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Complex biological networks have very different origins than technologic ones. The latter involve
extensive design and, as engineered structures, include a high level of optimization. The former
involve (in principle) contingency and structural constraints, with new structures being incorpo-
rated through tinkering with previously evolved modules or units. However, the observation of the
topological features of different biological nets suggests that nature can have a limited repertoire
of ”attractors” that essentially optimize communication under some basic constraints of cost and
architecture or that allow the biological nets to reach a high degree of homeostasis. Conversely,
the topological features exhibited by some technology graphs indicate that tinkering and internal
constraints play a key role, in spite of the ”designed” nature of these structures. Previous scenarios
suggested to explain the overall trends of evolution are re-analyzed in light of topological patterns.

I. INTRODUCTION

The emergence of the telegraph marked the appearance
of totally new social and economic exchanges. As a tech-
nological innovation, it defined a new scenario of commu-
nication and information processing within human soci-
eties that lead to the creation of new, previously inexis-
tent structures (Standage, 1999). The resulting telegraph
network rapidly increased in size (after a delay in its ac-
ceptation as a real, useful innovation) and at its climax
involved a whole network with millions of users, fully
developed codes, encrypted messages and code crackers,
chats and congestion problems.

In many ways, the telegraph network was very similar
to Internet. At some point, the emergence of a new inno-
vation (such as the telephone, figure 1) triggered the fall
of the rich telegraph network. A whole culture of human
communication and the networks that covered most ur-
ban centers around the globe vanished in a few decades.
The telegraph went extinct, as many species and innova-
tions through biological evolution, once a new, highly
competitive novelty emerges. However, as it happens
with most extinct life forms, the underlying innovations
introduced by the telegraph still persist in modern com-
munication networks.

The previous example is interesting for two reasons.
First, because there is a common pattern between differ-
ent types of communication networks that suggest com-
mon principles of organization. Second, because it also
illustrates the presence of underlying, subtile connections
between technologic and biologic evolution. This obser-
vation is not new: different sources of evidence and the-
oretical arguments indicate that technologic innovation
shares some basic traits with the patterns displayed by
biological novelty (Kauffman, 1993). The rise and fall
of technological creations also resembles the origination
and extinction patterns observable in some groups of or-
ganisms and Jacques Monod actually suggested that the
evolution of technology is sometimes closer to Darwinian

selection than biology itself (Monod, 1970). But are the
patterns of organization displayed by complex biosystems
deeply related to those displayed by technological struc-
tures?

FIG. 1. Standard communication networks involve a large
amount of hierarchy. In the case of the telephone network, the
terminals are telephone sets and a node is a switching center
for routing telephone calls. Here the graph of a local tele-
phone net is shown. The tips of the tree represent telephones
(based from Inose, 1972).

The previous question was raised by a number of au-
thors within the context of evolution. As discussed by
Francois Jacob in his influential 1977 paper “Evolution
as Tinkering”, one important source of divergence be-
tween engineering (technology) and evolution is that the
engineer works according to a preconceived plan (in that
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he foresees the product of his efforts) and second that in
order to built a new system a completely new design and
units can be used without to resort to previous designs
(Jacob, 1977).

Jacob also mentions the point that the engineer will
tend to approach the highest level of perfection (mea-
sured in some way) compatible with the technology avail-
able. Evolution, is argued, is far from perfection, a point
already made by Darwin in the Origin of species (Darwin,
1859). Jacob’s conclusion is that natural selection does
not work as an engineer, but as a tinkerer, who knows
what is going to produce but is limited by the constraints
present at all levels of biological organization as well as
by historical circumstances (Jacob, 1977).

Although the presence of historical contingencies plays
certainly a role in evolution (Gould, 1989, Conway Mor-
ris, 1998, Gould, 2002) recent studies on fractal transport
networks in biology seem to provide strong support for
the presence of effective optimization processes (Brown
and West, 2000). Specifically, when looking at the gen-
eral principles of biological scaling, the assumption of a
minimization of the energy required to transport materi-
als through the network (assuming that it has hierarchi-
cal, space-filling structure) leads to a remarkable agree-
ment with the diversity of biological structures and func-
tions observed in nature through many orders of magni-
tude in size. Optimization would then be able to operate
in a successful manner at least when the constraints are
easily avoided due to the flexibility allowed by the un-
derlying rules of network construction. When looking
at some artificial networks, such as the local telephone
network displayed in figure 1, we can often appreciate
a hierarchical organization in the tree-shaped structure.
However, once some complexity threshold is reached, the
final structure turns to strongly deviate from a tree struc-
ture.

A different view of evolution implies the existence of
constraints derived from the fundamental limitations ex-
hibited by dynamical systems (Alberch, 1982; Kauffman,
1993; Goodwin, 1994). When looking at the macroscopic
level (such as the organism level) strong regularities are
perceived that indicate the presence of a limited (though
diverse and tunable) range of basic structural plans of
organization. Under this view, in spite of the histori-
cal contingency intrinsic to the evolutionary process, life
forms would be nevertheless predictable, at least to some
extent. In this context, it has been suggested that emer-
gent phenomena might play a leading role in shaping bi-
ological evolution. An example that might illustrate this
idea is provided by the presence of phase transitions in
random graphs (Erdös and Renyi, 1959; Bollobas, 1985;
Kauffman, 1993; Newman, 2002).

Let us consider a graph Ωn,p that consists of n nodes
(or vertices) joined by links (or edges) with some prob-
ability p. Specifically, each possible edge between two
given nodes occurs with a probability p. The average

number of links (also called the average degree) of a given
node will be z ≈ np, and it can be easily shown that the
probability p(k) that a vertex has a degree k follows a
Poisson distribution. This so called Erdös-Renyi random
graph will be fairly well characterized by an average de-
gree z (where the distribution p(k) shows a peak).

This model displays a phase transition at a given crit-
ical average degree zc = 1 (figure 2). At this critical
point, a giant component forms (Bollobas, 1985; New-
man, 2002): for z > zc a large fraction of nodes are
connected in a web, whereas for z < zc the system is frag-
mented into small subwebs. This type of random model
has been used in different contexts, including ecological
(May, 1976; Cohen 1978; Solé et al., 2002), genetic and
metabolic (Kauffman, 1962; Kauffman, 1993) and neural
(Hertz et al., 1991; Sompolinsky et al., 1988) networks.
The importance of this phenomenon is obvious in terms
of the collective properties that arise at the critical point:
communication among the whole system becomes avail-
able (thus information can flow from the units to the
whole system and back). Besides, the transition occurs
suddenly and implies an innovation. No less important,
it takes place at a low cost in terms of the number of re-
quired links. Since the only requirement in order to reach
whole communication is to have a given (small) number
of links per node, once the threshold is reached, order
can emerge for free (Kauffman, 1993).

A B
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FIG. 2. Phase transition in random graphs: In (a-d) four
different states of the wiring process are shown for a small
graph with n = 12 nodes. Here (a) z = 0.22, (b) z = 0.6,
(c) z = zc = 1 and (d) z = 2. A phase transition occurs at
zc = 1, where the fraction γ of nodes included in the giant
component rapidly increases. This picture corresponds to a
very small system. Appropriate characterizations of the phase
transition require large network sizes.
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A new theoretical framework, provided by the study of
complex networks, might help to answer some key ques-
tions raised by the previous views. In particular, the dis-
covery that both natural and artificial systems display
a high heterogeneity in their wiring maps challenges the
early approaches based on purely random graphs (May,
1976; Kauffman, 1962) and provide a new picture of how
complexity (defined in terms of the interactions among
system’s parts) might emerge. In this paper the different
features exhibited by four types of natural and artificial
networks are reviewed, after a brief account of the ba-
sic quantitative characterizations that allow to measure
network complexity. Some key questions that will be ex-
plored are:

1. What mechanisms have originated observed topo-
logical regularities in complex networks?

2. To what extent does optimization shape network
topology?

3. What is the origin of homeostasis in complex net-
works?

4. Is homeostasis a driving force or a side-effect in
network topology?

5. Is tinkering an inevitable component of network
evolution?

6. Are engineered systems free of tinkering?

Comparison between the mechanisms that drive the
building process of different graphs reveals that optimiza-
tion might be a driving force, canalized in biological sys-
tems by both tinkering and the presence of conflicting
constraints common to any hard multidimensional op-
timization process. Conversely, the presence of global
features in technology graphs that closely resemble those
observed in biological webs indicates that, in spite of the
engineered design that should lead to hierarchical struc-
tures (such as the one shown in figure 1) the tinkerer
seems to be at work.

II. MEASURING NETWORK COMPLEXITY

Since we are interested in comparing the global fea-
tures of both biological and artificial (engineered) net-
works, we need to consider a number of quantitative mea-
sures in order to characterize them properly. In order to
do so, the network structure is represented by a graph
Ω, as before. Some of these measures (minimal distance,
clustering coefficient) are usually applied to topological
(i. e. static) descriptors of the graph structure, but
others (entropy, redundancy, degeneracy) also apply to
states that average dynamic variables. Most of these
measures are unable to explicitly capture a functional

organization and thus need a complementary knowledge
of the underlying system. Although an engineered sys-
tem might look similar to a given biological network, the
second usually exhibits a high tolerance to the failure
of single units through different homeostatic mechanisms
that is seldom displayed by the former.

Small world patterns. Recent research on a number
biological, social and technological graphs revealed that
they share a common feature: the so called small world
(SW) property (Watts & Strogatz, 1998; Newman, 2000).
Small world graphs have a number of surprising features
that make them specially relevant to understand how in-
teractions among individuals, metabolites or species lead
to the robustness and homeostasis observed in nature.
The SW pattern can be detected from the analysis of
the path length d, defined as the average minimum dis-
tance between any pair of nodes. For ER graphs, we have
very short distances. Specifically, it can be shown that
dER ≈ log(n)/ log(z). Graphs where d ≈ dER are said to
be ’small-world’. A SW can be obtained from a regular
lattice (where nodes are linked to z nearest neighbors) if
a small fraction of nodes are rewired to randomly chosen
nodes. Thus a small degree of disorder generates short
paths (as in the random case) but retaining the regular
pattern (Watts & Strogatz, 1998). Small world networks
propagate information very efficiently.

The so called clustering coefficient C measures the
probability that two neighbors of a given node are also
neighbors of one another. For an Erdös-Renyi graph
(ER), CER ≈ z/n and is thus a very small quantity.
Watts & Strogatz (1998) noticed that C À Crandom

when looking at real networks. High clustering favours
small-worldness but it is not the only mechanism (Doro-
govtsev & Mendes, 2001).

Degree distributions. A different type of character-
ization of the statistical properties of a graph is given by
the degree distribution P (k). Although the ER graph
displays a Poisson distribution, most complex networks
are actually characterized by highly heterogeneous distri-
butions: they can be described by a degree distribution
P (k) ∼ k−γφ(k/ξ), where φ(k/ξ) introduces a cut-off at
some characteristic scale ξ. Three main classes can be
defined (Amaral et al., 2000). (a) When ξ is very small,
P (k) ∼ φ(k/ξ) and thus the link distribution is single-
scaled. Typically, this would correspond to exponential
or Gaussian distributions; (b) as ξ grows, a power law
with a sharp cut-off is obtained; (c) for large ξ, scale-
free nets are observed. The last two cases have been
shown to be widespread and their topological properties
have immediate consequences for network robustness and
fragility (Albert et al, 2000). The three previous scenar-
ios are observed in: (a) power grid systems and neural
networks (Amaral et al., 2000), (b) protein interaction
maps (Jeong et al., 2001), metabolic pathways (Jeong et
al., 2000) , ecological networks (Solé & Montoya 2001;
Dunne et al. 2002; Jordano et al. 2002) and electronic

3



circuits (Ferrer et al., 2001) and (c) Internet topology
(Jeong et al, 2000; Caldarelli et al., 2000), scientific col-
laborations (Newman, 2001) and lexical networks (Ferrer
and Solé, 2001a).

Redundancy and degeneracy. Complex biological
networks (see below) exhibit an extraordinary homeosta-
sis against random failure of a given unit. Partially based
on the experience from technological systems, it was of-
ten assumed that such robustness was essentially due to
redundancy: the failure of a given unit (such as a gene in
a gene network) would be compensated by a copy of it.
Nonetheless, the analysis of biological networks reveals
that robustness is mainly associated with features that
are fairly different from redundancy (Wagner, 2001; Edel-
man and Gally, 2001). Instead, it has been shown that,
in many cases, totally different components can perform
similar functions. This feature is known as degeneracy
(Tononi et al., 1999; Edelman and Gally, 2001): unlike
with redundancy, which involves structurally identical
elements, degeneracy involves structurally different ele-
ments that yield the same or different functions depend-
ing on the context. Mounting evidence suggests that it
is actually a ubiquitous property of biological nets.

Degeneracy is very common natural systems (Edelman
and Cally, 2001) but totally unknown within the context
of technological evolution. In man-made systems, redun-
dancy is the standard solution to the problem of ran-
dom failure of single components: by introducing copies
of sub-parts of the system, failure of one of them can
be compensated by its copy. This was assumed to be
the origin of resilience against mutation in genetic net-
works, although later evidence indicates that the source
of homeostasis in cellular nets is a very different one (see
below). To a large extent, degeneracy is intimately asso-
ciated with tinkering in evolution: it reflects the re-use
that is made of different parts of a system in order to
achieve similar functions.

Modularity. Modularity pervades biological com-
plexity (Hartwell et al., 1999). Many cell functions are
carried out by subsets of units that define functionally
meaningful entities. An example are modules of genes
involved in development (von Dassow et al., 2000; Solé
et al., 2000; Solé et al., 2002).

Modularity allows the adaptation of different functions
with a small amount of interference with other functions
and is likely to be a prerequisite for the adaptation of
complex organisms, although it arises most likely as a
byproduct of adaptability rather than being an adapta-
tion itself (Wagner, 1995). Modularity can arise in two
ways: by parcellation or by integration. Parcellation con-
sists of the differential elimination of cross-interactions
involving different parts of the system. Instead, if the
network is originally formed by many independent, dis-
connected parts, it is conceivable that modularity arises
by differential integration of those independent charac-
ters serving a common functional role.

III. PROTEOME MAPS AND GENE NETWORKS

Let us start our exploration from molecular cell bi-
ology. Complex genomes involve many genes that are
associated with at least one regulatory element and each
regulatory element integrates the activity of at least two
other genes. The nature of such regulation started to be
understood from the analysis of small prokaryotic regu-
lation subsystems (Lodish et al., 2000) and the current
picture indicates that the webs that shape cellular be-
havior are very complex, sharing some common traits
with neural networks and related computational systems
(Bray, 1995).
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FIG. 3. The p53 network (redrawn from Kohn, 1999). Here
a subgraph embedded in a much larger network (the interac-
tion map of the mammalian cell cycle control and DNA re-
pair systems) is shown. The activation of this network (due
to different types of stresses) leads to the stimulation of enzy-
matic activities that stimulate p53 and its negative regulator,
MDM2.

Gene regulation takes place at different levels and in-
volves the participation of proteins. The whole cellu-
lar network includes three levels of integration: (a) the
genome (and the regulation pathways defined by interac-
tions among genes), (b) the proteome, defined by the set
of proteins and their interactions and (c) the metabolic
network, also under the control of proteins that operate
as enzymes. Unlike the relatively unchanging genome,
the dynamic proteome changes through time in response
to intra- and extracellular environmental signals. The
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proteome is thus particularly important: proteins unify
structural and functional biology. They are both the
products of gene activity and regulate reactions or path-
ways.

A key issue concerning the evolution of cellular nets is
raised by their robustness against single-unit failure. The
analysis of the effects of mutations in different organisms
revealed an extraordinary level of homeostasis: in many
cases the total suppression of a given gene in a given
organism leads to a small phenotypic effect or even no
effect at all (Ross, 1999; Wagner 2000). By following the
analogy with engineered systems, it would be suggested
that such robustness would come from the presence of a
high degree of redundancy. Under mutation, additional
copies of a given gene might compensate the failure of
the other copy. However, the analysis of redundancy in
genome data indicated that redundant genes are rapidly
lost and that redundancy is not the leading mechanism
responsible for mutational robustness (Wagner, 2000).

The degree distribution displayed by the protein in-
teraction map is given by a power law (Jeong et al.,
2001; Wagner, 2001; Maslov and Sneppen, 2002) i.e.
P (k) ∼ k−γ with γ ≈ 2.5, with a sharp cut-off for
large k. The link seems obvious here: the high degree of
homeostasis against random failure would come from the
highly heterogeneous distribution of interactions. This
conjecture is actually supported by comparing the pheno-
typic effects of mutated genes with their degree: there is a
clear positive correlation between degree and phenotypic
effects of mutations (Jeong et al., 2001). Consistently
with the SF scenario, mutations involving some key genes
can have very important consequences. This is the case,
in particular, of the p53 tumor supressor gene (figure 3)
which is known to play a critical role in genome stability
and integrates many different signals related to cell-cycle
or apoptosis (programmed cell death) (Vogelstein et al.,
2000). This and other tumor-suppressor genes prevent
cell proliferation (thus keeping cell numbers under con-
trol) but can also promote apoptosis.

What can be concluded here? On the one hand, his-
tory is an obvious ingredient of the genome/proteome
evolution: the growth of these nets takes place by gene
duplication (Ohono, 1970) and simple models based on
gene duplication plus re-wiring successfully reproduce the
observed properties of proteome maps (Solé et al., 2001;
Vazquez et al, 2001; Pastor-Satorras et al., 2002). In
some sense, tinkering is widely used by starting from pre-
vious genes and interactions. The mutational robustness
displayed by cellular nets might actually provide the best
example of the success of degeneracy in evolution (Edel-
man and Gally, 2001). It is also clear that many genes
are recruited at different stages through development and
thus re-use of available building blocks is widespread.

The analysis of metabolic pathways reveals that some
metabolites that are known to be older are highly con-
nected (Wagner and Fell, 2001) thus suggesting preferen-

tial attachment at least in early stages of evolution (see
also Podani et al., 2001). But models indicate that SF
structure might spontaneously emerge provided that the
rates of duplication and rewiring are appropriately tuned.
In this sense, it might well happen to occur that, as a
consequence of the duplication process, together with a
sparse density of connections (associated to low cost con-
straints but also to dynamical constraints) the high ro-
bustness provided by the scaling structure might actually
be a byproduct of network growth (Vazquez et al., 2001;
Solé et al., 2001) under optimization of communication.
In that case, the reach of a sparse, but connected web
of interactions would automatically provide an emergent
source of robustness for free.

A final point to be mentioned is the fact that the need
of an integrated, cellular order in the adult organism
must coexist with some degree of flexibility associated
to the developmental program. The building of a multi-
cellular organism requires a control program that is ex-
emplified by tumor-suppressor genes (such as p53). But
this program has to integrate some weaknesses in order
to allow for embryogenesis, growth and wound healing
(Israel, 1996). Perhaps not surprisingly, the homologue
of p53 in invertebrates (such as Drosophila) is expressed
throughout development, particularly in early stages (Jin
et al., 2000). It might be the case that one of the side
effects of reaching a complex network with a high degree
of homeostasis from a sparse, well-communicated graph
of interactions, is that inevitably sooner or later the node
that fails is a key one (and cancer develops). Under these
conditions, cellular functions are irreversibly altered and
the cellular context (which imposes some control on cell
states) is no longer a constraint.

IV. ECOLOGICAL NETWORKS

The effects of biodiversity loss are highly mediated by
the architecture of ecological interactions. Ecosystems
(defined broadly as the set of interacting species within
a delimited habitat) are likely to be only rivaled in com-
plexity by neural systems or the global economy (Brown
1994). Despite such complexity, early studies have found
some interesting topological patterns that seem to be re-
lated with their stability and functionality (May 1973;
see Pimm 1991 for a review). In this sense, recent char-
acterization of complex topologies in several ecosystems
may provide an amazing framework for predicting how
perturbations might propagate throughout ecosystems.

It is clear that tinkering play a leading role in con-
forming local biotas. Local assemblages comprise only
some of the variety of species richness present on the
Earth (between 10 and 100 million of species), conform-
ing a myriad of ecosystems where species are connected
via different interaction types (e.g. trophic, competitive
or mutualistic). Thus, the ecosystems’ tinkerer works

5



only with available species from the regional species pool,
and the sequence of species invasions partially determines
the composition of resulting communities. For instance,
some field experiments have shown that priority effects
are above competition, that is, if one species arrive before
another that is a better competitor, the former should
persist in the community, and the later will not be estab-
lished.

FIG. 4. The graph of species interactions of Silwood park
web. Here each node represents one species. The central node
in this representation is the Scotch broom Cytisus scoparius.

The food web is the basic description of ecosystems,
where nodes are species (or sets of species with simi-
lar diets) and links are feeding relationships. Trophic
structure influences the performance of several ecosys-
tem functions (e.g., productivity, nutrient capture and
cycling) and determines the effects of the propagation of
disturbances through the entire system. In particular,
the effect of one species on the density of another tends
to diminish with their separation in the food web, mea-
sured by the shortest path connecting them. Typically,
if species A and species B are more than 3 links away,
a disturbance in the density of A does not influence B
(Abrams et al. 1996). But most species within com-
munities are separated by only 2 or 3 links from each
other (Williams et al. 2001; Montoya & Solé 2002), so
perturbations might propagate through the entire net-
work. In most of these food webs the clustering is clearly
higher than the expected one from randomness (Montoya
& Solé 2002), providing evidence of SW patterns despite
their relative small size (less than 200 nodes).

Food webs exhibit a hierarchy of discrete trophic lev-
els in such a way that a species within a trophic level
only feeds on species belonging to the immediately lower
level (e.g. carnivores feed on herbivores that eat plants).

If this hierarchy were strict, no clustering would be ob-
served. Thus, the origins of clustering in this type of
systems is the presence of omnivorous species, that is,
species that feed on more than one trophic level, includ-
ing intra-trophic level predation. Omnivory also con-
tributes to shorten paths between species, and it has
been shown both empirical and theoretically that om-
nivory tends to increase the stability of ecosystems by
reducing population fluctuations (McCann 2000).

Ecological networks also display heterogeneous degree
distributions, fitting in most cases a truncated power-law
P (k) ∼ k−γφ(k/ξ), where φ(k/ξ) introduces a sharp cut-
off. In particular, species-rich food webs (Solé & Montoya
2001; Camacho et al. 2002; Montoya & Solé 2001, 2002;
Dunne et al. 2002) and most plant-animal mutualistic
networks (Jordano et al. unpublished) display this type
of distribution, with γ ∼ 1.0. This exponent is different
from those observed in cellular, social and technological
networks (γ ∼ 2.1 − 3.0). Both features (sharp cut-offs
and low γ) suggest the existence of constraints in the as-
sembly of ecological networks, as the limits to the addi-
tion of new links due to different phenological attributes
of species (Jordano et al. unpublished), or due to dynam-
ical constraints related with the persistence of preys (a
prey with many connections is more affected by changes
in the food web) or with the efficiency of predators (the
more connected you were, the less efficient you will be;
Montoya, Solé & Pimm unpublished). These constraints
add to cost-related constraints (Amaral et al. 2000) in
limiting the prevalence of preferential attachment as the
mechanisn underlying ecological organization. In con-
trast, these constraints does not seem to work on small-
size food webs, where degree distributions are closer to a
random wiring with typical Poisson distributions (Mon-
toya & Solé 2001; Dunne et al., 2002).

A deep understanding of the architecture of ecologi-
cal networks allow us to identify keystone species within
ecosystems, that is, species whose removal trigger many
secondary extinctions and the fragmentation of the net-
work into disconnected subwebs in which species are more
prone to extinction. Keystone species are typically the
most-connected ones, and food webs with skewed degree
distributions are predicted to exhibit an extreme fragility
under their successive loss in contrast to the high robust-
ness when species are removed randomly (Solé & Mon-
toya 2001; Dunne et al. 2002). Also, functions performed
by the ecosystems are more likely to be lost after the re-
moval of such keystones, although in some cases some
less-connected species perform key specific functions, so
their removal may also have large effects on ecosystem
functionality (e.g. the loss of plants that fix atmospheric
nitrogen). A key question not yet resolved is how this
duality fragility-robustness is affected when dynamics is
introduced.

Species play specific roles in ecosystems, both affect-
ing population dynamics (e.g. a carnivore controlling
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the density of several herbivores thus guarantying di-
verse plant assemblages), and enhancing several ecosys-
tem functions (e.g., biomass, energy use or nutrient re-
tention). Can the roles of eliminated species be replaced
by other species?, and if so, by what kind of mechanisms?
Removal experiments and simulations have shown the
presence of some degree of adaptability, depending on the
degree of redundancy of the manipulated ecosystem. In
particular, more redundancy implies the maintenence of
some ecosystem functions (Rutledge et al. 1976; Walker
1992; Naeem 1998; Fonseca & Ganade 2001) and reduce
the risk of cascading extinctions after random extirpa-
tions (Borvall et al. 2000).

What is called redundancy in the ecological literature
is what we have previously defined as degeneracy, be-
cause “replacement” species and removed species have
always different traits. In fact, evolution tends to re-
duce redundancy levels (i.e., species with identical traits)
while increasing degeneracy by promoting species that
are complementary and overlapping in their resource re-
quirements but different in their environmental toler-
ances (Ulanowicz 1986; Morgan-Ernest & Brown 2001).
But often this mechanism of compensation is observed
with a large delay or simply it does not happen, particu-
larly when keystone species are lost (e.g., Brown & Heske
1990).

Thus, it is clear that a topological (static) approxima-
tion is a feasible first step in the understanding of commu-
nity homeostasis. However, is such homeostasis a side-
effect of an optimization of any function of the ecosys-
tem?. Ecosystems perform several functions that evolve
along their spatio-temporal organization. Nevertheless,
what functions, if any, are optimized, it is far from be-
ing clear. Some authors have suggested that ecosys-
tems are likely to maximize their efficiency in transfer-
ing energy and materials. But these approximations are
highly speculative and have several caveats. For instance,
some mechanisms promoting community homeostasis im-
ply a decrease in efficiency, as the presence of omnivo-
rous species, which are typically inefficient in consuming
their preys. However, simple optimization mechanisms
observed in other networks are an interesting area for ex-
ploring the relationships between maximization of some
ecosystem functions and homeostasis.

V. LEXICAL NETWORKS

The emergence of human language is one of the ma-
jor transitions in evolution (Smith & Szäthmáry, 1997).
We humans possess a unique symbolic mind capable of
language which is not shared by any other species (Dea-
con, 1997). Human language allows the construction of
a virtually infinite range of combinations (i.e. sentences)
from a limited set of basic units. The process of sentence

generation is astonishingly rapid and robust and indi-
cates that we are able to rapidly gather words to form
sentences in a highly reliable fashion.

FIG. 5. The topology of Moby Dick. Two words appearing
in Melville’s book are linked it their mutual information is
greater than a given threshold.

The study of lexical networks (networks in which nodes
are words and links are formed between strongly corre-
lated words; see Fig. 5) (Ferrer & Solé, 2001a) and other
linguistic networks (Sigman & Cechi, 2002; Steyvers &
Tenenbaum, 2001) has shown that scaling is a strong
regularity in human language. Links in lexical networks
capture syntactic relationships between pairs of words.
The degree distribution follows P (k) ∼ k−γ with γ ≈ −3.
Hubs in lexical networks are function words (e.g. prepo-
sitions, articles, determiners,...). Hubs and thus function
words are crucial for the lexical network small-worldness.
Function words constitute the most stable set of words of
a language over time. Their high connectivity explains
why they are less extinction prone in the same way om-
nivorous species are in ecological networks.

New function words are neither created from scratch
nor borrowed from other languages. Function words
result from grammaticalization processes (Traugot &
Heine, 1991) in which non-function words become func-
tion words and function words become more grammatical
(Hopper, 1991). Languages largely result from tinkering:
Prepositions typically derive from terms of body part or
verbs of motion while modals typically derive from terms
of possesion or desire (Traugot & Heine, 1991). There-
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after, hub formation in lexical network evolution, oper-
ates on a restricted set of candidate words. Every lan-
guage creates new functions from such a restricted set so
convergence is likely not only regarding the result of the
grammaticalization process but also regarding its start-
ing point.

The fact that the degree (i.e. number of links) of a
word is positively correlated with its frequency (Ferrer &
Solé, 2001a) and that among the most frequent words
there are the etymologically oldest ones (Prün, 1999;
Zipf, 1949), may suggest preferential attachment is at
play. Nonetheless, there are many reasons for thinking
that minimization of word-word distance is involved. On
the one hand, speaking is a complex task. The speaker
must combine a big amount of words (in the order of
many thousands (Miller & Gildea, 1987)) for forming
sentences. Following links in a lexical network leads to
syntactically well-formed sentences. If two words are to
be linked during speech production, the smaller the dis-
tance between them, the smaller the amount of interme-
diate words required for performing the linkage. Average
word-word distance in lexical networks is about d ≈ 2.6,
indicating that most of the words are reachable through
less than two intermediate words (Ferrer and Solé, 2001).

BA

FIG. 6. Opposite ways of achieving small worldnes. A The
maximum linking expense (a clique) B The minimum linking
expense (a star graph).

From the other hand, it has been proposed that op-
timizing the small-worldness of a network under linking
cost constraints may be the origin of the γ ≈ −3 scaling
exponent (Ferrer & Solé, 2001b). Small world behavior
is a desirable property of a linguistic network and link-
ing restrictions are likely to be at play.If linking cost is
not taken into account, the optimal configuration would
be a clique (every word connected to every word; Fig. 6
A) which would imply that all words are function words
but none of them is a lexical word (which can be seen as
having linkers but no words to link). Linking cost may
not be the only restriction at play. A star network (every
vertex connected to the same vertex; Fig. 6 B) provides
the minimum distance possible at the minimum linking
expense. In this case, there are words to link, but only
one linker. Nonetheless,real languages have a rich reper-

toire of linkers in order to account for different types of
relations (part-hole, action-receiver,...).

The finding of a γ ≈ −3 exponent helps us to under-
stand why syntax is a robust trait of human communi-
cation. The degree of expression of such a feature is not
correlated with intelligence and thereafter not surpris-
ingly present even when intellectual skills are extremely
poor, which is the case of the idiots savants (Deacon,
1997). According to previous work on error tolerance
of scale-free networks (Albert et al, 2000), a lexical net-
work will be very robust against random removal of words
but fragile against removal of the most connected ver-
tices. Agrammatism, a kind of aphasia in which many
of the most connected words seem to have disappeared,
is characterized by a decrease in the ability to build syn-
tactically complex sentences (Caplan, 1999). Unless the
words that glue words for building complex sentences are
removed (the “shortpathers”), a complex phrase (e.g. a
circumlocution) can replace a missing word and the ex-
pressive power will be maintained.

VI. TECHNOLOGY GRAPHS

Social and economic complexity are organized around
three major networks: the transportation network, the
power network and the communication network (Inose,
1972). These are also three components of biological
complexity, involving the processing of information, en-
ergy and matter at very different scales. Artificial net-
works offer an invaluable reference when dealing with the
rules that underlie the building process in complex sys-
tems. The Internet, inparticular, powerfully exemplifies
the importance of topology and homeostasis in SF nets
(Albert et al., 2000) and how it relates with biological
complexity. The spread of computer viruses, for example,
is closely related to the epidemic patterns displayed by
natural viruses (Pastor-Satorras and Vespignani, 2000;
Lloyd and May, 2001). Not surprisingly, man-made ar-
tifacts have been used as a metaphor of biological com-
plexity at different levels. The brain, for example, has
been compared to mechanical engines, the telegraph and
telephone webs or to different computer architectures, as
technological changes followed each other through time.
These metaphors are often flawed by the lack of a real
mapping between both systems (there is little overlap be-
tween the telegraph network and cortical maps beyond
the presence of a wiring diagram) but sometimes the re-
lationships are surprisingly strong (Nelson and Bower,
1990).

Technological graphs result from predefined planning.
As noted by Jacques Monod: “the difference between
artificial and natural objects appears immediate and un-
ambiguous to all of us. A rock, a mountain, a river, or a
cloud -these are natural objects; a knife, a handkerchief, a
car- are artificial objects, artifacts” (Monod, 1970). But
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technological design is not completely free of the con-
straints imposed by complexity (Kauffman, 1995). On
the one hand, conflicting constraints effectively limit the
reaching of optimal solutions: the process of design is it-
self a search process on a rugged landscape with many
implicit variables.

FIG. 7. An example of a medium-sized component of a
software graph (extracted from the Java Development Kit 1.2
library). Here each node is a java class and edges indicate
relationships among classes.

The study of electronic circuits reveals that small world
is present in technological artifacts (Ferrer et al., 2001).
Modularity in these systems is not only a direct conse-
quence of the need of different sub-parts performing dif-
ferent (but complementary) functions but also the result
of needing to reuse existing circuits. The engineer avoids
designing a new large circuit from scratch. The engi-
neer is encouraged to work as a tinkerer when the size
of the circuit crosses a certain threshold. Optimization
is present at different levels of the circuit design (Ferrer
et al., 2001). For instance, minimization of both aver-
age path length and physical distance are present and
this can easily lead to SW structure (Mathias and Gopal,
2001). Interestingly, the larger ones clearly exhibit power
laws in their degree distributions (Ferrer et al., 2001).

A very important class of networks derived from soft-
ware architecture maps (Perry and Wolf, 1992), has been
recently shown to display both SW and SF patterns as
the non-planned result of a design optimization process
(Valverde et al., 2002). Software architecture is reflected
by a diagram of the software components and their in-
terrelations, which is produced during the design process

(Pressman, 1992). Sometimes the diagram is not explic-
itly provided, but it is possible to reconstruct it from
source code (reverse engineering). This map can be in-
terpreted as a graph where nodes are software compo-
nents and the links are relationships between software
components.

A large effort has been dedicated to understand the na-
ture of software and why build efficiently and maintain
large software systems is so difficult (and costly). For
years, the software community has been promoting the
need of software measurement tools that help to quan-
tify if a software project is being developed ”well” and
controlling the deviations from the stablished engineer-
ing plan (Zuse, 98). Early measures of software were
centered in intra-module aspects like program length or
number of lines of code (LOC). Recently, there is a grow-
ing interest in analyzing software structure or software
architecture measurement (inter-module). The modern
software engineer conceives software systems at a higher
conceptual level and is more concerned about how the
different components are assembled and interrelated to
each other (Gamma et al., 1994).

A closer look at different software architecture maps
indicates that there is a noticeable difference in the ar-
chitecture of small-scale (i.e: a Gauss-Seidel linear sys-
tem solver, sorting an arbitrary sequence of numbers) and
the architecture of large-scale software (i.e: an operating
system or a modern videogame). In both cases, different
conflicting constraints (economization of memory stor-
age, efficiency of processes, ease of integration of changes
and new features) must be satisfied simultaneously while
developing software. For small-scale software it is pos-
sible to produce very optimized structures because the
constraints are not too hard to satisfy. The architecture
of small-scale software abounds in hierarchies and simple
connectivity patterns (Fig. 7). The degree distribution
is Poissonian.

Large-scale software shows clustering, low mean dis-
tance between software components (about six) and
scale-free degree distribution, the exponent ranging from
−2 to −3 (Valverde et al., 2002). For large-scale software
the constraints are much harder and history plays and im-
portant role. In order to reduce the complexity of soft-
ware development, the system is partitioned into mod-
ules that group similar or related software components.
Usually, the modules are developed separately. One of
such modules roughly corresponds to a single connected
component in the software architecture map, but another
modules could have more than one component. Even a
single connected component can span several modules.
Briefly, the modules are a logical partition of the soft-
ware architecture that can or cannot coincide with the
set of connected components.

There are few components with an huge number of
links (hubs) in most software architectures. Surprisingly,
these hubs are considered a bad practice by software en-
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gineering principles (Brown et al., 1998). The existence
of hubs is an indication that only a sub-optimum solu-
tion can be reached. Sometimes the cost of introducing
new components is higher than adapting an existing one
to provide the required functionality. As the number of
dependencies of the software component grows up, it pro-
gressively looses its intended original meaning, assuming
more and more responsibilities from other system com-
ponents. This class of components limits reuse and are
expensive in terms of memory storage. Also, they tend
to be very affected by changes made to other components
of the system.

There is a certain degree of redundancy in large-scale
software. Because different parts of the system are de-
veloped in parallel by a team of software engineers, there
is a chance that the same subproblem will be solved
twice. This is also known as ”reinventing the wheel” and
it is considered one of the main causes of productivity
loss. The duplication of software functions is not recom-
mended by software engineering because the increased
effort required to fix errors and to extend the system
functionality. In fact, it is encouraged to seek and lo-
cate duplicated portions of code and substitute them by
a single software component. Moreover, a good practice

of software engineering promotes reusing of large por-
tions of code (or better, entire software components) not
only within a software system but from project to project
(Pressman, 1992). In any case, it seems that such tra-
ditional claims for reusing are very difficult to catch ef-
fectively and the way to achieve it still being pursued by
modern software engineering.

VII. DISCUSSION

The heterogeneous character of most complex biologi-
cal networks reveals a surprising example of convergence.
In evolutionary theory, convergence refers (within the
ecological context) to the observation that organisms liv-
ing in similar habitats resemble each other in outward
appearance. These similar looking organisms may, how-
ever, have quite different evolutionary origins. Conver-
gent evolution takes place at very different levels, from or-
ganisms to molecules, and here we propose the idea that
a new type of convergent evolutionary dynamics might
be at work underlying a very wide class of both natural
and artificial systems.

2

Property Proteomics Ecology Language Technology
Tinkering Gene duplication

and recruitation
Local as-
semblages from re-
gional species pools
and priority effects

Creation of words
from already estab-
lished ones

Reutilization of
modules and
components

Hubs Cellular signaling
genes (e.g. p53)

Omnivorous
and most abundant
species

Function words Most used
components

What can be optimized? Communication
speed and linking
cost

Unclear Communication
speed with
restrictions

Minimize develop-
ment effort within
constraints

Failures Small
phenotypic effect of
random mutations

Loss of only a few
species-specific
functions

Maintenance of ex-
pression and
communication

Loss of
functionality

Attacks Large alterations of
cell-cycle and apop-
tosis (e.g. cancer)

Many coextinctions
and loss of several
ecosystems
functions

Agrammatism (i.e.
great diffi-
culties for building
complex sentences

Avalanches of
changes and large
development costs

Redundancy & Degeneracy Redundant genes
rapidly lost

R minimized and D
restricted to non-
keystone species

Great D Certain degree of R
but no D

Table I: A summary of the basic features that relate and distinguish different types of complex networks, both natural
and artificial. Here different characteristic features of complex nets, as well as their behavior under different sources
of perturbation, are considered.

10



Since very different systems seem to choose the same
basic formula for their interaction maps, we can easily
recognize a general trend that can be identified as a pro-
cess of convergent evolution (see Table I). One partic-
ularly important point is the fact that similar network
topologies (particularly the scale-free ones) emerge in bi-
ological and human-made systems. Although the first
take advantage of the high homeostasis provided by scal-
ing, the second are completely dependent on the correct
functioning of all units. Failure of a single diode in a cir-
cuit or of a single component in a software system leads
to system collapse. Thus, homeostasis can not be a gen-
eral explanation for scaling.

The apparently universal character of these scaling
laws in such disparate complex networks goes beyond
homeostasis. We conjecture that the leading force here is
an optimization process where reliable communication at
low cost shapes network architecture in first place. This
seems to be the case in all the previous systems analyzed.
Once a small, critical average connectivity is reached, the
graph experiences at percolation providing a spontaneous
order linked to global communication. This occurs at a
low cost, since the transition is sudden and effectively
connects all parts of the system with a small number of
links per unit.

There are two possible strategies for decreasing vertex-
vertex distance at the percolation point: (a) increasing
the average connectivity and (b) hub formation. (a) is a
trivial strategy whose outcome under ideal circumstances
is a clique (Fig. 7 A). (b) has the advantatge of not im-
plying the addition of new connections. Link rearrege-
ments suffice. In contrast, (b) is a more complex task
than (b). The outcome of (b) is a star network (Fig.
7 B). Scale-free distributions suggest the use of strategy
(a) in real networks. If reaching a low density of links is
more important than having a small average path length,
skewed distributions, including scale-free nets, are easily
obtained (Ferrer and Solé, 2001) through random search.
Nonetheless, other mecanisms, such as preferential at-
tachement (Barabási & Albert, 1999) have been proposed
for scaling. Unfortunately, preferential attachment can
not straightforwardly explain the high clustering coeffi-
cient of real networks. C is a measure of cliquishness
(more precisely, the abundance of cliques of 3 vertices).
Thereafter, a high clustering coefficient can be seen as
one side of the optimization process. Natural and artifi-
cial networks show that the higher the size of the network,
the higher the significance of the clustering coefficient
and also the power appearence of the degree distribu-
tion (Montoya & Solé, 2001; Ferrer et al., 2001). The
coexistence of strategies (a) and (b) can be understood
as the explosion of conflicting constraints once the net-
works size exceeds a certain threshold value. The fact
that even engineers become tinkerers in large systems il-
lustrates how complicated is the achievement of optimal
structures once they reach some complexity level. Clus-

tering is likely to be unavoidable for small-worldness in
networks in which hub formation becomes a dramatically
complicated task.

Modularity is an obvious source of clustering. We have
suggested that omeostasis is a consequence of a more gen-
eral principle. Actually, it can be a side-effect of opti-
mization and not a direct consequence of functional par-
cellation in large networks.

The scale-free distributions observed in both natural
and artificial graphs suggests that the homeostasis won
by the second might well be a result of exploiting the
SF topology resulting from optimization (Valverde et al.,
2002). This is something not (yet) exploited in current
engineered systems, probably due to lack of degeneracy.
Since degeneracy is a common feature of biological nets,
it might have been exploited (or co-evolving) within het-
erogeneous architectures. We conjecture that there is a
largely universal principle that pervades the evolution of
scale-free nets (optimal communication) and that the ob-
served topological features of bionets reflect this feature
together with constraints arising from other causes, such
as the need of modular organization. It is interesting
to see that man made designs also evolve towards webs
that strongly resemble their biological counterparts: as
shown by the previous examples, often the paths toward
optimization seem to cross the land of tinkering.
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47. Montoya, J. M. and Solé, R. V. (2002) Small world
patters in food webs. J. Theor. Biol. 214, 405-412
.
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66. Solé, R. V., Salazar, I. and Garcia-Fernandez, J.
(2002) Common Pattern Formation, Modularity
and Phase Transitions in a Gene Network Model
of Morphogenesis. Physica A 305, 640-647
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