrete spectrum, o4(H), consist-
ing of a finite number of negative point eigenvalues, and continuous spectrum,
o.(H) = [0,00). The dynamics of solutions for A = 0 (linear Schridinger) is very
well understood. Let 9;. and Ej, denote bound states and bound state energies of
the linear Schrédinger operator H:

Hipju = Ejuthju; (g, Yhe) 12 = Ojic - (1.5)
Arbitrary initial conditions in an appropriate Hilbert space, evolve as t tends to
infinity into a time-quasiperiodic part consisting of a superposition of time periodic
and spatially localized states with frequencies given by the eigenvalues and a dis-
persive or radiative part, which decays to zero as t tends to infinity in appropriate
spaces, e.g. LP,p > 2, L*((x)~7 dz).

In order to be more precise, introduce P.., the orthogonal projection onto the
continuous spectral subspace of H:

Poof = f =) (5 )5 - (1.6)
J

The solution of the linear Schréodinger equation can be expressed as

eithQSo = Z<'l/}j*7 ¢0>¢j*eiiEj*t + eithPc*QSO . (1.7)

J

The time decay of the continuous spectral part of the solution can be expressed,
under suitable smoothness, decay and genericity assumptions on V(z), in terms of
local decay estimates [24, 31]:

—0 ,—1 -3 o
(@) =7 Pesgpoll 12 (rs) < C(1) 2 [{x)7 b0l 2 (rs) » (1.8)
o> 00 >0, and L' — L™ decay estimates [25, 61]

e Peypol| oo (r2) < Clt| == l¢o L1 (R3) - (1.9)
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For A # 0 the bound states of the linear problem persist, and bifurcate from
the linear states at zero amplitude into branches of nonlinear bound states [38]. Of
interest to us is the detailed dynamics of the nonlinear problem on short, interme-
diate and long time scales and, in particular, the manner in which the nonlinear
bound states participate in the dynamics. In [38] variational methods were used to
establish the existence and orbital Lyapunov stability of bound states which are
local minimizers of He, subject to fixed N; see also [59, 15]. This result says that
initial data which is close, modulo a phase adjustment, in H' to the ground state
remains H' close to a phase adjusted ground state for all time. The H' norm is
closely related to the conserved Hamiltonian energy of the system and is insensitive
to dispersive phenomena. Therefore, the detailed dynamics is not addressed by this
result. For example, could the large time dynamics consist of a nonlinear ground
state plus a small nonlinear excited state part? The main result of this paper implies
that this cannot occur.

For the nonlinear problem, the simplest question to consider is the case where H
has only one simple eigenvalue and the norm of the solution is small. The detailed
dynamics was studied in [43, 44, 33, 57]. Small norm initial data are shown to evolve
into an asymptotic nonlinear ground state and a radiative decaying part.

In this paper we study the multibound state variant of this question. We con-
sider the specific case where H has two simple eigenvalues, Ey. and Fi.. The
linear Schrédinger equation then has two time-periodic solutions tg.e~ "0+t and
1"t with Hpjw = Ejtje, jx € L?. Therefore [38], NLS has two branches
of nonlinear bound states bifurcating from the zero state at the eigenvalues of H,
Uooe " Eot and U, e 1t with W, € L? satisfying

HUqo, + AV, PV, = E; U, . (1.10)
Here, a;; denotes a coordinate along the jth nonlinear bound state branch and
E; = Ej + Ol ?). (1.11)
In contrast to the linear behavior (1.7) our main result is the following:

Theorem 1.1. Consider NLS with V(x) a short range potential supporting two
bound states as described above. Furthermore, assume that the linear Schrédinger
operator, H, has no zero energy resonance [24].

(i) Assume the initial data, ¢(0), is small in the norm defined by:

[6(0)]x = [[{x)° $(0) [ 125 , (1.12)

where k > 2 and o > 0 are sufficiently large. Let ¢(t) solve the initial value problem
for NLS.
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Assume the (generically satisfied) nonlinear Fermi golden rule resonance con-
dition?
Lo, = N (Yot,, 0(H — wa)thouy?,) > 0 (1.13)
holds, where
Wi = 2F14 — Ege > 0. (1.14)
Then, as t — oo
p(t) = e DT, () + ey, (1.15)
in L?, where either j =0 or j = 1. The phase w; satisfies
wj(t) = wi"t + O(logt). (1.16)

Here, W, () s a nonlinear bound state (Sec. 3), with frequency E;(c0) near Ej.
When 7 = 0, the solution is asymptotic to a nonlinear ground state, while in the
case j = 1 the solution is asymptotic to a nonlinear excited state.

(ii) More specifically, we have the following expansion of the solution ¢(t):

o(t) = e_m’(’(t)\llao(t) + e_m’l(t)\llal(t)
+me” T P.G L () + Rioe(t) + Ruloc(t),
where as t — o0
@j(t) —w;(t) =0, a;(t) —a;(c0) =0 (1.17)
and such that for each initial state, $(0),
|ao(00)] - [ar(o0)] = 0,
¢4 (t) = ¢4 in L7,
| Rioc D)l = O(t%)
| Rutoc (- 1)l oo = O(t7%).
Here, Ho(oo) is a small spatially localized perturbation of the operator
o3(=A+V(z))

and P, = P.(Ho(0)), the projection onto its continuous spectral part. Finally, 7
maps the vector (21, z2) to (21,0).

Remark 1.1. (i) Theorem 1.1 implies the absence of small norm time-quasiperiodic
solutions for this class of nonlinear Schrédinger equations [41]. Intuitively, one can
explain why one expects only a pure state in the limit ¢ — oo and how the condition
on wy = 2Ky, — Ep, arises. Our intuition is based on viewing the nonlinearity as

bThe operator f — §(H —ws ) f projects f onto the generalized eigenfunction of H with generalized
eigenvalue wx. The expression in (1.13) is finite by local decay estimates (1.8); see e.g. [47].



982 A. Soffer & M. 1. Weinstein

linear time-dependent potential; see also [41,42]. An approximate superposition of a
nonlinear ground state and excited state ¢ ~ W, e~ "ot 4@, e~iE1
as defining a self-consistent time-dependent potential:

W (x,t) = N Wq,e Fot 4 W, e 512

can be viewed

= ATy, + Uy, e HF1E0I2

~ AW 2+ 2X cos((Er — Eo)t + )W 0| U)oy (1.18)

for |a1] < |apl|. As shown in [48], [28] and [29] data with initial conditions given
by the unperturbed excited state decay exponentially on a time scale of order
7 ~ O(Jagar|~2) provided the forcing frequency, E1 — Eg ~ E1. — Eg. > —FE1, or
Wy = 2E1* — Eo* > 0.

(ii) Theorem 1.1 implies asymptotic stability and selection of the ground state
for generic small data. Theorem 1.1(i) implies a form of asymptotic completeness.

(iii) Since we control the decay of solutions in W*°° our results imply global
existence of small solutions in H? for all s sufficiently large.

(iv) The asymptotic state where |a;(o0)| # 0 (and therefore |ap(co)| = 0) is
non-generic. This can be seen by linearization about the excited state. The lin-
earized operator, Hi, is a localized perturbation of an operator having embedded
eigenvalues in its continuous spectrum, under our hypothesis w, = 2F1, — Egs > 0.
The connection between embedded eigenvalues in the continuous spectrum of an
appropriate linear operator and the non-persistence of localized time periodic states
and between embedded eigenvalues in the continuous spectrum of an appropriate
linear operator was explored first in [41,42]. It is well known that embedded eigen-
values in the continuous spectrum are unstable to generic perturbations; see, for
example, [7,14,47]. In this case, the embedded eigenvalues are perturbed to com-
plex eigenvalues, with corresponding eigenstates whose evolution is exponentially
growing with time, under the condition (7.4). The perturbation to the linear opera-
tor with embedded eigenvalues is however both non-generic (in that it comes from
linearization of a Hamiltonian nonlinear term about a critical point of the energy)
and breaks self-adjointness with respect to the standard L? inner product. A second
order perturbation theory calculation shows that if w, = 2F;. — Ep. > 0 generically
the embedded eigenvalue perturbs to an exponential instability [45]. This suggests
the existence of an unstable manifold of solutions for the nonlinear equation. The
existence of such non-generic solutions of NLS with F(00) # 0 for the full nonlinear
flow has recently been demonstrated [55].

(v) Theorem 1.1 is stated for the case of two nonlinear bound state branches.
The technique of proof, however, can be used to consider the more general case. We
expect results which are analogous to those of our main theorem, but more com-
plicated due to the presence of: direct bound state-bound state interactions, bound
state-continuum interactions and bound state-bound state interactions mediated
by the continuum. Multimode Hamiltonian systems have been considered in the
context of linear time almost periodic perturbations have been studied in [29].
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1.1. Relation to other work

We now wish to further put our results in context. Research on nonlinear scattering
in the presence of bound states has followed two related lines.

(a) Nonlinear dispersive waves in systems with defects, potentials, etc.:
Our analysis centers around nonlinear bound states which bifurcate from linear
bound states of the operator, H, obtained by linearizing about the zero solution.
These bound states exist at all sufficiently small amplitudes (measured in any H*®
norm, s > 0). The behavior of the “bifurcation diagram” for larger amplitudes de-
pends in a detailed way on the details of the nonlinearity, the spatial dimension and
the norm [38]. Such nonlinear bound states are also called nonlinear defect modes,
nonlinear localized modes or nonlinear pinned modes. They are localized about or
“pinned” to the support of the potential, V', and arise due to a local deviation from
translation invariance or a “defect” in the homogeneous background which acts as
an attractive potential well. To get a more refined picture of the dynamics than
in the H! theory, one must consider the linearized evolution about the family of
nonlinear ground states. This linearized operator has continuous and discrete spec-
tral parts inherited from the linear bound state spectral structure. In particular,
the discrete spectrum contains an eigenvalue at zero corresponding to the ground
state and a pair of eigenvalues (located symmetrically about zero) corresponding
to the excited state. Thus, at linear order a solution infinitesimally close to the
ground state formally appears to be quasiperiodic in time — a ground state plus a
small excited state oscillation. However, at higher order in perturbation theory one
finds nonlinear resonant coupling of the neutral oscillatory modes to the continuum
and as a result these slowly damp to zero; generically, for very large time energy
splits between the ground state and dispersive parts of the solution. This mech-
anism for relaxation to the ground state was earlier considered for the nonlinear
Klein—Gordon wave equation with a potential, where the decay of “breather-like”
solutions was studied [49]. In this work, small norm solutions relax to the zero so-
lution via resonant energy transfer out of the bound state to radiation modes and
dispersive radiation of energy to infinity; the zero solution plays the role of the
ground state. Results concerning special classes of initial data are considered in the
work of Cuccagna [11] and Tsai and Yau [53, 54].

(b) Nonlinear dispersive translation invariant equations: A closely-related
line of research focuses on the translation invariant nonlinear Schrédinger equation.
Here the equation is (1.1) with V taken to be identically zero nonlinear coupling
parameter A < 0. In this case, the equation has solitary wave solutions, obtainable
by minimization of Hen[¢] subject to NM[¢] = Ny. For NLS in dimension n with
cubic nonlinearity replaced by the general power nonlinearity |¢|?~!¢, we have that
ifp<1+ %, the foregoing variational problem has a unique (up to translation) radi-
ally symmetric ground state solution for any Ay > 0. In the case when V(z) # 0 is a
potential supporting bound states, the small Ay solutions agree with the bifurcating
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bound states discussed above [38]. As pointed out earlier, constrained energy mini-
mizers are H' orbitally Lyapunov stable [12,59]. An interesting feature of solitary
waves in the translation invariant case is the presence of spurious neutral oscilla-
tions. These are sometimes called internal modes [23]. To explain this, consider the
linearization about a ground state solitary wave (p < 1+ %) Due to the under-
lying symmetric group of the equation (translation invariance, phase invariance,
Galilean invariance, etc.) this linearization has a (generalized) zero eigenvalue of
multiplicity related to the dimension of the equation’s symmetry group. In the non-
integrable cases (n = 1, p # 3 and n > 2) the linearization has additional neutral
modes. These neutral modes approach zero as p approaches 1 + %; the dimension
of the zero subspace jumps by two at p =1+ %, the critical case, corresponding to
the larger group of symmetries and the existence of a pseudo-conformal invariant
[568]. Buslaev and Perel’'man [3] considered the problem in one space dimension and
showed that nonlinear resonance of these °
responsible for their damping on long time scales and the asymptotic stability of
solitons. See also the recent work of Buslaev and Sulem [4]. Their analysis was
restricted to one space dimension only in their use of explicit eigenfunction expan-
sion methods to obtain the required local energy decay estimates. Cuccagna [10, 11]
extended their results to more general nonlinearities and general space dimensions.
In his analysis, the required dispersive estimates are obtained by adapting K. Ya-
jima’s [61] approach in which the wave operators, which conjugate the linearized
operator on its continuous spectral part to the constant coefficient “free” dispersive
evolution, are shown to be bounded on W¥*? spaces. This method was also used in
[49].

Another feature, common to problems of type (a) and (b) is the use of the
method of normal forms. In the context of nonlinear scattering, normal form ideas
were used to obtain the local behavior in a neighborhood of a soliton in [3] and for
the decaying breather-like state in [49]. In contrast to the normal form for finite
dimensional Hamiltonian systems, resonant interaction with the continuous spec-
trum gives rise to a more general normal form which captures internal damping,
due to energy transfer out of certain discrete modes to the continuum modes; see

‘internal modes” with the continuum is

the discussion in the introduction to [49]. In the present work, we derive a nonlin-
ear master equation, coupled equations for the renormalized (up to near identity
transformations on the complex discrete mode amplitudes) discrete mode square
amplitudes (“mode powers”), which governs generic dynamics on large intermedi-
ate and very long time scales. Normal forms of this type, expected to be valid for
very long times, were derived and studied in the local analysis about the steady
and “wobbling” kink-like solutions of discrete nonlinear wave equations in [26]. A
key feature of the normal form of the current work is our analysis of its behavior on
different time scales and the analysis of its transitional behavior across time scales,
for general initial data.

Finally, we point out that there are many important areas of application which
motivate the study of the class of models we treated in this paper. We mention two.
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At the most fundamental level the Gross—Pitaevskii equation (NLS with a potential)
arises as a mean field limit model governing the interaction of a very large number of
weakly interacting bosons [21,51, 30,9]. At a macroscopic level, it has been shown
that equations of this type arise as the equation governing the evolution of the
envelope of the electric field of a light pulse propagating in a medium with defects.
See, for example, [17,19, 20].

2. Structure of the Proof

We now sketch our analysis. Certain notations are defined in Appendix A. Anal-
ogous with the approach introduced in [43,44] in the one bound state case, we
represent the solution in terms of the dynamics of the bound state part, described
through the evolution of the collective coordinates ag(t) and o (t), and a remainder
@2, whose dynamics is controlled by a dispersive equation. In particular we have

d(t, z) = et o Eols)ds—i6(1) (Vo) + Cay ) + d2(t,2)) - (2.1)

We substitute (2.1) into NLS and use the nonlinear equations (1.10) for ¥, to
simplify. Anticipating the decay of the excited state, we center the dynamics about
the ground state. We therefore obtain for ®5 = (¢, ¢2)7 the equation:

i0,®y = Ho(t)®s + G(t, , Dy; 0,A(t), 8,d, 0,0(1)) (2.2)

where, Ho(t) denotes the matrix operator which is the linearization about the time-
dependent nonlinear ground state W, ;). The idea is that in order for ¢o(t,z) to
decay dispersively to zero we must choose ap(t) and a(t) to evolve in such a way
as to remove all secular resonance terms from G. Thus we require,

Py(Ho(t))®2(t) =0, (2.3)

where P,(Ho) and P. = I — P,(Hp) denote the discrete and continuous spectral
projections of Hy; see also condition (5.13). Since the discrete subspace of Ho(t)
is four-dimensional (consisting of a generalized null space of dimension two plus
two oscillating neutral modes) (2.3) is equivalent to four orthogonality conditions
implying four differential equations for oy, @; and their complex conjugates. These
equations are coupled to the dispersive partial differential equation for ®5. At this
stage we have that NLS is equivalent to a dynamical system consisting of a finite
dimensional part (6.23) and (6.24), governing &; = (¢, @;), j = 0,1, coupled to an
infinite dimensional dispersive part governing ®a:

10,3 = A(t)@ + F,
10y Do = Ho(t) P2 + ﬁ¢ .
We expect A(t) and Ho(t) to have limits as t — +oo. Our strategy is to fix 7' > 0

arbitrarily large, and to study the dynamics on the interval [0, T]. In this we follow
the strategy of [3,11]. We shall rewrite (2.4) as:

i0,@ = A(T)@ + (A(t) — A(T))@ + F,
8By = H(T)®s + (Ho(t) — Ho(T))®o + Fy

(2.4)

(2.5)
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and implement a perturbative analysis about the time-independent reference linear,
respectively, matrix and differential, operators A(T) and Ho(T).

More specifically, we analyze the dynamics of (2.5) by using (a) the eigenvalues
of A(T) to calculate the key resonant terms and (b) together with the dispersive
estimates of e~ "M P, (T) [10].

Note also that P.(T)®2(t) # ®Po(t) because ®o(t) € Range P.(t) #
Range P.(T). We therefore decompose @4 as:

Oy =dise(t;T) + 17, n=P.(T)n (2.6)

where disc(¢;7T) lies in the discrete spectral subspace of Ho(T) and show that
disc(t; T') can be controlled in terms of 7.

The expected generic behavior of this system is that a; and ®5 decay with a
rate t—2. This slow rate actually leads to an equation for ay with the character
dar ~ (1p — 9:0)a; + integrable in t; see (6.12). Thus, © is chosen to satisfy
90 ~ %p ensuring that a; has a limit. In this way a logarithmic correction to the
standard phase arises; see (1.16).

Next we explicitly factor out the rapid oscillations from «; and show that, after
a near identity change of variables (v, a1) — (dg, 31), that the modified ground
and excited state amplitudes satisfy the system:

idséo = (c1022 + iTwW)| 61 @0 + Faldo, B, 1, 1]
061 = (c11z21 — 2iT)|a0|?| 611251 + Fsléo, B1, 1,1 ;

see Proposition 7.1. It follows that a nonlinear master equation governs P; = |&; 12,
the power in the jth mode:

2.7)

P,
% = 2I'P2Py + Ry (t)

o (2.8)
d—tl — —ATP2Py + Ry (t).

Coupling to the dispersive part, @, is through the source terms Ry and R;. The
expression “master equation” is used since the role played by (2.8) is analogous to
the role of master equations in the quantum theory of open systems [13].

A novel multiscale Lyapunov argument is implemented in Sec. 8 characterizing
the behavior of the system (2.8) coupled to that of the dispersive part on short,
intermediate and long time scales. We consider the system (2.8) on three time
intervals: Iy = [0, ] (initial phase) I; = [to,?1] (embryonic phase) and Iy = [t1,0)
(selection of the ground state).

For t > tg, the terms Ry (¢) and Ry (t) are shown (Proposition 12.1) to have the
form

bo(to, &

Ro(t) ~ 0(#20) + po(&o, t) Py P} (2.9)
bl(t(]vg()) m 2

Ri(t) ~ ———= 4+ om(t)V Po P + p1(Eo, t) P Py, (2.10)

(t)?
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where

D=

bo = O((to)™"), b1 =0({to) 2). (2.11)

Ro(t) and Ri(t) have parts which are local in time and nonlocal in time. The
handling of nonlocal terms is explained in Sec. 8.
We set (Proposition 9.2)

Qozpo—%, Q1:P1+ft—1> (2.12)

where by and by are positive and satisfy (2.11) as well.

2.1. Discussion of time scales

Estimates (2.9), (2.10) and the definitions (2.12) imply an effective finite-
dimensional reduction to a system of equations for the “effective mode powers”:
Qo(t) and Q1(t), whose character on different time scales dictates the full infinite
dimensional dynamics, in a manner analogous to the role of a center manifold re-
duction of a dissipative system [5].

Initial phase —t € Iy = [0,to]: Here, I is the maximal interval on which Qo (t) < 0.
If to = oo, then Py(t) = O({t)~?) and the ground state decays to zero. In this case,
we show in Sec. 15 that the excited state amplitude has a limit as well (which may
or may not be zero). This case is non-generic.

Embryonic phase —t € Iy = [to, t1]: If to < oo, then for ¢ > ¢o:

dc%) > 2I7Qo Q%
(2.13)
T < 4ot + O@Qp) m > 4.

Therefore, Qg is monotonically increasing; the ground state grows. Furthermore, if
Qo is small relative to @1, then

Do is monotonically increasing , (2.14)
1

in fact exponentially increasing; the ground state grows rapidly relative to the excited
state.

Selection of the ground state t € Iz = [t1,00): There exists a time t = ¢, tg < t1 <
oo at which the O(v/QoQY") term in (2.13) is dominated by the leading (“dissipa-
tive”) term. For ¢t > t; we have

%o > arquez
(2.15)
9@ o _arQuez.

dt —
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It follows that Qo(t) — Qo(co) > 0 and Q1(t) — 0 as t — oo; the ground state is
selected.

3. Linear and Nonlinear Bound States

In this section we introduce bound states of the linear (A = 0) and nonlinear (A # 0)
Schrédinger equation (1.1).

3.1. Bound states of the unperturbed problem

Let H = —A + V(). We assume that V(z) is smooth and sufficiently rapidly
decaying, so that H defines a self-adjoint operator in L2. Additionally, we assume
that the spectrum of H consists of a continuous spectrum extending from 0 to
positive infinity and two discrete negative eigenvalues, each of multiplicity one.

J(H) = {EO*vEl*}U [0700) (31)
Therefore, there exist eigenstates, ¢;, € D(H), j = 0,1 such that
Hij = Ejpthj - (3-2)

We also introduce spectral projections onto the discrete eigenstates and contin-
uous spectral part of H, respectively:

Pif = Wjs, i, §=0,1
PC*EI_PO*_Phw

3.2. Nonlinear bound states
We seek solutions of (1.1) of the form
¢ =e it . (3.3)
Substitution into (1.1) yields
HVUp, + ANV, "V, = Ejvg, . (3.4)

We introduce a bifurcation parameter, o, for the jth nonlinear bound state branch
and define

&j = (Oéj,@j) . (35)

Proposition 3.1 ([38]). For each j = 0,1 we have a one-parameter family, ¥, =
V;, of bound states depending on the complex parameter a; = |aj|e?i and defined
for |a| sufficiently small:

U;(x) = aje;(m; | |*) = €9 |a |1 (23 oy ]?)
= aj (@) + Ao P (2|0 2))

= 0 (¥ (2) + Moy 208 (2:0) + Oy 1) . (3.6)
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Here,
Y (@;0) = —(H — Eo.) " (I - Pp,. V2, (3.7)

- 1
E; = Ej(d)) = Eju + oy PEM (| )

= Bj. 4 [ videlag + O(as ). (3.8)
The mapping &; — (E;(&;), ¥;(-;&;)) is smooth.

The proof uses standard bifurcation theory [32], which is based on the implicit
function theorem. The analysis extends to the case of nonlocal nonlinearities. A
variational approach can also be used to construct nonlinear bound states. Vari-
ational approaches, though more global, do not directly yield the information we
require concerning smooth variation with respect to parameters.

Remark 3.1. ¥; depends on «; and aj;. We shall compute derivatives of the
nonlinear bound states ¥, with respect to o; and @; and use the notation:

V= (0, 057) = (05,05) - (3.9)

In what follows we shall “modulate” these bound states. That is, we shall allow
A to vary with time. For convenience, we shall use the notation:

Uyt @) = Vo, m(2),

E;(t) = Bj(Ja; (1))

4. Linearization about the Ground State

Let ¥ denote a nonlinear bound state (ground state or excited state) of (1.1); see
Sec. 3. Then,

HY + AV =EW. (4.1)
We first derive the linear stability problem. Let
¢ = (U +p)e ", (4.2)

where p denotes the perturbation about ¥. Substituting (4.2) into (1.1) and neglect-
ing all terms which are nonlinear in p and p, we obtain the linearized perturbation
equation

i0p = (H — E+2XV]?) p+ AU?p. (4.3)

Since p appears explicitly in (4.3) it is natural to consider the system for

()

0 = Mp, (4.5)



990 A. Soffer & M. I. Weinstein

where
H—E+2)\V|? A2
H=o03 < _ ) , (4.6)

A2 H — E +2)\| V)2

e (i) o

Later in this paper we shall refer specifically to the linearization about a “curve”
of bound states (U;(t), E;(t)) and will denote by H;(t) the operator (4.6) with E
replaced by E;(t) and ¥ replaced by ¥;(t). Our main focus will be on the operator
family

and

Ho(t) = HEo(t),wo(t) - (4.8)

The nonlinear bound state W is linearly spectrally stable if the spectrum of
H, o(H), is a subset of the real line. ¥ is linearly dynamically stable if, in an
appropriate space, all solutions of the initial value problem for (4.5) are bounded
in time. That is, in some norm e *’%o? is a bounded operator. Linear dynamical
stability of the ground state ¥ follows from [58]. For this result and the necessary
stronger dispersive estimates on e ~?*0? [10], we require information on the discrete
spectrum of Hy and the corresponding spectral subspaces.

Before stating these results we observe that the operator e
in terms of the operator treated explicitly in [58, 10]. To see this, express the ground
state as Wy = |Wole? (|¥o| > 0), where v = arg a is a constant. Set p = €*7q. Then,
by (4.3) we have:

—Hot can be expressed

i0yq = (H — Eo + 2X\[Vo[*) ¢ + AV q. (4.9)

Now let ¢ = u + iv, where u and v are real. Then,

ath) =JFIO<Z> , (4.10)

where
_ N Hy — Ey — M\To|? 0
J:<O 1> and Ho=< 0 — Eo — AW )
1 0 0 Hy — Eg — 3| ¥?
(4.11)
Note that

p(t) = mp(t) = me 70
= ei'y (WleJHOt §R(]0 + Z.7T26‘H_{0t %qO) s (412)

where 71 (21, 22) = (21,0) and w2 (21, 22) = (0, 22). Therefore, we have:

¢The spectrum of H has the symmetries one expects for Hamiltonian systems. The mappings
A +— —X and XA — A send points in the spectrum to points in the spectrum. Note that if £ is an
eigenvector of ‘H with eigenvalue p then o1 is an eigenvector of H with eigenvalue —u. Therefore,
g—u = Ulf,w
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Proposition 4.1. Estimates on e~ Mot THot and are

independent of ~y.

are equivalent to those for e

We now turn to a detailed discussion of the spectral properties of H.

Proposition 4.2. Consider Hy, the linearization about the ground state. Let o be
sufficiently small.

(1) o(Ho) is a subset of the real line.

(ii) oaiscrete(Ho) = {—p, 0, u}, where 0 < p < |Eo|.

(ili) Zero is a generalized eigenvalue of Ho. The generalized null space, Ng(Hy), is

given by
U, 9, Vo
Ny(Ho) = — ) — . 4.13
(o) span{a;),(\l}o) (aED‘I’0>} (14.13)

(iv) £u are simple eigenvalues. We denote their corresponding eigenfunctions by
& and &, For |og| small we have the expansion:

p=E1 — Ey+ O(|ag]?) (4.14)
&u = (;) b + <a0261(|a°|2)> (4.15)

ag2ca(laol?)

§p =018, (4.16)

where ¢1(a) and ca(a) are real analytic functions in a.
(V) U(HO) - Udiscrete(HO) = (_OO, E()] @] [—E()7 OO)

The proof of Proposition 4.2 is in Appendix B.
Note that if w is an eigenvalue of H:

o3Lg =Hg = wyg (4.17)
then w is an eigenvalue of H* with corresponding eigenfunction osg:
503(0'39) :H*(Jgg) = wo3g . (418)

Therefore, we have

Proposition 4.3. (i) o(H§) = o(Ho).

(i)
R (0 R

N(Hg F 1) = span{ozy, 038} = {Cus Cpu} - (4.20)

(iii)

Here,

Cu = 038, and Cop = —038p, (4.21)
where this choice of (—, is taken so that ((—,,&—,) =1 in the |ag| | O limit.
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4.1. Nondegenerate basis for the discrete subspaces of Ho and Hj

For fixed E # Ey, the basis of N, (Hj) displayed in (4.19) is a natural basis due to
its direct connection to the symmetries of NLS. However, this basis is degenerate
and singular in the limit £ — Ey., as we shall now see.

Consider the basis of Ng(Hy) displayed in (4.13). Beginning with the first ele-
ment of this basis, explicitly we have:

v « - Jao|? 1
o3 <_0> — o3 (_WO( | 0|2)> Z(Jéoo'gG()( >F0, (4.22)

Yo aoto(; |aol*) 1

where
_ e'o 0
— Yo —

Qg = ‘Oéo|€ s Go = ( 0 ei70> ’ (423)

and

Fo = o5 |aol?) = tho. + |aol>x (-, Jao]?)
= Yos + |ao2x(-,0) + x{”. (4.24)

Here and subsequently we use the notation x(-,p) to denote a generic real-valued
localized function of z with smooth dependence on a parameter, p, and xff) is
localized in = and O(|a;|*).

A nonsingular element of the N, (Ho) is obtained by dividing out pg. We there-
fore define

o1 = 03Go (1) Fo(pg) - (4.25)

We now turn to the second element of the basis displayed in (4.13). First note
that
—a \I/() = ei'yo 4
9ol el

(Jovol o (-5 |axo )

= e[ + o) *x (5 lewo[?)] -
Differentiation of (3.4) with respect to |ag| yields:
(H - E)a\ao\\po + 2|\I’0‘26\ao|\1/0 + \I’ga\ao\\llo = (8\ao\E)\IIO . (426)
Taken together with the complex conjugate of (4.26), this yields, after multiplication
by o3:
N 1
o3HGo ) Fy = (010 E) 03Go ) lovo |40
= ‘Oé()|£01 . (427)
We define

1
§02 = Go <1> F, (4.28)
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where

0
= o] (laolto (5 aol?)) = o + o x (2, [ao]?) - (4.29)
By the above calculation &y lies in the null space of (o37)2. Therefore, the pair of
vectors: &g and &y spans Ng(Ho) and is nonsingular as Eg — Ep,. By a previous
remark:

Co1 =o03f2  and (o2 =038 (4.30)

form a nonsingular basis for H{. This choice of basis will facilitate a uniform de-
scription of the dynamics in a neighborhood of the origin.

The above construction and Proposition 4.2 imply the following basis for the
discrete subspaces of Hg and Hj.

Proposition 4.4.

Ny(Ho) = span{&o1, §o2} (4.31)
Ny(Hg) = span{Co1, o2} (4.32)
N(Ho ¥ p) = span{&y, &} (4.33)
N(HG F 1) = span{Cu, ¢} = {038, =038} (4.34)
(Cas &) = Capbap + O(lao|*) , (4.35)

where a and b vary over the set {(01),(02), u, —p}. For ag small we have the ex-
PaAnsLons

1 1
o1 = 03Go (1) Fy = 03Gp (1) (Yos + ‘0‘0|2X60))

1
§o2 = Go <1>F6=G0 <1> (Yo« + | X(O))

1
6= (1) e o)+ () 49

and §_,, = 01&,.

Finally, we shall find it useful to note that

Cor = 0302 = o1 + || *x (25 |ao]?) . (4.37)

4.2. Estimates for the linearized evolution operator

Theorem 4.1 (Linear dynamical stability [58]). Let
M=N,(Hy)tn (H x HY). (4.38)
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There exists C > 0 such that for any f € M
e fllan < C[fllan - (4.39)
Theorem 4.2 (Dispersive estimates). Let
My = [Ny(H) @ N(H" F )]+ (4.40)

and P, the associated continuous spectral projection. For any q > 2 there exists
Ch,q > 0 such that

le™ M Peflpa < Crgt™ 24 ||fl]10 (4.41)
where p~ '+ ¢ 1 =1.

The L' — L° and, more generally, L? — L9 estimates, are known in the
self-adjoint case [25,61,37]. The extension to matrix Hamiltonians with non-self-
adjoint off-diagonal part is more complicated. The results of [10, 18,39, 40] cover
Theorem 4.2.

Remark 4.1. We shall in later sections use the notation M (t) and M () to denote
corresponding time-dependent subspaces relative to the time-dependent operator

HE ().

Theorem 4.3 (Local decay estimate). Let o be sufficiently large. Let w € {v €
R : |v| > |Ep|}, the interior of the continuous spectrum of Hy. Then, for t >0

H(x}fae*iHOtPc (Ho —w — iO)_l () "|Br2y < C’(t)*% , 1=0,1 (4.42)

[

[{2) = He ™ T Pe(z) 7 || paer 12y < C(H) 727", (4.43)

where Hy = Ho + Egos. For t < 0, the same estimates hold with —i0 replaced by
+i0 in (4.42).

We now sketch a proof, using that Hy = HP#& 4 ¢* W, where ¢* is small and
W is bounded and localized . For the propagator associated with the diagonal
part, e~itH "
implies the bound <t>’% on the propagator from L' N L? — L? + L, where
| fllLzrre = min{||fill2 + [|f2llccs / = f1 + fo}. The corresponding bound for
the perturbed propagator is obtained by a bootstrap argument, as follows.
Writing the DuHamel formula for e~#? f we obtain

—i _3 _3 .
el fll pag poo < O 2 || fllpinze + € Co ()2 Oqu lle™ 0% fll 2 poo
<s<t

, we have the dispersive L' — L estimate with bound t=5. This

[Py (HP8)e ™0 £ o o (4.44)
Let f = P.(Ho)f. The last term of (4.44) can be rewritten as follows:
Pb(HDiag)efiHotf — Pb(HDiag)(Pc(Ho) _ PC(HDiag))efiHotf

= — Py (HP'8)(P,(Ho) — Py(HP#8))e Mot (4.45)
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Elementary perturbation theory gives that Py(Ho) — Py(HP#8) is of order e* times
a projection onto a localized function. Therefore,

| Py (HP#8) e M0l f|| 12 oo < *Coylle™ 71 Po(Ho) f| 24 1 - (4.46)
It follows that

le=™0t f[| L2y e < Cowr (B2 |||l LirLe - (4.47)

Furthermore, we have the local decay estimate (4.42) with [ = 0.

We now sketch the proof of the case (4.42) for | = 1 and (4.43). For ease
of presentation we sketch the proof in the context of the Schrédinger operator
Hy = —A 4+ V. One has the local decay estimate

[[2) =7 et P (Ho) (2) |52y < C(t) 7%, (4.48)

where o is positive and sufficiently large. The key to the proof is an analysis of the
resolvent, (Hg — A\)~! near A = 0. One uses the spectral theorem

e HOp (Hy) = / e MAE (\)dA (4.49)
0

and an explicit expansion of E’()), which can be expressed in terms of the
imaginary part of the resolvent. The expansion of the resolvent is valid in the
space B(L?((x)°dz), L?((x)~?dz)) for o sufficiently large. Time decay is arbitrar-
ily fast for functions with spectral support away from A = 0, while the t=3 decay
results from the behavior near A = 0. The analogue of (4.43) is an estimate for
e~ tHo gk P.(Hy), which follows from the expansion of [24] applied to the formula:

e~ tHogkp.(Hy) = / e NRE (V). (4.50)
0

Remark 4.2. The LP — L9 estimates of Theorem 4.2 are later used to estimate
nonlinear terms which do not include spatially localized factors. In the case of
small data, which we consider here, it is also possible to use the above weaker
L'NL%? — L*® + L? estimates. Indeed, the only difference is that we need to bound
the L? norm (not just the L' norm) of the nonlinearity. The L? norm has even
faster decay, since we can bound the L° norm in terms of Sobolev norms, which
are controlled by the current argument.

Remark 4.3. We also point out that one can prove the L' — L dispersive
estimate by using the L' N L? — L™ 4+ L? estimate and a cancellation argument
which is rather involved [36].

5. Decomposition and Modulation Equations

Consider the nonlinear Schréodinger equation

i0;¢ = Ho + No|>¢. (5.1)
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In the regime of low energy solutions we decompose the solution of NLS in the
following form:

(1) = e W [Wo(t) + Wi (t) + da(t)] - (5:2)

Here, Uy (t) and ¥y (t) represent motion along the ground state and excited state
manifolds of equilibria and ¢- is a decaying correction term, lying in an appropriate
dispersive subspace. The phase, O is divided into two parts:

O(t) = O(t) + O(1), (5.3)

where
O0(t) = /0 Fo(s)ds. (5.4)

Thus, 8,00(t) = Eo(t) is the modulated ground state energy, and O(t) is a “long
range” logarithmic correction, which is to be derived below.
We begin by setting

¢ =e O [Wo(t) + 1] (5.5)
Substituting (5.5) into (5.1) yields the following equation for ¢;:
iy = (H — Eo(t)) d1 + 2M\|Wo ()21 + A2 (1) y
+ (= 00+ 2X[n [*) Wo(t) + Ao (1) T + A [Pd1 — 0O ()
—i0, Uy (t) . (5.6)

Next, we decompose ¢; into a part along the excited state manifold and a
correction term:

¢ =1 (t) + ¢ (5.7)
We have, using (5.6),
idhde = (H — Eo(t)) d2 + 2X\| o (t)*d2 + AV (£)d2 — 9:0(1) 2
— (Eo1(t) + 0:0(t) + 00, ) U1 (t) + 2XWo (1) 21 (£) + AN (t)* 1 (¢)
+ (= 9eO(t) + 2X\[$1*) Wo (t) + AW (1) 3
+ A (g1 1 — |1 ()P (2))
— 0, W(t) . (5.8)

Since equation (5.8) involves ¢5 it is natural to consider the system governing ¢

and ¢. Let
¢2>
Py = 5.9
? <¢2 (5:9)
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and introduce the matrix linear operator:
H — Eo(t) + 2\ Wo(t)? AT (t)

AT3(1) H — Eo(t) + 2)\|\I’0(t)2>
Then we have (recall that ¢1 = U1 + ¢2)

Ho(t) = 03 ( (5.10)

e = ro0yea +# -0 (0 ) ((Ele) + 00000 +i0n) ()

c.c. c.c.
(5.11)
where
- Wy -
F = —8t@(t)0'3 < ) — 8t®(t)03<1>2
c.c.
210 |20, + W2,
(R T
c.c.
A 2 L Wo? 2. 2
+/\03< ol °¢1> + Aoy <|¢1| d”cc'%‘ \I“) . (5.12)
c.c. .C.

5.1. Modulation equations

Motivated by the results of Theorem 4.2 on dispersive decay, we shall require that

Do(t) € Mu(t), (5.13)
where M, is defined in (4.40). Equivalently,
Po(Ho(t))®2(t) = P2(t), (5.14)

where P.(Ho(t)) denotes the continuous spectral projection of Ho(¢). By Proposi-
tion 4.3 this imposes four orthogonality conditions on ®o(t):

<O-3£a(t)7¢)2(t)> =0, (515)

where a € {(01), (02), 1, —u1}. We impose (5.15) at t = 0 and now derive modulation
equations for the coordinates ao(t) and aq(t) ensuring that (5.15) persists for all

t#£0.
To derive the modulations we first take the inner product of (5.11) with the
adjoint vectors o3&, to obtain the identity:

<agga, id, (C\I/CO >> + <03§a, ((Eo + 8,0)05 + i) (C\Ij: >>

= <HS (t)03§aa (I)2> + <U3£a7 F> + i<at(0'3§a)7 ¢)2> — i@t <O’3£a, ¢)Q> (516)

The initial data for NLS is decomposed so that (03&,(t), P2(t)) = 0 for ¢t = 0.
In order for this condition to persist for all time it is necessary and sufficient that
the last term in (5.16) vanish, or equivalently:
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Proposition 5.1. The condition that P.(Ho(t))®2(t) = ®2(t) is equivalent to the
following modulation equations for the coordinates «g and «q which specify the
dynamics along the ground state and excited state manifolds of equilibria:

(0360, 10:T0) + (03€q, (03(Eor + 0,0) + i) ¥y)

2| W |20y + W20,
e ()
C.C.

N <£a’ (= 06(t) + 271 %) (io >>

T2 2, 2
+A<§a, (qlcofl>>+A<§a, <|¢1| ¢ICC|% \Ij1>>

— 0,0(t) (€, B2) + i(Oh(038a), P2) (5.17)
where a € {(01), (02), p, —p} and ¥; = (U;,75), j=0,1.

Remark 5.1. (i) Note that the term (H(t)os€a, P2) in (5.16) vanishes by the
orthogonality constraint and because H{(t) maps the discrete subspace into itself.
It therefore does not appear in (5.17).

(ii) The last term in (5.17) is present due to the time-dependence of the eigen-
vectors £, (t). An important simplification of this “commutator term”, which we
require for a = (01), is carried out in Appendix C.

Initial data for the system (5.17), (5.11), governing a, a1 and ®o are obtained
as follows. Given data ¢ for NLS, we find ag so as to minimize

[P0 — Wapll2; (5.18)

see [44]. This ag is used to define the initial Hamiltonian H(0). Now decom-
pose ¢g using the biorthogonal decomposition associated with Ho(0). This specifies
a0(0), @1(0) and ®5(0).

5.2. Conservation laws and a priori bounds

In this subsection we obtain bounds on g, a1 and ¢ using the conservation laws
of NLS, noted in the introduction.
By the L? conservation law: N|[¢] = N[¢o] we have

h(t) = [Wo ()] + 1 (1)2 + / (6ot 2)[? da

= N¢o] —2%/\110\11_1—23?/%@—%/\111%. (5.19)

The last three terms in (5.19) can be estimated using the following:

3

o [To¥1 = O(lao|a1]?) + O(lao|? [ ]) = O(A(t) ).
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e Orthogonality relation (5.15) with a = (01), (o3&o1,P2) = 0 or equivalently
R [Topo = 0. _

e Orthogonality relation (5.15) with a = p or (03,, ®2) = 0 implies R [ W1dy =
Olaa® + laallaol?)[[d2]l2 = O(A(t)?).

Therefore,
(1+ O(h(t)?))h(t) < Nldo] . (5.20)
By continuity of h(t), if N[g] is sufficiently small
h(t) < CNJdo] . (5.21)

Furthermore, the conservation law Hey[¢(t)] = Hen[¢o] can be used to prove an
H' bound on ¢3(t), provided ||¢o|| 5 is sufficiently small. In particular, substitut-
ing the decomposition (5.2) into the conserved functional Hey,[¢(2)], we find after
integration by parts and interpolation of the L* term in Hey:

IVx(0lz < &0+ [ loal(180a] + 18al) + [ [993][90] + V] 0]

C 3
+5 1ol Ve()ll3

< C& + O(h(1)) + O(h(t) )| V2 (1) 3 -
Therefore, using the bound (5.21) and continuity in time, we have that if ||¢o| g

is sufficiently small,

/ Vo (t, 2)[2dz < CEy . (5.22)

6. Toward a Normal Form — Algebraic Reductions and
Frequency Analysis

We now embark on a detailed calculation leading to a form of this system, which
though equivalent, is of a form to which normal form methods can be easily applied.

6.1. Modulation equations

Equations (5.17) are a coupled system for «g, o and their complex conjugates. It
is natural to write the system as one which is nearly diagonal. This can be done by
taking appropriate linear combinations of the equations in (5.17).

The equation which essentially determines o can be found by adding the two
equations obtained from (5.17) by setting a = (01) and a = (02). This gives:

(03(&01 + &02), 10:T0) + (03(E01 + E02), (03(Eo1 + 0:0) + i) 1)

2‘\110‘2\:[/1 -‘1-\:[/2\:[/_1
= —)\<§01 +§027< 0 >>

C.C.
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<501 + €0z, (— 0O(t) +2M|n ?) <C\II(?>>

QNGE 2 — |, 120
>‘<§01+5027< 0¢1>>+>\<§01+§027<|¢1| 91~ ¥4l 1>>
¢.c. c.C.

— 3:0(t) (€01 + o2, P2) + {0 (03(E01 + €02)), D) - (6.1)

The difference of the a = (01) and a = (02) equations is the complex conjugate of
the Eq. (6.1).
The equation which essentially determines oy is Eq. (5.17) with a = pu:

(o3&, i0,0) + (03w, (03(Eor + 9,0) + iat)\f/1>

()
+ (g (- 000+ 200 (7))
e (e ()

— 0,0(t)(&u, 2) +(01(03E), Ba) - (6.2)
The equation corresponding to a = —p is the complex conjugate of this equation.
Since
\I/k 3k\11k a_k\:[’k
675 <_> = <_—> (9,504;6 + ( ) 6t()(_k, (63)
\I/k 8k\11k ak\Ijk

we see that the equations for @; = (ap,@)”, j = 0,1 can be expressed in the form:

- o
ZMooat < ) + ZMOlat < 1) + (EO]_ + at@)N(]]_ <_1> - FO (64)
o aq

aq

. Qg . a1 ~ (o751
sz@t <_> + lelﬁt <_> + (EOl + 675@)N11 (_) = F1 . (65)
Qg aq aq

Here, for £ =0, 1:

(e (52)) (e )
(oo (gur)) (=@ ()
e (D) (o ()
T\ () (o (1)
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(e () () o
e () e ()
. @%m( ) (7o (10)) (69

= () ()

6.2. Algebraic reductions and determination of ©(t)

To express the modulation equations (5.17) in a tractable form we shall make use
of a number of notations and relations which we now list for convenience; see also
Appendix A.
(J ) denotes a spatially localized function of order |o;|*, as |a;| — 0.
(’)(J denotes a quantity which is of order |a;|* as |a;| — 0. Both X(j) and Ol(cj)
are invariant under the map «a; +— o e .
oM =000, k =k + k.

¢1 =1+ ¢
ap = |agle™™ e = ap
(Ok Wk, O Vy) = (Viu + |Ozk\2Xo ,Oékxék)) ; k=0,1
i (0)
Fy+ Fj 2¢1° (Yox + X3 )
o1 + &o2 = Go (Fo _ Fé) - ( efmxéo)

on ()
Qo X
Fo + Ffy = 20, + oo |*x (5 [ao]?) = 2(v0s + x3”)
Fo — Fy = |ao*x( Jaol?) = x5 -
(Woe U5 (50)) = 0. (6.10)

Using (6.10) in (6.1) we get:
2i(1 + 0 dao + 103 0N 05 + (03(Eo1 + £02), (03(Eor + 8:0) +i0;) ) .

= —2(8té<Fé,\I/o> — 2X(FY, |¢1|*Wo))
+(Fo + F§, 20| W0 |20y + AU2T + Ny |21 — AU4]2 W) — ¥ (Fy — F),c.c.)

—|-Z'€2i’yo <3t[0'3(§01 —|—§02)L¢)2> . (611)
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6.2.1. Determination of O(t)

We anticipate that generically |¢1| ~ || ~ t=2 for ¢ very large. ap will have a
limit as ¢ — doo if Jrag is integrable. We ensure this by choosing 9;© to cancel
the terms which are of order t ! and non-oscillatory. Thus, we choose © to satisfy

8O (Fy, Wo) — 2\ (Fy, |¢1[*Wo) = 0. (6.12)
To leading order this gives:
00 ~ 2X(45.. |1 ]%) (6.13)

In this way, a logarithmic correction to the standard phase, fot Ey(s)ds arises.
Equations (6.11) and (6.12) together with Proposition C.1 imply

2i(1 + O 0,00 + 1020 0,05 + (Eor + 0:0) (€01 + oz , U1)
+ (o3 (€01 + Eo2), 10, T1)
= 0,00, d2) + 0,0a2(x", B)
+ 208 (oo 2on + ofam) + AM2u0. + X0, 61261 — |1 |20)
=23 011761 — [01[7T1) — el 2[(x”, d) + 7 (X", 82)]
+ilaol* B0 (x4 62) + €270 (X", 8)] - (6.14)
We now turn to Eq. (6.2). Using (6.10), Eq. (6.2) can be written as:
(1 + 0L Nidyay + (O(a?) + O(a?))idar
+ (14 0Ny + 2a70 V) (B + 0,0) + (034,10, D)
= —0O({x, ¢2) + a3 (x, 62)) — 2O Vg
— 208" (ool + afam) + 20§ ao{x; [61]?)
+ X5 (x, 63) + Aad(x. b1 )
FA0G 01 P01 — [012 1) + Mg (x, |61 71 — W12 T7)
+i(0y(038,,), ) - (6.15)
We next write the systems for @y and &; .

iMood:@o + iMo10:@1 + (Eo1 + 0:0)03No1d;

oo + odor
300 (120 et

C.C.

(Wox + x5 16121 — W1 201) + a2 (x| 21 — |@12w_1>>

+ )\03 (
C.C.
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- 0,0

C.C.

- ( 0, ) + a3 (xS, a) )

O, d2) + €20 (X, Ga) >
C.C.

— 3t\a0|203 (

(6.16)

0 4) + €20 (0 35) >
C.C.

+i|co|* D0 (

iM110:01 + iM100:00 + (E01 + 8t®)03N11&1

aol?ay + odar
_ )\O(()o,l)03<| ol*on 0 1)

C.C.

0101121 — (12 01) + (X, |#1]% 1 — ‘I’1|2‘1’_1>>

+ )\0'3 (
C.C.

C.C.

1 \oy <a0<x, [91]%) + ao(x, ¢3) + a8<x,EQ>>

(6.17)

C.C. C.C.

9,60, <<X7¢2> +04(2)<X,%>> e <<at(03§u)»‘1>2>> .

The matrices Mk, Nj1, j,k = 0,1 are displayed in Eqgs. (6.6)-(6.9). For the
(generic) case where we expect |ag| to approach a nonzero limit and o7 and ¢2 to
decay to zero, we shall use the expansion:

2(1+0")  a3o}”

Moo =
w0’ 2(1+0")

1+ 0 O (a2) + 0 (a3)

M1 = ., ., ) (6.18)
O (ag?) + O (a7?) 1+ O,

The matrices M9 and Mjg are higher order in o and satisfy:

Mio, M 0y ajoy” (6.19)
10, 01 — a_02080) Oéo) .

The matrices Ng; and N17 satisfy:
N 0y +05) a0y +0Y)
01 —
w20y +oy o + o

N 1+0  a3ofV
11 — a—02o(()0’1) 14 Oéo) .
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6.2.2. Simplifications to Egs. (6.1) and (6.2)

(1) Since M0 and My are higher order in o we can eliminate d;; from (6.16)
and Orag from (6.17).

(2) Note also, that “commutator terms” with factors like 0;|ag|? or 9;a3 can be
eliminated via redefinition of the near identity matrix Moo through incorporation
of a higher-order correction.

(3) We can eliminate the term proportional to |ag|?dyyo as follows. Consider the
last two terms of (6.16). Since d;|ap|? = apdidg + a0ty we can incorporate the
second to last term of (6.16) as a higher-order correction to the near identity matrix
Moo, ﬁb/o. Our goal is now to eliminate the J;yy from the equation. The system
can now be written as:

——1
10:0g = Moo ( B Z'O(|Ozo‘2)(9t’}/0) . (620)
The first component has the form:

109 = 1st component of the vector :

——1 ——1
Moo  (---) +iO(Jao[*)0rv0Moo - (6.21)
Since ap = |ap|e? we have

i0¢|cvo| — |an|0sy0 = €7 x 1st component of the vector :

—~1 — 1
Moo () +iO0(|ao|) |ao|0:v0Moo (6.22)

By taking the real part of (6.22), for |ap| small, we can solve for |ag|Oyyo. This
enables us to eliminate it from Eq. (6.16) as a higher-order term.
Implementation of these simplifications leads to the following

Proposition 6.1.

Z.atc_k'o = Méﬁo |: — (E01 + 8t(:))03N01621

aolPaq + odar
+/\(9(()0)03<| ol*on + ag 1)

C.C.

(Wox + x5 16121 — W1 201) + a3 (xS, |1 21 — |\P12\If_1>>

C.C.

+AO’3 (

- 0,0

] ((xéo), 2>+a%<xéo)%>” (6.23)

C.C.
100y = A(t)dy

M# |:)\J <<X7¢12¢1 |Il‘2\P1> ag<X7|¢1|2q51 — ‘1112\I/1>>
11 3
C.C.
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oy <a0<x, 6212 + @500 63 + EZ>>

C.C.

- , ba) + o (x, P2

— 9,605 <<X P2} ¢2>” . (6.24)

c.c.

Here,
[ B+ O(()O’l)|0‘0|2 O(()O’l)a%
~o0f"Vag? ~Eip — 03"V |ag|?

A22 = —A11, A21 = —A—12, and (625)

o1 =Y+ 2.

M#O and Mﬁ are near-identity matrices, whose deviations from the identity give
rise to higher-order terms which are subordinate to the leading order behavior ob-
tained in the analysis which follows.

Finally, Eqgs. (6.23) and (6.24) are coupled to the equation for ®o given by (5.11).

6.3. Peeling off the rapid oscillations of o

Fix T > 0 and large. We rewrite (6.24) centered about the ground state at time
t="1T:

0,8, = A(T)@ + (A(t) — A(T))d@, + F, (6.26)
where
[ Boa(T) + 05" (D) |ao(T)? OV (1)a3(T)
A(T) = ( —Oéo’l)(T)Oz_OQ(T) — Bou(T) — Oéo’l)(T)ao(T)2> . (6.27)

Since A(T) is a constant coefficient matrix it is a simple matter to obtain the
fundamental matrix.

Proposition 6.2. The system
10 = A(T)ady (6.28)

has a fundamental solution matriz:

B cfl Cly e~ A+t 0
X(t) = + — —iA_t
€1 Cyo 0 e

1 OV (M)ao(TYERHT) fe=™t 0
- (O(()O’l)(T)m2Eﬂf(T) 1 ) ( 0 ei“> '
(6.29)
The eigenfrequencies, Ay (T) are given by Ay (T) and A_(T) = =4 (T), where:
Ae(T) = Ero(T) + 08V |ao(T)[? (6.30)

where E1g = By — Ey, and provided |ag(T)|? ) E1o(T) is sufficiently small.
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We use the fundamental matrix, X (¢), to define a change of variables:

a =X(t)F =X(t) (%) . (6.31)
Therefore,
ar = e 08 4 OV a2(T)Er (T)e 15y . (6.32)
Then, J satisfies
0,0 = XY F(X()5(t),t). (6.33)

Note that since the linear in o3 terms have been removed by the change of variables
(6.31), 031 ~ O(|B1?).
Note that by (6.29)

X1t
(A 0 )(1+0&°’”<T>ao<T>|4E;02<T> —0PV(T)ad(T) By (T) )
0 et —O(()O’l)(T)oco(TfEfol(T) 14+ 0§ (D)o (T2 By (T)
(6.34)

Written out in detail, from (6.33) and the various definitions, we have

Proposition 6.3. The equation for B1 has the form
i0: 1 = A+ (x0, |6 T Brgpi + da| o
+ e (xo, (€M Brirs + ¢2)*)a0
+ M (xo, (€™ Bripne + d2))ag
+ A (X0 [le7 M Brvpre + B2 P (e M Bipre + B2) — e B 2Byt ])
+Rgs, (6.35)
where
Ro = X (1) [(A(t) — A(T)X(B)F +Ri) - (6.36)
Remark 6.1.
X1 (t)[A(t) — A(T)]X(t) = Real Symmetric Diagonal S(t) + e >*+'B(t) (6.37)

Therefore, the non-oscillatory part involving S(t) does not effect the evolution of

B
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6.4. Expansion of ¢2

The next step is to get an appropriate expansion of ¢2, which upon substitution
into (6.35) can be used to isolate the key resonant terms in the (1 equation. The
analogous steps are then repeated for the ag equation. Finally, a near-identity
change of variables is constructed which maps the system for oy and 3; to a new
system (a normal form plus corrections) for which the dynamical behavior is more
transparent.

®,, solves Eq. (5.11). We shall require dispersive decay estimates for ®5 and these
are most naturally obtained relative to a time-independent Hamiltonian. Since ()
is expected to tend to a limit as ¢ — oo and since we are fixing a time interval [0, T,
it is natural to use as reference Hamiltonian, the operator Ho(7T'). We now make
use of the linear spectral theory of Sec. 3 and decompose ®, into a part lying in
the “discrete subspace of Ho(T')”:

Ng(Ho(T)) & N(Ho(T) — u(T)) & N(Ho(T) + (T)) (6.38)

and a part lying in M (T), the “dispersive subspace of Ho(T)”; see (4.40).
Let [3,11]

by =k+n+n, (6.39)
where
k= Y, (ost(T) P2 (6.40)
€a€ENG(Ho(T))
n = <03§b(T), (132>fb (6.41)
EEN(Ho(T)Fu(T))
n=P(T)y =By — k—n. (6.42)
Since

<03§a(t)7q)2(t)> =0, fa S Ng(HO(t))

(038 (t), P2(t)) =0, & € Ng(Ho(t) F u(t)),

&(t) may be replaced by £(t) — &(T) in the definitions of k and n. Inserting the
expansion (6.39) into (6.40) and (6.41) and defining

paan(t,T) = Y (03(6a(T) = &a(D), e (6.43)
§a€ENG(Ho(T))

pneut(tv T) = Z <J3 (gb(T) - fb(t))v '>§a (644)
EEN(Ho(T)Fu(T))

we have that k£ and n may be expressed in terms of 1 as follows: Then,

-Gy )1 ()= Ge) - 09
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Therefore, we have

Proposition 6.4. There exists eg > 0 such that if |ag(t) — ao(T)| < e¢ then the
relation (6.45) can be inverted and we have

Oy = Oa[n] = kn] +n[n] +n, (6.46)

where ®o is linear in n and continuous in the weighted (local decay) norm of f —
1{z) =7 fl2-

The statement about continuity in the weighted norm follows from the spatial
localization of the generalized eigenfunctions.

Remark 6.2. Note that since [£,(T") — &, (f)] < 050% lao(T) — ()], we have the
simple estimate:

k[, Inl < Clao(T) = ao(®)] [[{x)~ n(t)]]2 - (6.47)

Anticipating that for ¢ very large, |ag(T) — ao(t)] ~ ¢t~ 2 and [|(z) =T @y (t)||2 ~ ¢~ 2,
it follows that |k|, |n| ~ ¢~. Thus, |k| and |n|, are expected to decay faster than .

Finally, n satisfies the following evolution equation obtained from (5.11) by ex-
plicitly introducing the reference Hamiltonian, H(T'), and applying the projection
P.(T) to the equation.

10y = Ho(T)n
+ (Ho(t) — Ho(T))®@2[n] — 0,0 Pe(T)0o3P2 1]
Wy ()

C.C.

2‘\110‘2\111 + \I/g\:[/_1>
C.C.

+ (E1(t) — Eo(t))Pe(T)os ( ) + AP.(T)os (

20|y + m Do [n]|? + Vo (T4 +7T1‘I’2[77])2>
c.c.

+ AP,(T)os (

(1 + 1 P[] 2 (W1 + 71 P2[n]) — |‘I’1|2‘I’1>
C.C.

+ AP.(T)o3 (
Vi (t) - i () + Volo(t) -9@3(’5)) (6.48)
C.C. . .

~irur) (

7. Normal Form and Master Equations

In Sec. 4 we decomposed the solution, ¢, in terms of coordinates a(t) and aq(t)
along manifolds of nonlinear bound states and ¢2, a correction which lies in a
time-dependent subspace, M (t), of continuum modes. ¢2(t) was then decomposed
into its discrete (k and n) and continuous () components with respect to a time-
independent Hamiltonian, Ho (7). We also observed that k and n are determined
by and are expected to be more rapidly decaying than 7 (Proposition 6.4 and
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Remark 6.2). Therefore, the evolution of ¢ is determined by aq, @1 and 7. Finally,
the fast oscillations of «; are removed by the introduction of 8; = [X (t)&@1]1 ~
e~iritay .

We now seek a form of the system for oy and (; from which the large time
dynamics can be deduced. We obtain this “normal form” by first solving for n
(see (7.21), (6.48)) as a functional of «p, (1 and the initial data n(0) and then
substituting an appropriate expansion (see Secs. 7 and 8) into the equations for «

and ﬂl-

Proposition 7.1 (The Normal Form). There exists a near identity change of
variables
«a « Jaolag, B1,t
()= )+ ) @
B B Jslao, B, 1]

Jk[a()vﬁlat] :O(|O‘0|2+|ﬁ1‘2)a k:aaﬂ (72)

where

and bounded uniformly in t, and such that

0o = (c1002 + iTw) |Br] a0 + Fa [&o, B, t] (7.3)
1001 = (cr121 — 2iT)|a0|?| 611281 + Fsléo, b1, m, ] -

The properties of Fo and Fg are briefly discussed in Remark 7.2 following
Corollary 7.1 below and described in detail in Sec. 8.
Furthermore,

=Ty, +0(ao(T)*) >0,
where,

]-—‘w* = )\27T<1/}0*1/)%*, 6(H - w*)¢0*¢%*> >0

(7.4)
Wy = 2El* - EO* .

The coefficients crimn = (9(()0’1) are real constants multiplying monomials of the

form o/g déﬂ{”ﬁf .

Remark 7.1. Due to our choice of the phase correction, O(t) (see (6.12), a term of
the form cio11 Oéo’l)|ﬁ1|2do, is absent from the differential equation for ag in (7.3).

Now let
Py = |ao|? and P =|61)? (7.5)

denote the (renormalized) ground state and excited state powers. Then, by (7.3)
we have the Nonlinear Master Equation:



1010 A. Soffer & M. 1. Weinstein

Corollary 7.1.
dP,

- = 2 PyP? + Ry (7.6)
dP
d—tl — —AI'PyP} + Ry, (7.7)

where

RO - RO[&Ov Bla m, t} = 2%‘(6‘_0}704) )

Rl = Rl[&07ﬁ1an7t] = 23‘(61}75) .
A more precise and revealing variant of Corollary 7.1 is Proposition 11.1, which is
stated and proved in Sec. 8.

Remark 7.2. The terms F, and Fp are such that Ry and Ry are not small per-
turbations of the leading order terms in (7.6), (7.7) for all ¢ > 0. In fact there are
three time intervals defined in terms of transition times to and ¢; (see Sec. 8), in
which we consider the system (7.6), (7.7): I = [0,%0], I1 = [to,t1] and Iz = [t1, 00).
It is only for sufficiently large time, (¢ € I), where Ry and Ry are negligible. The
behavior on short (0 < ¢t < tg) and intermediate (to < t < t1) time scales can be
very different. We go into the details of Ry and R; in Sec. 8 but wish to make some
remarks at this stage which indicate our approach.

If we drop the terms R; then we have a flow, which evolves in the first quadrant
of the Py — P; plane according to:

dpo 2

=0 _or )
7 popi (7.9)
dpl 2

N gyr 7.10
= popy (7.10)

where solutions for typical data converge to the pg axis with a rate (t) 1. In order
for the corrections coming from Ry and R; to be small, intuitively it is sufficient
that

Rj ~ EJ(PoPE +(1)77), (7.11)

where & is small and p > 0. This is what we show for ¢ > ¢;. For the intermediate
time range, to <t < t1, we show that the behavior is controlled by the system:

dP,
d—t‘) = 2T Py P? + O((t)~?)
P (7.12)
d—tl = —4TPyPE + O(VPoP™) + O((t)73),
where m > 3. Therefore, for intermediate times we need to show:
Ry ~ ES(PyPE + (t)—3
o~ E(PoPr+(t)™7) (7.13)

Ry ~ 56)(P0P12 + VPP + <t>_3) .
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What makes the analysis subtle is the dependence of R; on Py and P; in a manner
which is nonlocal in time. That is,

t
77"/ e Mot=s)p (H Ho)xag BT a3 B ds . (7.14)
0

Local in time terms are simple to dominate by the leading terms. However, nonlocal
terms require careful analysis. Note in particular, that due to the “history depen-
dence” of such terms, being expressed as time integrals from 0 up to ¢, an analysis
of the effect of such terms for ¢ > ¢; requires use of estimates on other time regimes
t <tgand tg <t < t; as well. Furthermore, there are no decay estimates on either
Py or P; in the intermediate interval tg < ¢ < ¢; or on the size of this interval.

The normal form of Proposition 7.1 is essentially the Poincaré-—Dulac normal
form which can be constructed along the lines explicitly implemented in [49]; see
also [1]. We now give a detailed outline of the procedure with explicit illustrative
detail of key points concerning the treatment of resonant and nonresonant terms.

Resonant terms and removal nonresonant terms: Here we illustrate, by way
of a simple example, how non-resonant terms can be removed by near identity
changes of variables. Consider the scalar ordinary differential equation

A'(t) = |A(t)Pe’ (7.15)
where A(t) is a complex valued function. We shall introduce a change of variables
A A=A+ q(A A1), where g2(4, A t) = O(JA]?) and q2(4, At + %) =
q2(A, A,t), which is therefore approximately the identity for |A| small, and such
that

A1) = SIAWPA® + S ADPAW + Ba(A@), AW, 0, (116)
Here, E, is 27/ periodic in ¢ and
E4(A(t), A(t), t) = O(JA®)[") (7.17)
The change of variables can be derived by elementary means. Integration of
(7.15) gives:

A(t) — A(0) = /O |A(s)[2ei s

/‘A 2]'szst

t t
1 Qd 2
| e L) 2 d
| e A

t

_ 2 1 iQs

1

. 1
— |4 2 zQs
As)P e

- Qs A <) 2 if2s
& [ e aw e

0

1t )
-5 /O A(s)[2 A(s)ds . (7.18)
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Define A(t) = A(t) — (i) 1| A(t)|2e’*. Then, A satisfies the renormalized ODE, in
which resonant quadratic terms have been removed. The process can be repeated;
by introducing further changes of variables A A = A+ higher order in A and
period in ¢, non-resonant (oscillatory) cubic terms can be removed to obtain:

Al(t) = éml(t)\?.lh(t) +ik| A (8)[*AL) + .. (7.19)

where k is real. That the coefficients in the first to terms of this normal form are
purely imaginary implies that, to this order, the amplitude |f~11 (t)| is independent in
time. This is the typical situation of the norm form finite dimensional Hamiltonian
systems, in which resonances occur between isolated discrete frequencies.

We next examine resonances between discrete and frequencies and the contin-
uum of frequencies, associated with the continuous spectral (dispersive) part of H.
These can introduce nonconservative terms into the normal from (via coefficients
with real as well as imaginary parts), which are responsible for energy transfer
between discrete modes (bound states) and radiation.

Nonconservative resonant terms and energy transfer: We explain how to
find the key resonant energy transfer terms, the leading terms in (7.3). These are
terms responsible for the exchange of energy among the nonlinear ground and ex-
cited states mediated by interaction with continuums modes. We focus on the
equation. Analogous considerations apply to the «g equation.

Equation (6.35) can be written the following compact form:

0B =Y Cpgr BB €™ (xXpgrsm) + O(F) + -+, (7.20)
b,q,T

where Cpqr are of order 1, a or higher order in ag, w, € {£A+, £2A+, 0}, and xpgr
denote functions which are exponentially localized in space. The equation for «g
has a similar structure. The equation for 7 = 19 + 71 + 12, can be formally solved
giving:

n = O(no) + O(ng) + O(n?)
+ Y Dy GBY B e L) - (7.21)
P1,91,71

Here, G denotes the operator

f—Gf=—i /Ot e Mo(t=5)p f(s)ds. (7.22)

We insert the expansion for 7, (7.21) into the terms involving inner products
(Xpgr>m) in (7.20) and in the corresponding equation for . This yields a cou-
pled system for «g and (3; which is closed up to higher order. The terms in the
resulting equations are of the form

Z Z CPQT‘DP1Q1T1ﬂfﬁqeii‘w%x?qr’ Gﬁflﬁqleiiwls XP1Q1T1>' (7‘23)

Pp,q;T P1,491,71
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We now use the integration by parts lemma:

Lemma 7.1.

¢ ¢
/ €A f(s)ds = lim [ " AT3 f(s)ds
0 510 Jo

= —i(A+i0) e f(t) +i(A+i0) 7L £(0)

+i(A£i0))~* /Ot e s f(s)ds . (7.24)

Applying this lemma, we obtain

e tort (Xpar Gﬁflaql e Xpiqiri)
= —e_i(wr+url)tﬁflaql <qum (Ho(T) —vry, F 7;0)71P6(T))~(p1111n>

+ 871081 (0)(xpar, (Ho(T) — vry Fi0) " e O P(T) R gy )

"t ) ) d —
+ /0 <qu7~7 (HO(T) — v F io)—le—zHo(T)(t—S)e—wrl SPC(T)g(ﬁzljl ﬁlql Xp1a1m )ds> ]
(7.25)

We first focus on the first term in the expansion (7.25). This contributes a resonant
term, which cannot be transformed by a near identity transformation to higher
order if

wr + vy, =0. (7.26)

Now consider such a resonant term. We find that in the 81 equation they are of the
form:

—[awo|?** |1 |*" B1 (X, (Ho — v, Fi0) ' P.X) (7.27)

where v, = —w, € {£Ay, 274, 0}.

There are two cases to consider: (i) v,, not in the continuous spectrum of Hy
and (ii) v,, in the continuous spectrum of Hg.¢ If v,, is not in the continuous
spectrum of Hy then the inner product in (7.27) does not involve a singular limit
and we get the limit

(X, (Ho — vp, )" PeX) (7.28)

In this case, the coefficient of |a|?31|31]?%1 81 is real. Such a term results only in a
nonlinear distortion of the phase of 8; and does not effect the amplitude. If v, is in
the interior of the continuous spectrum of Hy then the limit is singular. We choose
the plus sign (4:0) if we study the evolution for ¢t > 0 and the negative sign (—i0)

dIn case (ii) we consider the generic case where if v, lies in the interior of the continuous spectrum
of Hop.
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for t < 0. This choice is related to the condition of outgoing radiation explained
below; see also [49], for example. Evaluation of this singular limit gives:

(X, (Ho — vy, Fi0)"'Px) = A+l

where

I'=n{x, 6(Ho — vr,)X) , A= <X, P.V. (Ho — Vrl)_lx> .
Contributions to the imaginary part are therefore responsible for a change in am-
plitude (here damping of 3;).

Now, when does a frequency v lie in the continuous spectrum of Ho? By Propo-
sition 4.2, we must have v > —FEy = |Eyp| or v < Ey. By (6.30), Ay ~ £(E; — Ep).
Since v varies over the frequencies 0, £Ay, 2 1 we find that v,, = £2\1 = —w,
resonances are in the continuous spectrum and therefore are those giving rise to
energy transfer, provided 2E; — Eg > 0; see (7.4). We now embark on the details.

7.1. Ezxpansion of n
We expand 7 as follows:

n(t) = no(t) +m(t) + n2(t), (7.29)
where 79(t) corresponds to the linear homogeneous evolution with initial data

1n(0) = P.(T)®2(0) and 77 solves the inhomogeneous linear equation driven by
ag, a1 and 7o(t).

Equation for no(t):

i0mo = Ho(T)no (7.30)
n0(0) = P.(T)®2(0).
Thus,
no(t) = e~ TP (T)$,(0) . (7.31)

Equation for n (t):

01 = Ho(T)m + Po(T)[Ho(t) — Ho(T)| B[] + Ero(t)Po(T)os ( " )

21V |20, + W2,
C.C.

20| Wy + 11 Pa[no]|* + Yo(V1 + 7r1‘1>2[770])2>
C.C.

+AP.(T)os ( ) — 01O P(T)o35 o)

+AP.(T)o3 (

|@1 + 1P [10] [ (W1 + 71 P2[no]) — ‘I’1|2‘I’1>

+ )\PC(T)U?, <
c.C.

P, <V1\I/1(t) - 001 (t) + VO\Ifo(t) . 8to’z'0(t)> . (732)

C.C.
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The initial data for n; is 71(0) = 0.

Remark 7.3. A direct computation using the biorthogonal decomposition of the
discrete subspaces of Ho and H; of Sec. 4 yields that the second term in (6.48) is
of a higher order than is explicit:

Uy
Eyo(t)P.(T)os (CC ) = O(laolar] + o1 ) (x§ + x5+ x§) (7.33)

for |ap| < 1 and |aq] | 0.

Equation for na(t):

10¢m2

= Ho(T)n2 + Pe(T)[Ho(t) — Ho(T)|®2[m + n2] — 0:OPe(T)o3®2[n + 12]

FAP(T)o3 (2‘1’0 {(‘1’1 + w1 ®a[no])m o[t + n2] + C.c.} )

2Wg|m1 Oon1 + 12]? + 200 (V1 + 71 P2 [no]) w1 P2 ln1 + n2)
+APA(T
C.C.
(I)
L APWT 03( o(m1 2771-1-772]) )
2101 + (I) [} +
T+ APA(T)os ( |01 + 71 Pa 0] |*m2@[m 772})
C.C.
(m1®@2[m +n2])2 (V1 4+ m1®2[no]) + m1P2[n1 + 72](P1 + 71 P2[no])?
+)\Pc 0'3
C.C.
2(W1 + m®afno))lm ®alm +n2ll® + |m®@alm + 2] Pmi®alm + 2]
+)\Pc 0'3 .
C.C.
(7.34)
We expect that ne = O({t)~1). Let
M2 = 1N2a + N2p - (7.35)

By construction we will show that 7o, = O((t)~1) and 12 = O(({t)~%).
10¢M2a
= Ho(T)n2a + Pe(T)[Ho(t) — Ho(T)|®2[m] — 0,003P2[m]
Wo (W11 Po[m] + Wima®a[m]) + Yolmy ®a[m ][> )

+2)\P.(T)o3 (
C.C.

2Wom ®a[m1 ] (W1 + m1®@2[no]) + Wolm P2[n])? )

+ )\PC(T)O'g (
C.C.
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+)\PC(T)O'3

(2‘111 + 1P [10] P71 P[]
C.C

+ (U1 + w1 P2 [10])?m1 Dol ] )

+)\PC(T)O'3

(2(‘1’1 + m®a[no]) |11 Pa[m]|?
Cc.C

+ (W1 + 71 P2 [n0]) (7T1‘I>2[771D2>

(7.36)

|71 @ [11]|* 71 P [11] )
C.C. ’

+ A\P,(T)os (

7.2. Normal form and master equations
Using (7.33) and explicitly inserting in (7.32) the representation

a1 = (X($)B@), = e D18y + 0PV ad(T) By (T)e =~ T15y (7.37)
gives the following equation for 7;:

i0im = Ho(T)m + Pe(T) (Ho(t) — Ho(T)) ®2[no] — 91O Pu(T) 32 [no]

+ Bio(t) Pe(T)os([ol*xy” +151*x1")
x (6‘”*” "B+ 080’1)%(T)E101(ﬂe‘”-%)
c.c.

2|a0‘251672/\+(T)t +a2§ei/\+(T)t
+APC(T)03¢8*%< e 0 )

20|61 + aigBie 2+ (1)t

C.C.

AP Dot ( )R (@)

with initial condition 7;(0) = 0.

Substitution of 77 into Egs. (6.23) and (6.35) for ap and 31 gives rise to terms
which make explicit the resonant exchange of energy between the ground state and
excited state. We next isolate the key terms in the expansion of 7; relating to this
energy exchange.

Let us begin with the ;1 equation, (6.35). Written out in greater detail we have:

i0:51 = 2\(tos, ¥1.) |81 Paoe™ (1 + 20 (.0, ma ) Brag
+ AWow, U5, ) Brage T 4 20 (o, ¢, 1 P2) (Braoe®™ + (T* + giap)
+ 20 (W0uth1s, [ D2 ) ar0e™ T 4 N(hguthr, (m102)?yage+ (1)
+ A, B2) B[P D A, (1)) Bre ™ (D!
AW, ma®2)BTe A D L NPT |1y By |?) Bre A (T
+ A1, [ BoPmy @)+ T 4 Ry, (7.39)
where Rg is defined in (6.36).
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We claim that the key term in (7.39) responsible for energy transfer is the term
2\ (V0. ¥3,, m1 a) Brage + (T (7.40)

on the second line of (7.39). To see this we decompose 7; into “resonant” and
“nonresonant” parts

M = MR + 7INR - (7.41)

The part niNg gives rise to the key resonant energy transfer term in the equation
for 31 and is the solution to the initial value problem

1
iy = Ho(T)mr + APo(T) 032, o g B2 2+ (D <0>

mr(0) = 0. (7.42)

Solving (7.42) using DuHamel’s principle we have

t ) . 1
mr(t) = —iA / e MU= T o3y owo(s) B (s)e ™2+ (1) (O> ds
0

) t 1
_ —i)\e_ZHO(T)t/ el[HO(T)—2A+(T)]sP( )U3’¢1*1Z)0*O£0( )61( )<0> ds .
0
(7.43)

Recall that the continuous spectrum of Ho(7") is given by points w such that |w| >
|Eo|. By Proposition 6.2, for |ag|?/E1o sufficiently small

A (T) = E1o(T) + O |ag(T)|? . (7.44)

By the hypothesis (7.4), 2E1, — Ep. > 0, if |ao| is sufficiently small then 24 (T)
lies in the continuous spectrum of Ho(T'). Therefore, (7.42) is a resonantly forced
system. We expand the solution as follows. Let § > 0 and set

) o . 1
ilt) = e [ ST D (D)o . 30 RIB s >( )ds.

0
(7.45)

Then, mpr = lims_0 77(15R'
We now apply Lemma 7.1 to mg with A = Ho(T') — 2A+(T). The result is

Proposition 7.2. The limit lims_.q 77‘15R =g exists in S’ and

() = ~xe DGO (lT) ~ 22 (1) — 10 (1) ()

ENTORO)e P (T) — 24 (7) — i0) ) (| ) vkt

+ A~ oDt (T) — 2X, (T) — i0)
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t
/ ei[Ho(T)2,\+(T)]SPC(T)<1>¢%*¢0*i(a0(8)5f(8))d8
0 0 ds

= MRa + MRb + MRe - (7.46)
We substitute (7.46) into the key term (7.40) in (7.39).
2A (Yo ¥3,, M Pa[n]) Brage + (D = 2\ (o, 03, , mimra) Browe® + D+ R (7.47)

Here, R denotes rapidly dispersively decaying terms plus higher-order terms in
|aoB1|. By Proposition 7.2 and the Plemelj formula (A.3)

M (W0x1b3,, T1Ra) B e (DY

1
_ oy <w0*¢f*»W1(H0(T) AT — i0) " PAT) (0) wo*w%*> laol?16 By

= —2(A+iD)|ao*5:[*B1, (7.48)
where (using that Ey — 2E19 = Eo — 2(E1 — Eg) = ws + O(lag(T)|?)) we have
A=A, 00
= N2 (outd,, PV.(H — w.) 0.9} OF) (7.49)
r=r, o
= N (ontpd,, 6(H — w.)io.12,)0F . (7.50)

Recall that (9(()0) denotes a term of the form 1+ O(|ag|?). Returning to the equation
for (3, we have:

01 = (Aw. — iy, )| *[B1? B+ - . (7.51)

We now seek the key terms in the ap equation, (6.23). Using that ¢1 = Uq + ¢
and the representation (7.37), we have

i = A5, 97, e 2 D! Grag
+ 2081, d2)e” M D EGB + M., ¢3)a0
+ 2\ (Wosti,, d2) |51
+ MQouth1s, 03)Bre !+ Mgho. 3, , Ga) e 2+ (Tt
+ 2A(W0xth1s, [d2|?) Bre T D 4 N, | p2|2h2)
+Rap - (7.52)

We first focus on the key resonant term in (7.52) which is responsible for the
system settling onto the nonlinear ground state. We claim this term is:

Mtpouthi,, da)fie 2+ (T (7.53)
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In analogy with the previous calculation, we have

Aol §2)Bre 2 M = Nyt mampa) Bre >+ D+ R, (7.54)
where R is as above. Therefore, applying Proposition 7.2 we get
AWoxtt,, ma®a)Bie >+ = (—A,, +ilu.)|f1|"a0 + R. (7.55)

The expression R denotes terms which are higher order, oscillatory type and dis-
persively decaying. See also Remark 7.2.
In summary, we have the following system for o and S;:
Proposition 7.3.
i@tao = (—Aw* + il“w*) ﬁ1|4040 +R
1001 = 2(Aw* — Z].—‘w*) a0‘2‘,31|2ﬁ1 +R.

The proof of Proposition 7.1 follows by constructing an appropriate near-identity
change of variables, transforming (7.56) to (7.3). This is implemented as in [49].

(7.56)

8. Stability Analysis on Different Time Scales — Overview

In Corollary 7.1 we obtained coupled power equations or nonlinear master equations
governing the (renormalized) ground state and excited state square amplitudes:

Py=lao)> and P, =512, (8.1)

If we neglect the correction terms Ry and Ry, in (7.6) and (7.7) we obtain the
simpler autonomous system of differential equations:

dpo

= 2T'pop? 8.2
7 Popi (8.2)
dpl 2
2 — 4T ) 8.3
= Popi (8.3)

Note that this system is exactly solvable. Addition of twice (8.2) to (8.3) yields that
along any solution trajectory:

2po(t) + p1(t) = 2po(0) + p1(0) . (8.4)

This relation can be used to eliminate p; from (8.2) or po from (8.3). po(t) and p1 (¢)
are thus obtained by quadrature. The dynamics of this finite dimensional reduced
system anticipates that an initial state, arbitrarily close to but not exactly on the
excited state branch, with energy distributed among the ground state and excited
state, will evolve to a state with an increased ground state energy and no energy in
the excited state. While not strictly correct, since there are nongeneric data giving
rise to solutions which converge to the excited state [55], this captures the generic
very large time dynamics. The correction terms Ry and Ry in (7.6) and (7.7) lead
to different transient behaviors which may be quite different from that suggested by
the system (8.2) and (8.3). However, we show that eventually (¢ > ¢;), this system
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dominates. Moreover, a large class of data, for which the system (8.2) and (8.3)
controls the behavior is that for which Py(0) > P;(0) and sufficiently small initial
dispersive part.

Before embarking on the details we give a brief overview of the strategy. Using
the change of variables (a, §) — (@&, 3) of Proposition 7.1 we have transformed away
all local in time nonresonant terms. This introduces contributions to F, and Fjg,
and therefore contributions to Ry and R; in Eqs. (7.6) and (7.7), which are of two

types:

(i) local in time terms depending on &g and (1, which can be absorbed by the
leading terms in (7.6) and (7.7), with a small correction to the coefficient I' and are
of order by (t)~2; see Proposition 9.1 below.

(ii) nonlocal in time functions of &y and By defined in terms of n = N[no, n1,m2] in
F, and Fg. These contribute terms to (7.3) with the same (anticipated) time-decay
rate as the leading order terms in (7.3). Correspondingly, there are nonlocal in time
functions of @ and 3; which contribute to R; in Egs. (7.6) and (7.7) which are
of the same (anticipated) decay rate as the leading order terms in (7.6) and (7.7).
The goal is to control these nonlocal terms, to the extent possible, by the leading
order terms. However, due to the different behaviors of &g and Bl on different time
scales the argument is somewhat tricky and we now explain our strategy.

Let

5
to+ 1 =sup {T 0<T <1, P(r) < 2 (8.5)

>0 a

[no]x + &o }
e

Propositions 11.2-12.1 and 13.1 will justify this choice, by implying the inequalities
(8.7). If ty < o0, then we have the bound:

Io]x + &0
{to)(t)*

Consider the system for Py(t) and P;(t), (7.6) and (7.7). Decomposing R; into
local and nonlocal in time parts we have:

5
Pot) < 5 0<t<ty. (8.6)

t
R, = R\(Py. Prono.n) + / K (t, 5)r(s)ds
0

to
= R;’(P07P17770777) +/O K(t,s)rgl(s)ds

t
+ | K(t, s)r;-‘l(s)ds.
to
nl

The terms r}" arise from nonlocal in time functions of & and B (see (ii) above);
explicit expressions of this type are analyzed in Sec. 11. For the local in time
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contributions we have the estimates:

b
R})(P07P1a770a77) S 0(56)0)<P0P1 + <t>02>

b1
Rll(P07P1a770a77) S 0(56)1)<P0P1 + <t>

where & is the initial total energy and p; > 0. Therefore, for & small

(8.7)
O(VBPp" >) ,

dP, 2 bo ‘ al
o > 2Py Py — e + /to Ko(t,s)rg (s)ds

aP; b

t
b7 —AI"PyP? + Ki(t, s)r'(s)ds + O (/P P"),

[CEREA

with TV ~ T'. The reverse inequalities hold with I replaced by I'V =T + o(T").
Next (Proposition 9.2) we introduce the auxiliary quantities

Qo=PF — ]{10<t>71 and Q=P+ ]{11<t>71 R (88)

where ko (bo, b1, o) and k1 (bo, b1, &) are chosen appropriately and derive equations
of the form

dQo 2 ! 1
= 2 2I"QoQ7 + | Ko(t,s)rg (s)ds
10 o (8.9)
S ATQuQE + [ Ka(t )i (s)ds + O(v/QoQY)
to
where I ~ TV ~ T
We then proceed with the following continuity argument. At ¢ = ¢,
dQo(t
Q;E 0) > 21" Qo (t0) Q1 (to) ,
401 (1) (8.10)
clit 00 < AT Qo (t0)Q3 (ko) + O(v/Qo(t0)QT (t0)) -

Therefore, by continuity, the following inequalities hold for some time interval ¢y <
t <to,1, with I replaced by = A

on dQl

>T"QQ7, < —2I"QuQ7 + O(VQoQT") - (8.11)
Let t* = sup{t > to : inequalities (8.11) hold }. We show that
t ,
/ Ki(t,s)ri(s)ds < O(EL) (Qon + %) (8.12)
to

and therefore, up to renormalization of @); (adding higher-order terms of order
ELk;(t)~! to the definition of @;)). Use of this estimate in (8.9) implies (8.11), for
&o sufficiently small. The argument can be repeated and therefore, t* =T



1022 A. Soffer & M. 1. Weinstein

9. Finite Dimensional Reduction and Its Analysis on Different
Time Scales

We now begin our study of the generic case, where g < co and the solution con-
verges to the nonlinear ground state family as t — oo. The following three propo-
sitions concern the various time scales which enter the analysis. The first is a basic
result, a normal form, which is the point of departure for our analysis on all time
scales.

Proposition 9.1. Let m > 4. Let
bo = (to) ™ ([no]x + ¢.&3) , (9.1)

by = (to) =% (0§ + du&2) (9.2)

for some order one constants ¢, and d..
If for some tg, positive and finite,

3bo (to, [1n0]x)

Py(tg) > .
0(to) > o) : (9.3)
then for t > tg
dP, 9 bo
— >2(1 IPyPf — — 4
dt ( 51) 041 <t>2 +Jo (9 )
dP;
e < —4(1 - 6,)TPyPE + O/ Py P™) IR (9.5)
where Jo and Ji are nonlocal in time terms, which have the form:
t
J; = K(t, s)r;‘l(s)ds. (9.6)

to
The terms encompassed in J; are derived and estimated in the coming sections.

Remark 9.1. The reverse inequalities of (9.4) and (9.5) hold as well with a different
constant ds ~ 4.

The proof of Proposition 9.1 will be given following the estimates on the re-
mainder terms, R; (Proposition 11.1).

Proposition 9.2. Assume that tg is positive and finite as in Proposition 9.1. Then,
there exist ko = ko(bo,b1,&0) and k1 = ki(bo,b1,&0), such that for t > to the
auzxiliary functions

ky

%wz%w—a, %@EH@+® (9.7)
satisfy
dgo > 2I"QoQ7 + Jo + <£(>)<t*>2
dQ £2d, (98)
a < —AT'QoQ7 + O(VQoQT") + Ji — W ;
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for some positive free constants c. and d.. In particular, Qo(t) is monotonically
increasing for t > tg.

The next result shows that c, and d. can be chosen to control the terms Jj.

Proposition 9.3 (Monotonicity of Qo for T > to). There exist ¢, and d. of
order one, such that for t > tg.

49 > 2I"QoQ?
d‘g (9.9)
< —AQuQT + O(VQoQT) -

The above three propositions are established in the next two sections. We com-
plete the current section by working out the consequences of the finite dimensional
reduction (9.9).

The next proposition, shows that even if Q) is very small at some stage, it
will eventually become large relative to Q1 and the O(v/QoQT") term in (9.8) will
become negligible.

Proposition 9.4. Assume t > tg and suppose for some r > 0 that

Qo
< &r 9.10
Ql 0 - ( )
Then,
Qo(t) . . )
t>t 9.11
N0 is increasing for t > tg (9.11)
and there exists t1 such that
Qo(t1)
=& . 9.12
Ql(tl) 0 ( )
Furthermore, for t > t1:
X > orgu0
dQ (9.13)
< —ATVQoQ3
Finally, fort > t;:
t
Qi(t) < Qi(h) (9.14)

T 1+4Qu (t) (infpr, 1y Qo) - (E—t1)
Proof of Proposition 9.2. Define

Qo =Py —ko(t)™", Q=P +kt", (9.15)

where ko, k1 > 0 are to be appropriately chosen. Note that
Qo(t) S Po(t) and Ql(t) Z P1 (t) . (916)
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Using (9.4) and (9.5) and some estimation we deduce a simplified system for Q¢ and
Q1. We calculate, omitting the terms Jy and Jj, which are carried along passively.
We begin with Q.
dQo dPy | ko

dt— dt  (t)2

b k
2 0 0
> 2Py Py — W + W

2 ky ki
> 2I'QoQ7 — 4F®Q0Q1 + QFW

ko — bo
9.17
We estimate the second term on the right-hand side as follows. For any s > 0,
k k?
—4%@0@1 2 25T Qo — 2 Qo - (9.18)
Therefore,
d 1 1
T > o0 — )@u0t + <2Fk1620<1 - —) ko bo) o (9.19)
Now set s = % and assume
k1>01. (9.20)
Then, using that k; = 10b;, we have
dQo 9 9 o 1
—>2. =T —bg — 18I — 21
If
9 Eie.
ko =bp + 18067 sup Qo+ ——, (9.22)
to<t<T (to)
we have by (9.21) and (9.28)
dQo 9 9 Eie.
— >2.—T — 9.23

In particular, Qg is increasing for ¢ > ty.
We now turn to ()1; we have

d@. dP k1

FTrT T

b
< —4TPyP? + ﬁ — 5 +O(PPM)
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2 b —k
1= h m
<Q0+<>> (Ql <>> +W+O(\/POP1)

2
< —4I'Qo <Q1 ~ %) - % +O(V/ PP

2 _
— ATQuQE + SF%Qle - 4FQO<% T % + OV P

(9.24)

The second term on the right-hand side is estimated as follows. For any r > 0 we
have, since 2ab < ra® + r*1b2, that

]{11 41—7{31"‘@0 4F]{11Q0Q%
I'— < . 2
8 o) QoQ1 < BE " (9.25)
Therefore,
d k —k b1 — k
& < 4T (1 — %)QOQf +4Fk1QOT<tTl + 1<t>2 Ly O(VRP™) . (9.26)
Let
Ed,
r= 20/451 and b1 = ]{il(l — 76Fl€1Q0) — <t >l y (927)
0 2
which is consistent with the constraint (9.20). Then,
dQq 19 9 60
— < —4.—-T + O/ PyP"). 9.28
g = gt @i~ (to) 3 ()2 0Tt (0.28)
By (9.8), Qo is increasing for ¢ > to. Therefore,
ko
t
Qolto) = 755 (to)
Po(t) < Qult) + 12 = Qu(t)
OV =Ry T 1oo< )
< Qo(t) +100Q0(to) < 101Q0(2) -
Also, by definition P; < @7 and so
d
T < 4. 2rQu0t + 0/@0p) (9.29)
This completes the proof of Proposition 9.2. O

Proof of Proposition 9.4.

d (@) _ Q@1 — QlQo
@1 Q1 B Q2

Qi{zmo [QF — CQL2QTY2QT1?] + 4rQ2Q2) .

{FQOQ Q1 +4TQRQ3 - CQY QT



1026 A. Soffer & M. 1. Weinstein

8— &y then implies that

G(2Y) = g laraslar - &Qr ) + arghar)
1

Q
Qo Qo
=T (Ql)Ql +4FQ1<Q1>

(g())cgl , (9.30)

for m+% > 3 and |Q1] < & < 1. Hence
t
Qo > Qo exp (1" Q%(s)ds) .
to to

Ql t o Ql
Since @)1 > 0, either Q1 | 0 or % grows exponentially with ¢ > ty. In either case,

\ \/

there exists t; > tg, such that for t = tq, % ] o= &} Now whenever,

Qo

> &r, 9.31
Ql 0 ( )
we have
dQl 2 m
e < —4AT'QoQ7 + +O(v/QoQT")
< —ATQuQ? + QoY ?ey "
< —ATQo[Q2 — C&y/ 256"*5/ 2Q7]
< —ArQuQ7 (9.32)

for m > 5 4+ L. Therefore, by (9.31) we have dQ‘ |t < 0. Since Qg is increasing for

t > t1 > tg, the inequality % > &} persists and (9.32) holds for all ¢ > ¢;. Hence

d d
Ql < —AI'Qo@?  and QO > 20 Qu Q3 . (9.33)
Finally, for ¢t > ¢;

dQ1 19
— < —4—T f .34
L < i (ﬁﬁ Qo> Q3. (9:34)

Solving this scalar inequality
Q1(t1)

N = TG )| Qo — 1)

Since Py < Q1, Pi(t) decays to zero like {t — ¢1)~!. This completes the proof of
Proposition 9.4. O

(9.35)
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10. Decomposition and Estimation of the Dispersion

In this section, we revisit the decomposition of the dispersive part, n, which satisfies
Eq. (6.48). Here, we decompose 1 in a manner suitable for consideration of the
solution on the various time scales.

Proposition 10.1.
n(t) = no(t) + eo(t) + nu(t)
= eioall" Bo()—Eo(TNAt'+6M] (50 (1) + 6o(t) + iy (£)) . (10.1)
The three terms can be described as follows:

(i) no(t) is a dispersive wave generated by the data n(0) = niy:

(10 —Ho)lo =0, 1(0) = nin , (10.2)
(ii) eo(t) is driven principally by no(t):
(Zat - HO)éO - PCS(O) [607 Tb; 770] ) 60(0) =0 5 (103)
and
(iil) np(t), which is driven by bound state dynamics:
(i0, — Ho)ijp + PoSeq, my;mo] . mp(0) =0. (10.4)

We display expressions for S© and S® with the detail required in our analysis.
We let x denote a generic exponentially localized function of position, x.

il (Bo(t')—Eo(T))dt' +6(t)] g(0)

= S((]O) + S§O)eo + 550)6(2) + eg

2

(ag(t) — g (T))xm0 + 1§ + coc Xm0 + Qo X7;
+ (aoar + aF) xeo + (a0 + a1)x(no + m)eo + Momeo
+ (af(t) — g (T)) xeo + (a0 + ar)xed + (o + mo)ed
+ed (10.5)
il (Bo(t')—Eo(T))dt' +6(t)] S(®)
= S+ 50 m + S0 +

(ag(t) — ag(T))xm
ViU (t) - 8,@1 (1) + VoUol(t) - atao(t)>

C.C.

2

+iP.(T) (

+ (E(t) — Eo(t)) Pe(T)o (Wl(t)>

C.C.
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+ (lao*loa| + |aollax[*) x
+ agarxms + (a0 + a1) xm; + (10 + €o)n;
+ laolxmoms + (5 + €5)m + 1 - (10.6)

Remark 10.1. Due to the decay of Ey(t) — Eo(T) and 8,0(t), integration by
parts implies that contributions from the phase factors multiplying S(® and S®
contribute at higher and negligible order. Also note that 79, eg and 7, satisfy the
same energy (H*®) and dispersive(LP, local decay) estimates as 7jg, €y and 7, since
these functions differ only by a time-dependent phase. These properties will be used
repeatedly below and in Secs. 11-13.

By (5.22) we have the following H! bounds on ey and 7, in terms of one another:
leo() [ < o+ lnollmr =+ llm6(8) ]| e (10.7)

@l e < o+ lImollr + llea() ]| - (10.8)

Using DuHamel’s formula, both the ey and 7, equations can be written as equiv-
alent integral equations:

t
eo(t) = —i / e~ Mo(t=3) p 5O) (5)ds (10.9)
0

m(t) = —i /t e Mot=5) p g() (5)ds . (10.10)
0
Therefore, in both cases we must estimate an expression of the form:
w(t) = /t e To(t=5)p S(s)ds . (10.11)
0
For estimation, we shall require the following class of dispersive estimates:

Proposition 10.2. (i) Let 2 <p < 00, p',q > 2,q¢" and s be related by:

11
3 <_ — _> =35, p_l + (p/)_l = 1, q_l —+ (q/)_l =1. (1012)
qa p
Then,
; _3(i_1 _3(i_1 s
le™ Mt Pefllp < 172379 () 2G5 (1l + 10°F ) - (10.13)

(ii) Assume q > 2 and s > 3/q. Then,

3
q

€=, floe < 17237007 (1111 + 10°S ) (1014)

Proof of Proposition 10.2. We use the classical Sobolev inequality for functions
defined on R3:

Iflp < Cllo“fllg.  3(a™ —p7) =+ (10.15)
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and the L? — L?" estimate (Theorem 4.2)
; _343 _ -
le™ @ Pefll, < Crpt™ 2 2| fllp, p" + ()7 =1 (10.16)

For [t| > 1, we use (10.16). For |t| < 1, we have by (10.15) that
le=" " P f||, < (|0~ 70 P
< C|[Hge ™ P,
< CRTETD D ], (10.17)
¢+ () =1

From estimates (10.16) and (10.17) we obtain (10.13). Estimate (10.14) is obtained
similarly. This completes the proof of Proposition 10.2. O

We now apply Proposition 10.2 with ¢ = 4 and s = 1 > 3/4 to the integral
equation (10.11) and obtain the bound:

e < [ e (Sl 0s@la. o1s)

We shall use this bound as the first step in estimating ||eg(t)||co and |7 (¢)]] co-
More specifically, our estimation strategy seeks a closed system of inequalities

for the following:

norms of eo: 1. [eo]o 2, 2. [Oeo]r2 .3, 3. [eo]mr;0

norms of m: 4. [M]oci0, 5. M) E.0,

in terms of norms of the initial data [¢(0)]x.

10.1. Estimation of ||eol|oo
By (10.18), we have

e ()S 4 )las .
ool < [ gt (SOl + 05Ol ), 1019)

so it sufficies to bound ||S(®]|; and [0S O)H%.

[1S©|;: For any t > 0,

15871 < €)= 2 (Elm(O)]x + VETm(0)]%) < C(E0)Din(0)(s)~2
15 eolls < €)™ [eol s (Eo + & Imlocio + &6 Biolocio + [01%,5)

C<3> %[60]00;% [770]00,% [nb]oo;O S C<5>_% (1020)
15631l < Ols) e,y (CVEo + Molocsg + mli0)
(

3
||€0||1<05 2[ ] ;%[60]%1;0.

)
)"
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H@S(O)H%: For any t > 0,

1 3
1055113 < C(s)™# (Eol0mo]ocs g + & [olocy g bolmso + &6 ol )
nwﬁmgsm>%([13+&wz@wwmrﬂ%m@mmwg

+802[ } [nb]Hl ;0 +5 [nb}oo O[aeo]le 73)
10557 €315 < C(s) ™ eo)oosz (65 leolooss + &6 leal s 0) (10.21)
+C(s)~ g ,%("70H10+ () #r1.0) [€o] 1110

+Mﬁ;%hm@ﬂmﬁ+mhw)
9313 < C(s) Hleol s feolZng.
Using the bounds (10.20) and (10.21) in (10.19) implies
Proposition 10.3.

leo®llse < (82 (C(E0. 0(0)]x) + &6 [m(Blocio + [0(O)]x (D)o len)ocs3)

() H(EF + m(0)]x + [eo(®)3rn0 + I (D)]csz) ([e0)oass + [eo 5)

1
2

+(8)7% ([eo] oy sleoltin + Eoleolz 3 + &5 leol2;s) - (10.22)

loc?’2

10.2. Estimation of [Oeo(t)]rz ;s
19eo ()2 ~ l[xDeo(t)l|2 (x localized)
~ Ix{Ho)Eeo(t)||2(d(Ho) ™% € B(L?))

t
g/ X (Ho)z e~ Hot=9) p.5O) (g)||ods (by (10.9)). (10.23)
0

For the purpose of continuing the estimation, we regard S(?) as consisting of terms
of two types: (i) terms having spatially localized (exponentially) functions of z as a
factor, coming from ¥, j = 0,1, and (ii) terms like ed or mynoeo and others which

are not of this type. It is convenient to refer to such terms as S oc and SI(\IOLOC
below. From (10.23) we have:

t
IWm@quSAIMOm e~ M=) 8O (s)lads

t—1 t
* </o +/t 1) ||X<H0>%eleo(tfs)Pcsﬁogoc(s)H2d3

' C o (0)
< =[[(2)7 Spocllds
0 {t—s)2
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t—1 ) L0
[ e P ) £ g (o) s
0

t
* / ) [(Ho)ze= 0= ST ()| 2ds

c
< [ oh gl siclas

t—1 1 t
o/ 105 Goc(s)lds+ [ 15 oc(o)lads

|t—3‘% t—
=A+B+C. (10.24)

We estimate the integrands of B and C; that of A is similar.

\integrand of B| < C<t>_% ([60}00;% + [770}00,%) ([60]21;0 + [nb}%ﬂgo + [770}%11;0)
(10.25)

lintegrand of C| < <t>*% ([eo]io;% ([GO]HI;O + [nb}Hl;O)
+ [e0loos 2 [110] o2 [M6] 1110
+ [UO]Wlm;g ([Ub]oo;o[eo]Hl;o + [770]00;% [Ub]Hl;o + [eo]oo;g [eo]Hl;o)
+ [nO]ivl,oo;g[eo}Hl;o) .
Substituting of these bounds into (10.24), we have:
Proposition 10.4.
1003 < O (leoloors + I10(O)]x) ([oloesg + leolm) - (10.26)

2
10.3. Estimation of [eo(t)]r1;0

1 t
leo()llzr ~ IHG eo(t)]l2 S/O 105 (s) | 2ds (10.27)

185 ll2 < €)™ (Eolnolw e,y + & o),
+ [0l r0[molZ, 3 + Eolnolwre.s)

185 eolls < Cfs)~2 -

+C(s) "2 [eol2 5 (Ino]s0 + [mla o)



1032 A. Soffer & M. 1. Weinstein

+C(5) ™% [eo)ocsg ol (o0 + )0
10edll2 < Cs) = leol% sleo) o
Proposition 10.5. For ¢ > 0,
lleo ()]l < C(Eo, [10(0)]x) + [€0]ows 2 ([1m0(0)]x + [eo]rrr0) - (10.28)

We now turn to the estimation of ||7(t)|loo and ||7s(t)|| g1 By (10.18) we have

t 1
176 ()|l o0 < / 3 = (IS ()1 + |05 (s)]| 1) ds, (10.29)
0 [t—slT(t—s)1 ’

where S® is given by (10.6).
Proposition 10.6. In terms of Q;,7 = 0,1 we have
SO = 567 + 51y + 55" n; + (10.30)
where
(b) 3 3
Sy’ ~ QFQix + QoQTf x
S, obok 2, 3
1M ~ Qg QF xme + (115 + €g)m + QF xmome
b 1 1
SR ~ (QF + QF)xm + (0 + co) g -

We now proceed with estimates of $® in L' and in Whs.
Beginning with [|S®)||; we have:

15®]]y
1 1 1 1
< C(Q3Q1+ QuQ? + QF Q7 [Imblloo + llmbllo (lmoll3 + lleoll3))

1 1 1
+C(Q5 Imollollmellz + (Q5 + QF ) lImbllae + lmsllco (lmollImell2 + [leollzllmsl2))
+ Cllm ol - (10.31)

We now turn to ||8S(b)\|%:
185 4
1 1 1 1
< O(Q3 Q1+ QoQ7 + Q5 QF Il )
1
+C (1015 + €3)0mll 1 + lm00momsl + + Qg llmell2(lInollco + 18m0]lc))

+C(Q5 mollos10mll2 + [ (10 + eo)mdns ||+ + (910 + Deo)rri |5 + miOmsll4) -
(10.32)
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To further estimate ||9S®) |2 we use the following estimates of individual terms:

l3omls < limollsolimoll3 el e

le3omlls < llmollZleoll3 llmol e
lmodnonslls < 10mollsolimollZll7oll3 l1mell2
ool < ol ol & ol el o
leomdnslls < lnnlloc lleoll% lleol3 e ar

om0l s < lmslloo 9ol |0 a1 12

locon?ls < lleol s llmell S llmoll3

5 0mells < limblloc|Oms]l21m5]l2 -

Recall that || (t)|| g1 can be estimated in terms of ||eg ()| g1; see (10.8).

Since n, is driven by the bound state amplitudes (Qp and @1), which have
different behaviors on the intervals I;, we now estimate n,(t) separately on Iy =
[O,to], Il = [to,tl] and IQ = [t1,00).

We now introduce appropriate norms on different time scales. Define

My (t) = sup (1) eo(t)loo + sup (B)llm(t)lloc + sup Jeo(t)]l

0<tAto 0<tAto 0<tAto
3
+osup (B oeo()z + sup (B71Qo(H] + sup [Qi(p)]  (1034)
0<tAto 0<tAto 0<tAto

My, (t) = sup <t>%\|eo<t>um+t

sup 7 ()loc +
to<tAt1 <tAty t

sup [leo(t)[|
<tAt1

0 0

+ s OFoeolg, + s [Qot)]+ swp QB (10.35)

to<tAty 0 <tAt1 to<tAty

3 1
My, (t) = sup ()2 [eo(t)]oc + sup (¢ —t1)2|n6(t)]|oc + sup {leo(t)l[m
t1 <tAT t1 <tAT t1 <tAT

3
+ sup (t)7[0eo(t)]lz2_ + sup |Qo(t)]
t1 <tAT t1 <tAT

+ sup (t —t1)I'|Qo(t1)I|Q1(t)||Q1(1)] - (10.36)

t1 <tAT

Remark 10.2. By Propositions 10.3-10.5, the e¢ contributions to the norms M7,
are controlled in terms of the initial conditions. Therefore, to control My, , it suffices
to bound @Q; and 7.

The above estimates can be used together with the bounds on @; of Sec. 9 to
obtain the following three propositions, which give bounds for 7, on the intervals
Io, Il and IQ.
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Proposition 10.7. (ny(t) for t € Iy) Assume t € Iy = [0,to], i.e. Qo(t) <
C([no)x + &o){t) ™2 for t € [0,to]. Then, for ||¢(0)||x sufficiently small

I (®)lloe < ClID(0) 1 x, M, (t0)) (1) " - (10.37)

Proposition 10.8. (n,(¢) for t € Iy) Assume t € I = [to,t1]. Then, for ||$(0)| x
sufficiently small

7 ()lloe < C([l¢(0)]lx, M1, (o), Mi, (t1)) - (10.38)

Proposition 10.9. (ny(t) fort € Iz) Assume t € Iy = [t1,T]. Then, for ||¢(0)| x
sufficiently small

In6()lso < CUIS(0)1x, Mg (o), Mr, (¢1), M, (T))(t = 1) "% . (10.39)

In our estimates of Sec. 11, we shall use the following result to estimate the size of
correction terms in the system for Qg and @Q; for ¢ > ty, where Q¢ is monotonically
increasing.

Proposition 10.10. Let ¢ = ((x,t), x € R®, t > to, with ((x,tg) = 0 satisfy the
following dispersive equation

i0:¢ = HoC + Pe(S1(t) + S2(t)¢ + x¢* + %), (10.40)
where for all k >0 and j = 1,2:
1S5l = OC(6(0)]x Q5 (1))
8th > 0 for ¢t > to, and QO < 50 . (1041)

Suppose ||C()|gr < C([¢(0)]x, M1, (t1), M1, (T)) for all to < t < T, where
[0(0)]x is sufficiently small. Then,

1<) loe < C([D(0)]xs M, 41y, M1, (T)) Qo(1)/2.
Corollary 10.1. Let p > 6. 7" = sup, <, e1(t’), then
t
1/2 61(8)
16l < Qi) | =i
Corollary 10.2. Let p > 6.
t
1/2 61(8)
|<X7C>| S0620 (t)A <t_8>3/2,3/p ds.
which follows by using
Ixe™ ™ Poxgll < e(t) =2 [lgll2 -

Corollary 10.3.

t
10%¢]|00 < CQ(l)/Q(t)/ _al) 4
0
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Proof. This result follows from applying 9% to the equation for ¢ and estimating,
as above, in LP for any o and p > 6. By the Sobolev inequality this implies control
derivatives in L*°. O

Remark 10.3. In our applications of Proposition 10.10 and its corollaries, €1(s)

1
will be given by the source terms depending on )y and 7. For t > t;, Q1 =
O((t — t1)71). Therefore, since the lowest order term in Q1 contributing to €;(s) is
O(Q1) (see Eq. (7.32)), it follows that for ¢ > ¢;

/e = O((t — 1) %) + O((t —t1) ™) + O({t —11)72). (10.42)

Since n = O(my) + O(no), the conclusion of the main theorem for large ¢, ¢t > t1,
follows. Namely, for

7]l wree = O((t — t1)77) + e~ P[5(0) + €3], (10.43)

where the non-free wave part is coming from spatially-localized source terms.

11. Beginning of Proof of Proposition 9.1

The key to Proposition 9.1 is the following more detailed version of Corollary 7.1:

Proposition 11.1. Let t > 0. The equations for Py, Py can be written in the
following form

P

d_to = 2T Py P2 + RY (o] + R[] + R [Py, P1]

B (11.1)
d—tl — —4TPyP2 + R{" o] + R [m] + RS [Py, Pi]

where (1) R((f) [n0] are mo-dependent terms only both local and nonlocal in time, and
may also depend on 070,31.

(i) np is the bound state driven part of the dispersion; see Sec. 5.

(iii) Réo) depends only on Py, Py,t, but not on n; it is formally linear in Py, of high
order in Py, and contains both local and nonlocal in time terms.

(iv) Rél) depends only on Py, P1,t, but not on n. It is of high order in Py, local and
nonlocal terms included, but has terms which are linear in &g ~ /By.

The proof uses repeated application of near-identity transformations of the vari-
ables dag, 41, derivable by integration by parts (see the discussion of resonant and
nonresonant terms in Sec. 7) and the decomposition of 7 given in (10.1).

Remark 11.1. As noted in Sec. 10 additional terms which arise, when replacing
No, eo and n, by 7o, €9 and 7, are treated perturbatively. This is the case because
integration by parts of these terms gives rise to an extra factor from the derivative
of the phase which is O(Ey(t) — Eo(T)) + O(8;0) = O(t~"). Throughout Secs. 11—
13 we shall use this fact as well as the fact that dispersive and energy estimates of



1036 A. Soffer & M. 1. Weinstein

these sets of functions are the same because they differ by a purely time-varying
phase.

The proof is long so we break it up into three parts, which are presented in
three different sections. The following is an overview.

Part 1: The terms R(()O) [n0] and R(()l) [no] are forcing terms in the ODE dynamics,
which are driven by the dispersive part of the initial conditions. They are studied
and estimated in this section; Proposition 11.2.

Part 2: The terms REO) [mp] and Rgl)[nb] are studied and estimated in Sec. 13;
Proposition 13.1.

Part 3: The terms Réo) [Po, P1] and Rél)(Po,Pl) are studied and estimated in
Sec. 12; Proposition 12.1.

In Parts 1-3, we require estimates for all t > 0. On Iy = {t : 0 <t < tg} we
use the a priori bound on Py(¢), implied by the definition of to; see Eq. (8.5). For
t > to, we use the monotonicity property Q.

Monotonicity property Q

Qo and Qo are monotonically increasing, (11.2)
1

where Qo and @)1 are the modified bound state energies related to Py and P; (see
(9.7), (9.1), (9.2)). This monotonicity property is shown to hold at ¢t = to and is
then shown to continue for all time, ¢, by a continuity argument; see Sec. 14. Since
there are many terms, we focus on those which are most problematic, namely, those
which are nonlocal in time and of slowest time-decay rate. These calculations are
very lengthy and before embarking on them we present a calculation, related to the
normal form discussion in Sec. 7, and which is repeated in order to exploit rapid
oscillations in time.

Expansion of oscillatory integrals, resonances and improved time decay
In deriving and estimating the terms R§Z) in (11.1), we must frequently expand
and/or estimate terms of the form:

t
<X1,/ e_iHO(t_s)chg(s)emlsds> . (11.3)
0

Here, x1 and x2(s) are localized functions of z, x1 is independent of s and x2(s)
depends on s through its dependence on «g(s), B1(s) or no(s).
Recall that Hy, defined in (4.6), is of the form

Ho 27:[0 + Eyos (11.4)

and Hy = o3(—A) plus a matrix potential which decays to zero rapidly as |z| tends
to infinity. In (11.3) we would like to integrate by parts, exploiting the oscillation
of frequency Ey. However, “peeling off” these oscillations is a little tricky because
o3 does not commute with 7:[0. We handle this as follows, using Theorem 4.3.
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Recall that
ZHoW = o3 (—-A — Ey),

Ze—THotPayy — —ioa(~A-Eo)t (11.5)
where W denotes the wave operator
W = lim e—iHote—ids(—A—Eo)t’
o (11.6)

Z=Ww-1.
By (11.5), we can rewrite (11.3) as

. t ) )
<X1767'L'H0t/ WelgS(iAiEO)SZPCGZQISXQ(S)ds>
0

. t . .
Xl’e*'LHot/ Wefzag(fAon)sZPCezQ18X2(S)dS>

<X 'L'Hot WeiagAsZ . WeiagEosZPCeiQ18X2(s)ds>
<X 7’LH0t WeiagAsZ . Wei(03E0+IQ1)SZPCX2(S)dS>

. ﬂHot/ Weioshs g (— )ddSW(UgEO+191)7161‘(03%“91)52&){2(S)ds>
~ — <X1 ,eiiHDt/ WUgAeiUBASZ -W(o3Ey + Iﬂl)flei(UBEoJrIQl)SZchg(s)ds>
0

¢ i 4
~ = <X1 ,/ M=) 3y (3 B +IQ1)7161918PCX2(S)dS> : (11.7)
0

In the previous string of equations we have used the notation f ~ ¢ to mean
equality up to terms which are local in time. Note that o3FEy + Iy is invertible
since its determinant is Q%+ E3. We can therefore carry out this procedure any finite
number of times to arrange, up to local in time terms, an expression which involves
an operator of the form y exp(iHo(t — s))HEx, k > 1, where y is spatially localized.
Therefore, the enhanced local decay estimate (4.43) of Theorem 4.3 applies. We
shall use these observations, together with the detailed dependence of x2(s) on on
g, B1 ete. to control certain terms in Ry).

Part 1: Estimation of ’R(()O) [no]’ and ’R(()l)[ng]’

Proposition 11.2. Assume either t < to or monotonicity property Q on [tg,to +
0]. Then,

‘R(()O) [T’O] 5

m[no]‘ < b; (to, [no]x) (t) 72 + O(Ey)2T Py P?

bo(to, [mo]x) = O({te) ™ [mo] x) (11.8)
bi(to, [no]x) = O({to) "2 o] %) .
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Proof of Proposition 11.2.

Proof of estimate (11.8) for R(()O) [n0]: The key terms are those in the Py equation,
which are decaying most slowly with ¢. These are linear in 79, since |||l =
O(t=3/2). We focus on the most difficult terms. These are nonlocal in 19(t). Recall
Eq. (7.52) for ap and that the equation for Py, (7.6), is derived from the &g equation
(related to (7.52) by a near-identity change of variables) by multiplication by &g
and taking the imaginary part of the d;«g equation.

We consider the following representative “most problematic” terms in Réo) [70],
whose estimation introduces the necessary methods for treating them all:

(T1) 0<ao><x, / e-mo<t—s>Pc%<s>%<s>m<s>ds> O(@ohe ™ + |A[?),

0
(11.9)
(also with \I’O\Iflﬁo replaced by \I’O\iflno, \i/()\llﬂ’]o)
t
(r2)0(a0)Ofaoh) (x. [ e gy ) ds. (11.10)
0

Estimation of T1: Since the time-integral is bounded by O(&£)(t)~%/2 [no]x, by the
Cauchy—Schwarz inequality the second term in (11.9) is bounded as follows:

\0<a0>0<|31|2><x, / --->\so<so>Pon+0<so><t>3||no||?x. (11.11)

We now control the first term in (11.9). O(&o31)O(ap). We argue that the key
contribution from this term which must be bounded is of the form:

t
O(@O)a_oﬁle—mt%<x, / e_iH(’(t_s)Pc\Ilo(s)\Pl(s)no(s)ds> . (11.12)
0

To see this, consider the term in the &y equation which corresponds to the first
term in (11.9):

<X: /t e_iHO(t_S)PC\IJO(s)\Ill(s)no(s)ds> (@] (d_oﬁle_iA“) . (11.13)
0

Next we integrate with respect to ¢, and integrate by parts, making use of the oscil-
latory exponential factor. The result is a boundary term, which can be subsumed in
the definition of &g, by a near identity transformation, followed by a time-integral
0 to t. The latter contributes terms to the Py equation (which has been modified
due to the slight redefinition of &) of the following type:

t
O(d0)0(31&55¢0 + 6[061531) <X,/ €iH0(ts)Pc\Ifo\Ifln0dS> (1114)
0

~ - 3 a ¢ —7 — _
O(ao)O(aoﬂl)§<x,/ e~ Holt S)Pc\Po\P1n0d8>. (11.15)
0
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Since 8;a0 = O(|aol?|31]) and ;51 = O(|ao||B1]?) (11.14) is bounded by
O(£)O (a3 1) 2o x) . (11.16)
where we have used
70l < Clno]x (£)~%/2. (11.17)

By the Cauchy—Schwarz inequality this is bounded by O(&o)(2I' Py PE + [no]% () ~2).
Therefore, the contribution from this first term satisfies the estimate (11.8).

Obtaining a bound on (11.15) is more involved. We use the local decay estimate
of Theorem 4.3:

Ixe™ T P Ho fll2 < (8) 220" (@) fl2 - (11.18)
The expression (11.15) bounded by:

t
O(é0)O(@of1) ((X:‘I’O‘I’ﬂ?O) - i<X’/o eiHo(ts)Pcﬁo‘Po‘Ifand@)
< 0(&) (FQoQT + (1) 7?)

+O(d(2)5~1)[770]X/0 0 ds L|o?0\|51|. (11.19)

(t—5)572 (5)%

The latter integral requires detailed estimation on different time scales.
To estimate the last integral, we split the range of integration into three regions:

Iy={s:0<s<t}
L ={s:tg<s<t1} (11.20)
L={s:t1<s<T}.

Estimate on Ip: Assume t < t(. Recall that by (8.5), |ao(s)| < O(Ey)(s)~1. Using

this we have

oimlx | =

0 (t=5)77 (s)3

|Gl |Bu|ds

Otlaolt) arad i) (B [ e plaol vk )

3
< O(&5)[2PRoPE + ol (1) "4 4],
where we have used that ab < a*/4 + 3b§/4.

Estimate on I;: Let t be such that tg < ¢t < t;. We break the integral into an
integral over [0,%] plus an integral over [to,t]. Recall the definitions of Q;(t), j =
0,1 in terms of |@&;(t) displayed in (9.7). Using that

o for s € Iy, |ao(s)] < O(&)(s)~! and for
o s €I, Qo is increasing and Qo(s) < EJQ1(s),
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we have

ol inimlx ([ + ) el lantods

t ) ~
< I type bownd + O(laof? 7)) bl [ A0l

o Tt sy (s

t
I 1
Iy type bound Ao l? o —d
o type bound + O(|dol”|B1[[| B1][oc) [110] x /to (t — 5)5/2(s)3/2 5

IA

= Iy type bound + O 6'0 |éo] - o] - |a0\|51\)[ ]X<t>*%ds

wlw

3

)Qle )2

r+2
= Iy type bound + O (&, )(QoQ7 + (t)~?), (11.21)
which is a bound of the type in (11.8).

(
Iy type bound+(9(50 Qé & Ql)[no] )"~
(&

= I type bound + O

Estimate on I5:

O3 (1)) o] x / %d

= (%51 (/to /tl /) t_|jo5|/§1|>3/2 ds

. o
= Iy & I; type bounds + 0(@351@))[7]0])(/ i ||| 81
t

The latter integral must be treated differently from the previous terms. For
t € I, we used that Q9 monotonically increasing and bounded by a small constant
times ()1 to treat terms perturbatively. On I, Qo dominates @1 (which decays)
and we must use a different argument. We return to the expression from which the
last term in (11.22) is derived:

t
O(G0)O(ao 1) <<x,\Po\Iflno>—z‘<X,/ e’HD(ts)PCHO\IIO\I!mOds>>. (11.23)
0

We need to expand and estimate the time integral:

t
/ e t=3) P Hodg (s)Br(s)e” M5 (s)ds

t1

t
o—itot / e/ (Mo=20)3 P o ég (5) B (570 (5)ds (11.24)

t1
which we do using integration by parts. We carry this out, then take the inner
product of the result with a localized function, y, and then finally multiply by
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O(|ao|? |B1]). The result is of order

|6o[®1 812 1m0 (£) oo + léo (81 ][ {x, e~ Hox )|

t
+(9(|O70\2|51\)/ e Mo(t=5)p (H, — )ur)*lﬂoxe*ihsdii(do(s)ﬁl(s)ﬁo(s))ds.

t1
(11.25)
The first two terms in (11.25) are bounded as follows:
o181 Pllmo(®)lse = O(Eo)([0l151]*)170(8) oo
< 0(&0) (Qu@7 + [Ino(1)[1%.)
< 0(&) (QuQT + (t)?)
l6ol® 161 (x,e” "M Hox)| < C|a0|5/2(\040\1/2|51|)<t> 5/2
< O (Qu@E + (1) 1)
< 0(E*)(Qu@3 + (1 7%) . (11.26)

We now turn to the nonlocal term, in (11.25), which we denote Z;:

t
1y ~ O(|d0‘2|51‘)/ e~ M=) P (Ho — Ay ) "1 Hoxe M+
t1

x (Ds60(3)B1(8)70(8) + Go(8)Ds31(8) 70 (5) + do(s)B1(s)Dsio(s)) . (11.27)
Using that

b ~ O(Biag), Oif1L ~O(G0f;), and Oymo = (—iHo+O((t)™))mo

(11.28)
(see also Remark 11.1) we have
t
T~ 0o fnl) [ e PP, (3o — As) o
t1
x (&0 B30 + a3 B7m0(s) + éo(s)B1(s)Homo(s))
= Tia +Tip + The - (11.29)
Each of the three terms Zy;, j = a, b, c satisfies a bound of the form:
) 11
71| < CEF mo(0)]x (11.30)

(to) (t —t1)2

We illustrate this by estimating Z;,; the other two terms are estimated similarly.
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Using that |ag|, (1] = 0(50%) we have
1

<t_s>%|51\3|5é0\|770|d3

t
Tral < lGoPI] /
t1

3 t
< E21m(0)]x (sup<t—t1>%|ﬁl<t>) / < L1 !

>t t—s)2 (s—1)2 (s)2

Separate estimation of the contributions from the intervals [t1, 3 (¢t +¢1)] and [5(¢t+
t1),t] yields the bound:

3
Z1a| < CEFno(0)] x (tSB})@ — t1>%51(t)|> &ﬁ (11.31)

Estimation of T2: Consider the term

t
T2 = O(ao(t))O(ap(t)B1(t)) <X,/ ezHO(ts)Pcng(s)no(s)> ds. (11.32)
0

tel, = [to,tl}l Fort e I,
\Gol2B1| < c€F |Gol|Br|?; Proposition 9.4. (11.33)

Therefore,

t
2] < e aall | (x. [ e Pagms )
0
S~ 113 - 3
< & aal A0 ( sup ()R s

< & |ao|IB1 () 32 mul|Zre.z [0 x
< c€fnolx|éol| B[ (t)~5/2
< c&llmolx (PoPP + (1)7°).

t € Iy = [t1,00): To see the relevant terms for ¢ > ¢;, we integrate by parts and
obtain, besides easily estimable local terms and terms with faster time decay,

¢
O(a2p) <X7/ e_iHO(t_S)'):loPcngnods> t>1t. (11.34)
0
Consider the contribution to the integral in (11.34) coming from s € [0, to):
O(d%(t)ﬁl (t)) <X,/ elHD(ts)Ho.Pc’ﬂgﬁodS> t>1t >1g. (1135)
0

Consider, the inner product

to . ~
R(t) = <X,/ ezHo(ts)Hopcngnods> . (11.36)
0



Selection of the Ground State for Nonlinear Schrodinger Equations 1043

We have
|(11.35)] < Clao () *[Bi(OIIR(E)] ~ CQu()QF (1) R(t)] (11.37)
and therefore it suffices to prove that
R()| < CQE ). (11.38)
To prove (11.38), recall that for ¢t > ¢4
d
Mo 1o
a0 (11.39)
— = —2QuQR,
and
EQ1(t1) = Qol(t1). (11.40)
Therefore,
2Q1(t
Qu(t) = —2ulh) (11.41)

Ty Ff:l Qo(s)ds
Therefore, to establish (11.38) we need:

IR(t)| < C ( QQj(tl) )2 . (11.42)
1+T ‘[tl Qo(s)ds

We consider two cases
Case 1: I'sup,ey, 4 [Qo(s)[|t — t1] <1, and
Case 2: I'sup,ey, 41 |Qo(s)[[t — t1] > 1, where it suffices to prove

()| < <M> B (11.43)

r fttl Qo(s)ds

In Case 2 we prove the bound on R(t), (11.38), while in Case 1 we prove that the
expression (11.34) of order (t — 1)~ 2 (t — to) 2. We first handle Case 2, the bound
(11.43). From (11.39) we have

d
%(Q0+2Q1)X0, t>1t

Qo(t) +2Q1(t) < Qo(t1) +2Q1 (1)
= (2+&)Q1(t). (11.44)

Therefore, since

Q1(t) < 201()

= : (11.45)
1+ l“ftl Qo(s)ds
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we have, as t — oo
Qo(t) = (2+&)Q1(t1) —2Q1(t)
— (2+&)Q1(t). (11.46)

Therefore, for t > ¢, (t — t; large enough)

(1+&5)Q1(t1) < Qo(t) < (2+&5)Qu(t1) (11.47)
and therefore
Q1(t1) S Qu(t1)
1+T [} Qo(s)ds — 1+ T2+ &) — 0] Qu(t)
1 1 1 1
> — > — . 11.48
_3F|t—t1|_31—“t—t0‘ ( )
On the other hand,
to 1 N )
Rl <0 (x [ IR em)ds)
0 <t - s) 2
2 o 1
< C sup |np(7)[ 5 [WO]X/ 3, ads
T€[0, to] 0o (t—s)2(s)?
1
< C&? —. 11.49
< Ol g (11.49)
The bounds (11.49) and (11.48) imply (11.43).
We now turn to Case 1. In this case, I'sup e, 4 Qo(s)[t — ta] < 1,
1 1
< = 11.
QO(t) =T |t—t1‘ ( 50)
and therefore by (11.34) and (11.50)
1 1 1 1
11.34)] < & su s—11)2Q1(s . . (1151
1130 < Bl swp (5= 0)4Q10)) oy oy (U8

SE[t1,t]

We begin by noting that by Proposition 10.10 and its corollaries, for p > 6

Imllwes < OE)E)™T,  t <t
Imllwer < OENHQH)Y?,  to<t <t (11.52)
Illoe = Ot = t1)72),  t>t,

For t < t1, the previous arguments with the known estimates on 1, and the
facts that |ao(t)] < O(&)/(t) on Iy and Qo(t) < E5Q1 on I; imply the necessary
bounds. Collecting all these, we have

t
o) <x, / eiHO(tS)Pcﬂongnod8>‘ < O(E0)[20Q0Q? + (to)~ (1))
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Proof of estimate (11.8) for R(()l): The key terms to consider in the P; equation are
the slowest decaying nonlocal terms; see (7.39) and (7.32). Since b; enters as b? in
(9.22), we need to bound R(()l) by O(&)[(to) "V /2(t)~2 + 2T Py P?] for t > to.

The slowest decaying nonlocal term in the (37 equation arises from the balance:

i01B1 ~ AT, w1 Ba)| By [P+ (11.53)

Since the P} equation is obtain by multiplying by 81 and taking the imaginary part,
we must estimate:

A, m @) |B]*Bre+ D1 (11.54)

the leading order nonlocal part of which is

I t
~ ‘61|2ﬁ1 <X’/ ezHO(ts)Pc\Ifo\If1770dS> ez/\+t
0

- t . - . .
~ ‘/81|251 <X7/ ezHo(ts)Pcdoﬁlez/\+sxno(s)ds> ez/\+t )
0

Integrating by parts (using the oscillatory factor e”*+*) and removing the non-
resonant local in terms by near identity transformations the key term is

t
EARER <X7/ ezHO(tS)HoPcdoﬁlxe”\+sn0(s)ds> et (11.55)
0

Suppose t > t1. Since we have no factor of &g outside the integral (local in time
ap(t) factor), the estimate for Iy = {0 < s < to} is the critical part and requires
the O({t)~1) bound on Iy and Theorem 4.3:

t
‘<x/ eiHO“S)HoPcdoﬁ1xnoe”+Sds>‘

0

= C[”O]X/O 0 miwdo(S)lﬁl(S)l + (/t+/t> -ods
fo ds

< (9(80)[770})(/0 {t — 5)5/2(s)(s)3/2

+[n0}x/tol<t—s>?w|&0(tl)ml(5)+/ - .ds

t1

< O(E)[(t)**[mo]x + O(€0)limo]x o (1)] () /2

3

+ [no]x|a@o ()| (t — t1) "2 (£) 2] .

Note that we can extract the factor |&(t)| from the integral for s > ¢ since in this
range Qo(t) is monotonically increasing and Qg (t) ~ Py(t) ~ |ao(t)| with correction
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terms which are rapidly decaying in time and which are therefore dominated by the
first term. Multiplication by O(|31|?) prefactor gives the bound

s>t

3
C(so,[nom[<sup<s—t1>%|31<s>|) 32— 1) 4 Qu@2| . (11.56)

This completes the proof of Proposition 11.2. O

12. Local and Nonlocal ODE Terms: jo)(P(], P;) of
Proposition 11.1

In this section we prove estimates on the terms Réo)(Po,Pl) and Rél)(Po,Pl) of
Proposition 11.1.

Proposition 12.1. Assume either t < to or monotonicity property Q on [to,to +
8+). Then, for m > 4,

(i) [RY (Po, P1)| < O(EHTRPE + O((t)3)(Po, Py < 1)
(ii) [RY (Po, P1)| < O(ET PP + O(ag) P2 + O((t)~?), |ao| ~ v/Po.

12.1. Proof of part (1) of Proposition 12.1

The most problematic terms are nonlocal, slowest decaying. The terms which are
linear in 7 in the o equation contribute the slowest terms; these are nonlocal in
time, t.

We have to consider terms arising in Eq. (7.52) of the type:

Oxmye” M agpy, (B, (xon)Bre 2 (12.1)

where ¢o ~ n and n(t) = no(t) + eo(t) + np(t); see (10.1).

As calculated earlier, the last term is resonant and its contribution is 421" Py P}
to the Py equation; see (7.55).

The leading ODE terms in 7 are the source terms of the type in (7.32):

|\Ij0‘2\p1a\1/%\1/_17\110‘\1/1‘27\p_0\1/?' (122)

Recall that the Py equation is obtained from the &g equation by multiplication by
Ao and taking the imaginary part.

Solving for 1, and plugging the source term contributions into the (x,n) terms
in the Py equation gives, apart from the resonant term, terms of the type

t
FO(Gothe™ + |ﬁ12><x, e, o,
0

+\I/(2)\if1 +\I/0|\I/1‘2 +\IJO\IJ%)dS> (123)

For t > t; the slowest terms are O(|¥(|?¥; + U3W;) source terms. For tg < t < t;
the problematic terms are O(¥o|¥;|? + ¥(W?) source terms, since on this interval
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(1 does not necessarily decay. Since ¥; ~ e~***3; + higher order terms, we can
integrate by parts the O(|¥o|?W; + ¥2¥;) terms in (12.3) to get arbitrary order
O terms, which are nonlocal. The remaining terms are local and its lowest order
term is of the order

@WO(@e™ b1+ |B1]?) (x, O(Jaw|* Bre™ " + ad fre”M+F)) (12.4)

The nonresonant local terms can be transformed to higher order by a near identity
change of variables giving

O(lao2B2me™ ™), Q> 0 and m arbitrarily large,

while resonant terms are of the type already derived but of higher order (bounded
by O(£0)QoQ3)). We are therefore left to consider the following nonlocal terms

t
do@(@oﬁle_w\*'t + |51‘2) <X,/ e_iHO(t_S)Pcaoﬂ%meiﬂmsid8> . (125)
0

Consider the first term in (12.5). Due to the oscillatory factor e+ in the
O(@pfre~+1t) term we can, by a near-identity transformation, in the o equation,
remove this term in exchange for one higher order

t t
Ol 283) <x, / --->+O<aémems>at <x, / e—iHo<t—s>Pc--->
0 0

+ higher order + local terms,

and by further near identity transformations, we are left with the following slowest

term
t
O(laol?51)07" <X,/ em"(ts)Pc~-~d8>. (12.6)
0

All other terms are of order o(Ey)O(Py P?), 0(£o)(t) 2 or higher order, for £ small.

t
at<x, / e~ Mot=s)p, aoﬂ%mws>
0

¢
= <X,a0(t)ﬁfm(t))2> — <X,i/ e_m(’(t_s)HoPc)Zaoﬁfmemsds> )
0

The first term is local and will contribute o(1)O(PyP?). It remains to estimate the
nonlocal term. Note that

t t
/ —iHo(t— s)ezwsxaoﬂ mds = e —iwt / efi(Hofu?)(tfs) ei(w«HD)s)Zaoﬁ]Q-mdS )
0 0

Consider now the second term in (12 5). Using the oscillatory factor e~ one
can transform the O(ag|B1|?)(x. [ - +) to higher order.
We now turn to the second term in (12.5). First, let us consider the case where

t>t1:

t
OtaalsiPop (x. [ e =Raptmas ) 127
0
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We consider (12.7) for ¢ > t;. For this we require the following:

Lemma 12.1. Fort > tq,
1

Q1(t) > Q1(t1) [1 + 4T +0)Q1(t1)Qo(t1)(t — t1)] (12.8)
Proof of Lemma 12.1. For ¢ > t;
d
e (12.9)
Therefore,
dQy* dQy!
- 3; > —4(T" +8)Qo(t) > —4(I" + 8)Qo(t1) or 2; <A1 +0)Qo(t)
(12.10)
since Qo(t1) < Qo(t) (Qo T for t > ty). Integrating from ¢ to ¢1, we get
Q1(t) ™" = Qu(t1) ™t < AT +6)Qo(t1)(t — t1), (12.11)
which is equivalent (12.8). This completes the proof of Lemma 12.1. O

Estimation of (12.7) for t > t1: Carrying out the differentiation in (12.7) we find
that it suffices to bound terms of the type:

O(aolB)?) {x, Pex) o S7™

t
= 0(&)QoQTO0(an|B1]?) <x/ ezHO(ts)PcHg’)Zaoﬁfmds>. (12.12)
0

We now consider (12.12), which we break into the sum of three integrals:

to t
(a0|61 <X» </ / /) —iHo(t—s) PH aoﬂfmds>. (12.13)

Ltlz By the local decay estimate for e’”"otH’ch of Theorem 4.3, the integral in
(12.13) is bounded above by:

tods m
/t mmoﬂf - (12.14)
This in turn is bounded above by
t
Q' [ I Qr(s). (12.15)

since ()¢ is increasing for ¢ > to.
We now aim to further bound (12.15) by “extracting” powers of @Q1(t) from
under the integral. Recall that for s > t;

Q1(t1)
Quls) < 77 2I'Qo(t1)Q1(t1)[s — ta]

1 Q1(t1)Qo(t1)20
2I'Qo(t1) |14 2I'Qo(t1)Q1(t1)[s — t1]

min{ Q1 (t1), 201 Qp (t1) (s — t1) '} (12.16)

IN
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and

Qo) =Qu(ty) ey, and Q1 <&. (12.17)

‘We write

m _ ym—k k m—k ! !
Qi'(s) = QI ()Q1 ) < Q) T — e oran )

— omk S ! 5O_TE
= Q7 ( )<s—t1>E (2I‘C21(t1))’7c
<P Me)E s —t) 7, i

where we have used that Q1(t1) > Q1(s).
We consider separately the cases t > 2t1 and t; <t < 2t;.

t > 2t1: Take k = 2 and m > 2(r + 2). Then, the integral in (12.15) is bounded by
EbQo(t)? (1)~ ™R p > 0. (12.19)
This implies, for k sufficiently large,
t
OlaalnP)(x [ ) < oD@+ 0 o0 (20
0

t;1 <t <2t;:Lett =t; +2M, M = (t — t1)/2 and rewrite the integral as

th+M t14+2M
/t = >k\aoﬂf’"|— (/ /+M ) >k\a052’"| (12.21)

In a manner similar to the previous estimate, using that @, is decreasing we have,
by (12.18):

t1+M S _
[

< et = (t1 + M) Qu(t)™?

< eft —t) Qi (t) Q1 () T

< et — 1) T[4+ AT+ 6)Q1 (t1)Qo (b))t — 1] @ (1)Qu (81)™>
< O(&0)Q1(t)

for £ > 1. Hence
1+M

t
O(aolBi ) Qp" - < 0(&)QuQT - (12.22)

t1
Furthermore, by (12.18) the integral over [ty + M, t; + 2M] is bounded by

t14+2M ~
/t L’Ql(s)m/2 < CQ1(t1)m/2<M> b < <clr (tl)m/2<t - t1>

1+M <t—8>k<s—t1>k
(12.23)
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and, as above, using the upper bound (12.8) for Q1 (¢1) in terms of Q1 (¢) we have

t14+2M
/ < OE)Q() (12.24)

1+M

for k > 1. Therefore, for all ¢ > ¢; the nonlocal (and local) ODE terms in the Qg
equation are bounded by

O(&)[QuQT + (1)1, (12.25)
provided we control the integral fot Yoo ds.
fg ': Consider
1(t) = 1/2Q1/ = >kQ1/2Q1"*1Q1ds. (12.26)

By the mean value theorem, Q1(s) = Q1(s) — Q1(t) + Q1 (t) = Qu(5)[t — 5| + Q1(%),
where s < § < t. Then,

1 <aiwein [ L

+ (1), (12.27)

QF (5)Q7 " (s)ds

where

HO=Qi0Q) | T e e OQE. 1229

where we have used

) 1

01=0 (Q& Q1) +hot. (12.29)
If 5§ < o, then using that Qé(E) < &L(3)71 < EF(s)~t, we have the bound

L) < OENQE (HQL(1)(1) > < OES) (Qu(DQ3 (1) + (1)) . (12.30)

If s > to, then since Qo(s) is monotonically increasing for s > to, and we have

n( < SOBL [1 Qe ). (12:31)

We now expand the latter factor of ()1 in the integrand using the mean value
theorem. Specifically, there exists s’ with tg < § < s’ < #; such that:

Q1(5) = Qu(t1) + Q1 () (s — 1)
= Qi(t) + O(QZ ()@ ()]s —ti]
< Quh) + O(QF (t1)Qu () |5 — 1], (12.32)

where the last inequality follows by monotonicity of Q.
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Substitution into integrand in (12.32) gives:

Qu()Q1(t) 3 /t1 ds 1 1

I (t) <€) ——"—"2Q7 (¢ ——= Q¢ m 12.33

1()—C 0 <t—t1> Ql( 1) 0 <t_s>k,3Q0(s) 1 (5)7 ( )

where we have used (12.17) to replace Qo(t1) by @Q1(¢1). A higher-order term (one
proportional to Q1(t1)) is subsumed by the constant, c.

From (12.8) we have

Q1(t1) < (L+ 4T +6)Q1(t1)Qo(t1)(t — 1)) Qu(t) - (12.34)

Case 1: 4(I" 4+ 0)Q1(t1)Qo(t1)(t — t1) < 100. Here, Q1(t1) < 101Q(¢), and
therefore

a0 < g LPUL [T B odear ). (12.35)

We now split the integral in (12.35) as [t = [!° +J:;1' Using the (s)~! decay of

0
‘ to
/O

and using the monotonicity of Qo for ;1 > s > ¢y and the relation Qo(t1) =
EFQ1(t1) < 101EJQ1(t) we have

t1
/ - ds
to

Therefore, choosing m sufficiently large, we get

(1) < ¢ (E8 Qo(t)Q7F (1)(8) ™" + EFQu(NQ3(1)) < €8 (QoQ3 + (1)),
(12.38)

1
Qg for s <ty we have

<EP(s)TH, (12.36)

< E0QZ (1) = VIOIEL 2 Q3 (1) . (12.37)

where p3 = min{p1, p2}.

Case 2: 4(I" 4+ 6)Q1(t1)Qo(t1)(t — t1) > 100. Then, (12.8) and monotonicity
of Qg for t > ty implies

<41 + 8)Qo(HQ1 (1) - (12.39)
(t —t1)
This gives
Li(t) < CELQo(HQT(E) - (12.40)
We now turn to (12.7) for ¢ € [to, t1]. It suffices to estimate the nonlocal terms
t
O(a|B1]?) <X,/ e_iHO(t_s)Pc'I:{gniaoﬁfmds> (12.41)
0

for tg < t < t1. In this region Qo and (Qo/Q1) are increasing functions. Also
Qo(t) < EFQ1(t). The main difficulty is the need to pull a factor of Q1 (t) out of the
nonlocal term. To this end we use the following proposition:
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Proposition 12.2. There exists a constant § > 0 such that for t >t
t 1
T [ QoQT'ds < 6QF (H)Q1(t)™ 2 + Qo(t)QT" () + h.o.t. (12.42)
to
Corollary 12.1.
t
dS 1/2 m—1 3 m-1
/to (SRR (8)QT"(s) C(1+0)Q5Q, *. (12.43)

The corollary follows from Proposition 12.2 by the Holder’s inequality.

Proof of Proposition 12.2. Recall that
dQo

d
20— a0 Qu@i + R, 221 < —ATQuQ? + O(QEQT) . (12.44)
Claim.
1t t
— | Rods < O(&f) {1 + [ Qo(5)Q¥™(s)ds| . (12.45)
Qe Jto to

Proof of Claim. The leading order term of Ry, in the variable g, which is nonlo-
cal, is a term of the form (12.5). From this term we have after integration by parts
to obtain e~ 0t~ from (12.5),

ds

t 1 t t’
<QZ(t ¢ — QY *Qrdsdt’
" RonO() ‘0 Ql( )/tro <t—5>5/2 Q
1 t t’ ds 1 t’
< 2 / / 2md
< Qg () " Q(t)dt |:/t\0 (t— s)A=s + (t — t/)1+0 /to QoQ1 3]
<e é / O (t/ dt £~ 8+0" 4 (t— t0>—3+5/

t/
+ <t—t’>_1‘5// QOQimds]
to

. t
< Qg (1) [0(50) (l + QoQ?md‘S)} ;
to
thus proving the claim. O

We first rewrite the right-hand side of (12.42) and use the differential equation
for Q¢ and the above claim to integrate by parts:

t
L[ QoQi'ds
to

t
= / I QuQ?QT 2ds

to
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t d s
-2
= / QY 75 {Qo - / Ro
to S to

— QU [Qo - /t: Ro] ; — /t: %Qmﬁ(s) [QO(S) - /t: Ro] ds

= Q7" ?()Qo(t) — QT *(to)Qo(to) — QT *(t) | Ro(s)ds

to

ds

+(m - 2)/t 4 QY (1) Qo) [ATQo (1) + O(Q4 (1) QY ()]

+(m - 2)/ ar'QY () [ArQo(t) + O(Q4 (t’)QT‘Q(t’))]< Ro(S)d8> -

to to
The first term on the right-hand side is of the form we want (the right-hand side of
(12.42)). The second term is negative so we can drop it. The third term is bounded
by O(EO)QT_Q(t)Qé (t) by the claim above, plus (’)(ftto QoQT'ds), which is of the
above form and can be absorbed by the left hand by smallness of £, where we used
to < s <ti, Qo < EjQ1. This completes the proof of Proposition 12.2. ]

Using the proposition and its corollary it is easy to bound, for ¢ > ¢,
t
Ofaaln + oo (x. [ 7P ap2mds ) (12.46)
0

by O(&f) (QOQ% + <t>_3) + h.o.t.
It remains to consider ¢ < tg. In this case we only know that |ao| < ko(t) 1.
The first term of (12.5)

t
apO (@oﬁle_w‘“) <X,/ e_iHO(t_s)Pcaoﬁ%m)st> (12.47)
0

is bounded above by O((t)~?), due to dispersive estimates and the decay of the
decay of Qg for t < tg.
In the second term of (12.5),

O(aoﬁl2>af<x, /Ot>

t
~ 0(QZ (1QL (1)) <X, / ei”o“S>PCH’g>zdoﬂfmedes>, Q#£0 (12.48)
0
we need to pull Qé (t)Q1(t) out of the nonlocal (integral) term.
By dispersive estimates, we have the bound
1 t 1 ~
o(@ima) | - Go(5)| Q" (s)ds. (12.49)
0

t_3>%+k
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To pull the @1 term we proceed as earlier. By the mean value theorem, there exists
5, with s < § <t < tg such that

Q1(5) = Qu(t) + Qu(s) — Qu(t) = Qu(t) — Oy ()t — 5)
— Qi) + O(QE (5)Q1(5)) (¢t — s)
— Qi)+ O(E(5) Mt —5)) ,

. 1
where we have used that Q1 ~ Q3 Q1 for t < ty. Therefore, the expression in (12.49)
satisfies a bound of order

QL (HQ3 (1) / : !

m\do(S)IQT‘l(s)ds

(5)0(Q2 (5)Q (5)) Q" (s)ds

O wl=

+QE Q) /O : L g

t—s)yzth

QZ (5)Q7 " (s)ds

1
+E0Q3 (0Q1 (1) 753 (12.50)
where the last term, which is bounded by £§(QoQ% + (t)~?), is obtained using the
decay of Qq(s) for s < tg.

It remains to estimate the second to last term in (12.50). Estimating the con-
volution, using the (s)~! decay of Qq(s), we obtain the bound O(Qé HQI(1))(t)~!
which is not bounded by the desired O (&5 (QoQ7 + (t)~%)).

We will obtain the desired bound by turning to an earlier expression, derivable
from (12.48). The expression we must consider is

0(QZ (1)Q3 (1)) <x, / t e~ =) p kS ao (s) ~%’”2<s>emws> , QA0 (12.51)
0

We will show that this term is of order £°Qq(t)Q3%(t)(t)~3/2, which implies the
desired bound. We proceed as follows. First, by Eq. (7.3) of Proposition 7.1 the
equation for &y may be rewritten as:

i0ydo(t) = (c+1Tw)|B1(T)[*ao(t) + (c +iTw) (|1B1(1)|* — |61 (T)[*)do(t) + Fa .
(12.52)

Introducing d# (t) via the equation
do(t) = e HerTIATI (1) (12.53)
we have

1068 (1) = (c +i0) (1B (0)* — 1B (D)) aF () + " HTIADIE, - (12.54)
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The integral in (12.51) can be written, keeping only leading order terms, as

t ~
(x [ et prigsat () 6)e s )
0

t -
= <x, / e~ M=) P 1o (5) %’”‘2(3>ei95ds+-~->
0

< 0(53)/0 <d75(|51(t)4 — B+ (12.55)

It suffices to show

Proposition 12.3.
C
(s)

For the proof we turn to the P; equation (7.7):

[Pi(t) — Pi(s)| < 0<s<t. (12.56)

b

[N

P
b —ATPyP2 + R,
dt (12.57)

Rl - Rl[&Othn?t] = 23‘(51}75) .

The key term in %(EF[;) is the form 5{”&# e Q) £ 0. We have, after two integra-
tions by parts,

t
IPy(t) - Pi(s)] < / ()Gt ()™ ds’ + -

= Bt ()5 [ BT ) e
=0 () +o () v o) : [(Bi(t) — Pu(s")? 6 ()™ ds'|
<0 (i) +o () +owspntipo - [ s

Multiplication by <s>% and taking the supremum over s < ¢ implies Proposition 12.3
and therewith the proof of part (a) of Proposition 12.1.
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12.2. Proof of part (2) of Proposition 12.1

The proof is similar to that of part (1) but simpler, since we can allow for the

1
nonlocal terms to be controlled, in addition, by terms of order Qj Q7.
The leading contributions are again nonlocal, linear 7, contributions:
From (7.39) we read

0By ~ -+ 2M(x, U1y + 1) e oy
+ A2 (x, Wy )ag
+ AeM (o, UG + 2|04 *n) + heo.t.
+ XN (A(t) — A(T) X (1)5: . (12.59)

The first two terms on the right-hand side of (12.59) are easily seen to be of order
O(ag) P2™ or O(EL)PyP?, by integration by parts over the ODE source terms in
7y, as before.

The third term contributes to the P; equations, after normal form transforma-
tions and remaining resonant terms:

t
351€M+t3f<x, |ﬁl\2/ emo(ts)Pcaoﬁl|2>2d5>
0
and higher-order /similar terms.

The leading term, after integration by parts of the integral term (note that
H~'P, is bounded):

t
‘C\\Yﬁleih’t EA <X, / €_iH°(t_S)PcH6LO705%m>ZdS> ’
0

t
d
< c|ﬁ1\3/0 0 _Ss>kQ(1)/2(s)Q§".

To this end we repeat the argument of part (1) to estimate the above integral by

Q

The main new type of term we need to control comes from the last term on the
term Rg in (6.35) and (6.36), coming from the difference A(t) — A(T).
This term contributes to the P; equation terms like

S(18: 17 [05 (1) — g (T)]a5(1)), S [ BT (Po(t) — Po(T)O(ag(T))] . (12.60)

HQT(t) + O(t3) + h.o.t.(ODE).

Ol

t can be integrated by parts, and gives higher-order

The term with phase e™
terms.

The term without a phase requires the estimate of

T
ao(t)? — ao(T)? = 2/ aod—ds.
t
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Using that

do ;
=0 = capfBie 2+t L hot.

ds

we can repeatedly integrate by parts to get
T
ai(t) — a2(T) = local terms + / O(ad)p7™ds + h.o.t.
t

where local terms = O(&oP;) and higher.
Clearly, then
|B112a2(t) [local terms + h.o.t.] < O(&)[PoPf + (t)~*].

So, we need to estimate

1057

T
18262 (1) /t O(a2)F2™ds by O(EP)Q0Q? + ho.t. (12.61)

For t > t1, |31|?> < Q1 is monotonic decreasing. Hence

T T
/ Oe2)Fmds| < 18,(1)2 / QoQyds.
t t

For t > t1,Q; | is bounded by
Q1(t) < Q1(t1)(1 4+ 2I'Qo(t1)Q1(t1)(t —t1)) ' < elt —t1) ' Qolt1) ™!
=cQi(t) 1yt — 1)t

since Qo(t1) = E5Qu(t1).
So,

(@7 Qi) < Ot —t)F.
Hence, for k> 1,orform >2+r+1=1r+ 3,

T
/ QoI < O(&,)
t

SO

T
| o) %m\ < O(E) Q2.
t

If t > to,t < t1,Q0(t) < EFQ1(t); therefore

T

’ m—1 ’ 2 ym—3 1 m—3
[ @ueras = [ auatapras = (graue) + mals) ) @l

T 1 s d
—/t (ﬁQOJ’_/tO Ro(s)ds> 1"74(771—3)%&9.
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The first term on the right-hand side is local and high order. The second term on
the right-hand side is bounded by
t1 T t1
0/ QT ds +/ () +hot. < O(&)QT + O(EF) ()~ +0/ QFQY*ds
t t1 t

ty

< OE)QT+ ()] +c& | QoQy 'ds.
t

T T
[ s < 0@+ o)+ 0 [ @uepias (262

which implies that

T
/ QoQT ds < 0(&)[Q% + (1) 77 (12.63)

for all t > tq.
For 0 < t < tg, we need to estimate

to
161282 (t) / O(a2)Fm ds .

Using that for ¢ < tg, |ao(#)]? < ko(t)™ < E(to) 1 {(t)~! the above expression is
bounded by

t

O(go)ko(to)<t>_1<1n -

a)ko@o) < O(Eg)kolto)(t) ") (ﬁlnﬁ) s

{to) — (t)
< O(&0)ko(to) () 2.
This completes the proof of Proposition 12.1.

13. jo)(m,) terms of Proposition 11.1

Proposition 13.1. Assume either t < to or monotonicity property Q on [to, to +
0+]. Then, the terms Rgz) [m], @ =0,14n (11.1) satisfy the estimates:

R ]| < O(E0)[20Q0QE + (to) ™ (1) 2 (Poly[Po(0), P (0), Po(T), Po(T)])]
(13.1)

where Poly[- -] stands for polynomial in the bracketed variables.

Proof. The contributions to Rgi) (np) comes from linear and nonlinear terms in 7,
in the P; equations.

Consider first the nonlinear contributions:

In the Py equations we have terms like (7.41)

a2ound),  a@Bie™xont)y,  e™MaoBil ), O ml*me)ao -
(13.2)
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Since for t € Iy, 1o we have time decay of either ag or (1 respectively, the main
contribution is when ¢ € I = [to, t1].
For t € I, the bound on 7, we have is

t
1/2 dS m
(Ol < Q3() [ = Qp o).
The second and third terms can be integrated by parts leaving terms of the type
O(B1)O(a0)dF™ (x, ms|* + 115 -

We also need to integrate by parts the two other terms. For this we need to pull
out a phase factor from the leading nonlocal.

Pulling a phase as in the proof of Proposition 12.1 we are left with estimating
term of the type

O(ad + aoBr) (X, mOym) + (X, |20 m)O( o) -

As in the estimates of Proposition 10.3 , for ¢t € I,

t
d
Jobmllae < CQY*0) | (s

with &’ large for k large.
To this end we use the following.

Proposition 13.2. Fort e I;:

| mar) < o@aio.

Proof of Proposition 13.2.

| et =an | 7ower s [ e @e-awer.

The second term on the right-hand side can be estimated, using that Ql =
1
~T'QoQ? + O(QEQT) and monotonicity of Qo, as follows:

(s<¢&<t)

t ds . S ¢ ds m—1
< 0 [ =S @uer e < 0o | T=te=ateer e

£CQ0) [ T er QT

< 0@ | TSt

d i
W oY

L OE)Q (1) / t

to
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Repeating this argument, we have

dS dS m—2j

[ 7Emare) < 0@ [ s

< O(&)Q5 (1)

for k' — 25 > 1, which proves the Proposition 13.2. O

This Proposition together with the estimate

Iy llwee < O(E)Qy (13.3)

implies that
Rgo) < 0(&) [QoQ7 + higher order terms] . (13.4)

The estimates of Rgl) are similar.

It remains to estimate the linear n;, terms in the Py, P; equations.

The leading order source term of 7, was estimated in Proposition 12.1. It remains
to estimate the higher-order corrections.

To this end we need to estimate terms of the following type appearing in the Py
equation, (11.1):

t
ao(|B1]* + o) <X,/ 61H°(ts)Pc¢077§d8> and
0

t
(18120 + apaoBr) <X7/ ezHO(ts)Pcanﬁbd8> ,
0

and similar terms in the P; equation.
Again we focus on t € I;. Since for 0 < s < tg ag and 7, are of order %ﬁ‘)),
clearly these contributions are of order

O(&)[QoQT + (to) %],

so it remains to estimate the s-integrals above on I;.
1 1
But on Iy, ||m]] < O(&)QE(E) < O(&)Q?E(t) and since Qo is monotonic in-
creasing on Iy, the above nonlocal terms are bounded by

O(&)Q4 (1) -

Ol

So,
0181 Pa0) O(£0)Q2 () < O(£0)Q2Qo

Oflao?81)0(E0)QZ () < O(E0)Q3Q0
since Qo < O(&y)@Q1 on ;.
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14. Bootstrapping It All

We assume that tg < oo, where ¢y is given by (8.5). Consider the equations for Py
and Pp, (11.1) displayed in Proposition 11.1. Explicit in (11.1) are terms which

(i) are driven by the dispersive part of the initial data: R3[no] and R[no]

(ii) encompass interactions of the two bound states and dispersive waves: R[n]
and

(iii) encompass interactions between bound states: R3[Py, P1].

By Proposition 11.2 the Ré [mo], 7 =0,1 terms satisfy:
Rj)[no] = O (b;(to, [nox, €0)) (1) > + O(£0)2T Py PF . (14.1)

Therefore, by Proposition 9.2 and its proof (see Eq. (9.22) ), it is natural to intro-
duce the functions:

k k1
Qo(t) = Po — é ; Qi(t) =P+ o (14.2)
where
ko = bo + O(go)b% s k1 = 10by (143)
bo = (to) " ([mo]x + c&5) , (14.4)
b = (to) % (Ino]§ + d.€3) . (14.5)

where the constants ¢, and d. are to be chosen. We find, for any m > 4 and all
t>0:

2
T = 2T QuQE + Bl + B F1Q0. Qa) + 78
dQl < 4T 2 1,# m d
o S QoQ3 + Ry [my) + Ry #[Qo, Q1] + O(E;m)/QoQT — ><t>2.
(14.6)

The analogous reverse inequalities hold as well with slightly different constants.
By the definition of tg, Qo(to) > 0. Furthermore, using the energy estimate on
the bound state amplitudes and (14.2) of Sec. 5.2, we have

Qo(t) + Q:1(t) < C&, t>0. (14.7)

We now introduce a set of norms. The norm of ¢(t) = (Qo(t), Q1(¢), m(t)) is
defined as

la@®lly = 1Qolyo(ty + [Qulyy ey + [1bllyae) - (14.8)

The norm, [|q(t)||y, encodes all the estimates for Qo, @1 and n, in the intervals
Iy, I; and Iy through the following:

[Qolyory = sup [Qo(s)[+  sup  (to)(s)|Qo(s)| (14.9)
0<s<t

0<s<min{t,to}
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Qilyiey = sup [Qu(s)]+ sup s —t1]Q1(s)I"Qo(t1)Q1(t1) (14.10)
0<s<t t1<s<t
Illyay = sup (llm(s)wre +  sup  Imp(s)llwe.
0<s<min{t,to} to<s<min{t,t1}
+ sup (s —t1) 7|7 () ||lyyrioe - (14.11)
tlgsgt

In these definitions we use the convention that terms for which the s-range is empty
are set to zero.
By the H! a priori bounds

sup |Qo(s)] < &o(1 + EFllmll ) (14.12)

0<s<t

and by definition of tg, (8.5), for ¢y < oo,

sup (to)(s)|Qo(s)] <

0<s<to

(&0 + [mo] x) - (14.13)

l\DIp—\

In terms of these norms, we have bounds on Rg’#. By Proposition 13.1

5!’
Rl + 1Rl < 0@ o + cBILE 1y
By Proposition 12.1
p !
IRy [Qo, Q1] < O(£§)QuQ3 + C % (14.15)
|Ry#[Qo, Q1]| < O(E5)QoQ? + Cw (14.16)
(to)=(t)?

where [ > 2.

By the definition of Iy, (0 < t < tg) and Propositions 11.2, 12.1 and 13.1, we
have estimates (14.14)—(14.16). Therefore, for an appropriate choice of ¢, and d,
we have for 0 <t <t

on . &
2F QOQI <t0><t>2 1417
dQ1 1A A2 m & (14.17)
< —ATQoQT + O(E0; m) vV Qo QY _?W’

where m > 4. Note that by definition of I, Qo(t) < 0 for ¢ € Ij.

By continuity, (14.17) holds for tg < ¢t < tg+ 4, for some ¢ > 0. It follows, using
that Qo(to) > 0 and Propositions 9.2-9.4, that (11.2) (Monotonicity Property
Q) holds on tg < t < tp + 6. Therefore, by Propositions 11.2, 12.1 and 13.1 the
terms Jp and J; in (9.8) both satisfy the bound

(&)

0
N AGE

+&QuQZ,  p>0,  k=0,1. (14.18)
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Therefore, for & sufficiently small (14.17) holds with c., d. replaced by c¢./2,d./2.
Define

T, = sup{t > to : (14.17) holds for some ¢, > 0 and d. > 0} . (14.19)

For t € [0,T%), ||lq(t)]ly is small. We claim that T\, = oco. Suppose ¢y < T\ < oo.
Then, for t € [tg,Tx) we have, by (14.17), (14.18) and the above argument using
Propositions 9.2-9.4, that the monotonicity property (11.2) holds at ¢ = T, and
slightly beyond. Thus, the a priori bounds on Jy, J; of Propositions 11.2, 12.1 and
13.1, the mp-bounds of Propositions 10.7-10.9, and the smallness of @y and @1
imply persistence of the inequalities (14.17), with perhaps a slightly smaller choice
of positive constants ¢, and d,. This implies that T, = oco.

15. Nongeneric Behavior

Recall that to is defined by (8.5) and consider the case where ¢y = co. We would
like to show that

Py(t) - 0ast — oo
Pi(t) has a limit .
The following is a consequence of the definition of #g.

Proposition 15.1. Assume to = oo. Then, Py(t) = O ([no]x(t)~2). Therefore,
ag — 0 and the ground state decays.

Proposition 15.2. Let tg = oco. Then, 31 has a limit as t — oo.
States with this (nongeneric) behavior were constructed in [55].
Proof of Proposition 15.2. Equation (7.7), together with the above estimate
Py(t) = O(o) (t)~* (15.1)
implies

% = (AT Py PY + O(To)(t)~*/*) (1 + O(Ry) + O(Py))

+ R(ce+!| 1> i) + huo.t. (15.2)

To show that P; has a limit, we show that fg 0sP>(s)ds has a limit. All terms
other than the O(ay) term, on the right-hand side are absolutely integrable since
Py=0((t)?). B

It is left to integrate the O(|3:1]*B1ap) term. For T given, let 8% = [ (T)>.
Then, Eq. (7.52) reads

2i0;c9 = Mtbos, V1 (t)%)ap + integrable in ¢ . (15.3)
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Using the expression for ¥y (t) = ayv1 (-, |a1|?):
2i0;c0 = Atos, a1 (1)1, )@ + h.o.t.

= Athow, V2, )e 2B (1) % ao (1) + O(ad(T)B1) + hoo.t.
= Ne 2 B2 a0 (1) + Ne 2 B2 (1) — B2(T)]ao(t) + O (%)

+h.o.t. (15.4)

where A = A(1o.12,) and 52 = G2(T).
Solving the homogeneous part of (15.4):

210,60 = Ne 2 BLA(t) (15.5)
we have, using the Ansatz
ao(t) = A(t)e' A=t 4 B(1)eiOFot
with
A~ Ae 2B () — BT A 4 hoot.

and a similar equation for B(t).
We have

dpPy

dt

04,05 # 0. Integration of the above equation, integration by parts (twice) of A and
B, implies

= —AI'PyP? + %(ceief‘t\ﬁﬂzﬁlzﬁl + eieBtWﬂzBlB) +h.o.t.,

T
{t)2|Pi(t) — Pi(T)| < Ct)* / 1811231 (')~ ) [BF(E) — BHIT)P AW )dt + hoo.t.(t)?

0<t'<T

T 2
< CcEy (/t <t'>—%—1dt'> ( sup <té>P1(t')_P1(T)> —|—s1ip<t>% h.o.t.

= [Pi(t) - P(T)| < C(H)~3
which implies integrability of A(t) and limit of P (t).
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Appendix A. Notation

Rz and Iz denote the real and imaginary parts of a complex number z.
Z denotes the complex conjugate of z.

() = /14 |z]?, t > 0.
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P.. — projection onto the continous spectral part of the self-adjoint operator, H.

(f.9)= [ fg.
()= () =

For j = 1,2, let m; : C2 — C! be defined by:

yA zZ
71-1( >:Z’ 7T2< )zw
w w
(0 1> (1 o>
=\ 0) 7 \o 1)

(xFi0) ' =P.V.a !t +ind(z). (A.3)

Plemelj identities

Vi = (0a,;. 0x).

Xx(z,p) denotes the real-valued localized function of & which depends smoothly on
a parameter, p.

X;f ) denotes a spatially localized function of order loj ¥, as || — 0.

O,(Cj) denotes a quantity which is of order loj|* as |oj| — 0. Both ng) and O,(Cj) are
invariant under the map a; — o e’.

oM =00V, k =k + k.

Appendix B. Proof of Proposition 4.2

Parts (i), (iii) and (v) of Proposition 4.2 follow from [58]. We now prove parts (ii)
and (iv) by a perturbation argument about the case ay = 0.

Consider the eigenvalue problem H f =i f Since ay is assumed small it is
natural to make explicit the leading order and perturbation terms. Thus we have

— (1) 9 9 2‘a0|2 04(2) — —
Hof =03 |(H = Eo.) — Eg oo T+ 45| __, , )| f=nf (B
(7)) 2|a0\

Recall that Eél) and g are defined in Proposition 3.1.
The zeroth order problem (g = 0) is

o3(H — Eo.) fo = pofo (B.2)

which has two linearly-independent solutions:

o 1
,L‘O:E*l_EO*va: <0>w1* (BS)

po = (B — Eo), 010 - (B.4)

We develop the perturbation theory of (B.3). That of the second is completely
analogous.
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For g and small we define the perturbations about the zeroth order eigenstates
via:
f=f+h (B.5)
1= E1. — Egs + p1. (B.6)
Substitution into (B.1) yields:

—

[03(H — Eox) — (E1s — Eou)I]f1
20aol*  af

2() _ 7 2
= |ag|?Ey o3 fo — Mio
lao|“Ey o3 fo — My 3( 5 2laol

>ﬁ+mﬁ
2 ad

+laoPEMN o3 fi — Mo ( ., )
(%)) 2\a0|

>ﬁ+mﬁ. (B.7)

We counsider, individually, the first and second equations of the system (B.7), gov-
erning fi; = 7 f1, j = 1,2. The first component of (B.7) is:

(H — Ev) fir = lao? (B — 2202) Y. +
+lao? (B — 222) fir — Aa2v2fiz + i fu.  (BS)
Let v, = 2Fy,. — E1.. The second component of (B.7) is:
(H — v.) fia = =A@ Yat1. + \Oéo|2E(()1)f12

— Mg (@0° fu1 + 2|ao|® frz) — pafiz - (B.9)
We wish to make the dependence of fl on ag and @ explicit. Define
M1 = |O[0‘2ﬁ1 ) fll = ‘CVOP]?]_] s f12 = a_02f12 . (BlO)

Equations (B.8) and (B.9) reduce to the following system for fi; and fio:
(H = Ev)fu = (B = 2003) 1 + finthr.
+lao? (BSY = 2292) fir — Mao*9d fiz + lao 2 i (B.11)

(H — v.) fra = =220 + ao|*ESY fia

- Mao\%ﬁg(?fu + 2f12) — || fi1 fiz - (B.12)
We seek a solution to the system (B.11), (B.12):
lool® = (fir(Jaol®), fz(laol?), i(lao]?)) € L? x L? x R (B.13)

defined in a neighborhood of oy = 0.
For ag = 0 the system (B.11), (B.12) reduces to:

(H — Br)ffh = (E§Y(0) = 2008,) 1. + fin (B.14)
(H - V*)f?z = _)"‘/}(2)*1/)1* . (B.15)
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Note that v, < 0 is not in the spectrum of H. Therefore, (B.15) is solvable for f9,
and we have:
Flo = =MH = v.) " 98,41 - (B.16)
Since (H — E1.)9¥1. = 0, (B.14) is solvable if and only if its right-hand side is
orthogonal to ¢1,. This determines 11(0):
7n(0) = —Eg” (0) + 20w, vi.) . (B.17)

and now (B.14) can be solved for f9,.
To solve in a neighborhood of ag = 0 we proceed as follows. Rewrite (B.12) as

(H + \a0\2W12 - V*)fm = —)\1/)81/)1* - A\ao\%ﬁgfu ) (B.18)
where W14 is a multiplication operator defined by
Wiz (laof?, fir) = —E§” + 208 + fir . (B.19)

For i1 in a fixed compact set and «q sufficiently small, the operator H + |a0|2W12 —
v, has a bounded inverse, B(|ag|?). Thus,

f12 = J?12[J?117 \040\2]

= —AB(lao*)¥§¢1. — Aao|*B(Jao|*)15 fu - (B.20)
Substitution of (B.20) into (B.11) yields the following closed equation for fi;:
(H - Ev)fin = (Eél) — 20M2)Y1e + firhre + oo *Wan fun (B.21)
where the operator Wi is defined by
Wi (laol, fin) = (B = 203) + i + 98 fial-, o] (B.22)

Setting the inner product of the right-hand side of (B.21) equal to zero, gives the
solvability condition for (B.21):

fir = 2003, ¥1,) — B — |aol (W, Wit fin) - (B.23)
The system (B.21), (B.23) is of the form:
F(fllv/llas) :07 (B24)

with the solution f~11 = f9 4 = ji1(0),s = 0 defined by (B.17). Furthermore,
the Jacobian of F(f11,fi1,s) with respect to (fi1, 1) evaluated at (f{, 11(0),0) is

given by:

H - E * - *

( e %1 > (B.25)
0 1

which maps H? x R one to one and onto L? x {{g,%1.) : g € L?}. Therefore,
by the implicit function theorem [32], we have a real analytic curve of solutions
s — (f11(s),/i1(s),s), defined in a neighborhood of s = 0 and coinciding with
(f%, 11(0),0) for s = 0. The family of solutions we seek is obtained by restriction
to s = |ag|? > 0. This completes the proof of Proposition 4.2.
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Appendix C. A Commutator Term

In this section we record a calculation of a “commutator term” appearing in the
modulation equations of Sec. 5.

Proposition C.1.

oo, ) = 0 llaal?) (FiG | ) + 82

1
+8t70 |Oéo|2 <XGO <1> s (IJQ> (Cl)

1
WMMMEﬁ=@Mﬁ%%%%<J,%>

+ (90)lao]? <x03Go G) : <I>2> . (C.2)

Proof. By direct computation from (4.23)
(9,5G0(t) = Z'(at’)/o)O'gGo(t) . (03)
Note also that by (4.37)

1 1
o3Go <1> Fy = &n1 = 2(o1 + |awo|*03Go <1> x(z3|ao?)

1\ 1 5 1 5
Go ) F0=§02=§C02+\040| Go 1 x (3 |aol”) -

Using these relations we have for j = 1 that

Ou(oaor (1) = 0iloal)Go | ) Filaol?)
H@w@%(b%wﬁ>

1
:mmm%(J%W$>

+2i(970)C01(t) + (O470) |l *x (23 | |*)Go (1) .

Substitution into the inner product (9;(c3&o1(t)), P2) and using the constraint
(Co1(t), 2) = 0 yields the result for j = 1.
For j =2

@@@N»=MMWW%<DEN%W
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. 1 / 2
+i(@0)Go { | ) Folaol”)
2 1 / 2
= O(laol)asGo | ) Follawol)

' 1
+ %(6t'70)<02(t) + 0yolao*x (x5 | |*) o3 Go <1> -

Substitution into the inner product (9;(c3o2(t)), P2) and using the constraint
(Co2(t), @) = 0 yields the result for j = 2. This completes the proof of Propo-

sition C.1. O
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