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SUMMARY

Deterministic selection forces operating at a modifier level within a population
lead to the establishment of systems of sex-determination which, under a
variety of natural conditions, induce sex-ratios close to 1 : 1.

1. Sx-itrio AND SEX-DETERMINATION—THE FISHERIAN PRINCIPLE AND ITS

LIMITATIONS

THE problem of how a certain Sex-ratio is maintained in a given population
has long attracted the attention of population biologists. Firstly, this
problem has been solved in a parallel way by organisms of various groups.
Secondly, in many cases the empirical data concerned are relatively easy to
handle. Finally, the problem connects features at population level with
cytological features of the individual—problems concerning sex-ratio are
closely related to problems of sex-determination. In this context, sex-deter-
mination is used in its most general connotation as any division of a re-
combinant population into two self-incompatible groups. For example,
when sex is determined exclusively by the XY or XO system without any
meiotic drive or gametic selection, a sex-ratio of 1 : 1 is manifestly established
within one generation. However, this may not be the case for other systems
of sex-determination (e.g. see White, 1954; Crew, 1954; Bacci, 1965).
Moreover, significant deviations from a sex-ratio of 1 : 1 are theoretically
possible and have been empirically recorded even in populations in which
sex is determined by the XYsystem (e.g. Parkes, 1925; Sturtevant and Dob-
zhansky, 1936; Dobzhansky, 1937; Humphry, 1945; Wallace, 1948; Dunn,
1956, 1964; Morton, Chung and Mi, 1967). A classic question, dating
back to Darwin (1859), see also Fisher (1958), is thus: why are sex-ratios
close to 1 : 1 so common in nature? The question is of special interest since,
in many natural situations, a surplus of females seem to be advantageous for
the general fertility of the population. Moreover, a system determining a
fixed sex ratio, especially 1 : 1, may be disadvantageous for the " economy"
of the population when compared with more flexible systems, as the haploid-
diploid one (see White, 1954, p. 279).

Technical explanations, based on any specific structure of a given system
of sex-determination, common in nature though this system may be, are
unsatisfactory on a theoretical level, since they do not explain why the system
in question is so common. On the same basis, it is hard to accept an explana-
tion based on a manifestation of the theoretical phenomenon that "most"
imaginable systems, or at least the simplest ones, lead to the commonly
observed sex ratio (Scudo, 1964). Actually, natural selection for statistically
"uncommon" features is believed by most biologists to be the main source
of evolutionary progress in nature.
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A more general argument, attempting to be independent of the system,
is given by Fisher (1958, p. 158) and his followers (see Shaw, 1958; Bodmer
and Edwards, 1960; Kolman, 1960; Edwards, 1960). To summarise this
argument, let us consider three successive generations of a dioecious popula-
tion. Suppose that the parents in the first generation produce n1 male and

2 female-offspring to form the parents in the second generation. These, in
turn, give birth to W offspring of the third generation, either males or females.

Since, independently of the mating system, any offspring in the third genera-
tion has exactly one male and one female parent, it is clear that any male
born in the second generation will have an average of X/n1 offspring in the
third generation; any female in the second generation will have an average

of J%T/n2 offspring. (Note that these averages include potential parents which
fail to reach maturity). Now, to complete the argument, compare individual
parents of the same sex in the first generation, which have the same total
number of direct offspring, say m, but with different numbers of male off-
spring. If x is the number of male offspring and m —x the number of female
offspring born to such a parent, then this parent's expected number of third-
generation descendants is:

N N mN /i i\x— +(m—x)— = — — —jNx.
n2 n2 \fli fl2/

Obviously, this is either an increasing or a decreasing function of x, depending
on whether the proportion of male offspring in this population is less than
or more than one-half respectively, i.e. whether n1 <n2 or n2 <n1. Therefore,
for genotypes of the same fitness (i.e. having the same expected number of
viable direct offspring), the expected number of descendants to be born in
the third generation is increasing with any intrinsic tendency for either sex
to produce more offspring of the sex which, at the moment, is rare. With
the tacit assumption that male and female parents transfer the same amount of genetic
information to their progeny, this basic argument demonstrates a quite universal
mechanism of selection operating toward a sex-ratio of 1 : 1. However, a
more detailed consideration of the genetic structure of inheritance in a
diploid population raises at least two crucial objections to the Fisherian
argument.

The first objection raised by Haldane and Jayakar (1964) and later
further developed by Hamilton (1967) (see also Wallace, 1948), stems
from the possible inequality in the amount of relevant genetical material,
transferred to the next generation through parents of different sexes.
Here, by relevant we mean any genetical information that may affect the
sex ratio. Actually, this is the situation whenever some relevant genetical
information is located in a sex-linked locus. An important example,
described by Hamilton (1967), occurs in an XI system when male gametes
carrying a mutated I' chromosome become more successful than male
gametes carrying the I chromosome in fertilising the available female-
gametes. In this situation it is readily shown that without continuing
availability of sex-ratio modifiers (see the discussion) the "aggressive" I'
chromosome will be established in the population, resulting in an increased
frequency of males. The same phenomenon occurs when an aggressive X'
chromosome is introduced into the population, except that in this case, its
establishment in the population is slower. The extensively studied example
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is the female producing Xr chromosome in Drosophila pseudoobscura (Sturtevant
and Dobzhansky, 1936; Wallace, 1948).

In both cases, namely of a male and of a female producing X chromosome,
the danger that the population will become unisexual and thus become
extinct, has been pointed out by many authors (e.g. Wallace, 1948; Haldane
and Jayakar, 1964; Hamilton, 1967). Hamilton first suggested that the
inactivation of the I chromosome is a common cytological feature which
prevents this possibility. A more complicated mechanism based on kin-
selection has been suggested by Hamilton as preventing the establishment of
the absolutely aggressive X chromosome. Note, however, that with the
establishment of a moderately aggressive X chromosome, any frequency of
males between 0 and .- may be maintained, sometimes for the apparent
advantage of the entire population, at least in terms of fertility. The rarity,
though not absence, of this phenomenon is thus hard to explain on the basis
of either kin-selection or group selection.

A model developed by Edwards (1961) explains, on a basis of differences
in viabilities, the existence of a polymorphism between a normal X and a
female producing Xr chromosome in Drosophila pseudoobscura. The model
indeed predicts significant deviations from the Fisherian sex ratio. However,
unlike the model of Hamilton, Edwards' model does not suggest any general
mechanism preventing an ultimate fixation of a female (or male) reproducing
chromosome, when such a mutated chromosome has no harmful effect on
the viability of at least some of its carriers.

Another objection to the generality of the simple Fisherian argument, as
described above, stems from its neglecting possible effects of recombinations
within the system of sex-determination. Thus, in some systems wherein sex
is determined by two or more loci with a positive rate of recombination
between them (or, equivalently, by addition of sex-influencing loci to the
XI system), the existence of a stable equilibrium with a sex ratio different
from a I : 1 was suggested by Scudo (1964) and verified by Karlin and Gasko
(personal communication). Furthermore, Karlin and Gasko have demon-
strated a large variety of two-locus systems in which sex-ratios different from
1: 1 are to be stably maintained.

In this work we are mainly interested in the question of why, despite the
theoretical limitations of the Fisherian principle as mentioned above, such
a principle seems to work in a rather wide variety of situations. In other
words, we are interested in the question of why the genetical prerequisites for
the Fisherian principle are valid in most natural systems of sex-determination.
Employing essentially Fisherian methods of analysis on a modifier level, we
thus attempt to show that forces within the population tend to operate
toward the establishment of such systems which eventually determine a sex-
ratio of 1: 1.

More specifically, it is likely that the various systems of sex-determination,
which are sometimes different from one species to another, are themselves
determined by genetical factors which we will refer to as modifiers. If so,
these factors may be, in turn, subject to selection forces within the population
(see, for comparison Karlin and McGregor, 1972; Eshel, 1972). Moreover,
while systems of sex-determination can be quite complicated a-priori, it is
unlikely that very many of them compete within the same population.
Actually, one may conceive, at the most, a single mutation in a given
modifying locus, introducing one or (in a diploid population) two modified
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systems. In this case it is shown that selection within the population always
favours modifying alleles which determine sex ratios which are the closest
possible to 1: 1, independent of the optimal sex ratio for the existence of the

population (for a different opinion see Verner, 1965).

2. FISHERIAN SELECTION OVER MUTABLE SYSTEMS, A BIOLOGICAL SET-UP or

THE MODEL AND BASIC RESULTS

In this section we suggest a model for modifications in a diploid sex-
determination system caused, one at a time, by a single mutation A—*a in a
single modifying locus which is not sex linked. Each of the modifying types
AA, Aa, or aa determines a different system of sex-determination, possibly
with a different sex-ratio intrinsically determined by the modified system.
The frequency M of males in the entire population is then a weighted average
of the frequencies of males determined by the different systems.

More specifically, let cc, $ and y be the frequencies of males within the
determined systems AA, Aa and aa respectively. Let p11, p21, p31 be the
frequencies of the types AA, Aa and aa among males, p12. p22, p32 their
frequencies among females. Set p1 = p11 + 4-p21, p2 = p12+ p22; q = 1 —p1,
i = 1, 2. p1 and p2 are the frequencies of the gene A among males and females
respectively. Finally, assume that all males and females mate randomly,
regardless of what genetical factors affect their sexes. If fitness-selection does
not operate on the modifying loci we get, after one generation the frequencies
in table 1.

TABLE 1

Frequencies after one generation

Genotype AA Aa aa

Frequency among newborn
offspring pip5 pjq2+p,q1 q1q,

Frequency among newborn P y
males MPIP2 M (p5q5+p5q1)

Frequency among newborn 1— 1—fl
females l—IvI' 1— M (p1q2+p2q1) 1— M q1q2

where

M = M(p1, P2) = ocp1p2+$(p1q2+p2q1)+yq1q2

=(cc—2f3+y)p1p2+($—y)(p1+p2)+y (2.1)

is the frequency of males in the population. If 2/3 cc+ y, (2.1) determines
a symmetric hyperboloid over the (p1, p2) plane. In the special additive
situation 2$ = cc + y, this degenerates to a plane in the space.

From the second generation on, the population is uniquely determined by
the gene-frequencies p1 and p2 of the A-allele in the previous generation. It
follows immediately from table 1, that the transformation from the gene
frequencies (p1, p2) in one generation to the gene-frequencies (p, p) in the
next generation is given by

= --
[cc_iipip

+ (Pi + P2)]
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P2
1 —M [fl_

)P1P2 + (Pi +P2)] =
1 —M V'

+P2
_MP]. (2.2b)

For a quite similar model, attempting to predict the portions of" expendi-
ture" wasted by hermaphrodites in producing male and female gametes,
the reader is referred to Scudo (1964). Having assumed similar quantitative
relations, the methods used here may be applicable to the model of Scudo.

For the transformation (2.2a-b) it will be shown that any stable fixed
point (j, P2) either determines a male frequency of one-half or else it is

symmetric ( = ) and minimises I M(p, p) — , the deviation of the
male frequencies in symmetric points from a half, at least in a local sense.
A stable fixed point 2) determining a sex ratio of 1: 1 need not be
symmetric, and if it is polymorphic, then in general it is not symmetric, i.e.
except for a special, degenerate situation, if a stable mixture of systems
determines a sex-ratio of 1 : 1, then it corresponds to different ratios of the
allele A in males and in females. More important, a monomorphic equilib-
rium (0, 0) or (1, 1) is stable if and only if it locally minimises the deviation
of male frequency from - (not only over symmetric points). As a special
case this means that any monomorphic system determining a sex ratio of 1 : 1
is stable with respect to any possible perturbation introduced by a modifier
which is not sex-linked. This, in conjunction with the fact that a sex-ratio
of exactly 1: 1 is determined by the simplest systems (Scudo, 1964), may
account for the predominance of these systems in nature. We will further
see that non-sex-linked modifiers are also likely to stabilise such systems
against perturbations introduced in a sex-linked locus, and thus sex ratios
close to 1 : 1 (but not exactly I : 1) are expected to be common in a rather
wide variety of situations (see the discussion).

3. A MATHEMATICAL ANALYSIS OF THE MODEL

From (2.2) it follows that (1—M)p +Mp = P1+P2• At equilibrium:

(M—)p1 = (M—)p2. (3.1)

We thus readily get:

Corollary 1. There can possibly be two kinds of equilibrium points:

(i) Symmetric equilibria with p1 =p2 = p' say.
(ii) Equilibrium points (, ) with M(1, =

We start by analysing the symmetric case. From (2.1) and (2.2a) with

the postulate P = P2 = p'1 = p'2 = p we obtain:

(x—fl)p2+/3p
(3.2)

(—2f3+y)p2 +2(fi—T)p+y

the denominator being positive for all 0 p 1.
The two solutions p = 0 and P = 1 determine the trivial equilibria,

corresponding to fixation of the a and the A gene respectively. If 2/3 c + y,
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the equation (3.2) has a third solution not necessarily inside the unit

square
(.$)

. (3.3)(— $) — (v —

Note that with the assumption of non-additivity 2$ c+ y, (p*,p*) is the
centre of the hyperboloid z = M(x,y). In this case M may be written as

M = (c_2$+y)(pj_p*)(p2_p*)+M* (3.4)
where

M* = M(p*, p*) = cy$2
(3.5)

—2$ + y

Finally 0<p* < 1 (and thus (p*, p*)) is a symmetric polymorphism of
modifiers if either /1> cc, y or $< cc, y.

If $>cc, y ($<cc, y) then both M(0, 0) = y and M(I, 1) = cc are local
minima (maxima) of M(p1, 2) over the unit square (not only over symmetric
points) and M(p*, p*) M* is a global maximum (minimum) of M(x, x)
on the main diagonal. The former statement follows from the fact that

M(0, 0) = M(0, 0) =

-—M(i, i)=±M(1, i)=cc—/J.Pi
To check the stability of the corner (0, 0) we examine the corresponding

matrix of linear (local) analyses corresponding to (2.2). If 0< y < 1 we
readily obtain

A(0, 0) = (3.6)
1—fl i—fl

i—v i—v

The two eigenvalues of this matrix are

= 0

— fl+y—2$y (3.7)
22— >0.

2y(l —y)

Itis easytoseethat22<l iff$< y<j-or /3> y>, and22 = 1 iffan equality
replaces one or more of the above inequalities. Finally, if y = 0 (but
cc>Oor/3>0) or y = 1 (but cc<1 or /3<1), instability ofthe corner (0,0)
is immediate. Hence we get:

Corollary 2a. The equilibrium (0, 0) is stable if

(3.8)
and only if

(3.8a)
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By symmetry we also get:

Corollcuy 2b. The equilibrium (1, 1) is stable if
I <I 13—+ and

onlyiflcc—+I J3—j.

In biological terms these two corollaries may be summarised in:

Corollary 2. A monomorphic system of sex-determination is locally
stable if and only if a small genetical perturbation in the modifying locus,
introducing a new system into the population, increases the deviation of the
frequency of males in the population from a half.

To check the stability of the third possible symmetric equilibrium
(p*, p*) we write the matrix of linear (local) analysis at this point

2M* 2M*
A(p*, p*) = (3.9)

1—13 1—13

1_M* 1_M*

where as we recall M* = M(p*,p*) = (ccy132)/(cc—213+ y) is the extreme
value of M on the main diagonal. The eigenvalues of this matrix are

= 0

2 — 2 f3+M*_2/3M*
(3.10)

2 —

2M*(1_M*)
>

22 < 1 if /3(1 — 2M*) > M* (1 — 2M*) or, equivalently if either

M*>max (-, /3) or M*<min (, /3).

Note that M*, as an extreme value of M(x, x), cannot lie between the values
cc = M(1, 1) and y = M(O, 0), and that M* is a weighted average of the
values cc, j3 and y. Therefore, M* > /3(M* </3) implies cc, y M* (cc, y M*)
with a sharp inequality if 0<p' < 1. Thus it follows that 22< 1 if either

(3.lla)
or

cc,y<M*.<. (3.llb)

In the first case M* = mm M(p, p),
in the second case

op 1
M* = max M(p, p).op 1

22 1 if either (3.lla) or (3.llb) holds as a weak inequality.
The following corollary is immediately implied.

Corollary 3. A symmetric polymorphism is stable if and only if it minimises
the deviation of the male frequency from one-half over all possible symmetric
populations. Here, by symmetric we mean a population with the same
allelic frequencies among males as among females.

Recalling that any fixed point of the process is either symmetric or corres-
ponds to a male frequency of one-half (Corollary 1), the last two corollaries
lead to:
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Corollary 4. A stable equilibrium with a male frequency different from
one-half can be maintained only if a male frequency of one-half is not
achieved for any symmetric population (p,p) (0 p 1).

With the assumption of global convergence, Corollary 4 indicates that if
a male frequency of one-half is achieved for some symmetric point (p, p),
then there should be a stable equilibrium p2), not necessarily symmetric,
with M(1, 2) = . Moreover, starting from any point which is not on the

corners (0, 0) or (1, 1) the process yields a limiting male frequency of one-
half.

To characterise the equilibrium points with M(1, 4-, let
us treat separately the additive case 2$ = c+ ' and the non-additive one
2$ cz+ y. In the non-additive case, we employ (3.4) to express the
hyperbola M 3- in the form

1 M
(pj_p*)(p2_p*) = 2

(3.12)—2$+y
where p and M* are defined in (3.3) and (3.5) respectively. The curve
M = -3- intersects the main diagonal p1 = p2 exactly once within the unit-
square 1ff c' — 3- is different in sign from '— 4-. It intersects the main diagonal
twice within the unit square if either , y <-3-<M* or c, y >4-> M*.

Under the condition M 4-,the equation p = p1 (withp determined
in (2.2a)), may be written

Pi = 2(oc—$)p1p2 +fl(p +P2). (3.13)
In the dominant situation where oc = $, this is the line

(l—$)pi = $P2. (3.13a)
If oc fi, (3.13) determines a negative hyperbola

(P1+ Y2— 1$ _ $(1-$)
(3.13b)\ 2(ce—$)J\ 2(cc—$)) 4(oc$)2

The centre of this hyperbola is either in the 2nd or in the 4th quadrant of the
plane, depending on whether oc > $ or oc <$ respectively. The equilibrium
points 2) with M(1, 2) 4- are exactly all intersections of the curves
(3.12) and (3.13).

It may be shown that the two curves never intersect within the unit

_______ l_M*square if <0. On the other hand, if 2 > 0, then the two

curves always intersect within the unit square. In this case there are at the
most two points of intersection. The proof is technical and will be omitted.
It is readily shown that except for the special case

2$(1—$) = oc(l—y)+y(l_oc)
(and, thus, M* = -3- and j = P2 = p*) the intersections are at asymmetric
points i

It remains to study the special situation of complete additivity 2$ = oc+ y
(x y). In this case we know that no symmetric polymorphism (p*, p*)
exists and the equation M(x, y) -3- corresponds to the real line

x+y=1-. (3.14)
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Without loss of generality assume > y. The line (3.14) then intersects
the unit square if

y<<c. (3.15)

Note that with the assumption 2fl = + y, c> y, (3.15) is also a necessary
and sufficient condition for instability of both corners (0, 0) and (1, 1).
Non-symmetric equilibria, if they exist, are exactly the intersections of
M(p1, p2) = 4- with the hyperbola

Pi = 2(c+fl)pjp2 +f3(p +pi) = (c—y)pjp2 + (i +P2). (3.13c)

It is easily verified that the condition (3.15) is a necessary and sufficient
condition for the existence of a solution in the square unit. The solution is

then unique, given by

= +y—2y—y

l—y— Jc+y—2

With the assumption of global convergence, the findings of this section
may be summarised in the following theorem.

(i) All fixed points of the process are either symmetric or determine a
sex-ratio of I 1. Except for the special case M* 4-, points of the second

type are not symmetric, corresponding to different gene-frequencies among
males and females.

(ii) Symmetric fixed points are stable if and only if they minimise the
deviation of male frequencies from one-half at least over symmetric points
and in a local sense. If they are monomorphic, they also locally minimise
the deviation over non-symmetric points. A symmetric stable polymorphism,
if it exists, globally minimises the symmetric deviation of the sex-ratio from
1: 1.

(iii) A stable (generally non-symmetric) fixed point determining a sex-
ratio of 1: 1 exists if and only if there is at least one symmetric population
(p, p) (generally not in equilibrium) with a sex-ratio M(p, p) = 4-.

(iv) If a monomorphic system of sex determination maintains a sex-ratio
of 1: 1, then it is stable with respect to all possible small perturbations which
are not determined by sex-linked modifiers.

(v) A monomorphic system determining a sex-ratio different from 1
is always unstable with respect to non-sex-linked modifiers which shift the
sex-ratio toward I : 1.

Despite the close similarity between Fisherian fitness-selection and the
process described here, not that the equivalent of Fisher's fundamental law
of fitness does not hold for Fisherian selection for a sex-ratio of 1 : 1, even
in the case of a single locus. Although the limit points of the iterated trans-
formation appear to minimise the deviation from a sex-ratio of 1 1, the
transformation (2.2) may temporarily increase this deviation, a fact which
makes the analysis of the global convergence complicated.
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For, suppose cc < < y, 2JJ cc + y. In this case, the equation M = 3-
determines a curve of points, only two of which may be fixed points. For all

other points on the curve (2.2) readily imply p'1 +p = Pi +P2 but
From (2.1) we thus get:

I M'—3- I = I cc—2fl+y II P'1PP1P2 1>0 = I M—3- I.

4. Discussior'

We have seen that, under the limitation of a fixed system of sex-
determination, the Fisherian principle of selection on the third generation
toward a sex-ratio of I : 1 does not always hold. The situation is different,
however, when we take into consideration the fact that the very system of
sex-determination is likely to be determined by genetical modifying factors.
These, when mutated, may alter the whole system and thus change the
sex-ratio determined in the population. In this case it has been shown that
in any locus which is not sex-linked, a modifying mutation is established if
and only if it shifts the induced sex-ratio toward 1: 1. This, in conjunction
with the simplicity of systems determining a sex-ratio of exactly 1: 1
(Scudo, 1964) may account for the fact that such systems are prevalent in so
many populations, presumably most of the time.

Actually, within the limitations of the model developed here, it appears
that once a system determining a sex-ratio of 1 : 1 is established, deviation
from this sex-ratio could occur only through mutation in sex-linked modifiers,
if these exist (Haldane and Jayakar, 1964). On the basis of this analysis,
however, one would expect such deviations to be of a temporal nature,
sooner or later being corrected by non-sex-linked modifiers.

Empirical hints for the dynamics of the process guaranteeing sex-ratios
close to 1: 1 in newborn offspring is suggested by recent findings indicating
significant deviations from the expected sex-ratio in the embryo stage in some
populations in which sex is apparently determined by the XI system and
sex-ratio is known to be close to 1 : 1. However, these findings are not yet

significant. (This includes human populations, see Crew, 1954; Stern, 1960;
White, 1965; Cavalli-Sforza and Bodmer, 1971.)

Note that kin-selection, as suggested by Hamilton (1967), may produce
the same effect as non-sex-linked modifiers, especially in extreme situations
in which a drastic deviation in sex-ratio immediately endangers the existence
of the population. In most situations, however, an explanation based on
kin-selection is not needed. On the contrary, a sex-ratio of approximately
1 : 1 is prevalent in many cases in which it is apparently far from being
optimal either for the survival of the population or its overall fertility.

I do believe, however, that kin-selection, as well as the neighbour effect
(Eshel, 1971) and, possibly, group selection (Wynne-Edwards, 1962) or
clone-selection (Eshel, 1972) are more important in explaining the few
examples in which sex-ratios significantly different from 1 : 1 are found. In
these cases, sex-linked modifiers may cause a temporal deviation from a sex-
ratio of 1: 1. If this deviation is advantageous for the group, it may provide
material for group selection which, in turn, could arrest any correcting effect
of non-sex-linked modifiers. This may also prove a plausible ad-hoc answer
to the crucial question raised by Williams (1966) in objection to over-
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estimation of the importance of group-selection in nature; that is, how an
individually disadvantageous feature can possibly be established in any group
so that group-selection can begin to operate.
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