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ABSTRACT
Marker-assisted backcrossing is routinely applied in breeding programs for gene introgression. While

selection theory is the most important tool for the design of breeding programs for improvement of
quantitative characters, no general selection theory is available for marker-assisted backcrossing. In this
treatise, we develop a theory for marker-assisted selection for the proportion of the genome originating
from the recurrent parent in a backcross program, carried out after preselection for the target gene(s).
Our objectives were to (i) predict response to selection and (ii) give criteria for selecting the most
promising backcross individuals for further backcrossing or selfing. Prediction of response to selection is
based on the marker linkage map and the marker genotype of the parent(s) of the backcross population.
In comparison to standard normal distribution selection theory, the main advantage of our approach is
that it considers the reduction of the variance in the donor genome proportion due to selection. The
developed selection criteria take into account the marker genotype of the candidates and consider whether
these will be used for selfing or backcrossing. Prediction of response to selection is illustrated for model
genomes of maize and sugar beet. Selection of promising individuals is illustrated with experimental data
from sugar beet. The presented approach can assist geneticists and breeders in the efficient design of
gene introgression programs.

MARKER-ASSISTED backcrossing is routinely ap- the expected donor genome proportion in generation
plied for gene introgression in plant and animal BCn is 1/2n�1. In backcrossing with selection for the

breeding. Its efficiency depends on the experimental presence of a target gene, Stam and Zeven (1981) de-
design, most notably on the marker density and posi- rived the expected donor genome proportion on the
tion, population size, and selection strategy. Gene intro- carrier chromosome of the target gene, extending ear-
gression programs are commonly designed using guide- lier results of Bartlett and Haldane (1935), Fisher
lines taken from studies focusing on only one of these (1949), and Hanson (1959) on the expected length of
factors (e.g., Hospital et al. 1992; Visscher 1996; Hos- the donor chromosome segment attached to the target
pital and Charcosset 1997; Frisch et al. 1999a,b). In gene. Their results were extended to a chromosome
breeding for quantitative traits, prediction of response carrying the target gene and the recurrent parent alleles
to selection with classical selection theory is by far the at two flanking markers (Hospital et al. 1992) and to
most important tool for the design and optimization of a chromosome carrying several target genes (Ribaut
breeding programs (Bernardo 2002). Adopting a se- et al. 2002).
lection theory approach to predict response to marker- Hill (1993) derived the variance of the donor ge-
assisted selection for the genetic background of the nome proportion in an unselected backcross popula-
recurrent parent promises to combine several of the tion, whereas Ribaut et al. (2002) deduced this variance
factors determining the efficiency of a gene introgres- for chromosomes carrying one or several target genes.
sion program into one criterion. The covariance of the donor genome proportion across

In classical selection theory, the expectation, genetic a chromosome and the proportion of donor alleles at
variance, and heritability of the target trait are required, markers in backcrossing was given by Visscher (1996).
as well as the covariance between the target trait and In their derivations, these authors assumed that the
the selection criterion in the case of indirect selection donor genome proportion of different individuals in a
(Bernardo 2002). In backcrossing without selection, backcross generation is stochastically independent. This

applies to large BCn populations only (a) in the absence
of selection in all generations BCs (1 � s � n) and (b)
if each BCn�1 (n � 1) individual has maximally one BCnThis article is dedicated to Professor Dr. H. F. Utz on the occasion

of his 65th birthday. His teaching of selection theory was most instru- progeny (comparable to the single-seed descent method
mental to the authors. in recurrent selfing). Visscher (1999) showed with sim-

1Corresponding author: Institute of Plant Breeding, Seed Science, ulations that the variance of the donor genome propor-and Population Genetics, University of Hohenheim, 70593 Stuttgart,
Germany. E-mail: melchinger@uni-hohenheim.de tion in backcross populations under marker-assisted se-
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TABLE 1

Notation

c No. of chromosomes
y � �1�i�c yi y, total genome length; yi , length of chromsome i.

t � �1�i�cti t , total no. of target loci; ti , no. of target loci on chromosome i.

m � �1�i�cm i m , total no. of marker loci; mi , no. of marker loci on chromosome i.

l � �1�i�cl i l , total no. of loci; l i � mi � ti , no. of loci on chromosome i.

xi,j Map distance between locus j on chromosome i and the telomere.
M Set consisting of the indices (i , j) of marker loci M � {(i , j)|xi,j is the map position of a marker

locus}.
T Set consisting of the indices (i , j) of target loci T � {(i , j)|xi,j is the map position of a target

locus}.
L � M � T Set comprising the indices (i , j) of target and marker loci .
di,j Length of chromosome interval j on chromosome i in map distance. For detailed definition

see Equations 16–18.
J Set containing all indices (i , j) of chromosome intervals

J � {(i , j) | i � 1 . . . c, j � 1 . . . li � 1}.
Gn,i,j , gn,i,j Indicator variable taking the value 1 if the locus at position xi ,j carries the donor allele in generation

BCn and 0 otherwise. Realizations are denoted by gn,i,j .
Gn , gn Random vector denoting the multilocus genotype of a BCn individual, Gn � (Gn,1,1 , Gn,1,2 , . . . ,

Gn,1,l1, . . . , Gn,c,lc ). Realizations are denoted by gn.
Zn , random variable denoting the donor genome proportion across the entire genome; Zi,j , random

Z � �(i,j )�J

yi

y
Zi,j variable denoting the donor genome proportion in the chromosome interval corresponding

to di,j .a

Zi , Random variable denoting the donor genome proportion on chromosome i .a

Zi � �1�j�li�1

di,j

yi

Zi,j

B � �(i,j )�MGn,i,j Random variable counting the number of donor alleles at marker loci.

a Random variables Z , Z i , and Z i,j refer to the homologous chromosomes originating from the nonrecurrent parent.

lection is significantly smaller than that in unselected map of the target gene(s) and markers, and (c) the
marker genotype of the individuals used as nonrecur-populations of stochastically independent individuals.

Hillel et al. (1990) and Markel et al. (1997) employed rent parents for generating backcross generations BCs

(s � n).the binomial distribution to describe the number of
homozygous chromosome segments in backcrossing.
However, Visscher (1999) demonstrated with simula-

THEORYtions that the assumption of binomially distributed chro-
mosome segments results in an unrealistic prediction For all derivations we assume absence of interference
of the number of generations required for a marker- in crossover formation such that the recombination fre-
assisted backcross program. Hence, the expectations, quency r and map distance d are related by Haldane’s
variances, and covariances are known for backcrossing (1919) mapping function r(d) � (1 � e�2d)/2. An over-
without selection, but these approximations are of lim- view of the notation used throughout this treatise is
ited use as a foundation of a general selection theory given in Table 1.
for marker-assisted backcrossing. In the following we derive (1) the expected donor

The objective of this study was to develop a theoretical genome proportion of a backcross individual condi-
framework for marker-assisted selection for the genetic tional on its multilocus genotype gn at marker and target
background of the recurrent parent in a backcross pro- loci, (2) the expected donor genome proportion of a
gram to (i) predict response to selection and (ii) give backcross population generated by backcrossing an indi-
criteria for selecting the most promising backcross indi- vidual with multilocus genotype gn to the recurrent par-
viduals for further backcrossing or selfing. Our approach ent, and (3) the expected donor genome proportion
deals with selection in generation n of the backcross of the w th-best individual of a backcross population
program, taking into account (a) preselection for the of size u generated by backcrossing an individual with

multilocus genotype gn to the recurrent parent.presence of one or several target genes, (b) the linkage
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Probability of multilocus genotypes: We derive the Selection of individuals with a low number of donor
alleles: We determine the distribution of donor allelesprobability that a BCn individual has multilocus geno-

type gn under the condition that its nonrecurrent parent in the individual carrying (1) all target genes and (2) the
w smallest number of donor alleles among all carriers ofhas multilocus genotype gn�1. Let
the target genes (subsequently referred to as the w th

I � {(i , j)|(i , j) � L , gn�1,i,j � 1} (1) best individual).
Assume that v out of u individuals of a backcross familydenote the set of indices, for which the locus at position

carry all target genes. Then, the distribution of donorxi,j was heterozygous in the nonrecurrent parent in gen-
alleles in the w th best individual among the v carrierseration BCn�1 (F1 � BC0). The elements of I are ordered
of the target gene is described by the w th order statisticaccording to
of v independent random variables with distribution

(i �, j �) ≺ (i , j) iff (i � � i) or [(i � � i) and ( j � � j)]. function F(b). Its distribution function is
(2)

Fw:v(b) � �
v

i�w
�v
i �F(b)w[1 � F(b)]v�w (11)The conditional probability that the BCn individual has

the multilocus marker genotype gn is
(David 1981). Weighing with the probability that ex-

P(Gn � gn|gn�1) � �
(i,j )�I

{�i,j r*i,j � (1 � �i,j)(1 � r*i,j )}, actly v individuals carry the target gene yields the distri-
bution function of donor alleles in the w th best carrier(3)
of all target genes in a BCn family of size u,

where
Hw,u(b) � �

0�v�u

P(V � v)Fw:v(b) (12)

�i,j � �
gn,i,j for j � 1

|gn,i,j � gn,k,l | otherwise (4)
with

with
P(V � v) � �u

v �pv(1 � p)u�v, (13)
(k, l) � max{(i �, j �)|(i �, j �) � I , (i �, j �) ≺ (i , j)} (5)

where the probability p that an individual carries alland
target genes is

r*i,j � �
1⁄2 for j � 1
r(xi,j � xk,l) otherwise.

(6) p � �
(i,j )�T

(1 � r*i,j) (14)

and r*i,j is calculated analogously to Equations 5 and 6Distribution of donor alleles at markers: Consider a
but replacing I with T.BCn family of size u , generated by backcrossing one

The probability that the w th best individual carries bBCn�1 individual to the recurrent parent. Let
donor alleles is

B � �
(i,j )�M

Gn,i,j (7)

hw,u(b) � �Hw,u(b) for b � 0
Hw,u(b) � Hw,u(b � 1) for b � 0.

(15)
denote the number of donor alleles at the marker loci
of a BCn individual. The probability that an individual

Distribution of the donor genome proportion: In thethat carries all target genes is heterozygous at exactly b
following, we investigate the homologous chromosomesloci is
of backcross individuals that originate from the nonre-
current parent. We divide the chromosomes into non-

f(b) � Pt(B � b) �
�gn��n,t,b

P(Gn � gn |gn�1)

�gn��n,t
P(Gn � gn |gn�1)

, (8) overlapping intervals,

where
(ai,j , bi,j) � �

(0, xi,j) for j � 1

(xi,j�1, xi,j) for 1 � j � l i

(xi,li , yi) for j � l i � 1
(16)

�n,t � �gn |t � �
(i,j )�T

gn,i,j � (9)

with lengthdenotes the set of all multilocus marker genotypes car-
rying all target genes and di,j � bi,j � ai,j (17)

�n,t,b � �gn |gn � �n,t ,b � �
(i,j )�M

gn,i,j � (10) for each

(i , j) � J � {(i , j)|i � 1 . . . c , j � 1 . . . l i � 1}. (18)
denotes the set of all multilocus marker genotypes carry-
ing all target genes and the donor allele at exactly b marker Consider a BCn individual with genotype gn of which

the genotype of the nonrecurrent parent in generationsloci. The respective distribution function is F(b) � Pt

(B � b). BCs (1 � s � n) was gs . We first derive the expected
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TABLE 2 mologous chromosomes originating from the nonrecur-
rent parent of a BCn individual with genotype gn can thenProbability P(G*s,i,k � 1|g*s�1,i,k � 1) depending on flanking
be determined asmarker genotypes gs�1,i,j�1, gs�1,i,j , gs,i,j�1,

and gs,i,j for 1 � j � l � 1

z(gn) � �
(i,j )�J

di,j

y
E(Zi,j). (24)

gs,i,j�1, gs,i,j
gs�1,i,j�1,
gs�1,i,j 1, 1 1, 0 0, 1 0, 0 Response to selection: We define response to selec-

tion R as the difference between the expected donor
genome proportion 	 in the selected fraction of a BCn

1, 1
(1 � r*1 )(1 � r*2 )

1 � ri,j

a
(1 � r*1 )r*2

ri,j

r*1 (1 � r*2 )
ri,j

r*1 r*2
1 � ri,j

population and the expected donor genome portion
	� in the unselected BCn population:1, 0 0 (1 � r*1 ) 0 r*1

0, 1 0 0 (1 � r*2 ) r*2 R � 	n � 	�n . (25)0, 0 0 0 0 1/2

We consider a BCn family of size uq generated by back-a r*1 � r(x*i,k � xi,j�1) and r*2 � r(xi,j � x*i,k).
crossing one BCn�1 individual of genotype gn�1,q . With
respect to this family

donor genome proportion E(Zi,j) of a chromosome in-
terval delimited by (ai,j , bi,j). Assume at first a finite Ew,uq

(z(Gn |gn�1,q)) � �
m

b�0
�hw,uq

(b) �
gn��n,t,b

{P(Gn � gn |b, gn�1,q)z(gn)}�
number e of loci equidistantly distributed on the chro-

(26)mosome interval at positions x*i,1, . . . , x*i,e ; the corre-
sponding random variables indicating the presence of

denotes the expected donor genome proportion of thethe donor allele are G*n,i,1, . . . , G*n,i,e . The expected do-
w th best individual, wherenor genome proportion in the interval is then

P(Gn � gn |b, gn�1,q) �
P(Gn � gn |gn�1,q)

�gn��n,t,b
P(Gn � gn |gn�1,q)

. (27)E(Zi,j) �
1
e �

e

k�1

E(G*n,i,k). (19)

According to Hill (1993), who used results of Frank- We now consider p BCn�1 individuals with genotypes
lin (1977), Equation 19 can be extended to an infinite gn�1,q (q � 1, . . . , p)that are backcrossed to the recur-
number of loci at positions x*i,k : rent parent. Family size of family q is uq such that the

size of the BCn population is u � �quq . From family q ,
E(Zi,j) �

1
di,j

	
ai,j

bi,j

E(G*n,i,k)dx*i,k (20) the wq best individuals are selected such that the selected
fraction consists of w � �qwq individuals. We then have

with
	�n �

1
4 �

1�q�p
�uq

u
z(gn�1,q)� (28)

E(G*n,i,k) � P(G*n,i,k � 1)

� �
1�s�n

P(G*s,i,k � 1|g*s�1,i,k � 1). (21) and

The probability P(G*s,i,k � 1|g*s�1,i,k � 1) depends on the
	n �

1
2 �

1�q�p
�

1�j�wq

�1w Ej:uq
(z(Gn |gn�1,q))�. (29)

genotypes of the loci flanking the interval (i, j) in gener-
ations BCs�1 and BCs . For telomere chromosome seg-

Note that z(gn) refers to one set of homologous chromo-ments ( j � 1, j � l i � 1)
somes, whereas 	n and 	�n refer to both homologous
chromosome sets. This results in the factors 1⁄4 and 1⁄2 in

P(G*s,i,k � 1|g*s�1,i,k � 1) � �
(1 � r*) for (gs�1,i,j , gs,i,j) � (1, 1)

r* for (gs�1,i,j , gs,i,j) � (1, 0)

1/2 for (gs�1,i,j , gs,i,j) � (0, 0),
Equations 28 and 29.

Numerical implementation: Calculations for Equations
8 and 26 require enumeration of all realizations of the(22)
random vector Gn . For a large number of markers, a

where Monte Carlo method can be used to limit the necessary
calculations. Instead of enumerating all realizations of

r* � �r(xi,1 � x*i,k) for j � 1
r(x*i,k � xi,li ) for j � l i � 1. (23) Gn , a random sample of realizations, determined with

a random-walk procedure from the probability of occur-
rence of multilocus genotypes (Equation 3), can be usedFor nontelomere chromosome segments (1 � j � l i �
as basis for the calculations. The routines developed for1) the probability P(G*s,i,k � 1|g*s�1,i,k � 1) can be calcu-
implementing our theory are available in the softwarelated with the equations in Table 2.

The expected donor genome proportion on the ho- Plabsoft (Maurer et al. 2004).
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DISCUSSION d. The BCn population is generated by recurrent back-
crossing of unselected BCs (1 � s � n) populationsComparison to normal distribution selection theory:
of large size.Normal distribution selection theory can be applied to

e. No preselection for the presence of target genes wasmarker-assisted backcrossing by considering a BCn pop-
carried out in the BCn population under consider-ulation in which indirect selection for low donor ge-
ation.nome proportion Z is carried out by selecting individ-

uals with a low count B of donor alleles at markers. We illustrate the effects of these shortcomings and as-
Assuming a heritabiltiy of h 2 � 1 for the marker score sumptions with a model close to the maize genome
B , response to selection R can be predicted (Bernardo with 10 chromosomes of length 2 M, markers evenly
2002, p. 264) as distributed across the genome, and two target genes

located in the center of chromosomes 1 and 2.
R � ib

cov(Z , B)

√var(B)
, (30) For unselected BC1 populations and large numbers

of markers (e.g., 200), the normal approximation of
where ib is the selection intensity. the distribution of donor alleles fits very well the exact

Under the assumptions of (i) no selection in genera- distribution (Figure 1A). However, if only few markers
tions BCs (s � n) and (ii) no preselection for the pres- are employed, the discretization of the probability den-
ence of target genes in generation BCn , we have (appen- sity function of the normal distribution approximates
dix a, using results of Hill 1993 and Visscher 1996) only roughly the exact distribution (Figure 1B). In par-

ticular, for donor genome proportions �0.2, where se-
var(B) � m � 1

2n�2
�

1
22n�2 � lection will most likely take place, a considerable under-

estimation of the exact distribution is observed. This
results in an underestimation of the response to selec-

� 2 � �k
22n�2

�
1

2n�2 �
(i,j )�M

�
(i,j�)�M �

i,j

(1 � ri,j,j�)�, (31) tion when normal distribution selection theory is em-
ployed. The underestimation is even more severe if an

where order statistics approach for normal distribution selec-
tion theory is applied (Hill 1976), which takes the finitek � �

1�i�c

(mi � 1)2/2,
population size into account.

Due to the donor chromosome segments attached toM �i,j � {(i , j �)|(i , j �) � M , j � � j }, (32)
the target genes, the donor genome proportion in back-

ri,j,j � � r(xi,j � � xi,j), cross populations preselected for the presence of target
genes is greater than that in unselected backcross pop-and (appendix a)
ulations. This can result in an overestimation of the
response to selection, when employing the normal dis-cov(B , Z) � �

1�i�c

yi

y
cov(Gn,i,j , Zi) (33)

tribution selection theory and using 1/2n�1 as the popu-
lation mean of the donor genome proportion (Figure

with (Visscher 1996)
1C). Note, however, that an adaptation of the normal
selection approach should be possible by adjusting the

cov(Gn,i,j , Zi) �
1

4n�1yi
�

1�s�n
�ns � 1

2s
(2 � e�2sxi,j � e�2s(yi�xi,j)).

population mean with the expected length of the at-
(34) tached donor segment using results of Hanson (1959).

In marker-assisted backcross programs, usually a highFrom a mathematical point of view, applying normal
selection intensity is employed and only one or few in-distribution selection theory to marker-assisted backcross-
dividuals of a backcross population are used as non-ing has the following shortcomings:
recurrent parents for the next backcross generation.

a. The distribution of marker scores is discrete, but the This results in a smaller variance in the donor genome
normal approximation is continuous. proportion at markers compared with backcrossing the

b. The distribution of the marker scores is limited, but entire unselected population that is assumed by the nor-
the normal approximation is unlimited. mal distribution approach (Figure 1D). The result can

c. The relationship between marker score and donor ge- be a severe overestimation of the response to selection.
nome proportion of an individual is nonlinear (this The suggested exact approach overcomes the short-
can be shown by using Equation 20), but normal dis- comings and assumptions listed under a–e. In conclu-
tribution selection theory assumes a linear relation- sion, it can be applied to a much larger range of situa-
ship. tions than the normal distribution approach.

Comparison to simulation studies: Simulation studiesFrom a genetic point of view, the derivations (appen-
were successfully applied for obtaining guidelines fordix a) of variance and covariance presented for the
the design of marker-assisted backcrossing (Hospitalnormal approximation (Equation 30) are based on the

following assumptions: et al. 1992; Frisch et al. 1999b; Visscher 1999; Ribaut
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Figure 1.—Distribution of
the donor genome propor-
tion at markers throughout
the entire genome (compris-
ing homologous chromo-
somes originating from the
nonrecurrent parent and the
recurrent parent) calculated
with a normal approxima-
tion (solid line) and the ex-
act approach presented (his-
togram) for a model of the
maize genome. Diagrams are
shown for a BC1 population
without preselection for the
presence of target genes em-
ploying (A) 200 markers and
(B) 20 markers, for a BC1 pop-
ulation after preselection for
the presence of two target
genes located in the center
of chromosomes 1 and 2 em-
ploying (C) 80 markers, and
for a BC2 population after
preselection for the presence
of two target genes employ-
ing 80 markers (D). The BC2

population was generated by
backcrossing one BC1 indi-
vidual with donor genome
content 0.25.

et al. 2002). According to Visscher (1999), one of the One individual is selected as the nonrecurrent parent
of generation BC2.most important advantages of simulation studies is that

selection is taken into account, whereas previous theo- The expected response to selection for maize ranges
from �5% of the donor genome (20 markers, 20 plants)retical approaches yielded only reliable estimates for

backcrossing without selection. to 12% (120 markers, 1000 plants), and for sugar beet
it ranges from �7 to 15% (Figure 2). To obtain a re-Our approach solves the problem of using selected

individuals as nonrecurrent parents. With respect to two sponse to selection of �10% with 60 markers, a popula-
tion size of 180 is required in maize, corresponding toareas, however, simulation studies cover a broader range

of scenarios than the selection theory approach pre- �180/2 
 60 � 5400 marker data points (MDP). By
comparison, in sugar beet a population size of 60 issented: (i) Simulations allow the comparison of alterna-

tive selection strategies, while in this study we developed sufficient, resulting in only 30% of the MDP required
for maize. This result indicates that the efficiency ofthe selection theory approach for using the marker

score B as a selection index, and (ii) simulations allow marker-assisted backcrossing in crops with smaller ge-
nomes is much higher than that in crops with largercoverage of an entire backcross program, while we devel-

oped our approach only for one backcross generation. genomes. Stam (2003) obtained similar results in a sim-
ulation study.Both issues are promising areas for further research.

Prediction of response to selection: Prediction of re- Using �80 markers in maize (corresponding to a
marker density of 25 cM) or �60 markers in sugar beetsponse to selection with Equation 25 can be employed

to compare alternative scenarios with respect to popula- (marker density 15 cM) resulted only in a marginal in-
crease of the response to selection, irrespective of thetion size and required number of markers. We illustrate

this application by the example of a BC1 population using population size employed (Figure 2). Increasing the
population size up to 100 plants results in substantialmodel genomes close to maize (10 chromosomes of

length 2 M) and sugar beet (9 chromosomes of length increase in response to selection in both crops, and
using even larger populations still improves the ex-1 M). Markers are evenly distributed across all chromo-

somes and a target gene is located 66 cM from the telo- pected response to selection. In conclusion, increasing
the response to selection by increasing the number ofmere on chromosome 1. The donor of the target gene

and the recurrent parent are completely homozygous. markers employed is possible only up to an upper limit
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Figure 2.—Expected response to
selection throughout the entire ge-
nome (comprising homologous chro-
mosomes originating from the non-
recurrent parent and the recurrent
parent) and expected number of re-
quired marker data points (MDP)
when selecting the best out of u �
20, 40, 60, 80, 100, 200, 500, and 1000
BC1 individuals. The values depend
on the number of markers (20–120)
and on the number and length of
the chromosomes. Left, model of the
maize genome with 10 chromosomes
of length 2 M. Right, model of the
sugar beet genome with 9 chromo-
somes of length 1 M.

that depends on the number and length of chromo- donor genome proportion z(gn) (Equation 24) of the
backcross individual and (2) the expected donor ge-somes. In contrast, increasing response to selection by

increasing the population size is possible up to popula- nome proportion E1,u(z(Gn�1 |gn)) (Equation 26) of the
best of the progenies obtained when using the backcrosstion sizes that exceed the reproduction coefficient of

most crop and animal species. individual as nonrecurrent parent of the next backcross
generation. Employing z(gn) is recommended when se-An optimum criterion for the design of marker-

assisted selection in a backcross population can be de- lecting plants for selfing from the final generation of a
backcross program, because the ultimate goal of a back-fined by the expected response to selection reached

with a fixed number of MDP. For fixed numbers of cross program is to generate an individual (carrying the
target genes) with a low donor genome proportion. InMDP in sugar beet, designs with large populations and

few markers always reached larger values of response to contrast, employing E1,u(z(Gn�1 |gn)) is recommended for
selecting individuals as parents for subsequent backcrossselection than designs with small populations and many

markers (Figure 2). For maize, the same trend was ob- generations, because here the donor genome propor-
tion in the progenies is more important than the donorserved for 500 and 1000 MDP, while for a larger number

of MDP the optimum design ranged between 40 and genome in the selected individual itself. Both criteria
take into account the position of the markers and are,50 markers. In conclusion, in BC1 populations of maize

and sugar beet and a fixed number of MDP, marker- therefore, more suitable than B , if unequally distributed
markers are employed.assisted selection is, within certain limits, more efficient

for larger populations than for higher marker densities. Comparison of B , z(gn), and E1,u(z(Gn�1 |gn)) is demon-
strated with experimental data from a gene introgres-Selecting backcross individuals: Selection of back-

cross individuals can be carried out by using the number sion program in sugar beet. The target gene was located
on chromosome 1 with map distance 6 cM from the telo-of donor alleles at markers B as a selection index. How-

ever, when employing markers not evenly distributed mere, and 25 codominant polymorphic markers were
employed for background selection. The map positionsacross the genome, the donor genome proportion at

markers reflects only poorly the donor genome propor- of the markers were (chromosome number/distance
from the telomere in centimorgans): 1/12, 1/28, 1/32,tion across the entire genome.

The selection theory presented provides two alter- 1/40, 1/46, 1/75, 2/1, 2/16, 2/96, 3/0, 3/55, 3/78,
4/36, 4/64, 4/67, 5/33, 5/65, 6/42, 6/57, 7/4, 7/67,native criteria that can be used as a selection index for

evaluation of each backcross individual: (1) the expected 8/14, 8/74, 9/0, and 9/12. The lengths of chromsomes
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TABLE 3 uted, calculating the proposed selection criteria in addi-
tion to the marker score B provides additional informationSelection criteria for the 25 BC1 plants with highest marker
to assess the value of backcross individuals and can assistscore B in the sample data set for sugar beet
geneticists and breeders in their selection decision.consisting of 89 plants

QTL introgression: Marker-assisted selection in intro-
E1,u(z(Gn�1|gn)) 
 100 gression of favorable alleles at quantitative trait loci (QTL)

usually comprises selection for (1) presence of the do-Plant no. B z(gn) 
 100 u � 20 u � 40 u � 80
nor allele at two markers delimiting the interval in which

1 2 7.4 3.4 3.2 3.0 the putative QTL was detected and (2) the recurrent
2 4 18.0 6.7 6.1 5.6 parent allele at markers outside the QTL interval. Our
3 4 11.5 3.9 3.5 3.2 results can be applied for the latter purpose in exactly
4 5 14.8 5.4 4.9 4.5 the same way as previously described for the transfer of5 5 14.9 5.5 5.0 4.6

a single target gene. Hence, our approach is applicable6 6 9.0 3.8 3.4 3.1
to many scenarios in application of marker-assisted back-7 6 16.2 5.9 5.3 4.9
crossing for qualitative and quantitative traits.8 6 15.4 5.0 4.4 3.9

9 6 14.8 4.8 4.2 3.7 We thank Dietrich Borchardt for critical reading and helpful com-
10 6 17.0 5.6 5.0 4.4 ments on the manuscript. We are indebted to KWS Saat AG, 75555
11 7 17.2 6.4 5.7 5.2 Einbeck, Germany, for providing the experimental data on sugar beet.
12 7 20.2 6.3 5.5 4.9 We greatly appreciate the helpful comments and suggestions of an
13 8 19.6 6.5 5.7 5.1 anonymous reviewer.
14 8 23.2 8.0 7.1 6.4
15 8 14.5 5.6 4.9 4.3
16 8 17.1 6.0 5.4 4.9

LITERATURE CITED17 8 12.1 4.9 4.3 3.8
18 9 16.7 6.4 5.5 4.7 Bartlett, M. S., and J. B. S. Haldane, 1935 The theory of inbreed-
19 9 17.0 6.7 5.9 5.3 ing with forced heterozygosity. J. Genet. 31: 327–340.

Bernardo, R., 2002 Breeding for Quantitative Traits in Plants. Stemma20 9 18.0 7.0 6.4 5.8
Press, Woodbury, MN.21 9 21.4 8.4 7.7 7.1

David, H. A., 1981 Order Statistics. Wiley, New York.22 9 27.3 10.7 9.7 8.6
Franklin, I. R., 1977 The distribution of the proportion of genome23 9 14.8 5.6 4.9 4.3 which is homozygous by descent in inbred individuals. Theor.

24 9 18.3 5.6 4.9 4.3 Popul. Biol. 11: 60–80.
25 9 18.3 6.1 5.4 4.9 Fisher, R. A., 1949 The Theory of Inbreeding. Oliver & Boyd, Edinburgh.

Frisch, M., M. Bohn and A. E. Melchinger, 1999a Minimum sam-
For details and explanation of z(gn) and E1,u(z(Gn�1|gn)) ple size and optimal positioning of flanking markers in marker-

see text. assisted backcrossing for transfer of a target gene. Crop Sci. 39:
967–975 (erratum: Crop Sci. 39: 1913).

Frisch, M., M. Bohn and A. E. Melchinger, 1999b Comparison
of selection strategies for marker-assisted backcrossing of a gene.
Crop Sci. 39: 1295–1301.

1–9 were 90, 102, 78, 84, 102, 89, 75, 94, and 94 cM. Haldane, J. B. S., 1919 The combination of linkage values and the
calculation of distance between the loci of linkage factors. J.After producing the BC1 generation, 89 plants carrying
Genet. 8: 299–309.the target gene were preselected and analyzed for the

Hanson, W. D., 1959 Early generation analysis of lengths of hetero-
25 markers. The criteria B , z(gn), and E1,u(z(Gn�1 |gn)) for zygous chromosome segments around a locus held heterozygous

with backcrossing or selfing. Genetics 44: 833–837.u � 20, 40, and 80 were calculated and presented for the
Hill, W. G., 1976 Order statistics of correlated variables and implica-25 plants with the smallest marker scores B (Table 3). tions in genetic selection programmes. Biometrics 32: 889–902.

We refer here only to the most interesting results: Hill, W. G., 1993 Variation in genetic composition in backcrossing
programs. J. Hered. 84: 212–213.

1. Plant 6 had z(gn) � 9.0% and plant 10 had z(gn) � Hillel, J., T. Schaap, A. Haberfeld, A. J. Jeffreys, Y. Plotzky
et al., 1990 DNA fingerprints applied to gene introgression in17.0%, in spite of an identical marker score of B � 6.
breeding programs. Genetics 124: 783–789.2. Plant 1 was the best with respect to all three criteria. Hospital, F., and A. Charcosset, 1997 Marker-assisted introgres-

However, plant 6 was second best with respect to the sion of quantitative trait loci. Genetics 147: 1469–1485.
Hospital, F., C. Chevalet and P. Mulsant, 1992 Using markers inexpected donor genome proportion but had only

gene introgression breeding programs. Genetics 132: 1199–1210.rank 6 with respect to the marker score B . Markel, P., P. Shu, C. Ebeling, G. A. Carlson, D. L. Nagle et al.,
3. Plant 9 had a considerably larger expected donor ge- 1997 Theoretical and empirical issues for marker-assisted breed-

ing of congenic mouse strains. Nat. Genet. 17: 280–284.nome proportion [z(gn) � 14.8%] than plant 17 [z(gn)�
Maurer, H. P., A. E. Melchinger and M. Frisch, 2004 Plabsoft:12.1%], but the expected donor genome proportion software for simulation and data analysis in plant breeding. Pro-

in the best progeny of plant 9 was lower than that ceedings of the 17th EUCARPIA General Congress, September
8–11, 2004, Tulln, Austria, pp. 359–362.of plant 17 for all three populations sizes.

Ribaut, J.-M., C. Jiang and D. Hoisington, 2002 Simulation experi-
ments on efficiencies of gene introgression by backcrossing. CropThese results demonstrate that the criteria B, z(gn), and
Sci. 42: 557–565.

E1,u(z(Gn�1 |gn)) can result in different rankings of indi- Stam, P., 2003 Marker-assisted introgression: Speed at any cost?,
pp. 117–124 in EUCARPIA Leafy Vegetables 2003, edited by Th. J. L.viduals. In conclusion, if markers are not evenly distrib-



917Selection Theory for Marker-Assisted Backcrossing

van Hintum, A. Lebeda, D. Pink and J. W. Schut. EUCARPIA, tion in backcrossing programs explained by genetic markers.
Valencia, Spain. J. Hered. 87: 136–138.

Stam, P., and A. C. Zeven, 1981 The theoretical proportion of the Visscher, P. M, 1999 Speed congenics: accelerated genome recov-
donor genome in near-isogenic lines of self-fertilizers bred by ery using genetic markers. Genet. Res. 74: 81–85.
backcrossing. Euphytica 30: 227–238.

Visscher, P. M, 1996 Proportion of the variation in genetic composi- Communicating editor: R. W. Doerge

APPENDIX A

We use here an abbreviated notation: Gi,j (i � 1 . . . c , j � 1 . . . mi) is a random variable taking 1 if the j th marker
on the i th chromosome is heterozygous and 0 otherwise.

We derive the variance of B in a BCn population under the assumptions of (1) no selection in generations BCs

(s � n) and (2) no preselection for presence of target genes in generation BCn (i.e., the entire BCn population is
considered, comprising individuals carrying the target genes as well as individuals not carrying the target gene).
We have

var(B) � var � �
1�i�c

�
1�j�mi

Gi,j� � �
1�i�c

�
1�j�mi

var(Gi,j) � 2 �
1�i�c

�
1�j�mi

�
j�j��mi

cov(Gi,j , Gi,j�).

Under assumptions (1) and (2) we have for any Gn,i,j

var(Gi,j) �
1
4

1
2n �1 �

1
2n � �

1
2n�2

�
1

22n�2

(Hill 1993) and further

cov(Gi,j , Gn,i,j�) �
1
4

1
2n �(1 � ri,j,j�)t �

1
2n � �

(1 � ri,j,j�)n

2n�2
�

1
22n�2

(Visscher 1996) with

ri,j,j� � r(xi,j� � xi,j).

Therefore,

var(B) � m � 1
2n�2

�
1

22n�2 � � 2 � �k
22n�2

�
1

2n�2 �
1�i�c

�
1�j�mi

�
j�j��mi

(1 � ri,j,j�) �,
where

k � �
1�i�c

(mi � 1)2/2

is the number of covariance terms.
We derive cov(B , Z) under assumptions (1) and (2). Because

E(BZ) � E �� �
1�i�c

�
1�j�mi

Gi,j�� �
1�i��c

yi�

y
Z i��� � E � �

1�i�c
�

1�j�mi

�
1�i��c

Gi,j
yi�

y
Z i�� � �

1�i�c
�

1�j�mi

�
1�i��c

E �Gi,j
yi�

y
Z i��

and

E(B)E(Z) � E � �
1�i�c

�
1�j�mi

Gi,j�E � �
1�i��c

yi�

y
Z i�� � � �

1�i�c
�

1�j�mi

E(Gi,j)�� �
1�i��c

E �yi�

y
Z i���

� �
1�i�c

�
1�j�mi

�
1�i��c

E(Gi,j)E �yi�

y
Z i��

we have

cov(B , Z) � E(BZ) � E(B)E(Z) � �
1�i�c

�
1�j�mi

�
1�i��c

yi�

y
cov(Gi,jZ i�)

and from

cov(Gi,jZ i�) � 0 for i � i �

follows

cov(B , Z) � �
1�i�c

�
1�j�mi

yi

y
cov(Gi,jZ i).




