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ABSTRACT 

The aim of this work was to estimate forest above-ground biomass (AGB) – one of the 

fundamental parameters used in the forest inventory for measurement, reporting and 

verification (MRV) under the Reducing Emissions from Deforestation and Forest 

Degradation (REDD) and sustainable forest management (REDD+) mechanisms. In 

particular, this work examined the training area concept in a two-step approach for AGB 

estimation using airborne laser scanning (ALS) and RapidEye satellite data in the eastern 

area of Finland (Study I), the effect of the training area location (Study II), and the effect of 

sample size for the training area (Study III) using ALS, RapidEye and Landsat data in 

southern Nepal. The AGB model was fitted using simple linear regression (Study I) and the 

sparse Bayesian method (Study II-III). The AGB model performance was validated using an 

independent validation dataset, and the performance was evaluated by assessing the root 

mean square error (RMSE) and mean deviation. The findings of Study I show that the 

RapidEye model had a promising accuracy with a relative RMSE of 20% against an 

independent validation set. Study II findings showed that distance from road and the degree 

of slope in the training area had a considerable effect on the accuracy of the AGB estimation 

because the forest structure varied according to the level of accessibility. The findings of 

Study III indicated that an adequate coverage of the variability in tree height and density was 

an important condition for selecting the training areas. Only a minor increase in relative 

RMSE is observed when reducing the total number of training areas. ALS-based prediction 

required the smallest number of training areas when compared to the RapidEye and Landsat 

data. To conclude: (i) ALS-simulated training areas could be an alternative to expensive field 

sample plots using a two-step approach; (ii) the training area should cover a full range of 

variability in respect to accessibility factors and forest structures such as height, density; (iii) 

the ALS-based prediction outperformed RapidEye and Landsat data with reasonable 

accuracy. These evaluated concepts and issues of forest AGB inventory are likely to be useful 

in supporting future forest monitoring and decision making for the sustainable use of forest 

resources and REDD.   

 

Keywords: Tropical forest, Nepal, LiDAR, RapidEye, Sample size, Carbon, REDD+, Boreal 

forest. 
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1 INTRODUCTION 

1.1 Background  

The Reducing Emissions from Deforestation and Forest Degradation (REDD+) concept is, 

at its core, a proposal by which developing countries may receive financial benefits for 

reducing emissions from deforestation and forest degradation, as well as forest conservation, 

changing the trend of the decreasing amount of forest biomass, and pursuing the sustainable 

management of forests and the enhancement of forest carbon stocks. The United Nations 

Framework Convention on Climate Change (UNFCCC) created the REDD+ mechanism to 

quantify and value the carbon storage services that forests provide. However the big 

challenge in successfully implementing this program is the measurement, reporting and 

verification (MRV) of forest carbon stocks (e.g. Næsset el al. 2016). Therefore, an important 

issue is how forest carbon stocks may be reliably predicted at a sub-national and national 

level.  

     Successful MRV for REDD+ is still a long way off. In the process of developing national 

REDD+ MRV frameworks, donors and policymakers have concentrated on cost information 

in order to develop strategies, to allocate budgets and to assess the effectiveness of forest 

carbon stock assessment (Wertz-Kanounniko 2008). The main limitations to the 

implementation of REDD+ have been institutional as well as financial, regarding the 

transaction and implementation costs for carbon credits (Murdiyarso et al. 2006). Transaction 

costs arise from the needs for prior information, and those emanating from the economic 

exchange itself (e.g. contract management, financial management, standard evaluation, 

technical assistance). Implementation costs are associated with the actions to reduce 

deforestation, forest degradation, to promote the sustainable management of forests and to 

enable the enhancement of forest carbon stocks (White and Minang 2011).  

     The current carbon stock in the world’s forest is estimated to be 861 ± 66 Pg C where a 

tropical forest stores approximately 55% of the total carbon. Tropical forests have 56% of 

their carbon stored in biomass and 32% in soil (Pan et al. 2011). However, tropical 

deforestation has produced significant gross carbon emissions of 2.8 ± 0.5 Pg C per year. In 

addition, the Intergovernmental Panel on Climate Change (IPCC) has mentioned that 

deforestation and forest degradation contributed 10% of the total anthropogenic C emissions 

in their fifth assessment report (IPCC 2013). As a consequence, the net loss of carbon from 

tropical forests of around 1.1 ± 0.7 Pg C per year, despite a carbon sink by tropical growth 

forests of 1.7 ± 0.5 Pg C (Pan et al. 2011). 

     Describing and quantifying forest above-ground biomass (AGB) over a variety of spatial 

scales is a task of increasing importance (e.g. Tian et al. 2012). The prediction of AGB can 

provide critical information for quantifying the amount of carbon sequestered, guiding 

sustainable forest management, estimating the productivity of forest ecosystems, and creating 

greenhouse gas inventories (e.g. Lu 2006, Tian et al. 2012). Forest AGB could be estimated 

by field-based sample survey alone. However, field training data collection is the most 

expensive, time consuming part of forest inventory, especially in tropical forest due to issues 

of inaccessibility, and a complex heterogeneous forest with steep mountainous terrain. 

Therefore a combination of remotely sensed data and ground survey data can potentially offer 

a suitable means of monitoring, reporting and verifying forest AGB in a feasible and cost-

effective way (Streck and Scholz 2006).  
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1.2 Alternative above-ground biomass prediction method 

The selection of the prediction method plays an important role in remote sensing-based forest 

inventory. Both parametric (e.g. ordinary least squares) and non-parametric (e.g. k-MSN) 

methods are commonly used. The parametric approach has been widely used for the 

estimation of forest characteristics (e.g. Næsset 2002, Korhonen et al. 2008, Hou et al. 2011, 

Næsset et al. 2016). The main idea of this approach is to develop a linear relation between a 

dependent variable and one or more independent variables. The non-parametric approach is 

nowadays also widely used as an alternative to the parametric approach. Non-parametric 

imputation is defined as replacing missing values for any unit in the population with 

measurements drawn from another unit with similar characteristics (Temesgen 2003). The 

fundamental idea of non-parametric imputation is to locate the closest neighbor for the stand 

that does not have the tree-list information (target stands) from a pool of stands that have 

detailed tree and stand data (reference stands) (LeMay and Temesgen 2005, Temesgen 2003). 

Non-parametric imputation can retain attribute variance structures of the data, and so there is 

no assumption of distributional characteristics for either the auxiliary variables or the 

variables of interest (Moeur and Stage 1995, Katila and Tomppo 2002).  

1.3 Airborne laser scanning-based forest inventory in tropical and boreal forests  

Airborne laser scanning (ALS) is a remote sensing technology with a huge potential to 

increase accuracy and reduce costs in large-scale forest inventories (Asner et al. 2012, Næsset 

et al. 2016). Either wall-to-wall mapping or strip-based sampling can be used, both of which 

are established practices (Frazer et al. 2011). There are two main approaches to the 

interpretation of ALS data: the area-based approach (e.g. Næsset 2002) and individual tree 

detection (e.g. Vauhkonen et al. 2010). Stand-level forest inventories for large-scale 

applications are usually conducted using the area-based method (Næsset 2002, Maltamo et 

al. 2011). In this method, field-measured data and ALS metrics are used to develop an 

empirical relationship between the ALS metrics (used as predictors or independent variables) 

and a field-measured variable of interest (e.g. height and volume). Finally, these relationships 

are applied to obtain estimates of the target variables for the whole area of interest (Gobakken 

and Næsset 2009). 

     Several forest inventory parameters have been predicted with differing levels of accuracy 

in regard to ALS-derived variables, including AGB (Zhao et al. 2009). However, the 

application of ALS data for forest inventory is typically dependent on several parameters, 

including sampling design, plot size and location, sample density, estimation method, 

position error, and sensor characteristics (e.g. point density, flight altitude, footprint diameter 

and scan angle).  

    In both tropical as well as boreal forests, ALS-based forest AGB prediction is a task of 

increasing importance due to higher requirements for estimation accuracy, as well as the need 

to reduce the cost of large-scale forest inventories. A large number of ALS-based studies 

have been reported from all over the tropical region in recent decades (e.g. Drake et al. 2002, 

2003, Lefsky et al. 2002a, 2002b, Asner et al. 2009, Hou et al. 2011, Næsset el al. 2016). 

Such an approach is feasible because wall-to-wall ALS achieves even the higher accuracy 

standards which are needed to ensure reliable estimates of carbon stocks and stock changes 

over time (Asner et al. 2012). ALS-based forests AGB prediction in tropical forests are not 

completely similar to boreal forests because of the forests characteristics and environmental 
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conditions. ALS-based forests prediction in tropical forests have lower level of accuracy 

compared to the boreal forests. Tropical forests are heterogeneous characterized by the 

greatest diversity of species with understory vegetation, while boreal forests are mostly 

homogeneous characterized by spruce, pine and birch with limited understory vegetation. 

Due to different characteristics of tropical forests and boreal forests, the thesis tested training 

areas development (see section 1.5) in Nepal as an example of tropical forests and in Finland 

as an example of boreal forests.  

1.4 Optical data-based forest inventory in tropical and boreal forests 

There are a multitude of optical remote sensing systems which are commonly employed for 

estimating forest attributes (e.g. AGB). Landsat image with a spatial resolution 30 m × 30 m 

has been employed in forest inventory from early era of remote sensing (see e.g. Næsset el 

al. 2016). The RapidEye image with a spatial resolution of 5 m has a good potential for use 

in several forestry operations, including cost-effective monitoring, and mapping, however 

there is relatively little evidence of its use in forest AGB estimation (see Englhart et al. 2012, 

Næsset el al. 2016). Lower relative RMSE values have been recorded in Scandinavian forests. 

However, the relative RMSE value has been seen to be higher in tropical forests due to the 

presence of dense forests with high understory vegetation. Næsset el al. (2016) reported a 

63% of relative RMSE in miombo woodlands in Tanzania using RapidEye data. Moreover, 

Argoty et al. (2012) pointed out the importance of the red-edge band to quantify tropical 

forest AGB and also to detect forest degradation. RapidEye data might also be easier to obtain 

in many countries due to its relatively inexpensive price when compared to other remotely 

sensed data, such as ALS data. The drawback of all optical satellite images in the estimation 

of biomass is the saturation of predicted values in dense leaf canopies, which restricts 

estimates to low biomass levels (Garcia et al. 2010).  

     The most commonly used features derived from optical data to predict forest attributes 

are the spectral and textural features. Spectral features describe the tonal variation in portions 

of the electromagnetic spectrum. Textural features contain information about the spatial 

distribution of tonal variations within an image. Texture also has qualities such as periodicity 

and scale, and can therefore describe, for example, the direction, coarseness, and contrast of 

image components (Tamura et al. 1978). The combination of spectral and textural features 

has provided better levels of accuracy in the estimation of forest attributes than the use of any 

particular feature alone. Haralick et al. (1973) presented the use of grey-level co-occurrence 

matrices in quantifying the texture and their method has been widely used in remote sensing-

based forestry applications (e.g. Tuominen and Pekkarinen 2005, Packalen and Maltamo 

2007). 

1.5 Training area concept and development 

The training area in forest inventory refers the field sample area (plot) which is used to 

construct or calibrate statistical models. The calibrated model should able to tolerate possible 

any extremeness that could come from the validation stand. Therefore, the training area 

should foremostly cover the variability of the population (Montgomery et al. 2006, Frazer et 

al. 2011, Maltamo et al. 2011). To reduce the model bias, the training area can be either 

systemically distributed or completely random over the defined area. Different sampling 
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designs for training data collection have been evaluated, including random, systematic, 

cluster, strip, transect relascope, and adaptive cluster sampling. A well-designed sampling 

inventory can improve the effectiveness of field data collection and the precision of results. 

If random sampling is used to select the locations for training area collection, it may transpire 

that the sampled training data does not represent the entire population. Also, stratified 

sampling tends to reduce regression model prediction errors, ensuring that regression models 

do not extrapolate beyond the range of the training data (Hawbaker et al. 2009). Both 

Hawbaker et al. (2009) and Gobakken et al. (2013) concluded that the use of ALS data as 

prior information in the sampling design led to improved prediction accuracy. Maltamo et al. 

(2011) compared different methods for selecting training areas, including simple random 

sampling, stratified sampling based on forest type, stratified sampling based on geographic 

location, and stratified sampling based on ALS variables. They mentioned that if the training 

data failed to capture geographical trends in volume that reflected differences in site 

productivity and silvicultural practices, then the models might perform poorly for forest types 

that are inadequately represented in the sample. They therefore suggest that training areas 

should be located based on their geographic position if there is evidence of clear geographical 

trends. 

     Training areas are of further importance in forest inventory, especially in the context of 

tropical forest. The collection of training area may be expensive (sometimes accounting for 

a major portion of the total inventory cost), and can also be difficult to obtain depending on 

the forest conditions in the area of interest. Tokola and Shrestha (1999) mentioned that a 

problem in forest inventory optimization is in choosing the optimal sample design that 

maximizes the utility of data needs within certain budget constraints. In essence, training 

areas should cover the variability featured in the population, while simultaneously 

maximizing cost effectiveness. The correlation between the variables measured in the field 

and remote sensing variables should also be strong enough to provide substantial efficiency 

in terms of the model’s predictive accuracy and the variation given a fixed number of training 

areas (Junttila et al. 2013). It is important to note that model efficiency can be defined on the 

basis of the number of field training areas required and their desired information content. It 

is therefore worth knowing which training models constructed using field data provide the 

most accurate and precise predictions with respect to cost and accuracy.  

     Due to the heterogeneous forest characteristics and different management regimes, it is 

necessary to have training area that is representative of both species distribution and forest 

characteristics. Also, access to the forest area may be difficult due to steep mountainous 

terrain. Therefore, a field campaign is challenging and is hampered by complex topographic 

conditions which increase labor efforts and costs. If only the most accessible areas were able 

to be used without any significant loss in accuracy, then major cost savings could be possible. 

However, these types of inventory designs may not capture the whole range of variability in 

the target forest structure. Thus it would be useful to have some guidelines on field sampling 

design to reduce the effects which are caused by the training area location (Dalponte et al. 

2011). If the training areas are placed close together without covering the whole geographical 

region, then the cost of training data collection will be reduced, along with the needs for 

transportation or the entailment of significant walking distances. However, Maltamo et al. 

(2011) have noticed that the training area location may also affect the appropriateness of the 

regression models.  

     As a summary, the following factors should be considered when collecting field training 

area data: (i) the cost of the training data collection (Packalén et al. 2008); (ii) the total 

number of training areas (Gobakken and Næsset 2008); (iii) the sampling method utilized to 
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determine the distribution of the training area (Maltamo et al. 2011); (iv) ample coverage of 

the geographical variation in the forests (Maltamo et al. 2011); and (v) adequate coverage of 

the variation of vegetation characteristics (Junttila et al. 2013). Finally, an appropriate 

training area could lead to more accurate and precise growing stock estimates which could 

in-turn affect future management plans and decisions. 

     The estimation of forest AGB at national and sub-national scales is of growing interest 

throughout the world for quantifying the amount of carbon sequestered, guiding sustainable 

forest management, estimating the productivity of forest ecosystems, and creating 

greenhouse gas inventories. Focusing on the appropriate selection of training areas for forest 

AGB estimation (especially in context of tropical forests), this thesis tested following 

promising issues. 

1.6 Objectives 

The overall goal of this thesis was to estimate the AGB in tropical and boreal forests using 

active and passive remote sensing data. The specific objectives of the individual studies were:  

 

Study I. To assess the training area concept in a two-step AGB estimation using ALS and 

RapidEye satellite data in boreal forests. To evaluate the accuracy of RapidEye-based 

prediction against the ALS-estimated sample plots (called surrogate plots) which were used 

as simulated ground-truth instead of more expensive field sample plots. To evaluate the 

accuracy of RapidEye-based prediction against an independent validation set.  

 

Study II. To explore the effect of training area location on estimating tropical forest AGB in 

southern Nepal using ALS data. To test how the training area distance from road and the 

degree of slope can influence on the AGB prediction.  

 

Study III. To optimize the number of training area for modeling AGB using ALS, RapidEye 

and Landsat data in southern Nepal. To evaluate the criteria to reduce the sample size for 

training area. 

2 MATERIALS 

2.1 Study areas  

Two study areas were used in this thesis. Study Area I (Study I) is located in Finland (Figure 

1), and Study Area II (Studies II-III) is located in Nepal (Figure 2).  

     Study Area I is situated in Kiihtelysvaara, in eastern Finland (62°31'N, 30°10'E). The 

boreal forests of the area are managed for timber production and ecological sustainability. Scots 

pine (Pinus sylvestris L.) is the dominant tree species, representing 73% of the volume. 

Norway spruce (Picea abies L.) represents 16% of the volume, and the remaining species 

come from deciduous trees such as downy birch (Betula pubescens Ehrh.) and silver birch 

(Betula pendula Roth.) which usually occur as minor species. 
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     Study Area II is situated in the Terai Arc Landscape region (Terai and Siwaliks) of 

southern Nepal (between 27°14'N to 29°08'N, and 80°15'E to 85°49'E). Terai is situated in the 

south side of the study area and Siwaliks is in the north side of the study area. The region is 

a flat plain and the elevation ranges from 60 to 300 m. The region has a tropical to sub-

tropical climate with the main tropical region being in the east, and drier areas in the west. 

Rainfall ranges from 600 mm in the west to 1300 mm in the east, with winter rain occurring 

in the west. This zone covers 22% of the total country’s land mass (Pariyar 1998). The region 

is well-known for its productive, ecological and protective services, and also the secure 

livelihood that it provides for the surrounding people. The dominant tree species are Sal 

(Shorea robusta), Chir Pine (Pinus roxburghii), Schima (Schima wallichii), Axle Wood 

(Anogeissus latifolia), Marking Nut (Semecarpus anacardium), Karmal (Dillenia 

pentagyna), Indian Laurel (Terminalia tomentosa), Java plum (Syzygium cumini), Malabar 

Plum (Syzygium jambos), and Indian Gooseberry (Phyllanthus emblica). 

 

 

  
 
Figure 1. Training, surrogate and validation plots location and administrative map of Finland 

(left side), and RapidEye image with study area marked (right side). 
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Figure 2. Left: Study area and location of blocks. One block is enlarged to demonstrate the 

design of field plots. Right: A sketch showing the sampling strategy.  

2.2 Ground truth data 

In Study I, the ground truth data were collected between May to June 2010. The study area 

is approximately 800 ha in the municipality of Kiihtelysvaara. Altogether, 78 field plots were 

placed subjectively into different stands in an attempt to record the species and size variation 

over the area. The field plots were placed based on the development class and dominant tree 

species. The sizes of the field plots ranged from 20 × 20 to 30 × 30 m. The field sample plots 

were divided into training (n = 50) (step I) and validation (n = 28) data sets, and the training 

set comprised of the plots whose size was 25 × 25 m (0.065 ha), and the other plots (with 

varying sizes) were used for validation. It is worth noting that larger sample plots maintain a 

greater amount of spatial overlap, minimize the edge effects, and increase the sample 

variances (Gautam et al. 2013). A total of 200 surrogate plots (35 × 35 m) were placed to 

cover the study area. These plots were used as a simulated ground-truth, and also while 

training the RapidEye models used in step II. The idea was that the surrogate plots should 

cover all of the variation (i.e. vegetation type, geographic location, species composition) seen 

in the study area. All trees with either diameter at breast height (DHB) ≥ 4 cm or height ≥ 4 

m were measured in the field. The volumes of the individual trees were calculated as a 

function of DBH and tree height using species-specific models (Laasasenaho 1982). The 

AGB of individuals trees was calculated using the biomass equations developed by Repola 

(2008, 2009) for Scots pine, Norway spruce and deciduous. Finally, stem volume and AGB 

were calculated for each plot per hectare. The mean characteristics of the sample plots in the 

training (n=50) and validation (n=28) datasets are presented in Table 1.  

     In Study II-III, the ground truth data were collected between March 25th and May 20th, 

2011. The field data were observed in two-stages. In the first stage, the whole study area (23 

000 km2) was classified into 9 vegetation categories utilizing the forest classification map 
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(30m resolution) developed by Joshi et al. (2003). The vegetation categories of the study area 

were hill-sal, sal, mixed, chir pine, riverine, degraded forest, grass, shadow and non-forest. 

The whole area was therefore divided into blocks (5 km × 10 km). Then a total of 20 blocks 

(1000 km2) were chosen based on PPS (probability proportional to size) stratified sampling 

allocated randomly according to vegetation categories. Figure 1 shows the location of 20 

blocks in the study area. In the second stage, a total of 632 field sample plots were surveyed 

in the blocks, and the coordinates of each plot center were recorded using a differential Global 

Positioning System (GPS). The locations of the field plots were selected using systematic 

cluster sampling within rectangular blocks. Each block contained six clusters, with eight plots 

in each cluster. The plots within a cluster were distributed in two parallel columns (from 

north to south) and in four parallel rows (from east to west). In Terai the distance between 

the column’s and rows was 300 m. In Siwaliks, the column’s distance was unchanged but the 

row distance was reduced to 150 m due to the high variation of the forests. The distance 

between cluster centers in the east–west direction was 3333 m, and in the north–south 

direction it was 2500 m. Tokola and Shrestha (1999) have previously found that there was 

little spatial correlation of ground truth plots within same cluster after 300 m in the Terai area 

and it was totally random after 350 m. Fixed circular plots (radius = 12.62 m) covering an 

area of 500 m2 were utilized. Within each plot, the DBH of all living trees and shrubs thicker 

than 5 cm at breast height were measured using a diameter tape. Tree height was measured 

in the field for every 5th tallied tree and the measured trees were used as a height sample tree. 

The heights of the remaining trees were estimated using species group specific height-

diameter relationship with non-linear mixed-effect models. Power, Korf (1939) or Näslund 

(1936) functions were employed for non-linear mixed effect modelling depending on the 

species group. Power, Korf and Näslund growth functions were widely used functions for the 

development of standing volume and selecting an appropriate model form for each species, 

based on the height-diameter relationship. Finally, the stem volume and AGB of individual 

trees was estimated as a function of DBH, and tree height based on the species-species models 

presented by Sharma and Pukkala (1990). The plots were randomly divided into training and 

validation datasets. A set of 500 plots were allotted as training data and the remaining 132 

plots were employed as validation data for testing the accuracy of the fitted models. The 

mean characteristics of the sample plots in the training (n=500) and validation (n=132) 

datasets are presented in Table 2. 

 

 
Table 1. The mean characteristics of the ground truth data used in Study I. 

 

 Minimum Maximum Mean SD 

Training plots, n = 50 

Stem volume (m3/ha) 

AGB (ton/ha) 

96.1 433.8 209.3 74.9 

51.5 226.6 113.0 39.7 

Validation plots, n = 28 

Stem volume (m3/ha) 103.6 382.5 219.1 69.0 

AGB (ton/ha) 55.9 182.2 115.7 31.5 
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Table 2. The mean characteristics of the ground truth data used in Studies II-III. 

 

 Minimum Maximum Mean SD 

Training data, n=500 

Height (m) 4.76 40.38 16.78 6.04 

DBH (cm) 5.95 96.10 32.65 15.50 

Stem density (n/ha) 20 2159 678 442 

Basal area (m2/ha) 0.10 50.55 16.93 8.97 

Stem volume (m3/ha) 0.40 526.28 142.67 95.74 

AGB (ton/ha) 0.53 675.31 181.43 120.85 

Canopy closure (%) 0.00 99.20 62.65 24.90 

Validation data, n=132 

Height (m) 5.90 46.56 16.47 7.10 

DBH (cm) 7.69 100.31 32.29 17.54 

Stem density (n/ha) 20 2218 713 474 

Basal area (m2/ha) 0.21 41.48 16.84 9.22 

Stem volume (m3/ha) 0.83 375.87 139.68 94.07 

AGB (ton/ha) 0.51 476.55 176.10 116.74 

Canopy closure (%) 0.00 99.20 61.53 23.97 

 

 

     In Study II, in order to test the effect of the training area location, training and validation 

datasets were split into different sub-sections according to their distance to the road and slope. 

Table 3 describes the sample-plot design and the number of training and validation plots 

within each category. A total of 13 training plot location designs (SD1–13) were compiled. 

We used the same validation dataset (n=132) for testing all of the training plot designs. The 

sample plot distances to the road were determined using Nepal road layer (1996), Google 

Earth satellite imagery (2012) and ESRI's online World Street Map. The distance to the road 

was measured separately for each plot. The degree of slope of the sample plots was calculated 

using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

digital elevation model (DEM) (with a raster data of 30 m resolution). The degree of slope 

ranged between 0 and 40 degrees for both training and validation datasets, and the mean 

slopes were 9 (±9, SD) and 12 (±10, SD) respectively. The sample-plot distances to the road 

ranged between 0 and 14 km and the mean distances were 4 km (±3, SD) and 5 km (±4, SD) 

for the training and validation datasets, respectively.  
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Table 3. Sample-plot design for the study area (Study II). 

 

Sample-plot 

design 

(SD) 

Description Number of 

Training plots 

Number of 

Validation 

plots 

1 D2 Sample plot located <2 km distance from 

road 

169 38 

2 D2–5 Sample plot located 2–5 km distance 

from road 

199 41 

3 D5+ Sample plot located >5 km distance from 

road 

132 53 

4 D5 A combination of D2 and D2–5 368 79 

5 D25+ A combination of D2 and D5+ 301 91 

6 D2+ A combination of D2–5 and D5+ 331 94 

7 S10 Sample plot with <10 degrees slope 310 64 

8 S10–20 Sample plot with 10–20 degrees slope 111 36 

9 S20+ Sample plot with >20 degrees slope 79 32 

10 S20 A combination of S10 and S10–20 421 100 

11 S1020+ A combination of S10 and S20+ 389 96 

12 S10+ A combination of S10–20 and S20+ 190 68 

13 SD500 All sample plots 500 132 

2.3 Airborne laser scanner data 

For Study I, the ALS data were collected on 18th July 2009 using an Optech ALTM Gemini 

laser scanning system. The nominal pulse density was about 0.65 per square meter. The test 

site was scanned from an altitude approximately 2000 m above ground level with a field view 

of 30 degrees and side overlap between transects of 20%. The pulse repetition frequency was 

set to 50 kHz. The swath width was approximately 1,050 m. 

     For Studies II-III, the ALS data were collected during daytime between March 14th and 

April 2nd 2011 using a Leica ALS50-II laser scanning system operating at an altitude of 2200 

m above ground level with a field view of 40°. The pulse repetition frequency was 52.9 kHz 

and the flying speed 80 knots, which resulted in a nominal pulse density of 0.8/m2. The mean 

footprint diameter was 50 cm at ground level. A flight line overlap of 20% was utilized, and 

both first and last return data were recorded for each pulse.  

2.4 Optical images 

For Study I, the RapidEye satellite images were collected for the test area on 19th May 2012. 

RapidEye imagery provides multispectral optical imagery of five bands (blue 440–510 nm, 

green 520–590 nm, red 630–685 nm, red-edge  690–730 nm, and near infrared 760–850 nm). 

A total of two RapidEye images were collected with a spatial resolution of five meters to 

cover the study area. All of the RapidEye images were radiometrically and geometrically 

corrected (overall standard error was 0.53 m) according to the prescribed standard (RapidEye 
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2012) and aligned to a cartographic map projection. The RapidEye satellite orbit altitude was 

630 km in a sun-synchronous orbit with a swath width of 77 km. The RapidEye image 

acquisition date was almost two years after the ground truth and ALS data acquisitions 

because of the unavailability of more concurrent data in the RapidEye archive. However, 

there were no harvesting and logging activities, or significant naturally occurring changes 

which had taken place within the target area during that time period. 

     For Study III, the RapidEye images were acquired between the 15th and 25th of March, 

2011. Again, all RapidEye images were radiometrically and geometrically corrected and 

aligned with a cartographic map projection according to the RapidEye standards (RapidEye 

2012). In addition, four Landsat 5 TM scenes were acquired. Each scene was a level 1T image 

(Standard Terrain Correction level) with a spatial resolution of 30 meters. The images were 

acquired in January and February of 2010 and 2011. The processing level included 

radiometric and geometric corrections based on ground control points and the available DTM 

(U.S. Geological Survey 2012).  

3 METHODS 

3.1 Preprocessing and predictors of airborne laser scanning 

For all Studies, the ALS points were classified as ground and non-ground returns using the 

TerraScan tools following the methodology of Axelsson (2000). A digital terrain model 

(DTM) was created from the ground laser hits by subtracting the last return z-coordinates 

from the height measured via the geoid (grid spacing of 1 m). In addition, DZ values 

(distance-to-ground, also known as canopy height) were created by subtracting the DTM 

from that of the first and last returns using a ground model z factor of 0.001 (returns from the 

ground or from stones or shrubs less than 1 m in height were excluded from the model). The 

area-based method was used to model the relationships between the field-measured AGB and 

the ALS canopy metrics (Næsset 2002). The following ALS explanatory predictors (canopy 

height and density metrics) were calculated for sample plots to build AGB model:  

 

 Height of the 10%, 20%, 30% … 100% percentile for first pulse points. 

 Height of the 10%, 20%, 30% … 100% percentile for last pulse points. 

 Mean height of first pulse high vegetation points (points over high vegetation 

threshold 5 m). 

 Standard deviation of first pulse heights. 

 Ratio of a measurement with a first pulse height less than 5 m to all first pulse height 

measurements. 

 Ratio of a measurement with a last pulse height less than 5 m to all last pulse height 

measurements. 

 Ratio of last pulse with a height less than 1.5 m + i × 3 m for i = 0...7 and total 

number of last pulse. 

 Logarithm of the measurement of the first pulse height less than 5 m to all first pulse 

height measurements. 

 Mean of the largest three heights within the first and single echoes. 
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3.2 Preprocessing and predictors of RapidEye and Landsat 

For Study I, a radiometric correction of the RapidEye image was unnecessary. We examined 

the necessity for radiometric correction based on histogram matching and the Ridge method 

(Song et al. 2001). We found that the slope and intercepts in the resulting feature space 

images were always one and zero respectively. For Study III, the RapidEye images were 

acquired on different dates and during different reflectance conditions, which affected the 

correlation with vegetation structure. The un-calibrated RapidEye images had anomalies due 

to differences in the properties of adjacent images caused by a bi-directional reflectance 

effect. Local radiometric calibration was therefore employed before any further processing 

could be done. Landsat 5 TM (Thematic Mapper) images were utilized as references because 

the effect of their bi-directional reflectance distribution function (BRDF) was negligible 

compared with that of the RapidEye images. The Landsat images were calibrated relative to 

each other utilizing the multiple linear regression approach presented by Tokola et al. (1999). 

Local radiometric calibration was performed on the RapidEye images utilizing the method 

developed by Tuominen and Pekkarinen (2004). The local adjustment was carried out 

separately for each RapidEye band (blue to blue, green to green, red to red, red-edge to red, 

and near infrared to near infrared). As Landsat does not have a red-edge band, the red band 

was used for that purpose. 

     For Studies I and III, in addition to the 5 m × 5 m raster of pixels of the five spectral 

RapidEye band values, a combination of vegetation indices and textural features were 

included in the AGB modeling (Table 4). Each plot extent was utilized to extract a subset 

image of the spectral bands, vegetation indices, and textural features. The image value 

associated with the pixel containing the plot center was associated with the forest attributes 

measured on the plot. In Study I, three normalized difference vegetation indices (NDVI) and 

14 textural features (Haralick et al. 1973) were computed for the NIR-based NDVI and Red 

edge-based NDVI respectively. However, in Study III, two normalized difference vegetation 

indices (NDVI) and 14 textural features were computed using the NIR-based NDVI.  

     Similar to RapidEye data, the 30 m × 30 m raster of pixels of the six spectral band values 

were calculated, along with two vegetation indices from the Landsat TM images (Table 4). 

These included: (1) NDVI; and (2) the atmospherically resistant vegetation index (ARVI). 

The ARVI was calculated using the near-infrared, red, and blue bands as defined by 

(Kaufman and Tanre 1996). 

 

 
Table 4. Spectral and textural features from optical data employed in Study I and III. 

 

Sensor Study I Study III 

RapidEye Blue, Green, Red, Red-edge, NIR, NDVI, Haralick textural features 

Landsat  Blue, Green, Red, NIR, SWIR1, 

SWIR2, NDVI, ARVI 
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3.3 Sample size (n) for training area 

In Study I and III, the effect of different sample size for the training areas was tested. A 

strategy of reducing the sample size was used to demonstrate the prediction accuracy when 

different numbers occur within training plots. We showed the prediction accuracy at different 

sample sizes, while maintaining the variation in the characteristics of the forest. This 

approach may be used to study how a representative field sample can be used in statistical 

prediction, and to identify when the number of training areas is too small. It can also allow 

for the prediction of an attribute within its value range with reasonable accuracy (a task which 

is useful for mapping purposes). We also explored the effect of a reduced sample size for 

each sensor i.e. ALS, RapidEye and Landsat (Study III). In Study I, the number of training 

plots was reduced from 50 to 25 and 10, based on the combination of tree height and AGB 

distribution.   

     In Study III, the sample size was reduced continuously, trimmed by 50 plot increments 

(e.g. 500 plots to 450 plots, ... down to 50 plots). The reduction of the sample size was done 

using systematic sampling in a feature space, based on two separate criteria such as (i) ALS 

metrics and (ii) the AGB distribution. When this sampling method is applied, we need to 

stratify the population (field plots) systematically in a feature space using ALS metrics and 

AGB distribution information. The fundamental goal of the systematic sampling is to provide 

equal chance (probability) of selecting each unit from within the population when creating 

the sample. This sampling involves firstly selecting a fixed starting point in the larger 

population, and then obtaining subsequent observations using a constant interval between 

samples. We first identified the required sample size. Then we divided the total number of 

the population by the sample size to obtain the sampling interval. The sampling interval may 

then be used as the constant difference between plots. For example, if a sample size of 50 is 

required, then we need to divide the total number of the population (n=500) with the sample 

size (n=50) to obtain a sampling interval of 10. Thence, we select every 10th plot from the 

population. 

     In Study III, the fundamental goal of the ALS-guided approach was to maintain the range 

of values over the x- and y-axes so that the training plot set could cover the variation of the 

criteria of interest (in this case tree height and density). The ALS-guided strategy helps to 

capture the distribution of the population. The ALS-guided reduction of sample size was 

based on two ALS variables: the first pulse 80th height percentile (Hfp80), and the vegetation 

ratio in the first pulse points (Dfp). The Hfp80 were employed as the first criteria when sorting 

the training plots followed by the Dfp. Every nth plot was then selected from the population 

according to the sample size. In the second set of reduction strategies, the training plots were 

arranged by field-measured AGB values in ascending order. A similar technique was then 

followed when selecting the training plots from the whole set.  

     In Study III, the number of field training plots was also approximated using two-phase 

sampling with a regression estimator and an assumption of a 10% standard error of the mean 

estimates. We used this to demonstrate how many training plots we would need if we 

collected the training plots using two-phases with a regression estimator and alternative 

remote sensing data with different correlations to the field information. We were willing to 

see how this two-phase sampling approximation would work in this situation (in our study 

area). The two-phase sampling formula provides the final number of plots needed when a 

statistically sound mean value for a specific area is of interest. The optimal number of field 

training plots (n2) was based on the r2 (coefficient of determination) values derived from field 

information and various remote sensing-materials, when specific mean accuracy is required 
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for a similar population. The formula for approximating the variance in population means 

(Eq. 1) was defined by (Köhl et al. 2006). 

�̂�𝑎𝑟(�̂̅�2𝑝𝑟𝑔𝑟) =
v̂ar(𝑦)(1−𝑟2)

𝑛2
+

𝑟2v̂ar(𝑦)

𝑛1
−

v̂ar(𝑦)

𝑁
 ,                                                      Eq. 1 

     where v̂ar(y): approximation of the sample variance; N: total population; n1: number of 

first phase sample; n2: number of field training plots or second phase sample; and 𝑟2: 

correlation between field-measured AGB and remote sensing-derived AGB. The total 

population (N) and the initial number of sample plots (n1) can be very large because all of 

the image elements can be used during the first phase plots. Thus the last two terms can be 

ignored in the formula and it became Equation 2:  

𝑛2 =
v̂ar(𝑦)(1−𝑟2)

�̂�𝑎𝑟(�̂̅�2𝑝𝑟𝑔𝑟)
                                                                                                     Eq. 2 

     After determining the optimal number of training plots (n2), we compared the cost of forest 

inventory in the context of each sensor using a sample market price. The cost of sensor data 

was 45€/km2 for ALS, 1.05€/km2 for RapidEye, and 0€/km2 for Landsat. The cost of field 

data collection for a sample plot (500 m2) was 300€/plot. 

3.4 Above-ground biomass model construction  

In Study I, the boreal forest AGB model was constructed in a two-step procedure using ALS 

and RapidEye data. Ordinary least squares (OLS) regression was used for the AGB model 

construction and an independent validation dataset was used for accuracy assessment. In step 

I, ALS data from 50 field plots were used to predict the AGB for the 200 surrogate plots. An 

AGB model was generated based on the relationship between ALS-metrics and field-

measured training plots, and used to estimate the surrogate plots. In step II, the ALS-

simulated surrogate plots were used as a ground-truth to generate a regression model between 

forest parameters (e.g. AGB) and features derived from RapidEye satellite imagery. The 

resulting RapidEye models were validated against an independent set of 28 plots. 

     In Study II-III, the sparse Bayesian (SB) method was employed to construct the AGB 

model. The sparse Bayesian method chooses a set of independent variables to form a model 

by giving weights to the explanatory variables (Junttila et al. 2008). The sparse Bayesian 

method assumes a normally distributed (Gaussian) likelihood function over the response 

vector, with a mean value of the independent variable and variance.  

     In all of the Studies, the final combination of predictors for building the AGB model was 

selected using a regsubsets algorithm. The selection criteria in the algorithm were the 

Bayesian Information Criterion (BIC) and the adjusted value of r2. No explanatory variable 

having a partial F statistic with a significance level greater than 0.05 was left in the model 

during the predictor selection.  
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3.5 Accuracy assessment 

In all of the Studies, the RMSE and relative RMSE (Eq. 3) were used for validating the 

accuracy of the forest AGB prediction. Mean deviation (Eq. 4) was also utilized for 

determining the accuracy of the model. In this context, mean deviation is the difference 

between the mean value of the model prediction and the corresponding plot observation. 

RMSE =√
∑ ( �̂�𝑖 −𝑦𝑖)2𝑛

𝑖=1

n
, RMSE% = 100* 

RMSE

�̅�
     and                                              Eq. 3  

Mean deviation = 
∑ (�̂�𝑖 −𝑦𝑖)𝑛

𝑖=1

𝑛
,                                                                                  Eq. 4 

     where 𝑦𝑖  is the observed value and 𝑦�̂� the predicted value for sample plot i,  �̅� is the average 

value for the measured sample plots, and n is the total number of plots. The statistical 

significance of the mean deviation was estimated utilizing a t-test. The mean deviation was 

considered to be statistically significant if the absolute value of the t was greater than t 

corresponding with a probability of 0.05. 

4 RESULTS 

4.1 AGB model building and accuracy  

In Study I, the AGB model accuracy was tested in a two-step procedure. In first step, the 

ALS models using all of the training plots (n=50) showed a promising accuracy with a 

relative RMSE of 17%. In the second step, the RapidEye models showed a relative RMSE of 

20% against the ALS-simulated surrogate plots (n=200). When the RapidEye models were 

tested on independent validation plots (n=28), a relative RMSE of 20% was observed. 

     In Study II-III, the performance of the ALS, RapidEye and Landsat data for validation 

plots using all of the field training plots (n=500) is shown in Table 5. The results show that 

the ALS model provided the less error for validation plots using all the training plots, when 

compared to the RapidEye and Landsat data. The ALS data had the smallest relative RMSE 

(31%), followed by the RapidEye (52%) and Landsat data (53%).  

     In Studies II-III, the residuals of the sparse Bayesian models for validation plots using all 

training plots are matched against the fitted values in Figure 3. Although there were several 

outliers, these were retained in the models to help them tolerate possible model error (Hou et 

al. 2011). Statistical outliers were frequent in the RapidEye and Landsat models, which led 

to noise and non-constant variance in these cases. It can thus be said that the plot-specific 

standard error and standard deviation for the RapidEye and Landsat models did not fit with 

the data. 
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Table 5. ALS, RapidEye and Landsat-based above-ground biomass prediction for validation 

plots using all the training plots (Study I, n=50; Study II-III, n=500). 
 

Study Models RMSE 

(ton/ha) 

RMSE% Mean 

deviation 

(ton/ha) 

Adjusted r2 

Study I ALS 18.7 16.6 0.0 0.766 

RapidEye 21.0 20.4 0.0 0.595 

RapidEye 23.6 20.4 –3.1 0.507 

Study II-III ALS 56.0 31.3 –3.8 0.768 

RapidEye 93.0 52.0 1.9 0.374 

Landsat 96.1 53.7 2.0 0.331 

     

 

 

 

Figure 3. Residual plots of above-ground biomass (ton/ha). The thick lines show the standard 

error of the means and the thin lines the standard deviation (n=500 training plots). 
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4.2 Effect of training area location 

In Study II, the results show that the effect of training plot location in the context of distance 

to road and slope had a considerable effect on the accuracy of the AGB estimation. The 

relative RMSE varied between 30-32% at the validation plot in all road distance categories 

(<2, 2-5, >5 km) (Figure 4). For all of the slope categories (<10, 10-20, >20 degree), the 

relative RMSE varied between 30-34% at the validation plot (Figure 5). Results shows that 

RMSE in slopes between 10–20 degrees is smaller than RMSE in slope between 0–10 

degrees. The mean AGB value for training plots in the slopes between 10–20 degrees was 

153 tons/ha (range 0.5–646 tons/ha), whereas it was 195 tons/ha (range 1–676 tons/ha) for 

0–10 degrees. It could be one of the reason to report higher RMSE for 0–10 degrees slopes. 

However, the mean deviation was not significantly biased (α=0.05) for both categories plots. 

The single-sample t-test showed that the models for D5+ and S20+ were significantly biased 

(α=0.05), but the remaining training plot designs were not shown to be biased. 
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Figure 4. The relative RMSEs of AGB in distance to road based on training area location 

strategies. D2: <2 km distance; D2–5: 2–5 km distance; D5+: >5 km distance; D5: <5 km 
distance; D25+: <2 km and >5 km; D2+: >2 km distance; SD500: all the training plots. 

 

 



26 

 

 
 

28

29

30

31

32

33

34

35

S10 S10-20 S20+ S20 S1020+ S10+ SD500

R
e
la

ti
v

e
 R

M
S

E
 (

%
)

AGB

 
Figure 5. The relative RMSEs of AGB in slope categories based on training area location 

strategies. S10: <10 degrees; S10–20: 10–20 degrees; S20+: >20 degrees; S20: <20 
degrees; S1020+: <10 and >20 degrees; S10+: >20 degrees; SD500: all the training plots. 

4.3 Sample size (n) for training area 

In Study I, the effect of sample size reduction was tested in a two-step procedure. In step I, 

the relative RMSEs for ALS-based AGB estimation were 17%, 20% and 12% when the 

sample size was reduced from 50 to 25 to 10 respectively. In step II, a relative RMSE of 20–

21% for RapidEye-models were observed for all of the sample sizes (n=50, 25, 10) in both 

training plot and independent validation levels.  

     In Study III, the results indicate that the effect of the two sample size reduction criteria on 

the selection of training plots from the sample frame was prominent in the case of ALS-based 

AGB prediction, although the RapidEye and Landsat sensors failed to capture this effect. The 

predictive performance of the reduction criteria for ALS-based AGB prediction in terms of 

the relative RMSE is provided in Figure 6. ALS-guided sample size reduction had better 

accuracy compared to the AGB distribution-guided sample size reduction. The reduced 

number of sample size (450, 400,… 50) had a similar level of relative RMSE when all of the 

sample plots (n=500) were used.  
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Figure 6. Relative RMSE of the ALS-based above-ground biomass estimate at reduced 

sample size. ALS: reducing the sample size based on ALS metrics; Above-ground biomass: 
reducing the sample size based on AGB distribution.  

 

 

     In Study III, the mean deviation for the sparse Bayesian-based AGB prediction at reduced 

sample size is shown in Figure 7. The impact of reducing the sample size on the mean 

deviation of the model prediction varied with the reduction criteria and degree of reduction. 

However, reducing the sample size based on the ALS metrics had less mean deviation than 

when based on AGB distribution. The use of fewer than 100 training plots resulted in a large 

mean deviation with both sample size and reduction criteria. AGB models were statistically 

significant (α = 0.05) if the 100 and 50 training plots were selected utilizing the AGB 

distribution (Figure 7).   

     In Study III, the optimal number of training areas and associated cost of selected materials 

when employing a two-phase sampling approach with the assumption of a 10% standard error 

of the mean estimates are shown in Table 6 and Figure 8. ALS-based AGB estimation 

required the smallest number of field training plots, followed by RapidEye, and Landsat. 

Regarding the cost of data procurement, ALS-based inventory was shown to be cost-effective 

compared to RapidEye and Landsat alternatives (Figure 8). 
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Figure 7. Mean deviation of ALS-based above-ground biomass estimates at reduced sample 

size. Above-ground biomass: reducing the sample size based on AGB distribution. ALS: 
reducing the sample size based on ALS metrics. The asterisks indicate that the model was 
statistically significant at α = 0.05. 

   

 
 
Figure 8. Comparison of ALS-, RapidEye- and Landsat-based forest inventory cost. 
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Table 6. Number of training areas required with different sensors according to the two-phase 

sampling approach when allowing for a 10% standard error of mean estimates. 
 

Sensor Adjusted r2 

of AGB 

Number of field plots 

(n2) 

ALS 0.77 320 

860 

918 

RapidEye 0.37 

Landsat 0.33 

5 DISCUSSION 

5.1 Above-ground biomass model building and performance 

In Study I, the overall strength of the ALS–RapidEye fusion revealed a promising accuracy 

to characterize AGB accounting in coniferous forest ecosystems. The analysis of linear 

regression showed that the ALS data had a good prediction accuracy at step I. Especially, it 

was promising that the ALS models explained 83% (r2 value of 83%) of the variability for 

AGB. Furthermore, the RapidEye models provided a relatively good level of accuracy at step 

II. The RapidEye data had a relative RMSE of 20% at independent validation plots. Such 

accuracy indicates that the combination of ALS and RapidEye would be a promising fusion 

for the estimation of boreal forest attributes.  

     In Study II-III, the ALS-assisted AGB model for validation plots using all the training 

plots (n=500) resulted in a lesser level of error than either the RapidEye or Landsat models, 

and one promising feature was that it explained around 77% (r2 value) of the variation. The 

resulting relative RMSE of 31% for the ALS-based AGB prediction is quite similar to 

previous studies (see Gonzalez et al. 2010, Clark et al. 2011). Such accuracy indicates that 

ALS has a good potential for predicting the attributes of tropical forests in the REDD+ 

program (Chambers et al. 2007, Asner et al. 2012). Koch (2010) has previously mentioned 

that the importance of ALS data is confirmed by a number of investigations which have 

repeatedly shown a higher performance of ALS data than other data types for estimating 

forest AGB. 

     In Study II-III, the comparative accuracy of the training and validation datasets showed 

that the validation data had lower RMSEs compared to the training dataset. Maltamo et al. 

(2011) noticed a similar trend of smaller RMSEs in the validation data than in the training 

data for the volume and stem count. The training dataset is often found to have a lower 

amount of estimation errors or RMSEs compared to the validation dataset (Dalponte et al. 

2011, Hou et al. 2011). However, an opposite observation may indicate that there are either 

some outliers in the training data, or that the variance is smaller in the validation data. In this 

study, the sampling was not simulated, which makes this kind of result possible and 

corresponds with that of Maltamo et al. (2011). If the sampling was simulated (e.g. 100 

times), then the average RMSEs would be closer to each other in both the training and 

validation datasets, and most probably, the average RMSE in the validation data would have 

been a little higher than the average RMSE in the training dataset. One reason for the 

relatively higher RMSEs seen in the training data is that the training data had a much higher 
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maximum volume and AGB values (Table 2). Also, the plots with a very high AGB may also 

be plots for which the estimates were quite poor. 

5.2 Effect of training area location 

In Study II, the effect of training area location strategies was tested in conjunction with the 

accuracy of predicting forest AGB. The relative RMSE, bias and bias probability were 

calculated for each strategy. The RMSE, bias, and bias probability varied significantly among 

the different categories of plot distance to road and also the degree of slope. The results 

showed that different training plot distances and slopes had a clear influence on the accuracy 

of the AGB estimation, and thus the forest structure in the study area was seen to vary in 

conjunction with its accessibility. Forests away from human settlements seem to be closer to 

their natural state, and therefore denser and more diverse. Thus, the training areas used for 

AGB modelling should cover the whole range of variability in regard to the distance to road 

and degree of slope. The heterogeneous characteristics of the Nepalese forests may however 

lead to a poorer model fit, and therefore affect prediction accuracies when several types of 

forests are merged into one model. Moreover, the spatial distribution of tree locations and 

tree size distributions may have an effect on estimation accuracy. Thus, the training data 

collection design should include information about accessibility factors. Tokola (2015) has 

also mentioned the importance of inaccessible areas to be included in the field protocol for 

remote sensing-based forest inventory. White et al. (2015) tested the training area location 

(i.e. slope) for ALS-based forest inventory attributes in a complex coastal forest environment. 

They indicate that ALS metrics and ALS-based forest attributes estimation (e.g. volume) 

were less varied across slope. Khosravipour et al. (2015) analyzed Canopy Height Models 

(CHMs) or normalized Digital Surface Models (nDSM) derived from ALS data to extract 

relevant forest inventory information. They suggested addressing the slope condition of 

individual trees or plots, especially in heterogeneous forest with multiple species or species 

which change their morphological characteristics as they mature. However, further testing 

must be performed with separate validation datasets in forests of different types. 

5.3 Sample size for training area 

The number of training areas is of great importance, as it accounts for the major proportion 

of inventory costs (Eid et al. 2004, Gobakken and Næsset 2009). The number of training 

areas should also be sufficient enough to cover the entire range of variability (tree species, 

tree size, site fertility etc.) in the forests of the inventory area (Gobakken et al. 2013). In 

general, the number of training areas needed for non-parametric methods should be more 

compared to those required for parametric methods. Unlike parametric methods, 

nonparametric methods make no assumptions about the probability distributions of the 

variables being assessed. The number of training plots featured in Study I and III were 50 

and 500 respectively. We used an ordinary least square (parametric) approach in Study I, and 

the sparse Bayesian method in Study III (non-parametric).  

     In Study I and III, the sample size to estimate AGB using ALS, RapidEye and Landsat 

data were tested. Our results showed that only a minor increase in relative RMSE is observed 

when reducing the total number of training plots. Similar results have reported by Hawbaker 

et al. (2009), Maltamo et al. (2011), Dalponte et al. (2011), Gobakken et al. (2013), and 



31 
 

Junttila et al. (2015). The findings in Study III also revealed that ALS data successfully 

evaluated the strategy of minimizing the sample sizes compared to the RapidEye and Landsat. 

In addition, adequate coverage of the variability in tree height and density is an important 

consideration that should be addressed by the training plots which are selected (Study III).  

     Training areas are required to represent the characteristics of the whole forest area. 

Training areas which cover the variation of ALS height and density metrics enable us to 

obtain a model that is representative of the entire area, and thus provide a reasonable level of 

accuracy (Study III). For that reason, two ALS metrics correlated with tree height and density 

were used in reducing the sample size. These variables were expected to be a good choice for 

AGB prediction. However, some ALS variables will work better for certain forest inventory 

variables (e.g., basal area) than others. The selection of ALS metrics should therefore be 

based on the variable that needs to be predicted. Hawbaker et al. (2009), for instance, 

employed the mean and standard deviation of ALS heights when reducing their number of 

training areas in coniferous and deciduous forests.  

     In Study III, ALS-based AGB prediction required the smallest number of training areas, 

followed by RapidEye, and Landsat. A similar trend was seen for forest inventory cost 

(Figure 8). The number of training areas is generally dependent on the correlation between 

the remote sensing data and the training data. The traditional two-phase sampling approach 

provides a stable basis for estimating the optimal number of training areas (Tokola and Hou 

2012). However, the present findings also show that the optimal number of training areas 

increases as the r2 value between the field training data and remote sensing data decreases. 

Because of the high correlation, the number of training areas needed with ALS data was 

relatively small. The representativeness of the field training data and the presence of 

observations seen at the extremes of the value ranges are critical criteria when selecting field 

training information. Olofsson et al. (2014) mentioned that the number of training areas and 

the allocation of training areas in a REDD+ inventory should be based on the anticipated 

accuracy of the map and budget constrain, however the approach should ensure the scientific 

credibility of the results. Tuia et al. (2009) proposed two active learning algorithms for a 

semiautomatic definition of training samples in remote sensing image classification. They 

concluded that the required number of training samples can be reduced to 10%, reaching the 

same level of accuracy as larger data sets. This proposed method could be promising in a 

two-phase sampling process where a large number of low-cost first phase samples need to be 

taken from remote sensing images as an auxiliary variable. 

5.4 Method pros and cons 

In Study I, the forest AGB inventory method naturally places some advantages and 

constraints on the applicability of the method. In step I, the AGB inventory needed sample 

ALS data and requires only a few sample plots for model calibration (fitting). In addition, the 

surrogate plots (step II) could be placed systematically, by weighted random sampling or by 

stratified sampling over the whole area. Systematic sampling could be based on vegetation 

type, geographic location, climatic condition and tree species compositions. Traditional 

forest inventory depends on a large set of ground-truth data for model calibration, but the 

collection of field information is a main cost consideration. However, Study I showed a 

promising outcome where sample ALS data was employed as ground-truth data for model 

calibration, with a satellite image for mapping the whole area of interest. Our study showed 

that ALS-based forest inventory has produced very accurate estimates (step I). ALS data also 
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have a high accuracy to predict forest AGB when regressing ALS height/density metrics with 

data drawn from field measured plots. Subsequently, ALS estimates for the surrogate plots 

were used as simulated ground-truth (step II) for the interpretation of optical satellite images. 

This improved the results compared with using models that were directly based on the field 

plots. Covering the whole area of interest with ALS is relatively expensive, thus we used a 

two-step estimation approach that requires ALS data only for a sample of the study area. This 

is a so-called ‘ALS-assisted multi-source program’ that combines ALS information with field 

plots and satellite data to develop a forest resource map (e.g. Asner et al. 2011). Asner et al. 

(2011), Tokola (2015) also highlighted the use of ALS as an alternative to expensive ground 

sample data for large areas. Asner et al. (2011) also mentioned that the cost of ALS-assisted 

forest inventory along with satellite and field plot synthesis was $0.16 per ha compared to 

$1500 per ha for a solely field plot-based inventory. Wulder et al. (2012) concluded that 

ALS-plots can serve as calibration (fitting) and validation data (similar to ground plots) for 

modeling activities, or when sufficient forethought is given to design, they can support forest 

resources reporting. Nevertheless, more testing and validation should be done in different 

forest landscapes on a large-scale. 

     In Study I and III, another issue is that the satellite image acquisition dates may be 

different, thus introducing seasonal effects. Therefore, it would require the DN (digital 

number) values to be comparable between datasets which in turn would require the use of 

absolute reflectance instead of relative DN values. It would therefore be advisable to use the 

same season for image acquisition. In addition, the field data should always be collected 

during the same time period/season. In Study I, the RapidEye images were collected almost 

two years after the field and ALS data acquisitions. However, it was acceptable in our study 

because there were no harvesting and logging activities or significant naturally occurring 

changes within that time period. In addition, the focus points are typically spatial (e.g. 

generalization within an image or between images of different locations) and temporal (e.g. 

generalization between images of one location acquired over a period of time) (Tokola 2015). 

It is also important to focus on the complications arising from issues such as variation in the 

sensor used (e.g. a time series of fine spatial resolution data may comprise ALS, Landsat, 

RapidEye etc.), and in the sensor viewing (e.g. Korpela et al. 2010) and atmospheric 

conditions (e.g. Norjamäki and Tokola 2007, Xu et al. 2012). 

     Asner et al. (2012) evaluated a universal ALS approach for above-ground carbon 

estimation on regional and global scales in Panama, Peru, Madagascar and Hawaii. They 

were able to predict the above-ground carbon density using a single universal ALS model 

with an r2 = 0.80, RMSE = 28 Mg C ha-1. However, the bottleneck of their approach was the 

requirement of field basal area and wood density information in their final model. In general, 

the final model should be based only on explanatory variables derived from remotely sensed 

data. Häme et al. (2013) compared the linear regression analysis and probability method that 

combined unsupervised clustering and fuzzy estimation for AGB modeling. They mentioned 

that the linear regression analysis had a lower RMSE compared to the probability method. 

Vauhkonen et al. (2014) proposed a computational canopy volume (CCV) based on ALS data 

to improve predictions of forest AGB. A CCV is derived from ALS data based on 

computational geometry, topological connectivity and numerical optimization. 

     The integration of multisource data (e.g. sensor, topography, soil) to improve the AGB 

estimation accuracy should be refined because all sensors (e.g. ALS, radar) have their own 

positive and negative characteristics. Therefore, their proper integration can improve the 

AGB estimation accuracy (e.g. Walker et al. 2007). For instance, Mascaro et al. (2011) 

mentioned that ALS-derived above-ground carbon densities varied according to the slope 
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angle, forest age, bedrock and soil texture. This study also indicated that physiography may 

be more important in controlling above-ground carbon variation in Neotropical forests than 

is currently thought. In addition, Chen et al. (2012) have mentioned that the inclusion of 

vegetation type information derived from aerial photography could improve the statistical 

models. They reported a 10% reduction of RMSE for mixed-effects modeling when 

integrating ALS and vegetation types, compared to using ALS data alone. Lu et al. (2016) 

suggested two techniques for a better integration of different source data: (1) data fusion 

using certain techniques such as principal component analysis and partial least squares 

regression; and (2) the combination of different source data as extra bands.   

5.5 Sensor pros and cons 

The acquisition costs of remote sensing data and prediction accuracy are usually correlated 

(Tokola and Hou 2012). Hyyppä et al. (2000) also mentioned that the estimation error of the 

forest characteristics were smaller for higher resolution data compared to lower resolution 

data. In all of the Studies (I-III) we have shown that ALS is the most accurate remote sensing 

data, but has high acquisition costs, followed by RapidEye and Landsat data. Hou et al. 

(2011) also mentioned that ALS data can be a useful alternative to satisfy the demand for 

better accuracy, in spite of its high cost. ALS data enables the accurate three-dimensional 

characterization of vertical forest structure. ALS data does not suffer from saturation and is 

able to penetrate through even dense vegetation. Chambers et al. (2007), Asner et al. (2012) 

reported that ALS technology is fast turning the corner from a demonstration technology to 

a key tool for assessing highly dense tropical forests. Optical data however, conversely faces 

the saturation problem and an optical sensor records only the crown surface. This becomes a 

major issue when considering tropical forests which are highly dense with understory 

vegetation cover that often remains undetectable using optical satellite data. 

     A multitude of sensors with varying accuracy are currently being used for AGB 

estimation. Zolkos et al. (2013) conducted a meta-analysis of AGB estimation from 70 

refereed articles using different remote sensing platforms (airborne and space-borne), and 

different sensor types (optical, radar, and lidar).  The main focus of the study was on Lidar 

(Light Detection and Ranging) since these papers reported the highest accuracy when used 

in a synergistic manner with other multi-sensor measurements. They also highlighted the 

systematic differences in accuracy between different types of Lidar systems flown on 

different platforms, but perhaps more importantly, they highlighted differences between the 

forest types (biomes) and plot sizes used for model development and accuracy assessment. 

Häme et al. (2013) used optical data (ALOS AVNIR) and radar (ALOS PALSAR) data for 

AGB estimation in the tropical forest of Lao PDR. They mentioned that medium resolution 

AVNIR data was better than PALSAR data. However, a combination of mono-temporal 

AVNIR and PALSAR did not improve AGB estimation over the performance obtained with 

AVNIR data alone.  

     If the different sensors are compared for AGB modeling, one Lidar weakness is its 

relatively high cost. For radar data, the main issue is a temporal decorrelation when 

estimating forest AGB (Koch 2010). Temporal decorrelation is the modification of the 

interferometric coherence induced by changes of the target over time. Therefore tree height 

estimation from radar data becomes difficult, given that it is a basic input of forest AGB 

modeling. Optical sensors have difficulty managing a large amount of AGB (e.g. >150 

ton/ha), although a major positive consideration is the availability for a time period of more 
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than the decades previous (e.g. Koch 2010).  However the major challenge for all sensors is 

to achieve a more intensive development of integration models for multi-sensor data, with a 

requisite of new robust algorithms and statistical methods.  

5.6 Statistical modeling       

We used the OLS and the sparse Bayesian methods to predict AGB which are the most 

promising methods used in remote sensing-based statistical modeling. Penner et al. (2013) 

concluded that prediction accuracy and precision varied markedly with forest type, and no 

single statistical method produced results that were consistently superior. Næsset et al. (2005) 

concluded that employing a multivariate (multi-variable) method would not have any 

significant impact on the AGB estimation among the OLS regression analysis, seemingly 

unrelated regression (SUR) and partial least-squares (PLS) regression from two different 

inventories using ALS data. 

     In our studies, although the final combination of predictors for building the AGB model 

was selected using the regsubsets algorithm, Packalén et al. (2009) have mentioned that 

different predictor variables were identified during different runs of the automated variable 

selection method. For instance, Latifi et al. (2010), Packalén et al. (2012) reported that 

genetic algorithm (GA) and simulated annealing (SA) were also superior variable selection 

methods. These algorithms should nevertheless be tested as alternatives to see whether a 

different explanatory variable selection method would improve the result, or at least help to 

make the search for an eventual solution more effective. Regardless of this however, the ALS 

predictors (height and density metric) that we employed in the AGB models were closely 

matched to the predictors selected in other studies (e.g. Junttila et al. 2015). The RapidEye 

and Landsat spectral and textural features used in this study were also closely matched with 

those used in other studies (e.g. Packalén et al. 2007, Latifi et al. 2010). 

5.7 Future prospects and visions 

The REDD+ monitoring process will need good ground sample information for AGB 

estimation and forest area change detection, which extends over a time span. Although optical 

and radar data are only one tenth of the price of ALS, ALS data can be useful as ground-truth 

data for the estimation of large-area forest attributes (Tokola 2015). The potentiality of ALS 

to succeed within the REDD+ mechanism is its capability to penetrate through the dense 

canopy, and ALS response signal is good to detect changes in closed forests. ALS-based 

forest inventory will be feasible for operational REDD+ activities, however national or sub-

national level forest inventory will only be cost-effective based on a combination of low-cost 

remote sensing data and ground sample information. Although remotely sensed data provides 

accurate information of forest AGB stocks for REDD+ activities, we still need to follow the 

good practices that are already in use in traditional forest inventories (Olofsson et al. 2014, 

Tokola 2015).  

     Payment for maintaining forest carbon stocks has significant potential to provide a cost-

effective mechanism for climate change mitigation (Merger et al. 2012). Merger et al. (2012) 

indicate that the use of bottom-up approaches to estimate REDD+ economics by considering 

regional variations in economic conditions and carbon stocks has been shown to be an 

appropriate approach to provide policy and decision-makers with robust economic 
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information on REDD+. UNFCCC (2009) also suggest that policy has to stem from both 

local and national levels. Zahabu (2008) mentioned that REDD+ monitoring through an 

expert team is costly and such resources are scarcely available. Therefore, the involvement 

of local people in the monitoring and reporting stages will reduce the cost of implementing 

the REDD+ mechanism. Olofsson et al. (2014) also recommend following a process which 

employs the three major components including sampling design, response design (e.g. source 

of reference data, defining agreement, spatial assessment unit), and analysis (e.g. estimation 

accuracy) to develop a cost-effective REDD+ MRV. White et al. (2011) mention that regional 

training activities, regional MRV, regional independent monitoring, and the use of new 

technology (e.g. ALS) could reduce the transitional and implementation costs of REDD+ 

MRV.  

     There are number of new space missions anticipated which will be capable of providing 

high resolution images at an affordable price. Belward and Skøien (2015) mentioned that 

around 260 satellites with an Earth observation mission are either operating or planed over 

the next 15 years. Among the new remote sensing technologies, multispectral Lidar could be 

employed in forest biomass inventory. Multispectral Lidar could be capable of measuring 

both structural parameters (e.g. AGB) and physiological changes through the complete 

vertical extension of the canopy, including the understory. Such measurements can be 

precise, and achieve better estimates of the biodiversity and AGB associated with forests 

(Morsdorf et al. 2009, Woodhouse et al. 2011). Although airborne hyperspectral data have 

been widely used in investigating tree species classification (e.g. Pant et al. 2013), a 

combination with other remote sensing data could improve the accuracy for forest biomass 

and forest area estimation. In particular, tree species classification and leaf area information 

can play an important role as inputs for forest AGB estimation. For instance, Laurin et al. 

(2014) have already shown that the integration of hyperspectral bands (r2 = 0.70) improved 

the model based on ALS alone (r2 = 0.64) for AGB estimation in an African tropical forest. 

Forest AGB estimations using radar interferometry (extraction of height information) will 

therefore be an important step forward. In this respect, the radar tomography (the imaging of 

a three dimensional body using multiple two-dimensional slices) may also become a leading 

technological approach. The IceSat/GLAS system has recently been employed for forest 

AGB estimation, and is receiving more attention compared to other systems (Koch 2010). 

     As improvements in technology (e.g. multispectral Lidar, IceSat/GLAS) become available 

and new methods are developed, the REDD+ MRV will become progressively more 

effective. Also, regional MRV approaches, institutional capacity building, and the 

involvement of local people will help to facilitate the success of REDD+ MRV from 

international to local level. The study findings are likely to prove useful for not only REDD+ 

methodology development, but also in supporting automated forest biomass monitoring and 

enabling effective decision making for the sustainable use of forests resources.  
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