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Abstract: Key innovations have played a central role in the origins of biodiversity, but their 19 
evolutionary origin and genetic architecture are usually unknown. A recent transition from egg-20 
laying to live-birth in Littorina snails provides a rare opportunity to study the origin and genetic 21 
architecture of a young innovation. While recognized as one species, live-bearing individuals do 22 
not form a single clade in a genome-wide phylogenetic analysis, hinting at two independent 23 
origins. However, local genealogical analysis identified numerous genomic regions where 24 
samples group according to their reproductive mode. These regions are widespread across the 25 
genome, show clear evidence for live-bearer-specific positive selection, and are enriched for 26 
genes that are differentially expressed between egg-laying and live-bearing reproductive tissues. 27 
Thus, our results show that key innovations can have a polygenic basis, and that their historical 28 
origins can be obscured by a complex demographic history.  29 
 30 
Main text: Evolution is a gradual process, but occasionally results in sudden changes in form 31 
and function that allow organisms to exploit new ecological opportunities (1, 2). These game-32 
changing adaptations, known as ‘key innovations’, are all around us: they have been crucial in 33 
driving major evolutionary transitions and catalyzing the diversification of many groups (1, 3). 34 
Despite their significance, we know surprisingly little about the evolutionary origins and genetic 35 
architecture of most innovations (1). This is because most originated deep in the past, making it 36 
difficult to disentangle causal loci from the countless genetic changes that accumulated up to the 37 
present. 38 

A recent transition from egg-laying to live-birth provides a rare opportunity to study the 39 
genetic architecture of a well-studied innovation whose origins and genetic basis are not well 40 
documented (4). We focus on a clade of intertidal gastropods (Genus Littorina), where the 41 
ancestral state is to lay a large egg-mass but one species gives birth to live young (Fig. 1, fig. S1) 42 
(5, 6). Egg-layers have a gland that embeds egg-capsules into a protective jelly. In the live-43 
bearer, L. saxatilis, this structure has evolved into a brood pouch where embryos develop inside 44 
the mother. Live birth is a recent innovation in the Littorinidae, considered key to the much 45 
broader geographic and ecological distribution of L. saxatilis compared to all egg-laying 46 
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Littorina (6). Egg-laying and live-bearing species have adapted in parallel to contrasting 47 
environments (6), partly decoupling reproductive mode from other axes of phenotypic 48 
divergence (Fig. 1B). There is also evidence for occasional hybridization between egg-layers and 49 
live-bearers (9). These features provide an opportunity to identify and study the genetic changes 50 
underlying the live-bearing innovation.  51 

Figure 1. Variation in reproductive mode in Littorina. (A) Anatomical differences between modes (B) Egg-layers 52 
reproduce during a limited breeding season, while live bearers release offspring year-round. The two egg-layers 53 
share their habitats with ecotypes of the live-bearer, L. saxatilis. (C) Approximate distributions of the modes, 54 
highlighting the broader distribution of live birth. (D) Existing hypothesis for the origin of live birth. (E) Maximum-55 
likelihood phylogenetic tree based on whole-genome sequences (108 individuals and 18.5 m variable sites). 56 
Bootstrap support for key nodes is shown.   57 

 58 
We constructed a phylogeny from whole genome sequences to test the existing 59 

hypothesis of a single origin of live birth (1.7–0.06 Ma) (Fig. 1C) (5). Surprisingly, live-bearers 60 
formed two separate clades: one containing all L. saxatilis from Spain (hereafter ‘Spanish 61 
saxatilis’), and another including all other L. saxatilis (‘northern saxatilis’) that was sister to egg-62 
laying L.  arcana (Fig. 1E). The discordance between the inferred relationships and reproductive 63 
mode (also seen in PCAs, fig. S6) has several possible explanations, including two genetically 64 
independent transitions between egg laying and live birth. However, given the close relationships 65 
of these species, a single origin could have been followed by sharing of causal alleles between 66 
lineages via gene exchange and selection (11). In this case, we would expect genealogies for loci 67 
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causing live birth to be strongly discordant from the genome-wide tree, with samples grouping 68 
by reproductive mode (9). 69 

With this expectation in mind, we used topology weighting to identify genomic regions 70 
associated with reproductive mode. Specifically, we divided the genome into non-overlapping 71 
100 SNP windows (mean size 5.8 kb, fig. S7), and calculated topology weights (10) for each 72 
window by iteratively sampling subtrees (Fig. 2A). Because we have four groups, each sampled 73 
subtree must fit one of three topologies (Fig. 2C, fig. S8): (i) the background topology, Tb, 74 
observed in our genome-wide analysis, (ii) the reproduction topology, Tr, where samples cluster 75 
by mode, and (iii) the control topology, Tc, which is of no specific interest except that it provides 76 
a control for distinguishing incomplete lineage sorting (ILS) from other processes that cause 77 
genealogical discordance. We took the novel approach of analyzing the joint distribution of 78 
topology weights in a ternary plot (Fig. 2A) and used simulations to understand how different 79 
factors shape the ternary distribution of weights (Fig. 2B; Supplementary text, fig. S8—S15; 80 
tables S3 & S4). 81 

 82 
Figure 2. Topology weighting reveals genomic regions associated with reproductive mode. (A) For each 83 
window, we inferred a full tree including all haplotypes, and then sampled and classified 10k ‘subtrees’ by randomly 84 
picking one haplotype per group. Topology weights are the proportions of each topology among all subtrees. 85 
Windows were then plotted in a ternary plot based on their topology weights. (B) Simulated distributions of weights. A 86 
greater opportunity for lineage sorting (i - iii) biases the distribution toward the topology that matches the 87 
demographic history. Incomplete lineage sorting yields genealogies that are a better fit to one of the discordant trees, 88 
but the distribution is always symmetrical between the left and right half triangles. Additional factors, including gene 89 
flow, create a bias toward one of the discordant genealogies (panels iv - vi). (C) Possible topologies and the empirical 90 
distribution of weights for the 154,971 windows. Hexagonal bins are colored according to window count. (D) Counts 91 
of windows in the left and right half triangles, with the asymmetry quantified using DLR. Further division into sub-92 
triangles reveals left-right asymmetry throughout the distribution. Asterisks indicate significant asymmetry between 93 
corresponding left- and right-sided sub-triangles. (E) Distributions of weights > 0.7.  94 
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We expected the empirical distribution of weights to be biased toward Tb, because 95 
lineage sorting results in concordance between the demographic history and underlying gene 96 
trees (11) (Fig. 2B). However, the observed bias was only slight (Tb = 0.380, Tc = 0.310, Tr = 97 
0.308), with just 62 of ~155,000 genomic regions perfectly fitting Tb (i.e., Tb = 1) (Fig. 2C). 98 
Instead, the bulk of the distribution fell close to the center of the triangle, revealing extensive ILS 99 
due to rapid diversification relative to the effective population size (11, 12). 100 

We found substantial left-right asymmetry in the distribution of weights (Fig. 2D). Such a 101 
bias is not expected to arise from ILS, because there is an equal chance that a given gene tree 102 
will more closely resemble either alternative topology (Fig. 2B) (11). We detected asymmetry 103 
using a new statistic, DLR (Fig. 2D, fig. S16, table S5). A genome-wide test, performed by 104 
calculating DLR between the two halves of the triangle, revealed a 3.4% excess of windows 105 
shifted toward the control topology (DLR = 0.034, permutation test p = 1e-5). DLR calculated 106 
between analogous left- and right-side sub-triangles, revealed that this asymmetry was driven by 107 
an excess of trees with a small bias toward Tc (table S5; fig. S17). Further exploration showed 108 
that this bias is due to several previously identified chromosomal inversions, where one 109 
arrangement is more common in Spanish L. saxatilis and L. arcana, and the other is more 110 
common in L. compressa and Northern L. saxatilis (DLR for colinear regions = -0.007, p = 0.074) 111 
(Supplementary text; figs. S18—S20, table S6). 112 

Much stronger asymmetry was observed between the extreme left and right sub-triangles, 113 
corresponding to windows that strongly fit one of the alternative topologies (Fig. 2D). However, 114 
the asymmetry was in the opposite direction to the genome-wide pattern, with a large excess of 115 
windows strongly biased toward the reproduction tree compared with the control tree (Tr  > 0.7 = 116 
1151 windows vs. 461 for Tc; DLR = -0.43, p = 1e-5). A total of 88 windows perfectly fit the 117 
reproduction topology (i.e., Tr = 1), compared with 0 windows that perfectly fit the control 118 
topology (DLR = 1.00, p = 1e-5; table S6). 119 

Although neutral gene flow can generate strong asymmetry under some circumstances, 120 
we are unable to explain the observed Tr bias without invoking natural selection. We found 121 
strong additional evidence for live-bearer-specific positive selection in these regions (Fig. 3). 122 
First, window-based estimates of nucleotide diversity (π) in live-bearers decreased substantially 123 
with increasing Tr weight (Fig. 3A). We found no such relationship in egg-layers. Among 124 
perfectly associated regions, 95% (84 of 88) showed reduced π in live-bearers (mean πlive-bearer = 125 
0.0029 vs πEgg-layer = 0.0065; paired Wilcoxon test, p = 1.313e-15; Fig. 3B, fig. S22), consistent 126 
with selection having purged diversity from live-bearing haplotypes (13). Although this pattern 127 
could in principle result from a live-bearer-specific demographic bottleneck, we can rule this out 128 
because live-bearers and egg-layers have similar levels of genome-wide diversity (mean π live-129 
bearer = 0.0065 vs. π Egg-layer = 0.0062; fig. S23). Further, relationships between π and the 130 
other weights (Ts and Tc) were weak, and similar for both groups, confirming that reduced π in 131 
live-bearers is specific to Tr rather than being a general feature of windows with extreme weights 132 
(fig. S24). The site-frequency spectra (SFS) and sample-size-corrected estimates of private 133 
alleles for perfectly associated regions provide further evidence for selection (Fig 3C & D; figs. 134 
S25—S28; table S9 & S10): the live-bearer SFS was strongly skewed toward rare variants 135 
(Tajima’s D = -1.89, 95% CIs -1.77 – -2.01; figs. S25 & S26), the majority of which (80%) were 136 
private to the group. Both results are expected during the phase when diversity is recovered by 137 
mutation after a selective sweep (14). In contrast, the SFS for egg-layers was much closer to the 138 
neutral expectation (Tajima’s D = -0.24, 95% CIs -0.037 – -0.437), with polymorphic sites being 139 
2.14 times more abundant in egg-layers after accounting for the difference in sample size. 140 
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 141 
Figure 3. Evidence for positive selection on haplotypes associated with live birth. (A) Relationship between π 142 
and Tr for both reproductive modes. Triangles show genome-wide π. Violin plots show the distributions of π for 143 
windows where Tr = 1, with most showing lower diversity in live-bearers. Letters show mean values of π for egg-144 
layers and live-bearers. (B) Folded SFS for each mode in perfectly associated regions, projected at the same sample 145 
size for comparison. (C) Estimates of Tajima’s D with 95% CIs for perfectly associated regions. (D) Unrooted trees for 146 
example windows where Tr = 1. (E) Variation across two example contigs that contain a window where Tr = 1 (span 147 
of the orange box). The tree associated with each region is shown. Top panel: FST in 3kb sliding windows (30 bp 148 
step). TrARG shows the results of topology weighting applied to marginal trees obtained from inferred ancestral 149 
recombination graphs (ARGs). Purple arrows show fixed differences between modes. Middle panel: π and dxy in 150 
sliding windows. Bottom panel: traces of the time to the most recent common ancestor (TMRCA) obtained from ARG 151 
inference. Bold lines are the median estimates and envelopes the 95% CIs. The red box shows the inferred length of 152 
the core haplotype block associated with live birth. 153 

 154 
We characterized footprints of selection within contigs to more accurately estimate the 155 

number and size of candidate regions (Fig. 3F). The 88 perfectly associated windows mapped to 156 
50 contigs in our assembly (mean 1.7 ± sd 1.5 windows per contig; table S8). The regions were 157 
narrow, mostly spanning less than 20 kb (mean 12 kb ± sd 14.4 kb). Sliding-window analysis of 158 
each contig generally revealed clear peaks of allele frequency differentiation (FST) and sequence 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2023. ; https://doi.org/10.1101/2023.02.13.528213doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528213
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

6 
 

divergence (dxy) between the groups, as well as valleys of nucleotide diversity (π) in live-bearers 160 
(Fig. 3E; fig. S30). We also inferred ancestral recombination graphs (ARGs) for selected contigs 161 
to refine candidate regions (Fig. 3E). Unlike the trees for arbitrary windows, each marginal tree 162 
in an ARG corresponds to an inferred non-recombining segment of the genome (15). Thus, by 163 
applying topology weighting to the sequence of marginal trees, we were able to more precisely 164 
identify the segment of genome shared by all live bearing samples. In both cases, the core live-165 
bearing haplotype spanned less than 2 kb. Live-bearers showed much shallower coalescence in 166 
these regions than egg-layers, as expected following a selective sweep (Fig. 3E).   167 

The assignment of contigs to a genetic map revealed that associated windows are 168 
widespread across the genome, rather than co-localizing to one or a few genomic regions (Fig. 169 
4a; table S11). As expected for a polygenic trait, the number of mode-associated windows on 170 
each LG was strongly predicted by LG size (Tr > 0.7, r = 0.79, p < 0.0001; Tr > 0.9, r = 0.71, p < 171 
0.005). Associated windows were also widespread within linkage groups, in some cases with 172 
strong associations near opposite ends of the same LG (Fig. 4B).  173 

Candidate regions also showed strong enrichment of genes that are differentially 174 
expressed between live-bearing and egg-laying reproductive tissues. To identify differentially 175 
expressed genes (DEGs), we collected reproductively mature samples of L. arcana and northern 176 
L. saxatilis from a single location to control for environmental effects, and compared 177 
transcriptomes from whole reproductive systems (brood pouch vs jelly gland) and a non-178 
reproductive control tissue (foot tissues). We identified 1,598 DEGs, the majority of which 179 
showed differential expression between the reproductive tissues (1,297) (Fig. 4C). Of these, 180 
66.1% (858) showed higher expression in the brood pouch of live bearers (Fig. 4D). To test for 181 
the enrichment of DEGs in regions associated with reproductive mode, we binned each DEG 182 
according to the Tr score of its associated genomic region (Fig. 4D). We found that the 183 
proportion of reproductive mode DEGs strongly increased with increasing Tr weight 184 
(Spearman’s rho = 0.903, p = 9e-04).  185 

 Gene ontology analysis and functional annotation suggest that the transition to live-birth 186 
involved genes with diverse functions. Separate GO analyses conducted on a sequence-based 187 
gene set (574 genes in regions where Tr > 0.7) and expression-based gene set (1,450 188 
reproductive mode DEGs) yielded 37 enriched gene ontology terms, including transmembrane 189 
transport, calcium ion binding, and ion channel activity (Fig. S35). We examined the putative 190 
functions of the 22 genes found in both sets in more detail (Table S13). These included genes 191 
putatively associated with antibacterial activity (LPS-like; higher expression in brood pouch), the 192 
synthesis of mucin-type oligosaccharides (GALNT10-like; higher expression in brood pouch), 193 
the formation of connective tissue (FBN3-like; lower expression in brood pouch) and vascular 194 
tissue (SEMA5A-like; lower expression in brood pouch), and two secretary genes that are 195 
involved in egg-mass production in another marine snail (both with lower expression in brood 196 
pouch).  197 
  Taken together, our results show that the adaptive origin of live birth in Littorina is 198 
underpinned by a complex polygenic architecture, as in the only comparable analysis in Zootaca 199 
lizards (16). All of our live-bearing individuals carry the same set of core haplotypes across 200 
many independent genomic regions. Thus, while our genome wide analysis hinted at two 201 
independent origins of live birth, live-bearing alleles at each locus clearly have a single, recent 202 
origin, and then spread across space and genetic background. Rather than alleles arising in many 203 
different locations followed by the buildup of range-wide LD, we hypothesize that live bearing 204 
initially arose in a single location. Levels of nucleotide diversity (Fig. 3A, Fig. S24), private 205 
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alleles (Fig. S30), and estimates of Tajima’s D (Fig. S28), are consistent with the greater 206 
recovery of post-sweep variation in Spanish live-bearers, suggesting an origin near the southern 207 
extent of the current natural range where egg-layers are currently absent. Due to the complexity 208 
of the trait and number of associated loci, it is unlikely that live-birth arose in a single mutational 209 
step, as suggested by models of saltational evolution (17). Rather, live birth probably evolved 210 
gradually as a by-product of selection on related reproductive traits, such as embryo retention 211 
time (4). Live- bearing snails then eventually spread north, bringing them into contact with egg-212 
layers. Gene flow, was then sufficient to obscure this history, while selection was sufficient to 213 
maintain sets of haplotypes necessary for contrasting reproductive modes. Regardless of the 214 
precise details, our results show that key innovations can have a polygenic basis, and that their 215 
historical origins can be obscured by a complex demographic history.  216 
 217 
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Figure 4. Candidate regions are widespread across the genome and enriched for genes that are differentially 260 
expressed between reproductive systems. (A) The number of high Tr windows (Tr > 0.7) assigned to each of the 261 
17 L. saxatilis LGs. The circles show the expected number given the total assigned of windows to each LG. Asterisks 262 
indicate when the observed number is unlikely to be recovered by chance (p < 0.05). (B) Distribution of high Tr 263 
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windows across LGs. Vertical blue lines indicate map positions that are enriched for high Tr windows. (C) Number of 264 
genes that showed differential expression (DE) and the number of DE genes in each expression class. (D) Clustering 265 
of reproductive tissue libraries based on patterns of expression. (E) The proportion of genes in each DE class after 266 
binning each gene according to the Tr weight.  267 
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