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Abstract. The paper presents recent results concerning the problem
of the existence of those selections, which preserve the properties of a
given set-valued mapping of one real variable taking on compact values
from a metric space. The properties considered are the boundedness of
Jordan, essential or generalized variation, Lipschitz or absolute continu-
ity. Selection theorems are obtained by virtue of a single compactness
argument, which is the exact generalization of the Helly selection prin-
ciple. For set-valued mappings with the above properties we obtain a
Castaing-type representation and prove the existence of multivalued se-
lections and selections which pass through the boundaries of the images
of the set-valued mapping and which are nearest in variation to a given
mapping. Multivalued Lipschitzian superposition operators acting on
mappings of bounded generalized variation are characterized, and so-
lutions of bounded generalized variation to functional inclusions and
embeddings, including variable set-valued operators in the right hand
side, are obtained.
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Introduction

The problem of the existence of selections is, for a given set-valued
mapping F from a nonempty set T into a nonempty set X (in symbols,
F : T � X), to find a single-valued mapping f : T → X satisfying the
condition: f(t) ∈ F (t) for all t ∈ T . Here the set-valued mapping (or
multifunction) is a rule F which assigns to each point t ∈ T a nonempty
subset F (t) ⊂ X, called the image of t under F or the value of F at t, and
the mapping f with the above property is called a selection (selector, sec-
tion, branch) of F . By the Axiom of Choice, any set-valued mapping with
nonempty images admits at least one selection. So, the problem reduces
to finding selections inheriting some (or all) properties of the set-valued
mapping. Usually these properties are connected with measurability, con-
tinuity, differentiability, etc., which is motivated by the specific problem in
question. In the present work the properties under consideration are bound-
edness of (generalized) variations of the set-valued mapping with respect to
the Hausdorff metric in the target space of images.

Let us briefly comment on the existing literature on selections (the refer-
ences chosen are representative but by no means tend to be exhausting on
the subject).

Fundamental results on the existence of measurable selections (for mea-
surable multifunctions) are contained in the works of Castaing [11], Castaing
and Valadier [12] and Kuratowski and Ryll-Nardzewski [65]. In [65] the main
theorem says that a measurable set-valued mapping F from a measurable
space T into a complete separable metric space X, having closed images,
admits a measurable selection. Castaing [11] showed that F : T � X with
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T and X as above is measurable if and only if it has a countable number of
its measurable selections which are pointwise dense in the images of F (the
Castaing representation). A survey on measurable selections and a com-
plete bibliography on the subject (up to 1977) is the work of Wagner [109].
Selections with Baire property were obtained by Choban [35, 36]. The ex-
istence of measurable selections for maps whose values are compact subsets
of a regular Hausdorff space which need not be metrizable or satisfy any
restriction on its weight was proved by Graf [51].

The most known results on the existence of continuous selections are due
to Michael [79, 80]. One of his theorems claims that a lower semi-continuous
set-valued mapping on a paracompact space T with closed convex images
from a Banach space X admits a continuous selection. A detailed infor-
mation on the theory of continuous selections, its development and appli-
cations, is contained in the works of Repoš and Semenov [94, 95]. The
influence of nonconvexity of images for a set-valued mapping to have con-
tinuous selections was studied by Bogatyrev [8], Hasumi [54], Moiseev [81]
and Semenov [101]. A universal approach to the existence of measurable
and continuous selections was found by Mägerl [67]. Selections of mappings
with decomposable values were treated by Bressan and Colombo [9] and
Tolstonogov [108].

The existence of Lipschitz continuous selections for set-valued mappings
with convex images was recently obtained by Aubin and Cellina [3], Dom-
misch [41], Polovinkin [89], Przes lawski and Yost [90, 91] and Shvarts-
man [103], and differentiable selections — by Dencheva [40], Gautier and
Morchadi [47] and Rockafellar [98]. The basic facts about the way selec-
tions preserve the properties of measurability, Lipschitz continuity, etc., are
contained in the monograph of Aubin and Frankowska [4].

Continuous and Lipschitz continuous selections exist, as a rule, for set-
valued mappings with convex images. If the images are not convex, then in
the general case one cannot expect more than measurable selections ([65]) or
selections with the Baire property ([36]). In fact, many examples are known
to show that a continuous set-valued mapping on an interval T = [a, b]
of the real line R with compact values from a ball in R2 or a Lipschitz
continuous mapping from R3 into compact subsets of a ball in X = R3 need
not have a continuous selection (Aubin and Cellina [3], Chistyakov and
Galkin [31], Hermes [56], Kupka [64], Michael [80, Part I]). In this paper we
will show that set-valued mappings F of bounded variation from a nonempty
subset T ⊂ R into nonempty compact subsets of a metric space X always
admit selections of bounded variation passing through a given point in the
graph Gr(F ) of F , which is defined as usual by Gr(F ) = {(t, x) ∈ T ×X |
x ∈ F (t)}.
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Let ∅ 6= T ⊂ R and (X, d) be a metric space with metric d. A mapping
f : T → X is said to be Lipschitzian (in symbols, f ∈ Lip(T ;X)), if its
(least) Lipschitz constant is finite:

Ld(f, T ) = sup
{
d(f(t), f(s))/|t− s| ; t, s ∈ T , t 6= s

}
.

A mapping f : T → X is called absolutely continuous (written f ∈AC(T ;X))
if there exists a function δ : (0,∞) → (0,∞) such that for any ε > 0,
any n ∈ N and any finite collection of points {ai, bi}ni=1 ⊂ T such that
a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn the condition

∑n
i=1(bi − ai) ≤ δ(ε)

implies
∑n

i=1 d
(
f(bi), f(ai)

)
≤ ε. More precisely, such f will be called δ(·)-

absolutely continuous and since, in general, the function δ(·) depends on f ,
we will also write δ(·) = δf (·).

A mapping f : T → X is said to be of bounded (or finite) variation (in
symbols, f ∈ BV(T ;X)) if its total Jordan variation V (f, T ) is finite:

V (f, T ) = Vd(f, T ) = sup
ξ

m∑
i=1

d
(
f(ti), f(ti−1)

)
where the supremum is taken over all partitions ξ = {ti}mi=0 of the set T ,
i. e., m ∈ N, {t0, t1, . . . , tm} ⊂ T and ti−1 < ti, i = 1, . . . ,m (Jordan [58],
Schwartz [100, Chapter 4, Section 9]). Single-valued functions and mappings
of bounded variation on arbitrary set T have already been treated in various
contexts (e.g., [5], [10], [13]–[15], [44], [99], [107]), which is quite natural
since the notion of (Jordan) variation depends only on the order relation on
T and the distance function(s) in the target space.

The Hausdorff distance D = Dd between two nonempty subsets A and B
of the metric space X is given by

D(A,B) = max
{

e(A,B), e(B,A)
}
,

where e(A,B) = supx∈A dist(x,B) and dist(x,B) = infy∈B d(x, y). It is
well known (e.g., [12, Chapter II]) that D is a metric on the set c(X) of
all nonempty compact subsets of X, called the Hausdorff metric (generated
by d).

In [57] Hermes proved that if T = [a, b] and X = Rn, then any set-
valued mapping F ∈ Lip(T ; c(X)) admits a selection f ∈ Lip(T ;X) such
that Ld(f, T ) ≤ LD(F, T ), and, moreover, that a continuous mapping F :
T → c(X) of bounded variation admits a continuous selection. Similar re-
sults for Lipschitzian and absolutely continuous mappings with convex and
nonconvex compact values were obtained by Guričan and Kostyrko [53],
Kikuchi and Tomita [60] and Qiji [92]. The results of Hermes were general-
ized by Mordukhovich [82, Section Supplement 1] for a Banach space X and
a mapping F with compact graph and by Ślȩzak [104] to the general case
when X is an arbitrary metric space. Basing on a generalized Helly selection
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(compactness) principle for metric space valued mappings of bounded vari-
ation the author [14] proved that a set-valued mapping F ∈ BV(T ; c(X))
admits a selection f ∈ BV(T ;X) such that Vd(f, T ) ≤ VD(F, T ). This result
was extended onto mappings of bounded generalized variation in the sense
of Riesz-Orlicz and some other classes of mappings in [15]–[23]. By revising
the selection principle, the author [24]–[28] in collaboration with Belov and
Rychlewicz [6, 7, 33] showed that the assumption that X is a Banach space
and the graph Gr(F ) is compact, which was used in the earlier works of
the author, is superfluous: that X is a metric space suffices for most of the
results (note that Hermes and his successors made use of the Arzelà-Ascoli
compactness theorem).

In this work we present the most general results on the existence of selec-
tions of bounded generalized variation and their development for solutions
to functional inclusions and embeddings. This is done under the assumption
that set-valued mappings F : T � X are defined on a nonempty set T ⊂ R
and assume compact values from a metric space (X, d). That the domain
T has no particular structure (except the linear order) is crucial for the
existence of selections of essentially bounded variation (Sections 2 and 5).

The paper is divided into three parts. In the first part (Sections
1–4) we develop the theory of mappings of bounded generalized variation
with values in a metric space which is needed for set-valued mappings. The
second part (Sections 5 through 10) contains existence theorems for se-
lections of bounded (generalized) variation. And the third part (Sections
11–14) is devoted to the existence of solutions to functional inclusions and
embeddings including variable set-valued operators in the right hand side.

1. Generalized Helly’s selection principle

In what follows, unless otherwise stated, T ⊂ R is a nonempty set, X
is a metric space with metric d and XT is the set of all mappings from T
into X.

Let us recall the main properties of the variation V (f, T ) of f ∈ BV(T ;X)
needed below. Setting f(T ) = {f(t) | t ∈ T} (the image of T under f) and
osc(f, T ) = sup{d(f(t), f(s)) | t, s ∈ T} (the diameter of f(T )), we have
(cf. [13], [14] or [15]): 1) if t ∈ T , then V (f, T ) = V (f, T ∩ (−∞, t]) +
V (f, T ∩ [t,∞)) (additivity); 2) osc(f, T ) ≤ V (f, T ); 3) if a sequence of
mappings {fn}∞n=1 ⊂ XT converges pointwise on T in metric d to a mapping
f ∈ XT (i. e., d(fn(t), f(t))→ 0 as n → ∞ for all t ∈ T ), then V (f, T ) ≤
lim infn→∞ V (fn, T ) (lower semi-continuity); 4a) if s = supT ∈ R ∪ {∞}
and s /∈ T , then V (f, T ) = limT3t→s V (f, T ∩ (−∞, t]); 4b) if i = inf T ∈
R∪{−∞} and i /∈ T , then V (f, T ) = limT3t→i V (f, T ∩ [t,∞)); 4c) if s /∈ T
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and i /∈ T , then, in addition to 4a) and 4b), the value V (f, T ) is also equal
to

lim
T 23(a,b)→(i,s)

V (f, T ∩ [a, b]) = lim
T3b→s

lim
T3a→i

V (f, T ∩ [a, b])

= lim
T3a→i

lim
T3b→s

V (f, T ∩ [a, b]).

Lemma 1.1 ([15, Theorem 4.3]).
(a) The mapping f ∈BV(T ;X) is continuous from the right at the point

t0 ∈ T \ {supT} or from the left at t0 ∈ T \ {inf T} if and only if the
function ϕ(t) = V (f, T ∩ (−∞, t]), t ∈ T , has this property at t0.

(b) f ∈ BV(T ;X) is continuous on T apart, possibly, at most countable
subset of T .

We say that g : T → X is natural ([14], [15]) if V (g, T ∩ [a, b]) = b − a
for all a, b ∈ T , a ≤ b. Clearly, g ∈ Lip(T ;X) and Ld(g, T ) = 1. Note also
that Lip(T ;X) ⊂ AC(T ;X) (e. g., with δ(ε) = ε/max{1, Ld(f, T )}, ε > 0),
Lip(T ;X) ⊂ BV(T ;X) if T is bounded, and AC(T ;X) ⊂ BV(T ;X) if T is
compact.

Given two mappings ϕ : T → J and g : J → X, the composite mapping
g ◦ ϕ : T → X is given as usual by (g ◦ ϕ)(t) = g(ϕ(t)) for all t ∈ T .

The following structural theorem (Lemma 1.2 below) provides a close re-
lation between mappings of bounded variation and Lipschitzian mappings
(with additional assumptions, such as the continuity of mappings or con-
nectedness of their domain, this theorem was employed in [1, II.1.3], [13,
3.19], [42, 2.5.16], [83, Section 5] and [100, IV.9]):

Lemma 1.2 ([15, Theorem 3.1]). Given f : T → X, we have: f ∈ BV(T ;X)
if and only if there exist a nondecreasing bounded function ϕ : T → R and
a natural mapping g : J = ϕ(T ) → X such that f = g ◦ ϕ on T . In the
necessity part ϕ can be defined by ϕ(t) = V (f, T ∩ (−∞, t]), t ∈ T , so that
V (ϕ, T ) = V (g, J) = V (f, T ); moreover, if T is bounded and f ∈ Lip(T ;X),
then ϕ ∈ Lip(T ;R) and L(ϕ, T ) = Ld(f, T ), and if T is compact and
f ∈ AC(T ;X), then ϕ ∈ AC(T ;R) and one can set δϕ(·) = δf (·).

The main tool providing the compactness of families of real functions
of bounded variation is the well known (pointwise) Helly selection princi-
ple [55]. In various contexts it was generalized in [84], [86, VIII.4.3], [102,
II.4.5], [110] (and others) for real valued functions and in [1, II.1.4], [6], [14],
[15], [27], [26], [31], [32], [45] and [46] for families of mappings.

Recall that a family of real functions on T is said to be bounded if there
exists a constant C ≥ 0 such that |ϕ(t)| ≤ C for all t ∈ T and all functions
ϕ from this family. A family F ⊂ XT is called pointwise precompact if, for
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any t ∈ T , the set F(t) = {f(t) | f ∈ F} is precompact in X (i.e., the
closure F(t) of F(t) in X is compact).

Let Φ : R+ = [0,∞) → R+ be a continuous nondecreasing unbounded
function such that Φ(ρ) = 0 if and only if ρ = 0. Given f : T → X, we set

VarΦ(f, T ) = sup
ξ

m∑
i=1

Φ
(
d
(
f(ti), f(ti−1)

))
,

where the supremum is over all partitions ξ = {ti}mi=0 (m ∈ N) of T . The
value VarΦ(f, T ) is called the total Φ-th variation of f on T (in the sense
of Wiener [111] and Young [112]). It is clear that if Φ(ρ) = ρ, ρ ∈ R+, then
VarΦ(f, T ) = V (f, T ).

The following properties are known to hold for VarΦ(f, T ) (cf. [32] and
[84]): 1Φ) if t ∈ T , then VarΦ(f, T ∩ (−∞, t]) + VarΦ(f, T ∩ [t,∞)) ≤
VarΦ(f, T ) (semi-additivity); 2Φ) if t, s ∈ T , then Φ

(
d(f(t), f(s))

)
≤

VarΦ(f, T ); 3Φ) under the conditions of 3) above we have: VarΦ(f, T ) ≤
lim infn→∞VarΦ(fn, T ) (lower semi-continuity).

Theorem 1.3 (generalized Helly’s selection principle). An infinite point-
wise precompact family of mappings F⊂XT satisfying supf∈FVarΦ(f, T )<∞
contains a pointwise convergent (in metric d) sequence whose pointwise limit
f is such that VarΦ(f, T ) <∞.

Proof. Proof of Theorem 1.3 will be divided into three steps.
1. Let us extend the classical Helly theorem [55] from an interval in R

to an arbitrary set T ⊂ R: an infinite bounded family of nondecreasing
functions from T into R contains a sequence which converges pointwise on
T to a nondecreasing bounded function.

First, let T = R. We set Ik = [−k, k], k ∈ N, and make use of the standard
Cantor diagonal process. By Helly’s theorem (e. g., [86, VIII.4.2]), applied
to the restriction of our family to the interval I1, choose a sequence {ϕ1

n}∞n=1
in the family which converges pointwise on I1 to a nondecreasing bounded
function. Similarly, denote by {ϕ2

n}∞n=1 a subsequence of {ϕ1
n}∞n=1 pointwise

convergent on the interval I2 to a nondecreasing bounded function, and,
inductively, for k ∈ N, k ≥ 2, pick a subsequence {ϕkn}∞n=1 of {ϕk−1

n }∞n=1
which converges pointwise on Ik. Then the diagonal sequence {ϕnn}∞n=1
converges pointwise on R to a nondecreasing bounded function from R to
R.

If T is arbitrary, we extend each function ϕ from our family according to
Saks’ idea (cf. [99, Chapter 7, Section 4, Lemma (4.1)]) as follows: if t ∈ R,
we set:

ϕ̃(t) =

{
sup{ϕ(s) | s ∈ T ∩ (−∞, t]} if T ∩ (−∞, t] 6= ∅,
inf {ϕ(s) | s ∈ T} if T ∩ (−∞, t] = ∅.

(1.1)
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Clearly, ϕ̃ : R → R extends ϕ, is nondecreasing and bounded, osc(ϕ̃,R) =
osc(ϕ, T ) and ϕ̃(R) ⊂ ϕ(T ) (i. e., the image ϕ̃(R) is contained in the closure
of ϕ(T )). It follows that the family of functions {ϕ̃} is bounded on R, and
so, by the above, it contains a sequence {ϕ̃n}∞n=1, which converges pointwise
on R to a nondecreasing bounded function ϕ̃ : R→ R. Since the restriction
ϕ̃n|T of ϕ̃n to T coincides with ϕn, the sequence {ϕn}∞n=1 from the original
family converges pointwise on T to the function ϕ = ϕ̃|T .

2. Let us show that if a family of mappings F ⊂ XT is infinite and the
set F(t) is precompact in X for all t ∈ T , then for each countable set J ⊂ T
there exists a sequence in F , which converges in X pointwise on J .

We again employ the diagonal method. In order to be specific, let J =
{tk}∞k=1. Since the family {f(t1) | f ∈ F} is precompact in X, it contains
a sequence denoted by {f1

n(t1)}∞n=1, which converges in X. In a similar
manner, let {f2

n(t2)}∞n=1 be a convergent subsequence of {f1
n(t2)}∞n=1, and, by

induction, given k ∈ N, k ≥ 2, let {fkn(tk)}∞n=1 be a convergent subsequence
of {fk−1

n (tk)}∞n=1. The diagonal sequence {fnn }∞n=1 ⊂ F converges in X
pointwise on the set J .

3. To prove the theorem, we set ϕf (t) = VarΦ(f, T ∩ (−∞, t]), f ∈ F ,
t ∈ T . The family {ϕf : T → R+ | f ∈ F} of nondecreasing functions is
infinite and bounded, since ϕf (t) ≤ VarΦ(f, T ), t ∈ T . By step 1, there exist
a sequence {fn}∞n=1 ⊂ F and a nondecreasing bounded function ϕ : T → R+

such that limn→∞ ϕfn(t) = ϕ(t) for all t ∈ T . Denote by S at most countable
dense subset of T , so that S ⊂ T ⊂ S (generally speaking, a separable set
need not have separable subsets as is shown, e. g., in [48, 12.8], but in the
usual topology of R this is correct: if k ∈ Z, i. e. k is integer, and the
set Tk = T ∩ [k, k + 1] is nonempty, then it is totally bounded, and hence,
separable, and so, there exists at most countable subset Sk ⊂ Tk such that
Tk ⊂ Sk, and it remains to set S =

⋃
k Sk and note that T =

⋃
k Tk, where

the union
⋃
k is over those k ∈ Z for which Tk 6= ∅). Note that any point

t ∈ T , isolated for T , belongs to S: in fact, T ∩(α, β) = {t} for some interval
(α, β), so that S∩(α, β) ⊂ T∩(α, β) = {t} and t ∈ S; for, otherwise, if t /∈ S,
then S ∩ (α, β) = ∅ or S ⊂ R \ (α, β), whence t ∈ T ⊂ S ⊂ R \ (α, β), that
is, t /∈ (α, β), which contradicts the definition of (α, β). As ϕ is monotone,
the set of its discontinuity points is at most countable, and since the set
{fn(t)}∞n=1 is precompact in X for all t ∈ T , by virtue of step 2 we may
assume without loss of generality (passing to a subsequence if necessary)
that fn(s) converges in X at all points s ∈ S and at all points s ∈ T of
discontinuity of ϕ. If T is exhausted by these points s, the proof is complete.

It remains to show that fn(t) converges in X at any point t ∈ T \ S,
which is a limit point for T and a point of continuity of ϕ. The proof of
this part is close to the one in [84, Theorem 1.3]. Given ε > 0, by the
density of S in T and the continuity of ϕ at t, choose s ∈ S such that
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|ϕ(t)−ϕ(s)| ≤ (1/3)Φ(ε). By virtue of the pointwise convergence of ϕfn to
ϕ, choose a number N0(ε) ∈ N such that

max{|ϕfn(t)− ϕ(t)|, |ϕfn(s)− ϕ(s)|} < (1/3)Φ(ε), n ≥ N0(ε).

Properties 2Φ) and 1Φ) imply

Φ
(
d(fn(t), fn(s))

)
≤ VarΦ(fn, T ∩ [s, t]) ≤ |ϕfn(t)− ϕfn(s)|

≤ |ϕfn(t)− ϕ(t)|+ |ϕ(t)− ϕ(s)|+ |ϕ(s)− ϕfn(s)|,

whence d(fn(t), fn(s)) ≤ ε for all n ≥ N0(ε). Since {fn(s)}∞n=1 is convergent,
it is Cauchy, and so, there exists N1(ε) ∈ N such that d(fn(s), fm(s)) ≤ ε
for all n, m ≥ N1(ε). Then for all n, m ≥ max{N0(ε), N1(ε)} we have:

d(fn(t), fm(t)) ≤ d(fn(t), fn(s)) + d(fn(s), fm(s)) + d(fm(s), fm(t)) ≤ 3ε,

i. e., the sequence {fn(t)}∞n=1 is Cauchy in X; moreover, since it is precom-
pact in X, it follows that it is convergent in X.

Setting f(t) = limn→∞ fn(t) in X, t ∈ T , by property 3Φ) we conclude
that

VarΦ(f, T ) ≤ lim inf
n→∞

VarΦ(fn, T ) ≤ sup
g∈F

VarΦ(g, T ) <∞.

�

Example 1.4. In Theorem 1.3 the precompactness of sets F(t) at all points
t ∈ T cannot be replaced by closedness and boundedness even at a single
point. To see this, let T = [0, 1] and X = `1(N) be the Banach space
of all summable sequences x = {xi}∞i=1 ∈ RN equipped with the norm
‖x‖ =

∑∞
i=1 |xi|. For n ∈ N define fn : [0, 1] → `1(N) by fn(t) = 0 if

0 ≤ t < 1 and fn(1) = en, where en = {xi}∞i=1 with xi = 0 if i 6= n and
xn = 1. Now, if F = {fn}∞n=1, we have: F(t) = {0} is compact in `1(N) if
0 ≤ t < 1, F(1) = {en}∞n=1 is closed and bounded, VarΦ(fn, [0, 1]) = Φ(1)
for all n ∈ N, and no subsequence of F(1) = {fn(1)}∞n=1 converges in `1(N).
Other examples see in [6] and [15].

2. Mappings of finite essential variation

The essential variation of a mapping f : T → X is the quantity

Vess(f, T ) = inf{V (g, T ) | g ∈ BV(T ;X) and g = f a. e. on T}; (2.1)

here we use the convention that inf ∅ =∞, and the term almost everywhere
(abbreviated a. e.) refers to the Lebesgue measure on R. If Vess(f, T ) <∞,
we say that f is a mapping of finite (or bounded) essential variation and
write f ∈ BVess(T ;X).
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Let T ⊂ R be measurable and its Lebesgue measure meas(T ) be positive.
Recall (e. g., [86, IX.6]) that the density of the set T at a point t ∈ R is
given by

dens(T, t) = lim
r→+0

meas(T ∩ [t− r, t+ r])/2r

(if the limit exists). A point t ∈ R is said to be a point of density of T if
dens(T, t) = 1; note that such t is a limit point from the left and from the
right for T . A measurable set T is said to be density-open if each point of T
is a point of density of T ; if t = inf T ∈ T , we assume that the right density
defined by 2dens(T ∩ [t,∞), t) should be equal to one, and if t = supT ∈ T ,
it holds for the left density : 2dens(T ∩ (−∞, t], t) = 1.

Throughout this section T is density-open and X is complete.

Theorem 2.1. If f ∈ BVess(T ;X), then

Vess(f, T ) = inf{V (f, T \E) | E ⊂ T and meas(E) = 0}. (2.2)

Proof. Let us denote the right hand side of (2.2) by v. By definition (2.1),
for any number α > Vess(f, T ) we find a mapping g ∈ BV(T ;X) such that
g = f a. e. on T and V (g, T ) ≤ α. Since the Lebesgue measure of the set
E = {t ∈ T | f(t) 6= g(t)} is equal to zero and f = g on T \ E, we have:

V (f, T \ E) = V (g, T \ E) ≤ V (g, T ) ≤ α.
It follows that v ≤ V (f, T \E) ≤ α, and so, as α→ Vess(f, T ), we obtain

v ≤ Vess(f, T ). (2.3)

Let us establish the reverse inequality. Let ε > 0. By virtue of (2.3), v is
finite, so there exists a set E ⊂ T , depending on ε, such that meas(E) = 0
and

V (f, T \ E) ≤ v + (ε/2). (2.4)

Hence, f |T1 ∈ BV(T1;X), where T1 = T \ E. Let us extend f from T1
to the whole real line. We set ϕ(t) = V (f, T1 ∩ (−∞, t]), t ∈ T1, and
J = ϕ(T1). By Lemma 1.2, there exists a natural mapping g : J → X
such that f = g ◦ ϕ on T1. We extend ϕ to a nondecreasing bounded
function ϕ̃ : R → R according to (1.1) (with T there replaced by T1), so
that ϕ̃ = ϕ on T1 and ϕ̃(R) ⊂ J . Since g is uniformly continuous on J
and X is complete, there exists a unique extension g̃ ∈ Lip(J ;X) of g such
that Ld(g̃, J) = Ld(g, J) ≤ 1: indeed, if t ∈ J and {tn}∞n=1 ⊂ J is such that
limn→∞ tn = t, we set g̃(t) = limn→∞ g(tn) in X. Defining f̃ = g̃ ◦ ϕ̃ on R,
we have f̃ = f on T1 and V (f̃ ,R) = V (f, T1), since

V (f̃ ,R) ≤ Ld(g̃, J)osc(ϕ̃,R) ≤ osc(ϕ̃,R) = osc(ϕ, T1) = V (ϕ, T1)

= V (f, T1) = V (f̃ , T1) ≤ V (f̃ ,R).
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Let {ti}mi=0 be an arbitrary partition of T . Taking into account the density
of T1 = T \ E in T (in fact, any point t ∈ E, t 6= inf T and t 6= supT , is a
point of density of T , and since meas(E) = 0, t is also a point of density of
T \E, and so, it is a limit point from the left and from the right for T \E)
and the definition of ϕ̃, choose points {si}mi=0 ⊂ T \ E in such a way that
si ≤ ti, i = 1, . . . ,m, s0 ≤ s1 ≤ · · · ≤ sm and

0 ≤ ϕ̃(ti)− ϕ(si) ≤ 2−i−1ε/3, i = 0, 1, . . . ,m.

Then for i = 0, 1, . . . ,m we have:

d(f̃(ti), f(si)) = d
(

(g̃ ◦ ϕ̃)(ti), (g ◦ ϕ)(si)
)

= d
(
g̃(ϕ̃(ti)), g̃(ϕ(si))

)
≤ |ϕ̃(ti)− ϕ(si)| ≤ 2−i−1ε/3,

which yields
m∑
i=1

d(f̃(ti), f̃(ti−1)) ≤
m∑
i=1

d(f̃(ti), f(si)) +
m∑
i=1

d(f(si), f(si−1))

+
m∑
i=1

d(f(si−1), f̃(ti−1))

≤(ε/6) + V (f, T \ E) + (ε/3).

We get V (f̃ |T , T ) ≤ V (f, T \E) + (ε/2) due to the arbitrariness of partition
{ti}mi=0 of T , so that together with (2.4) we have V (f̃ |T , T ) ≤ v + ε. Since
f̃ |T ∈ BV(T ;X) and f̃ |T = f a. e. on T , from the definition (2.1) and the
last inequality we find that Vess(f, T ) ≤ v + ε for any ε > 0. �

Theorem 2.2. Suppose that f : T → X. Then we have:
(a) f ∈ BVess(T ;X) if and only if there exists a set E ⊂ T such that

meas(E) = 0 and f |T\E ∈ BV(T \ E;X); moreover, E can be chosen
such that V (f, T \ E) = Vess(f, T ).

(b) If {fn}∞n=1 ⊂ BVess(T ;X) and d(fn(t), f(t)) → 0 as n → ∞ for al-
most all t ∈ T , then Vess(f, T ) ≤ lim infn→∞ Vess(fn, T ) (lower semi-
continuity).

(c) (Structural Theorem) f ∈ BVess(T ;X) if and only if there exists a
nondecreasing bounded function ϕ from T into R and a mapping g ∈
Lip(J ;X), where J = ϕ(T ) and Ld(g, J) ≤ 1, such that f = g ◦ϕ a. e.
on T .

(d) (Helly’s type Theorem) If F={fn}∞n=1⊂BVess(T ;X), supn∈N Vess(fn,T )
is finite and the set {fn(t)}∞n=1 is precompact in X for almost all t ∈ T ,
then F contains a subsequence which converges in metric d a. e. on T
to a mapping from BVess(T ;X).



12 V. V. CHISTYAKOV

Proof. (a) Sufficiency is a consequence of Theorem 2.1. Suppose that f is
in BVess(T ;X). By Theorem 2.1, we find En ⊂ T such that meas(En) = 0,
n ∈ N, and V (f, T \En)→ Vess(f, T ) as n→∞. The set E =

⋃∞
n=1En is of

measure zero and T \E ⊂ T \En for all n ∈ N, so applying Theorem 2.1 again
and taking into account the monotonicity of V (·, ·) in the second variable,
we have

Vess(f, T ) ≤ V (f, T \ E) ≤ V (f, T \ En)→ Vess(f, T ) as n→∞,

whence V (f, T \ E) = Vess(f, T ).
(b) By the assumption there exists a set E ⊂ T of Lebesgue measure zero

such that d(fn(t), f(t))→ 0 as n→∞ for all t ∈ T \E. Given arbitrary set
G ⊂ T with meas(G) = 0, by the monotonicity and lower semi-continuity
of V (·, ·), we have:

V (f, T \ (E ∪G)) ≤ lim inf
n→∞

V (fn, T \ (E ∪G)) ≤ lim inf
n→∞

V (fn, T \G),

so that, by Theorem 2.1, we get

Vess(f, T ) ≤ lim inf
n→∞

V (fn, T \G) ∀G ⊂ T, meas(G) = 0. (2.5)

By (a), choose Gn⊂T with meas(Gn)=0 such that fn|T\Gn ∈BV(T\Gn;X)
and V (fn, T \ Gn) = Vess(fn, T ), n ∈ N. Then the set G =

⋃∞
n=1Gn is of

Lebesgue measure zero and V (fn, T \G) ≤ V (fn, T \Gn) = Vess(fn, T ), and
it remains to take into account (2.5).

(c) Since f ∈ BVess(T ;X), by (a) there exists E ⊂ T with meas(E) = 0
such that f |T\E ∈ BV(T \E;X), and since X is complete, by the extension
procedure from the proof of Theorem 2.1 there exists f̃ ∈ BV(T ;X) such
that f̃ |T\E = f |T\E . It remains to note that, by Lemma 1.2, f̃ = g ◦ ϕ on
T , where ϕ : T → R is a nondecreasing bounded function, g ∈ Lip(J ;X),
J = ϕ(T ) and Ld(g, J) ≤ 1. The sufficiency part is a straightforward
consequence of Lemma 1.2 and item (a).

(d) By the assumption, there exists a set E0 ⊂ T of Lebesgue measure
zero such that the sequence {fn(t)}∞n=1 is precompact in X for all t ∈ T\E0.
By (a), for each n ∈ N we can find Gn ⊂ T with meas(Gn) = 0 such that
V (fn, T \Gn) = Vess(fn, T ). Then T0 = E0∪

⋃∞
n=1Gn is of Lebesgue measure

zero,

V (fn, T \T0) ≤ V (fn, T \Gn) = Vess(fn, T ) ≤ sup
k∈N

Vess(fk, T ) <∞, n ∈ N,

and {fn(t)}∞n=1 is precompact in X for all t ∈ T \T0. Theorem 1.3 implies the
existence of a subsequence of {fn}∞n=1 which converges in metric d pointwise
on T \ T0 to a mapping f from BV(T \ T0;X). Define f on the set T0
arbitrarily and apply item (a). �
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In this section we have made an attempt to develop the preliminaries
of the theory of metric space valued mappings of finite essential variation
sufficient for the selections problem. If T = [a, b] and X = R, the corre-
sponding theory is well known, e. g., [5], [50]. In particular, in [5] it was
proved that for continuous functions the notions of essential variation and
Jordan variation coincide. This result is also valid for continuous mappings
with values in a metric space.

3. The space GVΦ(T ;X)

Let N denote the set of all continuous convex functions Φ : R+ → R+

such that Φ(ρ) = 0 if and only if ρ = 0, and N∞ — the set of all functions
Φ ∈ N , for which the Orlicz condition holds: limρ→∞Φ(ρ)/ρ = ∞. In
the terminology of [68, § 2] functions from N are said to be ϕ-functions; in
[62, Chapter 1, Section 2] functions from N∞ are called N -functions. Any
function Φ ∈ N is strictly increasing, and so, its inverse Φ−1 is continuous
and concave; besides, functions ρ 7→ Φ(ρ)/ρ and ρ 7→ ωΦ(ρ) = ρΦ−1(1/ρ)
are nondecreasing for ρ > 0, so the following limits exist:

Φ′(0) = lim
ρ→+0

Φ(ρ)/ρ ∈ [0,∞), [Φ] = lim
ρ→∞

Φ(ρ)/ρ ∈ (0,∞] (3.1)

and ωΦ(0) = limρ→+0 ωΦ(ρ) = 1/[Φ]. Moreover, if Φ ∈ N∞, then

lim
r→+0

rΦ−1(c/r) = c lim
ρ→∞

ρ/Φ(ρ) = 0, c ∈ [0,∞) (3.2)

and, in particular, ωΦ(0) = 0; in this case the function ωΦ : [0,∞)→ [0,∞)
satisfies conditions: ωΦ is nondecreasing (and concave), limρ→+0 ωΦ(ρ) =
ωΦ(0) = 0 and ωΦ(ρ1 + ρ2) ≤ ωΦ(ρ1) + ωΦ(ρ2) for ρ1, ρ2 ≥ 0.

Given Φ ∈ N , f : T → X and a partition ξ = {ti}mi=0 of T , we set

VΦ[f ; ξ] =
m∑
i=1

Φ
(
d(f(ti), f(ti−1))

ti − ti−1

)
(ti − ti−1) (3.3)

and

VΦ(f, T ) ≡ VΦ,d(f, T ) = sup
{
VΦ[f, ξ] | ξ is a partition of T

}
. (3.4)

The quantity (3.4) is said to be the total Φ-variation (in the sense of Jordan,
Riesz and Orlicz ). If it is finite, we say that f is a mapping of bounded (or
finite) Φ-variation and write f ∈ BVΦ(T ;X). If Φ(ρ) = ρ, the definition
(3.3)–(3.4) gives the classical notion of Jordan variation [58] (see also [86,
Chapter 8] and [100, Chapter 4, Section 9]). If Φ(ρ) = ρq, where q > 1,
then (3.3) and (3.4) define the notion of q-variation in the sense of Riesz
[96] (or [97, Chapter 2, Section 3.36]). Real valued functions of bounded
Φ-variation with Φ ∈ N∞ were extensively studied, e. g., [21], [38], [69], [75]
(and references therein).
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Note that if Φ ∈ N \ N∞, so that the value [Φ] from (3.1), which is also
equal to supρ>0 Φ(ρ)/ρ, is finite, and T is bounded, then the sets BVΦ(T ;X)
and BV(T ;X) consist of the same mappings. Thus, the set BVΦ(T ;X) is
most interesting in the case Φ ∈ N∞.

Given Φ ∈ N , the quantity VΦ[f ; ξ] does not decrease when we add points
to the partition ξ: VΦ[f ; ξ] ≤ VΦ[f ; ξ ∪ {t}] if ξ = {ti}mi=0 is a partition of
T and t ∈ T \ ξ. This is clear if t < t0 or t > tm, so let us suppose that
tk−1 < t < tk for some k ∈ {1, . . . ,m}. Putting, for the sake of brevity,

U(t, s) = UΦ(t, s) = Φ
(
d(f(t), f(s))/(t− s)

)
(t− s),

t, s ∈ T, s < t,
(3.5)

we have:

VΦ[f ; ξ] =
( k−1∑
i=1

U(ti, ti−1)
)

+U(tk, tk−1) +
( m∑
i=k+1

U(ti, ti−1)
)
, (3.6)

where first sum is omitted if k = 1 or the last sum is omitted if k = m.
Applying the triangle inequality for d, monotonicity and convexity of Φ and
the Jensen inequality for sums (e.g., [86, X.5.4]), we find

U(tk, tk−1) ≤ U(tk, t) + U(t, tk−1), (3.7)

which together with (3.6) proves our assertion. This fact implies that (3.4)
is the extension of (3.3), i.e. VΦ(f, ξ) = VΦ[f ; ξ] for any partition ξ of T ,
and that the value VΦ(f, T ) does not change if the supremum in (3.4) is
taken only over those partitions of T , in which a finite number of points is
fixed.

The main properties of VΦ are gathered in the following lemma (cf. also
Lemma 4.3 below).

Lemma 3.1 ([20, 23, 27]). Let Φ ∈ N and f : T → X. Then
(a) if E ⊂ G ⊂ T , then VΦ(f,E) ≤ VΦ(f,G);
(b) if t, s ∈ T and s < t, then d(f(t), f(s)) ≤ (t−s)Φ−1

(
VΦ(f, T )/(t−s)

)
;

(c) if t ∈ T , then VΦ(f, T ∩ (−∞, t]) + VΦ(f, T ∩ [t,∞)) = VΦ(f, T );
(d) if {fn}∞n=1 ⊂ XT , {Φn}∞n=1 ⊂ N , limn→∞ d(fn(t), f(t)) = 0 for t ∈ T

and limn→∞Φn(ρ) = Φ(ρ) for ρ ∈ [0,∞), then

VΦ(f, T ) ≤ lim inf
n→∞

VΦn(fn, T );

(e) VΦ(f, T ) = sup
{
VΦ(f, T ∩ [a, b]) | a, b ∈ T , a < b

}
;

(f) if s = supT ∈ (R \ T ) ∪ {∞}, then

VΦ(f, T ) = lim
T3t→s

VΦ(f, T ∩ (−∞, t]);
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(g) if i = inf T ∈ (R \ T ) ∪ {−∞}, then

VΦ(f, T ) = lim
T3t→i

VΦ(f, T ∩ [t,∞));

(h) if s and i are as in (f) and (g), then also

VΦ(f, T ) = lim
T 23(a,b)→(i,s)

VΦ(f, T ∩ [a, b]) = lim
T3b→s

lim
T3a→i

VΦ(f, T ∩ [a, b])

= lim
T3a→i

lim
T3b→s

VΦ(f, T ∩ [a, b]).

For Φ ∈ N and bounded T , we have the embeddings:

Lip(T ;X) ⊂ BVΦ(T ;X) ⊂ BV(T ;X), (3.8)

and, if |T | = supT − inf T , the following inequalities hold:

VΦ(f, T ) ≤ Φ
(
Ld(f, T )

)
|T |, f ∈ Lip(T ;X), (3.9)

Φ
(
V (f, T )/|T |

)
≤ VΦ(f, T )/|T |, f ∈ BVΦ(T ;X). (3.10)

Inequality (3.9) and the first embedding (3.8) follow from a straightforward
verification. Inequality (3.10), which is the Jensen inequality for variations,
is valid, since if ξ is a partition of T of the form {ti}mi=0 and f ∈ BVΦ(T ;X),
then by (3.5) and Jensen’s inequality for sums, we have:

Φ
(∑m

i=1 d(f(ti), f(ti−1))∑m
i=1(ti − ti−1)

)
≤
∑m

i=1 UΦ(ti, ti−1)∑m
i=1(ti − ti−1)

≤ VΦ(f, T )∑m
i=1(ti − ti−1)

,

whence
m∑
i=1

d(f(ti), f(ti−1)) ≤
( m∑
i=1

(ti − ti−1)
)

Φ−1
(

VΦ(f, T )∑m
i=1(ti − ti−1)

)
. (3.11)

The function ρ 7→ ρΦ−1(c/ρ) is nondecreasing (ρ > 0, c ≥ 0), and∑m
i=1(ti − ti−1) = tm − t0 ≤ |T |, and so, (3.11) implies the inequality,

equivalent to (3.10):

V (f, T ) ≤ |T |Φ−1(VΦ(f, T )/|T |
)
. (3.12)

Moreover, if Φ ∈ N∞ and T ⊂ R is arbitrary, then

BVΦ(T ;X) ⊂ AC(T ;X); (3.13)

in fact, if {ai, bi}ni=1 ⊂ T and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn, then
setting ti = bi, ti−1 = ai and m = n in (3.11), we find

n∑
i=1

d(f(bi), f(ai)) ≤
( n∑
i=1

(bi − ai)
)

Φ−1
(

VΦ(f, T )∑n
i=1(bi − ai)

)
.

Taking into account that Φ from N∞ satisfies (3.2), for any ε > 0 we can
find δ(ε) > 0 such that ρΦ−1(VΦ(f, T )/ρ) ≤ ε for all 0 < ρ ≤ δ(ε), so that if∑n

i=1(bi−ai) ≤ δ(ε), then the last inequality yields
∑n

i=1 d(f(bi), f(ai)) ≤ ε.
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Having Jensen’s inequality for variations at hand, we can supplement
Lemma 1.2 in the following way:

Lemma 3.2. Let T be bounded, f : T → X and Φ ∈ N . Then: f ∈
BVΦ(T ;X) if and only if there exist a nondecreasing (bounded) function
ϕ ∈ BVΦ(T ;R) and a natural mapping g : J = ϕ(T )→ X such that f = g◦ϕ
on T . In the necessity part one can set ϕ(t) = V (f, T ∩ (−∞, t]), t ∈ T ,
and then VΦ(ϕ, T ) = VΦ(f, T ).

Proof. Sufficiency. Let Φ ∈ N , T be arbitrary, ϕ ∈ BVΦ(T ;R), J = ϕ(T ),
g ∈ Lip(J ;X), Ld(g, J) ≤ 1 and f = g ◦ ϕ on T . Let us show that f ∈
BVΦ(T ;X) and VΦ(f, T ) ≤ VΦ(ϕ, T ). Indeed, given a partition ξ = {ti}mi=0
of T , we have:

VΦ[f ; ξ] =
m∑
i=1

Φ
(
d(g(ϕ(ti)), g(ϕ(ti−1)))

ti − ti−1

)
(ti − ti−1)

≤
m∑
i=1

Φ
(
Ld(g, J)

|ϕ(ti)− ϕ(ti−1)|
ti − ti−1

)
(ti − ti−1)

≤ VΦ(Ld(g, J)ϕ, T ) ≤ VΦ(ϕ, T ).

Necessity. Since BVΦ(T ;X) ⊂ BV(T ;X), the function ϕ : T → R+ given
by ϕ(t) = V (f, T ∩ (−∞, t]), t ∈ T , is well defined. Then the decomposition
f = g ◦ ϕ with natural g : J → X follows from Lemma 1.2. Let us show
that ϕ ∈ BVΦ(T ;R). If ξ = {ti}mi=0 is a partition of T , by the additivity of
V (·, ·) and inequality (3.12) for i ∈ {1, . . . ,m}, we find

ϕ(ti)− ϕ(ti−1) = V (f, T ∩ (−∞, ti])− V (f, T ∩ (−∞, ti−1])

= V (f, T ∩ [ti−1, ti])

≤ (ti − ti−1)Φ−1
(
VΦ(f, T ∩ [ti−1, ti])/(ti − ti−1)

)
,

and so, the monotonicity of Φ and Lemma 3.1(c), (a) imply

VΦ[ϕ; ξ] ≤
m∑
i=1

VΦ(f, T ∩ [ti−1, ti]) = VΦ(f, T ∩ [t0, tm]) ≤ VΦ(f, T ).

Hence, VΦ(ϕ, T ) ≤ VΦ(f, T ). From the decomposition f = g ◦ ϕ and the
sufficiency part we get VΦ(ϕ, T )=VΦ(f, T ). �

By virtue of Helly’s selection principle (Theorem 1.3 with Φ(ρ) = ρ) and
inequality (3.12) one can obtain a variant of Helly’s selection principle in
the space BVΦ(T ;X); and also, if Φ ∈ N∞, the sequence, extracted from the
family F , may be chosen to converge even uniformly on T (if we take into
account Lemma 3.1(b), condition (3.2) and the Arzelà-Ascoli Theorem).
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Let us consider briefly the case when T = I = [a, b], |I| = b− a and X is
a linear normed space over K = R or C equipped with the norm ‖ · ‖.

Theorem 3.3 ([20, Theorem 7]). Let (X, ‖·‖) be a reflexive Banach space,
Φ ∈ N and f ∈ BVΦ(I;X). Then f admits a strong derivative f ′(t) ∈ X
for almost all t ∈ I which is strongly measurable and

∫ b
a Φ(‖f ′(t)‖)dt ≤

VΦ(f, [a, b]). Moreover, if Φ ∈ N∞, then f is strongly differentiable a. e. on
I , its derivative f ′ is strongly measurable and Bochner integrable on I, f
is represented in the form f(t) = f(a) +

∫ t
a f
′(s)ds for all t ∈ I, and the

following integral formula for the Φ-variation holds:

VΦ(f, [a, b]) =

b∫
a

Φ
(
‖f ′(t)‖

)
dt. (3.14)

Corollary 3.4 ([20, Corollary 9]). Suppose that f : I → X and Φ ∈ N∞.
(a) If X is a reflexive Banach space, then f ∈ BVΦ(I;X) if and only if

f : I → X is absolutely continuous and
∫
I Φ(‖f ′(t)‖)dt <∞.

(b) If X is a metric space and ϕ(t)=V (f, [a, t]), t ∈ I, then f ∈ BVΦ(I;X)
if and only if ϕ ∈ BVΦ(I;R), i. e., if and only if ϕ ∈ AC(I;R) and∫
I Φ(|ϕ′(t)|)dt is finite. Moreover,

VΦ(f, I) = VΦ(ϕ, I) =
∫
I

Φ
(
|ϕ′(t)|

)
dt =

∫
I

Φ
(
| d
dt
V (f, [a, t])|

)
dt. (3.15)

For X = R the criterion in Corollary 3.4(a) is known from Riesz [96]
(cf. also [97, Chapter 2, Section 3.36]) if Φ(ρ) = ρq with q > 1, and
Medvedev [75] and Cybertowicz and Matuszewska [38] if Φ ∈ N∞; in [38]
the integral formula (3.14) is established for X = R.

If Φ(ρ) = ρq, ρ ≥ 0, q ≥ 1, we denote the space BVΦ(I;X) by BVq(I;X),
and VΦ — by Vq. Note that if (X, d) is a metric space and f ∈ Lip(I;X),
then

Ld(f, I) = lim
q→∞

(
Vq(f, I)

)1/q
= ess sup

t∈I

∣∣ d
dt
V (f, [a, t])

∣∣.
In fact, inequality (3.9) implies Vq(f, I) ≤

(
Ld(f, I)

)q|I|, whence

lim sup
q→∞

(
Vq(f, I)

)1/q ≤ Ld(f, I),

and Lemma 3.1(b) for t, s ∈ I, t 6= s, gives

d(f(t), f(s)) ≤ |t− s|1−(1/q)(Vq(f, I)
)1/q

,

so that
d(f(t), f(s))/|t− s| ≤ lim inf

q→∞

(
Vq(f, I)

)1/q
.
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The second equality follows from (3.15). In particular, if X is a reflexive
Banach space, then Ld(f, I) = ess supt∈I‖f ′(t)‖. Thus, if X is a metric
space and ϕ(t) = V (f, [a, t]), t ∈ I, then f ∈ Lip(I;X) if and only if
ϕ ∈ AC(I;R) and ess supt∈I |ϕ′(t)| <∞, and ifX is a reflexive Banach space,
then f ∈ Lip(I;X) if and only if f ∈ AC(I;X) and ess supt∈I‖f ′(t)‖ <∞.

Example 3.5. (a) Let us show that there exists a function f ∈ BVq([0, 1];R)
for all q ≥ 1, which is not Lipschitzian. We set f(t) = t(1−log t) if 0 < t ≤ 1
and f(0) = 0. Since f ′(t) = − log t for 0 < t ≤ 1, by (3.14) we have:

Vq(f, [0, 1]) =

1∫
0

(− log t)qdt =

∞∫
0

sqe−sds = Γ(q + 1), q ≥ 1,

where Γ is the Euler gamma-function: Γ(x) =
∫∞

0 tx−1e−tdt, x > 0. On the
other hand, sup0<t≤1 f(t)/t =∞, and so, f /∈ Lip([0, 1];R). Note also, that
since the main term in the asymptotic expansion of Γ(q+1) as q →∞ is, by
Stirling’s formula, of the form

√
2πq (q/e)q, then limq→∞(Vq(f, [0, 1]))1/q =

limq→∞(Γ(q + 1))1/q =∞.
(b) This is an example of a function

f ∈ AC([0, 1/2];R) \
⋂
q>1

BVq([0, 1/2];R).

We set f(t) = −1/ log t if 0 < t ≤ 1/2 and f(0) = 0. Formula (3.14) yields

Vq(f, [0, 1/2]) =

1/2∫
0

|f ′(t)|qdt =

1/2∫
0

dt

tq(log t)2q =

∞∫
log 2

e(q−1)s

s2q ds, q ≥ 1,

but the last integral converges if q = 1 and diverges for all q > 1.
(c) Let Φ(ρ) = eρ − 1, ρ ≥ 0, and f(t) = t(1 − log t) if 0 < t ≤ 1 and

f(0) = 0. Then for λ > 0 we have:

VΦ(f/λ, [0, 1]) =

1∫
0

Φ
(
|f ′(t)|/λ

)
dt =

1∫
0

dt

t1/λ
− 1

=

{
1/(λ− 1) if λ > 1,
∞ if 0 < λ ≤ 1.

The importance of the sets BVΦ(I;X) is given by

Theorem 3.6 ([20, Corollary 11]). Given a metric space (X, d), the follow-
ing equality holds: AC([a, b];X) =

⋃
Φ∈N∞ BVΦ([a, b];X).
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The sets BVΦ(T ;X) generated by different functions Φ ∈ N are related
as follows:

Lemma 3.7 ([27, 37, 66]). Let Φ, Ψ ∈ N . If T ⊂ R is bounded, (X, d) is
a metric space and lim supρ→∞Ψ(ρ)/Φ(ρ)<∞, i.e.,

∃C>0, ρ0>0 such that Ψ(ρ)≤CΦ(ρ) ∀ ρ≥ρ0, (3.16)

then BVΦ(T ;X) ⊂ BVΨ(T ;X). Conversely, if I = [a, b], (X, ‖·‖) is a linear
normed space and BVΦ(I;X) ⊂ BVΨ(I;X), then condition (3.16) holds.

Recall that a function Φ ∈ N satisfies the ∆2-condition near infinity or,
in short, ∆∞2 -condition, if lim supρ→∞Φ(2ρ)/Φ(ρ) < ∞ ([62, Chapter 1,
Section 4] or [68, Section 3]), which is equivalent to

∃ numbers C > 0 and ρ0 > 0 such that

Φ(2ρ) ≤ CΦ(ρ) ∀ ρ ≥ ρ0,
(3.17)

and this, in turn, as it is known, is equivalent to
∀λ > 1 ∃C(λ) > 0, ρ0(λ) > 0 such that

Φ(ρ) ≤ C(λ)Φ(ρ/λ) ∀ ρ ≥ ρ0(λ).
(3.18)

For the sake of brevity we shall write BVΦ instead of BVΦ(T ;X), VΦ(f)
instead of VΦ(f, T ) and Ld(f) instead of Ld(f, T ).

Lemma 3.8. Let X be a linear normed space and Φ ∈ N . Then BVΦ(I;X)
is a linear space if and only if Φ satisfies the ∆∞2 -condition.

Proof. First observe that the convexity of Φ implies that the set BVΦ is
convex and f 7→ VΦ(f) is a convex functional:

VΦ(θf + (1− θ)g) ≤ θVΦ(f) + (1− θ)VΦ(g),

f, g ∈ BVΦ, θ ∈ [0, 1].
(3.19)

To prove sufficiency (with I ⊂ R an arbitrary subset), let f , g ∈ BVΦ and
c ∈ K. Then VΦ(cf) = VΦ(|c|f). If |c| ≤ 1, by (3.19), cf ∈ BVΦ. If |c| > 1,
by (3.18), there exist C > 0 and ρ0 > 0 such that Φ(|c|ρ) ≤ CΦ(ρ) for all
ρ ≥ ρ0. Setting Ψ(ρ) = Φ(|c|ρ), ρ ∈ [0,∞), and applying Lemma 3.7, we
get: BVΦ ⊂ BVΨ, and so, VΦ(|c|f) = VΨ(f) < ∞, whence cf ∈ BVΦ. This
and (3.19) yield f + g ∈ BVΦ, since

VΦ(f + g) = VΦ

(
1
2

2f +
1
2

2g
)
≤ 1

2
VΦ(2f) +

1
2
VΦ(2g) <∞.

Conversely, let BVΦ be a linear space. In particular, this means that if
f ∈ BVΦ, then 2f ∈ BVΦ, or BVΦ ⊂ BVΨ, where Ψ(ρ) = Φ(2ρ), ρ ≥ 0. By
Lemma 3.7, there exist C > 0 and ρ0 > 0 such that Φ(2ρ) = Ψ(ρ) ≤ CΦ(ρ)
for all ρ ≥ ρ0, i. e., Φ satisfies (3.17). �
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As Lemma 3.8 and Example 3.5(c) show, the set BVΦ(T ;X) with X a
linear normed space and Φ ∈ N , is not, in general, a linear space. On the
basis of this set we will define a new space GVΦ(T ;X) with better properties,
called the space of mappings of bounded generalized Φ-variation.

Let (X, d) be a metric space and T ⊂ R. Given Φ ∈ N and λ > 0,
we set Φλ(ρ) = Φ(ρ/λ), ρ ≥ 0. By Lemma 3.7, if T is bounded, we have
BVΦλ ⊂ BVΦ if 0 < λ ≤ 1 and BVΦ ⊂ BVΦλ if λ > 1. By Example 3.5(c),
the latter embedding is, in general, strict. Lemma 3.7 and condition (3.18)
imply that for the reverse embedding BVΦλ ⊂ BVΦ with λ > 1 to hold,
it is sufficient, and when T = I and X is a linear normed space it is also
necessary, that the function Φ satisfy the ∆∞2 -condition. Given arbitrary
Φ ∈ N , the space GVΦ = GVΦ(T ;X) is defined by

GVΦ(T ;X) =
⋃
λ>0

BVΦλ(T ;X) =
⋃
λ>1

BVΦλ(T ;X). (3.20)

From the above it follows that if T is bounded and Φ ∈ N satisfies the
∆∞2 -condition, then GVΦ(T ;X) = BVΦ(T ;X). Conversely, if T = I, X is
a linear normed space and GVΦ(I;X) = BVΦ(I;X), then Φ satisfies the
∆∞2 -condition: in fact, since BVΦ2(I;X) ⊂ BVΦ(I;X), by Lemma 3.7 there
exist C > 0 and ρ0 > 0 such that Φ(ρ) ≤ CΦ(ρ/2), ρ ≥ ρ0.

If X is linear normed space, the set GVΦ(T ;X) coincides with the set of
those f ∈ XT , for which there exists a λ > 0 (depending on f) such that
f/λ ∈ BVΦ(T ;X); moreover, it is a linear space, for if f , g ∈ GVΦ, then
there exist λ > 0 and µ > 0 such that f/λ, g/µ ∈ BVΦ, and so, from (3.19),
we find

VΦ

(
f + g

λ+ µ

)
≤ λ

λ+ µ
VΦ(f/λ) +

µ

λ+ µ
VΦ(g/µ) < ∞, (3.21)

which implies f + g ∈ GVΦ. It is also clear that cf ∈ GVΦ if c ∈ K and
f ∈ GVΦ.

For T ⊂ R and a metric space X we define the following nonnegative
functional (of Luxemburg-Nakano-Orlicz type) on GVΦ(T ;X):

pΦ(f) = pΦ,d(f, T ) = inf{λ > 0 | VΦλ(f, T ) ≤ 1},
f ∈ GVΦ(T ;X),

(3.22)

which is called the precise Φ-variation of f . The number pΦ(f) is well
defined, since VΦλ(f) ≤ VΦ(f)/λ if λ ≥ 1. For instance, if Φ(ρ) = ρq, q ≥ 1,
then pΦ(f) = (Vq(f, T ))1/q for any f ∈ BVq(T ;X).

The main properties of pΦ are presented in the following

Lemma 3.9. Let Φ ∈ N and f ∈ GVΦ(T ;X). We have:
(a) d(f(t), f(s)) ≤ ωΦ(|t− s|)pΦ(f, T ) for all t, s ∈ T ;
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(b) if λ = pΦ(f, T ) > 0, then VΦλ(f, T ) ≤ 1 (and so, the infimum in (3.22)
is attained for such f);

(c) if λ>0, then pΦ(f, T )≤λ if and only if VΦλ(f, T )≤1;
(d) if λ > 0 and VΦλ(f, T ) = 1, then pΦ(f, T ) = λ;
(e) if a sequence {fn}∞n=1 ⊂ GVΦ(T ;X) converges pointwise on T to

f : T→X as n→∞, then pΦ(f, T ) ≤ lim infn→∞ pΦ(fn, T );
(f) for bounded T the following inequalities hold :

Φ−1(1/|T |)pΦ(f, T ) ≤ Ld(f, T ), f ∈ Lip(T ;X), (3.23)

V (f, T ) ≤ ωΦ(|T |)pΦ(f, T ), f ∈ GVΦ(T ;X); (3.24)

(g) if t ∈ T , then pΦ(f, T ) ≤ pΦ(f, T ∩ (−∞, t]) + pΦ(f, T ∩ [t,∞));
(h) if X is a linear normed space, then the functional pΦ(·, T ) is a semi-

norm on the linear space GVΦ(T ;X).

Proof. (a) Given t, s ∈ T , s < t, by (3.3), (3.4) and (3.22), we have:

Φ
(
d(f(t), f(s))

(t− s)λ

)
(t− s) ≤ VΦλ(f, T ) ≤ 1 if λ > pΦ(f, T ),

so that dividing by t− s and taking the inverse function Φ−1, we get:

d(f(t), f(s)) ≤ (t− s)Φ−1(1/(t− s))λ, λ > pΦ(f, T ).

(b) Set λ = pΦ(f, T ) > 0. Choose numbers λ(n) > λ, n ∈ N, such that
λ(n) → λ as n → ∞. By definition (3.22), VΦλ(n)(f, T ) ≤ 1 for all n ∈ N,
and so, by Lemma 3.1(d), we find VΦλ(f, T ) ≤ lim infn→∞ VΦλ(n)(f, T ) ≤ 1.

(c) If VΦλ(f, T ) ≤ 1, then pΦ(f, T ) ≤ λ by virtue of (3.22). Suppose
that pΦ(f, T )> 0 (otherwise, by (a), f is constant and VΦλ(f, T ) = 0). If
pΦ(f, T ) = λ, then VΦλ(f, T ) ≤ 1 thanks to item (b). It remains to show
that

if pΦ(f, T ) < λ, then VΦλ(f, T ) < 1. (3.25)

Indeed, setting µ = pΦ(f, T ) and taking into account the convexity of Φ and
the result of item (b), we have: VΦλ(f, T ) ≤ (µ/λ)VΦµ(f, T ) ≤ µ/λ < 1.

(d) In view of (c) and (3.25) the cases pΦ(f, T ) > λ and pΦ(f, T ) < λ are
not possible.

(e) It suffices to suppose that λ = lim infn→∞ pΦ(fn, T ) is finite. Then
pΦ(fnk , T ) → λ as k → ∞ for some subsequence {fnk}∞k=1 of {fn}∞n=1,
so for any ε > 0 we can find k0(ε) ∈ N such that pΦ(fnk , T ) < λ + ε
for all k ≥ k0(ε). The definition of pΦ(fnk , T ) implies VΦλ+ε(fnk , T ) ≤ 1
if k ≥ k0(ε), and since fnk converges to f pointwise on T as k → ∞,
Lemma 3.1(d) yields VΦλ+ε(f, T ) ≤ lim infk→∞ VΦλ+ε(fnk , T ) ≤ 1, whence
pΦ(f, T ) ≤ λ+ ε, ε > 0.
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(f) Set λ=Ld(f, T )/Φ−1(1/|T |). If Ld(f, T )=0, then pΦ(f, T )=0, and so,
let Ld(f, T )> 0. Applying (3.9), we have: VΦλ(f, T )≤Φλ(Ld(f, T ))|T |= 1,
and it follows from (c) that pΦ(f, T ) ≤ λ, which proves (3.23).

To prove (3.24), we set λ = V (f, T )
/(
|T |Φ−1(1/|T |)

)
and suppose that

λ > 0. Then (3.10) gives VΦλ(f, T ) ≥ |T |Φλ(V (f, T )/|T |) = 1. This and
(3.25) then imply pΦ(f, T ) ≥ λ.

(g) Set λ = pΦ(f, T ∩ (−∞, t]) and µ = pΦ(f, T ∩ [t,∞)). If at least
one of the numbers λ or µ is zero, then, by item (a), the inequality (ac-
tually, the equality) is obvious. Let λ > 0 and µ > 0. By (b), we get
VΦλ(f, T ∩ (−∞, t]) ≤ 1 and VΦµ(f, T ∩ [t,∞)) ≤ 1. In view of (c), inequal-
ity pΦ(f, T ) ≤ λ+ µ is equivalent to VΦλ+µ(f, T ) ≤ 1. In order to prove the
latter, let ξ = {ti}mi=0 be a partition of T such that tk−1 ≤ t ≤ tk for some
k ∈ {1, . . . ,m} (the cases t < t0 or t > tm are similar). Denote by Uλ(t, s)
the expression U(t, s) from (3.5), corresponding to function Φλ. For the
quantity VΦλ+µ [f ; ξ] from (3.3) equality (3.6) holds, where U is replaced by
Uλ+µ. The convexity of Φ and (3.7) imply

Uλ+µ(ti, ti−1) ≤
λ

λ+ µ
Uλ(ti, ti−1), i = 1, . . . , k − 1,

Uλ+µ(tk, tk−1) ≤ Uλ+µ(t, tk−1) + Uλ+µ(tk, t)

≤ λ

λ+ µ
Uλ(t, tk−1) +

µ

λ+ µ
Uµ(tk, t),

Uλ+µ(ti, ti−1) ≤
µ

λ+ µ
Uµ(ti, ti−1), i = k + 1, . . . ,m,

which together with (3.6) give

VΦλ+µ [f ; ξ] ≤ λ

λ+ µ
VΦλ(f, T ∩ (−∞, t]) +

µ

λ+ µ
VΦµ(f, T ∩ [t,∞)) ≤ 1.

(h) Clearly, pΦ(cf, T ) = |c|pΦ(f, T ), c ∈ K. The triangle inequality, which
is of the form pΦ(f + g, T ) ≤ pΦ(f, T ) + pΦ(g, T ), holds if at least one of
the numbers at the right hand side is zero. Now if λ = pΦ(f, T ) > 0 and
µ = pΦ(g, T ) > 0, then from (3.21) and (b) we get VΦ((f+g)/(λ+µ), T ) ≤ 1,
and so, pΦ(f + g, T ) ≤ λ+ µ according to (3.22). �

One of the advantages to define the space GVΦ(T ;X) is that it is invariant
with respect to equivalent metrics on X: if d and d0 are equivalent metrics
on X, i. e., C1d(x, y) ≤ d0(x, y) ≤ C2d(x, y) for some constants C1 > 0 and
C2 > 0 and all x, y ∈ X, and f ∈ GVΦ(T ;X) with respect to metric d, then
f ∈ GVΦ(T ;X) with respect to metric d0 and the following inequalities hold
C1pΦ,d(f, T ) ≤ pΦ,d0(f, T ) ≤ C2pΦ,d(f, T ), where pΦ,d(f, T ) is the quantity
(3.22), evaluated in metric d.

By Lemma 3.9(b), the structural lemma 3.2 holds for mappings f from
GVΦ(T ;X) if we replace BVΦ by GVΦ, and the equality VΦ(ϕ, T ) = VΦ(f, T )



SELECTIONS OF BOUNDED VARIATION 23

— by pΦ(ϕ, T ) = pΦ(f, T ). To see this, let us follow the notation and proof
of that Lemma, making the necessary changes. If ϕ ∈ GVΦ(T ;R), without
loss of generality we suppose that λ = pΦ(ϕ, T ) > 0, and so, if f = g ◦ϕ, we
have: VΦλ(f, T ) ≤ VΦ(ϕ/λ, T ) ≤ 1 since Ld(g, J) ≤ 1, hence f ∈ GVΦ(T ;X)
and pΦ(f, T ) ≤ pΦ(ϕ, T ). To prove the necessity part, we note that if
f ∈ GVΦ(T ;X), λ = pΦ(f, T ) > 0 and ϕ(t) = V (f, T ∩ (−∞, t]), t ∈ T ,
then, by Lemma 3.2, VΦ(ϕ/λ, T ) = VΦλ(f, T ) ≤ 1, so that ϕ ∈ GVΦ(T ;R)
and pΦ(ϕ, T ) ≤ λ = pΦ(f, T ).

In order to establish the relations between spaces GVΦ(T ;X), generated
by different functions Φ ∈ N , let us recall certain definitions ([62, Sections
3, 13], [68, Theorem 3.4]). Given functions Φ, Ψ ∈ N , we write Ψ 4 Φ and
say that Φ dominates Ψ near infinity if there exist constants C > 0 and
ρ0 > 0 such that Ψ(ρ) ≤ Φ(Cρ) for all ρ ≥ ρ0. For example, if Φ(ρ) = ρp

and Ψ = ρq with p, q ≥ 1, then Ψ 4 Φ if and only if q ≤ p. Functions Φ,
Ψ ∈ N are said to be equivalent near infinity, in symbols Φ ∼ Ψ, provided
Ψ 4 Φ and Φ 4 Ψ. Clearly, Φ ∼ Ψ if and only if, for some constants C1 > 0,
C2 > 0 and ρ0 > 0, we have Φ(C1ρ) ≤ Ψ(ρ) ≤ Φ(C2ρ) for all ρ ≥ ρ0. In
particular, if limρ→∞Φ(ρ)/Ψ(ρ) > 0 is finite, then Φ ∼ Ψ.

Theorem 3.10. Let Φ, Ψ ∈ N . If T is bounded, (X, d) is a metric space
and Ψ 4 Φ, then GVΦ(T ;X) ⊂ GVΨ(T ;X) and there exists a number
κ = κ(Φ,Ψ, |T |) > 0, depending only on Φ, Ψ and |T |, such that pΨ(f, T ) ≤
κ pΦ(f, T ) for all f ∈ GVΦ(T ;X). Conversely, if I = [a, b], (X, ‖ · ‖) is a
linear normed space and GVΦ(I;X) ⊂ GVΨ(I;X), then Ψ 4 Φ. Thus, the
spaces GVΦ(I;X) and GVΨ(I;X) consist of the same mappings if and only
if Φ ∼ Ψ, and moreover, functionals pΦ(·, I) and pΨ(·, I) are equivalent.

Proof. 1. If Ψ 4 Φ, then Ψ(ρ) ≤ Φ(Cρ) for some constants C>0 and
ρ0 > 0 and all ρ ≥ ρ0. Given f ∈GVΦ(T ;X), there exists λ> 0 such that
VΦλ(f, T )<∞, and so, if µ=λC, we have: VΨµ(f, T )≤Ψ(ρ0)|T |+VΦλ(f, T ).

Now, let us prove the inequality. Let f ∈ GVΦ(T ;X) and λ = pΦ(f, T ).
If λ = 0, then f is constant by Lemma 3.9(a), and so, pΨ(f, T ) = 0. Assume
that λ > 0 and set ρ1 = Ψ−1(1/(2|T |)) and N = max{1,Ψ(ρ0)/Φ(Cρ1)}.
Since Ψ 4 Φ, then Ψ(ρ) ≤ NΦ(Cρ) for all ρ ≥ ρ1: in fact, this is clear
if ρ1 ≥ ρ0 or ρ1 < ρ0 ≤ ρ, so we suppose that ρ1 ≤ ρ ≤ ρ0, in which
case Ψ(ρ) ≤ Ψ(ρ0) and Φ(Cρ1) ≤ Φ(Cρ) by the monotonicity of Φ and
Ψ, and so, Ψ(ρ) ≤ Φ(Cρ)Ψ(ρ0)/Φ(Cρ1). Let ξ = {ti}mi=0 be an arbitrary
partition of T . Setting µ = 2NCλ and denoting by {i} the set of all indices
i ∈ {1, . . . ,m}, for which d(f(ti), f(ti−1))/((ti − ti−1)µ) < ρ1, and by [i] —
the set of remaining indices, taking into account the convexity of Φ and
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Lemma 3.9(b), we find

VΨµ [f ; ξ] =
(∑
i∈{i}

+
∑
i∈[i]

)
Ψ
(
d(f(ti), f(ti−1))

(ti − ti−1)µ

)
(ti − ti−1)

≤ Ψ(ρ1)|T |+N
∑
i∈[i]

Φ
(
d(f(ti), f(ti−1))
(ti − ti−1)2Nλ

)
(ti − ti−1)

≤ 1
2

+
1
2
VΦλ(f, T ) ≤ 1.

Since ξ is arbitrary, this implies VΨµ(f, T ) ≤ 1, and so, pΨ(f, T ) ≤ µ =
2NCpΦ(f, T ), and it remains to set κ = 2NC.

2. Suppose now that condition Ψ 4 Φ does not hold. Then there exists
a sequence {ρn}∞n=1 of positive numbers such that limn→∞ ρn = ∞ and
Ψ(ρn) > Φ(n2nρn) for all n ∈ N. Setting θ = 1/2n and ρ = n2nρn in the
(convexity) inequality Φ(θρ) ≤ θΦ(ρ), we get Φ(n2nρn) ≥ 2nΦ(nρn); thus,

Ψ(ρn) > 2nΦ(nρn), n ∈ N. (3.26)

We define the sequence of points {tn}∞n=0 in I as follows: t0 = a and
tn − tn−1 = 2−n|I|Φ(ρ1)/Φ(nρn) if n ∈ N. Put

f(t) =

{
(nρn(t− tn−1) + Sn−1)x if tn−1 ≤ t < tn, n ∈ N,
S∞x if limn→∞ tn ≤ t ≤ b,

where S0 = 0, Sk =
∑k

n=1 nρn(tn − tn−1), k ∈ N ∪ {∞}, x ∈ X, ‖x‖ = 1,
and note that S∞ <∞. Let us show that f ∈ BVΦ(I;X), and at the same
time f /∈ GVΨ(I;X). In fact,

VΦ(f, I) =
∞∑
n=1

UΦ(tn, tn−1) =
∞∑
n=1

Φ(nρn)(tn − tn−1) = |I|Φ(ρ1) <∞.

Now if λ ≥ 1, then for any m ∈ N, m ≥ λ, by virtue of (3.26) we have:

VΨ(f/λ, I)s ≥
2m∑
n=m

Ψ
(
‖f(tn)− f(tn−1)‖

(tn − tn−1)λ

)
(tn − tn−1)

≥
2m∑
n=m

Ψ(ρn)(tn − tn−1) ≥ m|I|Φ(ρ1).

Therefore, VΨ(f/λ, I) =∞ for all λ > 0. �
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4. Metric semigroups of mappings

A triple (X, d,+) is said to be a metric semigroup if (X, d) is a metric
space with metric d, (X,+) is an additive commutative semigroup (i. e.,
x + (y + z) = (x + y) + z and x + y = y + x for all x, y, z ∈ X) and d
is translation invariant in the sense that d(x, y) = d(x + z, y + z) for all
x, y, z ∈ X. A metric semigroup (X, d,+) is called complete if (X, d) is a
complete metric space.

A simple example of a metric semigroup is any linear normed space
(X, ‖ · ‖) with induced metric d(x, y) = ‖x − y‖, x, y ∈ X, and the ad-
dition operation + from X; this semigroup is complete if X is a Banach
space. If K ⊂ X is a convex cone (i. e., x + y, λx ∈ K whenever x, y ∈ K,
λ ≥ 0), then (K, d,+) is also a metric semigroup, which is complete if X is
a Banach space and K is closed in X. More examples of metric semigroups
relevant for our purposes are presented below in this section (for metric
semigroups cc(X) and cbc(X) see p. 47 and p. 60).

Note that if (X, d,+) is a metric semigroup, then, by the translation
invariance of d and the triangle inequality for d, given x, y, u, v ∈ X, we
have:

d(x, y) ≤ d(x+ u, y + v) + d(u, v), (4.1)

d(x+ u, y + v) ≤ d(x, y) + d(u, v). (4.2)

In particular, inequality (4.2) implies that the addition operation (x, y) 7→
x+ y is a continuous mapping from X ×X into X: xn + yn → x+ y in X
as n → ∞ whenever xn → x and yn → y in X as n → ∞. More generally,
if xn → x, yn → y, un → u and vn → v in X as n→∞, then

lim
n→∞

d(xn + yn, un + vn) = d(x+ y, u+ v). (4.3)

4.1. The space GVΦ(T ;X) as a metric semigroup. Let T ⊂ R, a ∈ T
be a given point, (X, d,+) be a metric semigroup, Φ ∈ N and f , g ∈
GVΦ(T ;X).

The addition operation in GVΦ(T ;X) is introduced pointwise: (f+g)(t) =
f(t)+g(t), t ∈ T . It is well defined, i. e., f+g ∈ GVΦ(T ;X); indeed, VΦλ(f)
and VΦµ(g) are finite for some constants λ>0 and µ>0 and, given t, s ∈ T ,
s < t, inequality (4.2) yields

d((f + g)(t), (f + g)(s))
(t− s)(λ+ µ)

≤ λ

λ+ µ
· d(f(t), f(s))

(t− s)λ
+

µ

λ+ µ
· d(g(t), g(s))

(t− s)µ
,

and so, by the monotonicity and convexity of Φ, we get:

VΦλ+µ(f + g) ≤ λ

λ+ µ
VΦλ(f) +

µ

λ+ µ
VΦµ(g) <∞.
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This inequality, Lemma 3.9(b) and (3.22) also imply pΦ(f + g) ≤ pΦ(f) +
pΦ(g).

We define the metric dΦ on GVΦ(T ;X) as follows ([19], [22]):

dΦ(f, g) = d(f(a), g(a)) + ∆Φ(f, g), (4.4)

where

∆Φ(f, g) ≡ ∆Φ,d(f, g, T ) = inf{λ > 0 |WΦλ(f, g) ≤ 1} (4.5)

and

WΦ(f, g) ≡WΦ,d(f, g, T ) (4.6)

= sup
ξ

m∑
i=1

Φ
(
d(f(ti) + g(ti−1), g(ti) + f(ti−1))

ti − ti−1

)
(ti − ti−1),

and the supremum is taken over all partitions ξ = {ti}mi=0 (m ∈ N) of the
set T . In the significant particular case Φ(ρ) = ρ, i. e., when GVΦ(T ;X) =
BV(T ;X), we denote dΦ by d1 and WΦ = ∆Φ — by ∆1 = ∆1,d. In the
context of the Hausdorff metric d on the space of all compact convex subsets
of a real linear normed space the metric dΦ was employed by Zawadzka [113]
(with Φ(ρ) = ρ), Merentes and Nikodem [77] (with Φ(ρ) = ρq and q > 1)
and Chistyakov [23] (in the general case Φ ∈ N ).

It will be shown below that ∆Φ is a semimetric and dΦ is a metric on
GVΦ(T ;X), which are translation invariant. Now let us verify that the value
∆Φ(f, g) is finite. In fact, since VΦλ(f) < ∞ and VΦµ(g) < ∞ (see above),
given t, s ∈ T , s < t, (4.2) implies
d(f(t) + g(s), g(t) + f(s))

(t− s)(λ+ µ)
≤ λ

λ+ µ
· d(f(t), f(s))

(t− s)λ
+

µ

λ+ µ
· d(g(t), g(s))

(t− s)µ
,

hence (again by the monotonicity and convexity of Φ)

WΦλ+µ(f, g) ≤ λ

λ+ µ
VΦλ(f) +

µ

λ+ µ
VΦµ(g) <∞. (4.7)

Again by the convexity of Φ, for ν ≥ λ+ µ we have:

WΦν (f, g) ≤ λ+ µ

ν
WΦλ+µ(f, g)→ 0 as ν →∞,

and so, ∆Φ(f, g) is well defined.
The main properties of ∆Φ and WΦ are gathered in Lemmas 4.1 and 4.3.

The following lemma is a counterpart of Lemma 3.9(a)–(e) for ∆Φ.

Lemma 4.1. Let T ⊂R, (X,d,+) be a metric semigroup and f,g∈GVΦ(T ;X)
where Φ∈N . Then we have:

(a) |d(f(t), g(t))− d(f(s), g(s))| ≤ d(f(t) + g(s), g(t) + f(s)) ≤
ωΦ(|t− s|)∆Φ(f, g) whenever t, s ∈ T ;

(b) if λ = ∆Φ(f, g) > 0, then WΦλ(f, g) ≤ 1;



SELECTIONS OF BOUNDED VARIATION 27

(c) given λ>0, ∆Φ(f, g)≤λ if and only if WΦλ(f, g)≤1;
(d) if λ > 0 and WΦλ(f, g) = 1, then ∆Φ(f, g) = λ;
(e) if sequences {fn}∞n=1, {gn}∞n=1 ⊂ GVΦ(T ;X) converge pointwise on T

to f and g as n→∞, respectively, then

∆Φ(f, g) ≤ lim inf
n→∞

∆Φ(fn, gn);

(f) |pΦ(f)− pΦ(g)| ≤ ∆Φ(f, g) ≤ pΦ(f) + pΦ(g).

Proof. (a) By (4.5) and (4.6), we have, for t, s ∈ T , s 6= t,

Φ
(
d(f(t)+g(s), g(t)+f(s))

|t− s|λ

)
|t− s| ≤WΦλ(f, g) ≤ 1 if λ > ∆Φ(f, g).

Dividing by |t − s| and applying Φ−1, we get the second inequality in (a).
The first inequality in (a) is a consequence of (4.1).

(b) First, let us show that if conditions of (e) are satisfied and λ(n)→ λ
as n→∞, where λ(n) > 0 and λ > 0, then

WΦλ(f, g) ≤ lim inf
n→∞

WΦλ(n)(fn, gn). (4.8)

The pointwise convergence of fn to f and gn to g and property (4.3) imply

lim
n→∞

d(fn(t)+gn(s), gn(t)+fn(s)) = d(f(t)+g(s), g(t)+f(s)), t, s ∈ T .

Given ξ = {ti}mi=0 a partition of T , by (4.6), for all n ∈ N we have
m∑
i=1

Φ
(
d(fn(ti)+gn(ti−1), gn(ti)+fn(ti−1))

(ti − ti−1)λ(n)

)
(ti − ti−1) ≤WΦλ(n)(fn, gn).

Passing to the limit inferior as n→∞ and making use of the continuity of
Φ, and then taking the supremum over all partitions ξ of T at the left hand
side, we arrive at (4.8).

In order to prove (b), let λ(n) > λ = ∆Φ(f, g), n ∈ N, be such that
limn→∞ λ(n) = λ. Since WΦλ(n)(f, g) ≤ 1 for all n ∈ N, (4.8) yields
WΦλ(f, g) ≤ 1.

(c) As in the proof of Lemma 3.9(c), by virtue of (a) and (b), it suf-
fices to show only that if 0 < ∆Φ(f, g) < λ, then WΦλ(f, g) < 1. Setting
µ = ∆Φ(f, g), by the convexity of Φ and item (b), we have: WΦλ(f, g) ≤
(µ/λ)WΦµ(f, g) ≤ µ/λ < 1.

(d) By the just proved assertion and item (c), it follows that the cases
∆Φ(f, g) < λ and ∆Φ(f, g) > λ do not hold.

(e) Suppose that λ = lim infn→∞∆Φ(fn, gn) < ∞. Then there exists a
subsequence {nk}∞k=1 of {n}∞n=1 such that ∆Φ(fnk , gnk)→ λ as k →∞, and
so, given ε > 0, we find a k0(ε) ∈ N, for which ∆Φ(fnk , gnk)<λ + ε for all
k≥ k0(ε). By the definition of ∆Φ(fnk , gnk), we have WΦλ+ε(fnk , gnk)≤ 1,
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k≥k0(ε). From the pointwise convergence of fnk and gnk and (4.8) we get
WΦλ+ε(f, g)≤1 and, therefore, ∆Φ(f, g)≤λ+ ε for all ε > 0.

(f) First we establish the second inequality. Set λ=pΦ(f) and µ=pΦ(g).
If λ=0 or µ=0, then the (in)equality is obvious by virtue of Lemma 3.9(a).
Suppose that λ>0 and µ>0. Then VΦλ(f) ≤ 1 and VΦµ(g) ≤ 1 according
to Lemma 3.9(b), and so, WΦλ+µ(f, g) ≤ 1 thanks to (4.7). Taking into
account (4.5) we get that ∆Φ(f, g) ≤ λ+ µ.

To prove the first inequality, we set λ = ∆Φ(f, g) and µ = pΦ(g) and
assume that λ>0 and µ>0. From (4.1),

d(f(t), f(s)) ≤ d(f(t)+g(s), g(t)+f(s))+d(g(t), g(s)), t, s ∈ T. (4.9)

By the convexity of Φ, (3.3), (3.4), (4.6) and Lemmas 3.9(b) and 4.1(b), we
find that

VΦλ+µ(f) ≤ λ

λ+ µ
WΦλ(f, g) +

µ

λ+ µ
VΦµ(g) ≤ 1, (4.10)

whence pΦ(f) ≤ λ + µ = ∆Φ(f, g) + pΦ(g), and it remains to take into
account the symmetry in f and g in the formulae.

If λ = 0, by Lemma 4.1(a), (4.9) and the symmetry in f and g, we have:
d(f(t), f(s)) = d(g(t), g(s)) for all t, s ∈ T , and so, pΦ(f) = pΦ(g). If
µ = 0, Lemma 3.9(a) implies that g is a constant mapping and, hence,
d(f(t), f(s)) = d(f(t) + g(s), g(t) + f(s)), t, s ∈ T , so that ∆Φ(f, g) =
pΦ(f). �

Theorem 4.2. If T ⊂ R, (X, d,+) is a (complete) metric semigroup and
the function Φ ∈ N , then the triple (GVΦ(T ;X), dΦ,+) is also a (respec-
tively, complete) metric semigroup.

Proof. Let f, g, h ∈ GVΦ(T ;X). The translation invariance of dΦ follows
from equality ∆Φ(f + h, g + h) = ∆Φ(f, g), which is a consequence of the
translation invariance of d and the following equality for t, s ∈ T :

d
(

(f+h)(t)+(g+h)(s), (g+h)(t)+(f+h)(s)
)

= d
(
f(t)+g(s), g(t)+f(s)

)
.

Now let us show that dΦ is a metric on GVΦ(T ;X). If dΦ(f, g) = 0,
then, by (4.4) and Lemma 4.1(a), d(f(t), g(t)) = d(f(a), g(a)) = 0, t ∈ T ,
t 6= a, that is, f = g. Clearly, dΦ is symmetrical: dΦ(f, g) = dΦ(g, f).
In order to prove the triangle inequality for dΦ, it suffices to show that
∆Φ(f, g) ≤ ∆Φ(f, h) + ∆Φ(g, h). From (4.1) and the translation invariance
of d we have, for all t, s ∈ T ,

d
(
f(t)+g(s), g(t)+f(s)

)
≤ d
(
f(t)+h(s), h(t)+f(s)

)
+d
(
g(t) + h(s), h(t) + g(s)

)
. (4.11)
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First assume that ∆Φ(f, h) = 0. By Lemma 4.1(a),

d(f(t) + h(s), h(t) + f(s)) = 0, t, s ∈ T ,

and so, WΦλ(f, g) ≤ WΦλ(g, h) for all λ > 0 by virtue of (4.11) and (4.6).
Then (4.5) implies ∆Φ(f, g) ≤ ∆Φ(g, h). The symmetry in f and g gives
∆Φ(f, g) = ∆Φ(g, h). Similarly, if ∆Φ(g, h) = 0, then ∆Φ(f, g) = ∆Φ(f, h).

Let λ = ∆Φ(f, h) > 0 and µ = ∆Φ(g, h) > 0. Then, by Lemma 4.1(b),
WΦλ(f, h) ≤ 1 and WΦµ(g, h) ≤ 1. Using (4.11), (4.6), the monotonicity
and convexity of Φ, we have:

WΦλ+µ(f, g) ≤ λ

λ+ µ
WΦλ(f, h) +

µ

λ+ µ
WΦµ(g, h) ≤ 1,

which proves that ∆Φ(f, g) ≤ λ+ µ.
Suppose that (X, d) is a complete metric space and {fn}∞n=1 is a Cauchy

sequence in GVΦ(T ;X), i. e.,

dΦ(fn, fm) = d(fn(a), fm(a)) + ∆Φ(fn, fm) → 0 as n, m→∞. (4.12)

By Lemma 4.1(a), {fn(t)}∞n=1 is a Cauchy sequence in X for all t ∈ T . Let
f : T → X be such that fn(t) → f(t) in X as n → ∞ for all t ∈ T . From
Lemma 4.1(e) we find

∆Φ(fn, f) ≤ lim inf
m→∞

∆Φ(fn, fm) ≤ lim
m→∞

dΦ(fn, fm) ∈ [0,∞), n ∈ N.
Again, since {fn}∞n=1 is Cauchy, then

lim sup
n→∞

∆Φ(fn, f) ≤ lim
n→∞

lim
m→∞

dΦ(fn, fm) = 0,

whence we conclude that dΦ(fn, f)→ 0 as n→∞. It remains to show that
f ∈ GVΦ(T ;X). It follows from (4.12) and Lemma 4.1(f) that {pΦ(fn)}∞n=1
is a Cauchy sequence in R, and so, it is bounded and convergent. Our
assertion now follows from Lemma 3.9(e). �

Further properties of ∆Φ WΦ are presented in the following

Lemma 4.3. Let ∅ 6= T ⊂ R, (X, d,+) be a metric semigroup, Φ ∈ N and
f , g : T → X. Then we have:

(a) WΦ(f, g, T1) ≤WΦ(f, g, T2) whenever ∅ 6= T1 ⊂ T2 ⊂ T ;
(b) d

(
f(t)+g(s), g(t)+f(s)

)
≤ (t−s)Φ−1

(
WΦ(f, g, T )/(t−s)

)
, t, s ∈ T ,

s < t;
(c) if t ∈ T , then WΦ(f, g, T ) = WΦ(f, g, T∩(−∞, t])+WΦ(f, g, T∩[t,∞)),

and also ∆Φ(f, g, T ) ≤ ∆Φ(f, g, T ∩ (−∞, t]) + ∆Φ(f, g, T ∩ [t,∞));
(d) WΦ(f, g, T ) = sup{WΦ(f, g, T ∩ [a, b]) | a, b ∈ T , a < b };
(e) WΦ(f, g, T )=limT3t→sWΦ(f, g, T∩(−∞, t]) if s=supT ∈(R\T )∪{∞};
(f) WΦ(f, g, T )=limT3t→iWΦ(f, g, T ∩[t,∞)) if i=inf T ∈(R\T )∪{−∞};
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(g) if s and i are as in (e) and (f), then, in addition, WΦ(f, g, T ) is equal
to

lim
T 23(a,b)→(i,s)

WΦ(f, g, T ∩ [a, b]) = lim
T3b→s

lim
T3a→i

WΦ(f, g, T ∩ [a, b])

= lim
T3a→i

lim
T3b→s

WΦ(f, g, T ∩ [a, b]).

Proof. (a) and (b) are consequences of the definition (4.6).
(c) Let us denote by WΦ[f, g, ξ] the sum under the supremum sign in

(4.6), corresponding to the partition ξ = {ti}mi=0 of T . Let us prove the
equality in (c). Given partitions ξ1 of T ∩ (−∞, t] and ξ2 of T ∩ [t,∞), we
set ξ̃i = ξi ∪ {t}, i = 1, 2. Then ξ̃1 ∪ ξ̃2 is a partition of T , and so,

WΦ[f, g, ξ1] +WΦ[f, g, ξ2] ≤WΦ[f, g, ξ̃1] +WΦ[f, g, ξ̃2]

= WΦ[f, g, ξ̃1 ∪ ξ̃2] ≤WΦ(f, g, T ),

which give the inequality ≥. In order to prove the reverse inequality, let
ξ = {ti}mi=0 be a partition of T . If t ∈ ξ or t < t0 or tm < t, thenWΦ[f, g, ξ] ≤
WΦ(f, g, T ∩ (−∞, t]) +WΦ(f, g, T ∩ [t,∞)). So, suppose that tk−1 < t < tk
for some k ∈ {1, . . . ,m}. Inequality (4.1) and the translation invariance of
d imply, for ρ(t, s) = d(f(t) + g(s), g(t) + f(s)),

ρ(tk, tk−1) ≤d
(
f(tk)+g(tk−1)+g(t)+f(tk−1), g(tk)+f(tk−1)+f(t)+g(tk−1)

)
+ d
(
f(t)+g(tk−1), g(t)+f(tk−1)

)
=ρ(tk, t) + ρ(t, tk−1).

From this, the monotonicity and convexity of Φ and Jensen’s inequality for
sums we get that the quantity U(t, s) = (t − s)Φ

(
ρ(t, s)/(t − s)

)
,

s < t, satisfies inequality (3.7). Taking into account (3.6), where VΦ[f, ξ] is
replaced by WΦ[f, g, ξ], and applying (3.7), we have:

WΦ[f, g, ξ] ≤WΦ[f, g, {ti}k−1
i=0 ∪ {t}] +WΦ[f, g, {t} ∪ {ti}mi=k]

≤WΦ(f, g, T ∩ (−∞, t]) +WΦ(f, g, T ∩ [t,∞)),

which due to the arbitrariness of ξ proves the equality in (c).
The inequality in (c) is established similar to Lemma 3.9(g), if we re-

place VΦλ(f, · ) there by WΦλ(f, g, · ), pΦ(f, · ) — by ∆Φ(f, g, · ) and apply
Lemma 4.1(a)–(c) instead of Lemma 3.9(a)–(c).

(d) By (a), the left hand side in (d) is not less than the right hand side.
Conversely, given a number α < WΦ(f, g, T ), we find a partition ξ = {ti}mi=0
of T such that WΦ[f, g, ξ] ≥ α, so setting a = t0 and b = tm and noting that
ξ is a partition of T ∩ [a, b], we obtain WΦ(f, g, T ∩ [a, b]) ≥WΦ[f, g, ξ] ≥ α.

(e) Since s = supT /∈ T , s is a limit point for T . By (a), the function
t 7→ WΦ(f, g, T ∩ (−∞, t]), mapping T into [0,∞], is nondecreasing, and
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so, the limit in (e) exists and does not exceed WΦ(f, g, T ). On the other
hand, by (d), for any α < WΦ(f, g, T ) there exist a, b ∈ T , a < b < s,
such that WΦ(f, g, T ∩ [a, b]) ≥ α. Then (a) implies WΦ(f, g, T ∩ (−∞, t]) ≥
WΦ(f, g, T ∩ [a, b]) ≥ α for all t ∈ T ∩ [b, s), which proves (e).

Item (f) and the first equality in (g) are proved similarly to (e). The
second equality in (g) follows from (e) and (f), since T∩[a, b] = T∩(−∞, b]∩
[a,∞). The last equality in (g) is established similarly. �

4.2. The metric semigroup Lip(T ;X). Let (X, d,+) be a metric semi-
group and (T, d1) be a metric space. Given f : T → X, we set

L(f) = L(f, T ) = sup{d(f(t), f(s))/d1(t, s) ; t, s ∈ T , t 6= s}

and denote by Lip(T ;X) the set of all Lipschitzian mappings f : T → X
(i. e., L(f) is finite). The pointwise addition operation on Lip(T ;X) is well
defined, since, for any f , g ∈ Lip(T ;X), by (4.2), we have

d
(
(f + g)(t), (f + g)(s)

)
≤ d(f(t), f(s)) + d(g(t), g(s)),

and so, L(f + g) ≤ L(f) + L(g). Given a ∈ T , the metric dL on Lip(T ;X)
is defined by (cf. Smajdor and Smajdor [105]):

dL(f, g) = d(f(a), g(a)) + d`(f, g), f, g ∈ Lip(T ;X),

with

d`(f, g) = sup
{
d(f(t) + g(s), g(t) + f(s))/d1(t, s) ; t, s ∈ T , t 6= s

}
.

Then d` is a semimetric and dL is a metric on Lip(T ;X), which are trans-
lation invariant.

The main properties of d` are contained in the following

Lemma 4.4. Given (X, d,+) and T as above and f, g ∈ Lip(T ;X) we have:

(a) |d(f(t), g(t)−d(f(s), g(s))| ≤ d
(
f(t)+g(s), g(t)+f(s)

)
≤ d`(f, g)d1(t, s)

for all t, s ∈ T ;
(b) if {fn, gn}∞n=1 ⊂ Lip(T ;X), d(fn(t), f(t)) → 0 and d(gn(t), g(t)) → 0

as n→∞ for all t ∈ T , then d`(f, g) ≤ lim infn→∞ d`(fn, gn);
(c) |L(f)− L(g)| ≤ d`(f, g) ≤ L(f) + L(g).

We conclude that (Lip(T ;X), dL,+) is a metric semigroup which, by
Lemma 4.4, is complete provided (X, d,+) is complete.
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4.3. Embeddings of metric semigroups. Here we assume that T ⊂ R
is bounded, |T | = supT − inf T , a ∈ T is given and (X, d,+) is a metric
semigroup. The main result is the following lemma, generalizing inequalities
in (3.23), (3.24) and in Theorem 3.10:

Lemma 4.5. Given Φ,Ψ ∈ N , we have the following embeddings of metric
semigroups:

(a) Lip(T ;X) ⊂ GVΦ(T ;X) ⊂ BV(T ;X) and

∆Φ(f, g) ≤ d`(f, g)/Φ−1(1/|T |), f, g ∈ Lip(T ;X), (4.13)

∆1(f, g) ≤ ωΦ(|T |)∆Φ(f, g), f, g ∈ GVΦ(T ;X); (4.14)

(b) if Ψ 4 Φ, then GVΦ(T ;X) ⊂ GVΨ(T ;X) and there exist numbers
κ > 0 and κ0 > 0, depending only on Φ, Ψ and |T |, such that

∆Ψ(f, g) ≤ κ∆Φ(f, g), dΨ(f, g) ≤ κ0dΦ(f, g), f, g ∈ GVΦ(T ;X).

Proof. (a) The first embedding follows from (3.9) and (3.20), and the sec-
ond — from (3.20) and (3.12). To prove (4.13), note that, by Lemma 4.4(a),

d(f(t) + g(s), g(t) + f(s)) ≤ d`(f, g)|t − s|, t, s ∈ T. (4.15)

Set λ = d`(f, g)/Φ−1(1/|T |). If λ = 0, then the left hand side in (4.15) is
zero, and so, ∆Φ(f, g) = 0. If λ > 0, then (4.15) and the monotonicity of Φ
imply, for any partition ξ = {ti}mi=0 of T , that

WΦλ [f, g, ξ] =
m∑
i=1

Φ
(
d(f(ti)+g(ti−1), g(ti)+f(ti−1))

(ti − ti−1)λ

)
(ti − ti−1)

≤
m∑
i=1

Φ
(
d`(f, g)/λ

)
(ti − ti−1) ≤ Φ

(
d`(f, g)/λ

)
|T | = 1.

Hence, WΦλ(f, g) ≤ 1, and (4.5) yields ∆Φ(f, g) ≤ λ.
In order to prove (4.14), let us show that

Φ
(
W1(f, g)/|T |

)
≤ WΦ(f, g)/|T |, f, g ∈ GVΦ(T ;X). (4.16)

In fact, using the notation ρ(t, s) and U(t, s) from the proof of Lemma 4.3(c)
we find that this is a consequence of Jensen’s inequality for sums

Φ
(∑m

i=1 ρ(ti, ti−1)∑m
i=1(ti − ti−1)

)
≤
∑m

i=1 U(ti, ti−1)∑m
i=1(ti − ti−1)

≤ WΦ(f, g)∑m
i=1(ti − ti−1)

∀ ξ={ti}mi=0,

inequality
∑m

i=1(ti − ti−1) ≤ |T | and the monotonicity of ωΦ. Set λ =
W1(f, g)/ωΦ(|T |). If λ = 0, i. e., W1(f, g) = ∆1(f, g) = 0, then by Lemma
4.1(a) with Φ(ρ) = ρ, we have d(f(t) + g(s), g(t) +f(s)) = 0 for all t, s ∈ T ,
and so, WΦ(f, g) = 0. If λ > 0, then (4.16) implies WΦλ(f, g) ≥ 1, and by
the assertion in the proof of Lemma 4.1(c), ∆Φ(f, g) ≥ λ.



SELECTIONS OF BOUNDED VARIATION 33

(b) The first inequality can be proved along the same lines as Theo-
rem 3.10 if we take into account the following changes: apply Lemma 4.1(a)
instead of Lemma 3.9(a), replace pΦ by ∆Φ, VΨµ — by WΨµ and d(f(ti),
f(ti−1)) — by ρ(ti, ti−1). Finally, by putting κ0 = max{1, 2NC}, we have
proved the second inequality as well. �

5. Selections of bounded variation

Throughout the rest of the paper c(X) denotes the family of all nonempty
compact subsets of a metric space (X, d), equipped with the Hausdorff met-
ric D generated by d.

Theorem 5.1 (on BV selections). Let T ⊂ R, (X, d) be a metric space and
F ∈ BV(T ; c(X)). Then for any t0 ∈ T and x0 ∈ X there exists a selection
f ∈ BV(T ;X) of F such that

d(x0, f(t0)) = dist(x0, F (t0)) and Vd(f, T ) ≤ VD(F, T ). (5.1)

Proof. 1. First, let T be bounded, T ⊂ [a, b] and a, b ∈ T . Since F
is of bounded variation (with respect to D), by Lemma 1.1(b) the set of
points of discontinuity of F on T is at most countable. The set of points
from T , which are isolated from the left for T (i. e., points t ∈ T such that
(t− ε, t) ∩ T = ∅ for some ε > 0), is also at most countable, since intervals
of “emptiness from the left”, corresponding to different points isolated from
the left, are disjoint and each such interval contains a rational point. Let us
denote by S at most countable dense subset of T . Appending to S the set
of discontinuity points of F , the set of points from T isolated from the left
and points a, t0 and b, let us denote the resulting at most countable dense
subset of T by Q = {ti}∞i=0, and assume that all points in Q are different.
Then for any n ∈ N the set ξn = {ti}ni=0 is a partition of T ; ordering the
points in ξn in ascending order and denoting them by ξn = {tni }ni=0, we have:

a = tn0 < tn1 < · · · < tnn−1 < tnn = b, (5.2)

∃ k0(n) ∈ {0, 1, . . . , n} such that t0 = tnk0(n),

∀ t ∈ Q ∃n0 = n0(t) ∈ N such that t ∈
∞⋂

n=n0

ξn. (5.3)

By the compactness of F (t0), choose an element y0 ∈ F (t0) such that
d(x0, y0) = dist(x0, F (t0)). We define elements xni from F (tni ), where n ∈ N
and i = 0, 1, . . . , n, inductively as follows. Let n ∈ N, and suppose first that
a < t0 < b, so that k0(n) ∈ {1, . . . , n− 1}.
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(a) Set xnk0(n) = y0.
(b) If i ∈ {1, . . . , k0(n)} and xni ∈ F (tni ) is already chosen, pick xni−1 ∈

F (tni−1) such that d(xni , x
n
i−1) = dist(xni , F (tni−1)).

(c) If i ∈ {k0(n) + 1, . . . , n} and xni−1 ∈ F (tni−1) is already chosen, pick an
element xni ∈ F (tni ) such that d(xni−1, x

n
i ) = dist(xni−1, F (tni )).

If t0 = a, so that k0(n) = 0, we define xni ∈ F (tni ), following (a) and (c),
and if t0 = b, i. e., k0(n) = n, we define xni ∈ F (tni ) in accordance with (a)
and (b).

Given n ∈ N, we define a mapping fn : T → X as follows:

fn(t) =


xni if t = tni , i = 0, 1, . . . , n,
xni−1 if T ∩ (tni−1, t

n
i ) 6= ∅ and

t ∈ T ∩ (tni−1, t
n
i ), i = 1, . . . , n.

(5.4)

Note that fn(t0) = fn(tnk0(n)) = xnk0(n) = y0, n ∈ N, and that, by the
additivity of V (·, ·), definitions (b) and (c) and definition of the Hausdorff
metric D,

Vd(fn, T ) =
n∑
i=1

Vd(fn, T ∩ [tni−1, t
n
i ]) =

n∑
i=1

d(xni , x
n
i−1)

≤
n∑
i=1

D(F (tni ), F (tni−1)) ≤ VD(F, T ), n ∈ N. (5.5)

In order to apply the generalized Helly selection principle (Theorem 1.3
with Φ(ρ) = ρ), we have to verify that the sequence {fn(t)}∞n=1 is precom-
pact in X for all t ∈ T . If t ∈ Q, by (5.3) there exists n0(t) ∈ N such that
t ∈ ξn for all n ≥ n0(t), and so, by virtue of (5.4), (a), (b) and (c) we have:

fn(t) ∈ F (t) for all n ≥ n0(t), (5.6)

and it suffices to take into account the compactness of F (t).
Now, if t ∈ T \ Q, then t is a point of continuity of F , which is a limit

point from the left for T . So, there exists a sequence of points τk ∈ T ,
τk < t, k ∈ N, such that limk→∞ τk = t. By the density of S in T , for any
k ∈ N there exists sk ∈ S such that |sk − τk| < t − τk, and so, sk < t
and sk → t as k → ∞. From (5.3) for k ∈ N we find a number nk ∈ N
(also depending on t) such that sk ∈ ξnk and, therefore, sk = tnkjk for some
jk ∈ {0, 1, . . . , nk − 1}. Thanks to property (5.3), without loss of generality
we may assume that the sequence {nk}∞k=1 is strictly increasing. It follows
from (5.2) that there exists a unique number ik ∈ {jk, . . . , nk−1} such that

sk = tnkjk ≤ t
nk
ik
< t < tnkik+1, k ∈ N. (5.7)

By definition (5.4), we have fnk(t) = xnkik ∈ F (tnkik ), k ∈ N. Pick, for each
k ∈ N, an element xkt ∈ F (t) such that d(xnkik , x

k
t ) = dist(xnkik , F (t)). Then
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from the definition of D, continuity of F at t and (5.7) we find

d(fnk(t), xkt ) ≤ D(F (tnkik ), F (t))→ 0 as k →∞.

Since the set F (t) is compact and {xkt }∞k=1 ⊂ F (t), there exists a subsequence
of {xkt }∞k=1 (which we will denote by the same symbol), which converges in
X to an element xt ∈ F (t) as k →∞, so that

d(fnk(t), xt) ≤ d(fnk(t), xkt ) + d(xkt , xt) → 0 as k → ∞. (5.8)

This proves the precompactness of the sequence {fn(t)}∞n=1 in X.
By Theorem 1.3, the family F = {fn}∞n=1 contains a subsequence, denoted

with no loss of generality again by {fnk}∞k=1, which converges in X pointwise
on T to a mapping f ∈ BV(T ;X). Clearly, f(t0) = y0, and so, d(x0, f(t0)) =
dist(x0, F (t0)). The inclusion f(t) ∈ F (t) for all t ∈ T is a consequence of
the closedness of F (t), (5.6) and (5.8). The lower semicontinuity of V (·, ·)
and (5.5) ensure that

Vd(f, T ) ≤ lim inf
k→∞

Vd(fnk , T ) ≤ VD(F, T ).

Remark. We note that if the “initial point” x0 is in F (t0), the desired
selection f of F satisfies the condition f(t0) = x0.

2. Now, if the set T is arbitrary, we set a = inf T ∈ R ∪ {−∞} and
b = supT ∈ R ∪ {∞}. By step 1 it remains to consider the cases when T is
unbounded or a /∈ T or b /∈ T . Let us suppose that a /∈ T and b /∈ T (the
other possibilities may be combined from this case and step 1 by applying
properties 1), 4a) and 4b) from Section 1). Choose an increasing sequence
{tn}n∈Z ⊂ T such that tn → b and t−n → a as n → ∞. Setting Tn =
T ∩[tn, tn+1] for n ∈ Z and applying step 1 to the set T0 = T ∩[t0, t1], we find
a selection f0 ∈ BV(T0;X) of F (more precisely, of the restriction F |T0 of F
to T0) such that d(x0, f0(t0)) = dist(x0, F (t0)) and Vd(f0, T0) ≤ VD(F, T0).
“Moving along the sets Tn to the right” of point t1, we successively apply
the result of step 1: choose a selection f1 ∈ BV(T1;X) of F on T1 such
that f1(t1) = f0(t1) ∈ F (t1) and Vd(f1, T1) ≤ VD(F, T1), and, inductively, if
a selection fn−1 of F on the set Tn−1 is already chosen, n ≥ 2, we pick a
selection fn ∈ BV(Tn;X) of F on Tn such that

fn(tn) = fn−1(tn) and Vd(fn, Tn) ≤ VD(F, Tn). (5.9)

In a similar manner we “move along the sets Tn to the left” of t0. Then
for each n ∈ Z there exists a selection fn ∈ BV(Tn;X) of F on Tn, for
which the relations (5.9) hold. Given t ∈ T , so that t ∈ Tn for some n ∈ Z,
we set f(t) = fn(t). The mapping f : T → X is a selection of F on T ,
d(x0, f(t0)) = dist(x0, F (t0)), and by virtue of properties 4c) and 1) from
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Section 1 we have:

Vd(f, T ) = lim
k→∞

Vd(f, T ∩ [t−k, tk]) = lim
k→∞

k−1∑
n=−k

Vd(fn, Tn)

≤ lim
k→∞

k−1∑
n=−k

VD(F, Tn) = lim
k→∞

VD(F, T ∩ [t−k, tk]) = VD(F, T ).

�

Example 5.2. The inequality Vd(f, T ) ≤ VD(F, T ) in Theorem 5.1 may
be violated if, at least at one point t ∈ T , the value F (t) is only closed
and bounded in X, but not compact. To see this, let X = `1(N) be the
space of summable sequences from Example 1.4. We set A = {cnen}kn=1
and B = {cnen}∞n=k+1 where k ∈ N, k ≥ 2 is fixed, and {cn}∞n=1 ⊂ R is any
sequence satisfying the following conditions:

{ |cn| }∞n=1 is strictly decreasing and inf
n≥k+1

|cn| > 0; (5.10)

here the first condition guarantees, in particular, that B is bounded in `1(N)
and the second one — that B is closed. Clearly, A is compact while B is
not. Let us define F : [0, 1]� `1(N) by F (t) = A if 0 ≤ t < 1 and F (1) = B.
We have VD(F, [0, 1]) = D(A,B). In order to find D(A,B) we note that, by
(5.10),

e(A,B)= sup
1≤i≤k

(
|ci|+ inf

n≥k+1
|cn|
)

= sup
1≤i≤k

|ci|+ inf
n≥k+1

|cn|= |c1|+ inf
n≥k+1

|cn|,

e(B,A) = sup
i≥k+1

(
|ci|+ inf

1≤n≤k
|cn|
)

= sup
i≥k+1

|ci|+ inf
1≤n≤k

|cn| = |ck+1|+ |ck|.

Suppose also that {cn}∞n=1 satisfies the third condition:

|c1|+ inf
n≥k+1

|cn| ≥ |ck+1|+ |ck|. (5.11)

Then D(A,B) = |c1| + infn≥k+1 |cn|. Now if f : [0, 1] → `1(N) is any
selection of F such that f(0) = c1e1, then f(1) = cjej for some j ≥ k + 1,
and so,

V‖·‖(f, [0, 1]) ≥ ‖f(0)− f(1)‖ = |c1|+ |cj | > |c1|+ inf
n≥k+1

|cn| = VD(F, [0, 1]).

Simple examples of sequences {cn}∞n=1 satisfying all three conditions (5.10)
and (5.11) are cn = α (n + 1)/n with α 6= 0, n ∈ N. Let us note that the
example presented above is more subtle than Example 2 from [6] where all
values F (t) are only closed and bounded.
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Remark 5.3. Multifunctions of bounded variation with noncompact values
(such as F in Example 1.4 or F in Example 5.2) may admit selections
of bounded variation as the following observation shows. Suppose that
conditions of Theorem 5.1 are satisfied except that the images of F are not
necessarily compact, but assume that

∀ t ∈ T ∃F0(t) ∈ c(X) such that F0(t) ⊂ F (t), and VD(F0, T ) <∞
(in particular, one can assume that VD(F0, T ) ≤ VD(F, T )). By Theo-
rem 5.1, F0 admits a selection of bounded variation, which is at the same
time a selection of F .

Example 5.4. Here we present an example showing that if d is only a
semimetric on X (i.e., d(x, y) = 0 does not necessarily imply x = y in
X), then there exists a multifunction of bounded variation with compact
values in X whose all selections are of unbounded variation. Recall that
the Gromov-Hausdorff distance dGH(K ′,K ′′) between two nonempty com-
pact metric spaces K ′ and K ′′ ([2], [52], [88]) is the infimum of all ε > 0
such that there exist a compact metric space K and isometric embeddings
j′ : K ′ → K and j′′ : K ′′ → K such that D

(
j′(K ′), j′′(K ′′)

)
< ε, where

D is the Hausdorff metric on K. It is known (Gromov [52]) that dGH
is a metric in the isometry class of all nonempty compact metric spaces
and dGH(K ′,K ′′) ≤ (1/2) max

{
diam(K ′), diam(K ′′)

}
. However, dGH is

only a semimetric on the family of all nonempty compact metric spaces.
Define F : [0, 1] → c(R) by F (0) = [0, 1] and F (t) = [2n − 1, 2n] if
1/(n+1) < t ≤ 1/n, n ∈ N. Clearly, dGH

(
F (t), F (s)

)
= 0 for all t, s ∈ [0, 1],

and so, F is of bounded variation with respect to dGH . On the other hand,
it follows from the definition of F that if f : [0, 1] → R is a selection of F ,
then V (f, [0, 1]) =∞.

Remark 5.5. It is interesting to note (cf. [27, Lemma 11]) that for F ∈
BV(T ; c(X)) the total image F (T ) =

⋃
t∈T F (t) is a totally bounded and

separable subset of X and if, moreover, X is complete, then F (T ) is pre-
compact (this property is well known for single-valued mappings, e.g., [14,
Proposition 2.1]).

As a corollary of Theorem 5.1 and, simultaneously, a motivation why the
set T should be arbitrary in R we get

Theorem 5.6. Let T ⊂ R be density-open, (X, d) be a complete metric
space, F ∈ BVess(T ; c(X)), t0 ∈ T and x0 ∈ X. Then there exists a selection
f ∈ BVess(T ;X) of F such that Vd,ess(f, T ) ≤ VD,ess(F, T ) and d(x0, f(t0)) =
dist(x0, F (t0)).
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Proof. Since VD,ess(F, T ) <∞ and (c(X), D) is a complete metric space
(cf. [12, Theorem II-9]), by Theorem 2.2(a) there exists a set T0 ⊂ T of
Lebesgue measure zero such that F |T\T0 ∈ BV(T \ T0; c(X)) and VD(F, T \
T0) = VD,ess(F, T ). Choose an element y0 ∈ F (t0) such that d(x0, y0) =
dist(x0, F (t0)), and set T1 = T0∪{t0}. Theorem 5.1 implies the existence of a
selection f ∈ BV(T \T1;X) of F |T\T1 , for which Vd(f, T \T1) ≤ VD(F, T \T1).
Let us define f on the set T1 as follows: f(t0) = y0 and f(t) = xt if
t ∈ T1 \ {t0}, where xt is an arbitrary fixed element of F (t). Clearly,
f(t) ∈ F (t) for all t ∈ T and

Vd(f, T \ T1) ≤ VD(F, T \ T1) ≤ VD(F, T \ T0) = VD,ess(F, T ).

Applying Theorem 2.1, we conclude that Vd,ess(f, T ) ≤ VD,ess(F, T ). �

6. More regular selections

Theorem 6.1 (more regular selections). Let T ⊂ R, (X, d) be a metric
space, F : T � X be a multifunction with compact values, t0 ∈ T and
x0 ∈ X. Then:

(a) if F ∈ Lip(T ; c(X)), it admits a selection f ∈ Lip(T ;X) satisfying
conditions (5.1) and Ld(f, T ) ≤ LD(F, T );

(b) if F ∈ BV(T ; c(X)) is also continuous, it admits a continuous selection
f ∈ BV(T ;X) satisfying conditions (5.1);

(c) if T is compact and F : T → c(X) is δ(·)-absolutely continuous, then
there exists a δ(·)-absolutely continuous selection f : T → X of F
satisfying conditions (5.1);

(d) if Φ ∈ N and F ∈ BVΦ(T ; c(X)), then there exists f ∈ BVΦ(T ;X), a
selection of F , satisfying conditions (5.1) and VΦ,d(f, T ) ≤ VΦ,D(F, T );

(e) if Φ ∈ N and F ∈ GVΦ(T ; c(X)), then there exists f ∈ GVΦ(T ;X), a
selection of F , satisfying (5.1) and pΦ,d(f, T ) ≤ pΦ,D(F, T ).

Proof. (a) 1. Suppose first that T ⊂ [a, b] and a, b ∈ T . Since F is
Lipschitzian and T is bounded, F is of bounded variation on T , so let
f ∈ BV(T ;X) be a selection of F constructed in step 1 of the proof of The-
orem 5.1, and assume that the sequence {fnk}∞k=1 converges to f pointwise
on T as k →∞. Let us show that f ∈ Lip(T ;X) and Ld(f, T ) ≤ LD(F, T ).
The following three possibilities hold for points t, s ∈ T , t < s: (i) t, s ∈ Q;
(ii) t, s ∈ T \Q; (iii) t ∈ T \Q, s ∈ Q, or s ∈ T \Q, t ∈ Q.

In case (i), by (5.3) there exists a number n0 depending on t and s
such that for those k ∈ N, for which nk ≥ n0, there exist numbers ik,
jk ∈ {0, 1, . . . , nk}, ik < jk, such that t = tnkik and s = tnkjk . Then by
definition (5.4) we have: fnk(t) = xnkik ∈ F (tnkik ) and fnk(s) = xnkjk ∈ F (tnkjk ).
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From properties (b) and (c) in the proof of Theorem 5.1 we find that, given
i ∈ {1, . . . , nk},

d(xnki , x
nk
i−1) ≤ D(F (tnki ), F (tnki−1)) ≤ LD(F, T )(tnki − t

nk
i−1),

and so,

d(fnk(t), fnk(s)) = d(xnkik , x
nk
jk

) ≤
jk∑

i=ik+1

d(xnki , x
nk
i−1) (6.1)

≤
jk∑

i=ik+1

LD(F, T )(tnki − t
nk
i−1) = LD(F, T )(tnkjk − t

nk
ik

).

Since fnk(t)→ f(t) and fnk(s)→ f(s) as k →∞ and tnkjk = s and tnkik = t,
then d(f(t), f(s)) ≤ LD(F, T )|t− s|.

If case (ii) holds, then, as is shown in (5.7), for each k ∈ N there exist
numbers ik, jk ∈ {0, 1, . . . , nk − 1} such that tnkik < t < tnkik+1 and tnkjk < s <

tnkjk+1, and so, (5.4) implies fnk(t) = xnkik and fnk(s) = xnkjk . Since t < s,
tnkik → t − 0 and tnkjk → s − 0 as k → ∞, for sufficiently large k we have
ik < jk, and relations (6.1) hold. As in case (i) it remains to note that
fnk(t)→ f(t) and fnk(s)→ f(s) as k →∞.

Case (iii) is treated similarly to cases (i) and (ii).
2. For arbitrary T we argue as in step 2 of the proof of Theorem 5.1,

replacing BV there by Lip and Vd — by Ld. Having defined the mapping
f : T → X as in that proof, we show that it is Lipschitzian with Ld(f, T ) ≤
LD(F, T ). In fact, given t, s ∈ T with t < s we find n, m ∈ Z, n + 1 ≤ m
(with no loss of generality), such that t ∈ Tn and s ∈ Tm, and so by the
construction we have:

d(f(t), f(s)) ≤ d(fn(t), fn(tn+1))+
m−1∑
k=n+1

d(fk(tk), fk(tk+1))+d(fm(tm), fm(s))

≤ LD(F, T )
(

(tn+1 − t)+
m−1∑
k=n+1

(tk+1 − tk)+(s− tm)
)

= LD(F, T )(s− t).

3. Let us prove that Vd(f, T ) ≤ VD(F, T ) (where, in general, VD(F, T ) ≤
∞). Indeed, in step (a) 1. it was shown that the second condition in (5.1)
holds (since f was a selection of F of bounded variation), and so, in addition,
conditions (5.9) of step (a) 2. are satisfied. Then calculations from the end
of step 2 of the proof of Theorem 5.1 show that the desired selection f of F
is subject to conditions (5.1).

(b), (c) Suppose that F satisfies (b) or (c). Then the nondecreasing
(bounded) function ϕ(t) = VD(F, T ∩ (−∞, t]), t ∈ T , is, by Lemma 1.1,



40 V. V. CHISTYAKOV

continuous on T if (b) is satisfied, or is, by Lemma1.2, δ(·)-absolutely
continuous on T if (c) is satisfied, and in both cases the equality holds:
osc(ϕ, T ) = V (ϕ, T ) = VD(F, T ). By Lemma 1.2, we have the decomposition
F = G ◦ϕ on T , where G ∈ Lip(J ; c(X)) with J = ϕ(T ) and LD(G, J) ≤ 1.
If τ0 = ϕ(t0), then G(τ0) = F (t0), and by Theorem 6.1(a) there exists a
selection g ∈ Lip(J ;X) of G on J such that d(x0, g(τ0)) = dist(x0, G(τ0))
and Ld(g, J) ≤ LD(G, J) ≤ 1. Then f = g ◦ ϕ : T → X is the desired
continuous selection of F of bounded variation. In fact, f is continuous
as the composition of two continuous mappings if (b) is satisfied, and f is
δ(·)-absolutely continuous if (c) is satisfied, since Ld(g, J) ≤ 1; also, f is a
selection of F :

f(t) = g(ϕ(t)) ∈ G(ϕ(t)) = F (t), t ∈ T, (6.2)

and f(t0) = g(ϕ(t0)) = g(τ0), and so, d(x0, f(t0)) = dist(x0, F (t0)). Again,
taking into account that Ld(g, J) ≤ 1, we find

Vd(f, T ) ≤ Ld(g, J)osc(ϕ, T ) ≤ osc(ϕ, T ) = VD(F, T ). (6.3)

(d) 1. First assume that T ⊂ [a, b] with a, b ∈ T . By the second em-
bedding in (3.8) with bounded T , the function ϕ(t) = VD(F, T ∩ (−∞, t]),
t ∈ T , is well defined, bounded and nondecreasing. According to Lemma 3.2
VΦ(ϕ, T ) = VΦ,D(F, T ) and there exists a mapping G ∈ Lip(J ; c(X)) with
J = ϕ(T ) and LD(G, J) ≤ 1 such that F = G ◦ ϕ on T . Setting τ0 = ϕ(t0),
we have G(τ0) = F (t0), and by Theorem 6.1(a) there exists a selection
g ∈ Lip(J ;X) of G on J such that d(x0, g(τ0)) = dist(x0, G(τ0)) and
Ld(g, J) ≤ LD(G, J) ≤ 1. Then f = g ◦ϕ is the desired selection of F on T :
in fact, by Lemma 3.2 (see sufficiency) VΦ,d(f, T ) ≤ VΦ(ϕ, T ) = VΦ,D(F, T ),
f is a selection of F (see (6.2)) and conditions (5.1) are satisfied (see (6.3)).

2. In the case of arbitrary T we argue as in step 2 of the proof of Theo-
rem 5.1, replacing BV there by BVΦ, V — by VΦ and applying Lemma 3.1
instead of properties 1)–4) from Section 1. By doing this, we have proved
(d) except for the second condition in (5.1). But in step (d) 1. it was shown
that if T is bounded, the second condition in (5.1) holds, and so, in addition,
conditions (5.9) are satisfied. Now the calculations from the end of step 2
of the proof of Theorem 5.1 imply that the established selection f satisfies
inequality Vd(f, T ) ≤ VD(F, T ) (with the latter variation, possibly, infinite).

(e) Set λ = pΦ,D(F, T ). If λ = 0, F is constant by Lemma 3.9(a), and so, it
admits a constant selection satisfying (5.1). If λ > 0, then VΦλ,D(F, T ) ≤ 1
by Lemma 3.9(b), and so, Theorem 6.1(d) implies the existence of a se-
lection f ∈ BVΦλ,d(T ;X) of F satisfying conditions (5.1) and inequality
VΦλ,d(f, T ) ≤ VΦλ,D(F, T ) ≤ 1. Then f ∈ GVΦ(T ;X) and pΦ,d(f, T ) ≤ λ by
definition (3.22), which ends the proof of Theorem 6.1. �
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In Theorem 6.1(a) we have seen that a compact-valued Lipschitzian mul-
tifunction admits a Lipschitzian selection. Contrary to this, the following
example shows that compact-valued Hölder continuous multifunctions of
any exponent γ ∈ (0, 1) need not have even continuous selections.

Example 6.2. Let B={(x, y)∈R2 |x2+y2 = 1} be the unit circumference
and

A(t) = {(x, y) ∈ R2 | x = cos θ, y = sin θ, α(t) < θ < α(t) + 2β(t)},
where α(t) = 1/|t| and β(t) = e−1/|t|, t ∈ R \ {0}. Define a multifunction
F : [−1, 1]→ c(R2) as follows: F (t) = B \A(t) if t 6= 0 and F (0) = B. It is
shown in [31, Proposition 8.2] that, given γ ∈ (0, 1), there exists a C(γ) ∈
R+ such that D(F (t), F (s)) ≤ C(γ)|t− s|γ for all t, s ∈ [−1, 1]. Moreover,
it is clear that if q > 1, VarΦ(F, [−1, 1]) ≤ 2

(
C(1/q)

)q if Φ(ρ) = ρq, ρ ∈ R+.
On the other hand, F (t) for t 6= 0 is the unit circumference in R2 from

which a section from the angle α(t) to the angle α(t) + 2β(t) is removed.
As t gets smaller, the arclength of the hole decreases while the initial angle
increases as 1/|t|, i. e., the hole spins around the origin with increasing an-
gular speed. Any continuous selection f(t) = (x(t), y(t)) defined on [−1, 0 [
or on ] 0, 1 ] cannot be continuously extended to the whole interval [−1, 1 ],
for the hole in the circumference would force this selection to rotate around
the origin with some angle between α(t) + 2β(t) and α(t) + 2π, and the
limits limt→±0 f(t) cannot exist. Thus, F admits no continuous selections;
moreover, for Φ as above, any selection f satisfies VarΦ(f, [−1, 1]) =∞ for
any q > 1, since mappings f with bounded Φ-th variation have only simple
discontinuities (cf. [31, 4.1, 4.2]).

Remark 6.3. Let Φ ∈ N , ξ = {ti}ni=0 be a partition of the interval [a, b]
with t0 = a and tn = b, {xi}ni=0 ⊂ X, f(t) = xi−1 if ti−1 ≤ t < ti, i =
1, . . . , n, and f(b) = xn; then there exists a subpartition {t′i}m

′
i=0 ⊂ ξ (in gen-

eral, proper inclusion!) such that VarΦ(f, [a, b]) is equal to
∑m′

i=0 Φ
(
d((f(t′i),

f(t′i−1))
)

(cf. (5.5)). Taking this into account and that the Φ-th variation
VarΦ is semi-additive only (property 1Φ) in Section 1), we see that, in order
to obtain the existence of selections of more general bounded variations (as
VarΦ), it is natural to require Φ to satisfy the following condition of gener-
alized subadditivity : there exists a number C ∈ R+ such that for all n ∈ N
and all {ρi}ni=1 ⊂ R+ we have: Φ(ρ1 + · · ·+ ρn) ≤ C

(
Φ(ρ1) + · · ·+ Φ(ρn)

)
.

However, it was proved in [37, 3.3] that in this case there exist C1 > 0 and
C2 > 0 such that C1ρ ≤ Φ(ρ) ≤ C2ρ for all ρ ∈ R+. This means that if
f : [a, b] → X, then VarΦ(f, [a, b]) and V (f, [a, b]) are finite or not simulta-
neously. Thus, the requirement for multifunctions to be of bounded Jordan
variation is the best possible in order to admit selections “preserving” the
(type of) variation.
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Remark 6.4. Certain extensions of Theorem 6.1(a) are known for a compact-
valued Carathéodory type multifunction of two variables which is measur-
able or continuous in the first variable and Lipschitzian or of bounded vari-
ation in the second variable (see [27], [63], [104]).

7. Representations of set-valued mappings

Let T ⊂ R and (X, d) be a metric space. A family of mappings G ⊂
Lip(T ;X) is said to be equi-Lipschitzian if there exists C ∈ R+ such that
supg∈G Ld(g, T )≤C. We say that a family F⊂BV(T ;X) is of equi-bounded
variation if supξ

∑m
i=1 supf∈F d

(
f(ti), f(ti−1)

)
≤C for some number C ≥ 0,

where the supremum supξ is taken over all partition ξ = {ti}mi=0 (m ∈ N)
of T ; similarly, a family F ⊂ GVΦ(T ;X) is said to be of equi-bounded
generalized Φ-variation (with Φ ∈ N ) if there exist constants λ > 0 and
C > 0 such that

sup
ξ

m∑
i=1

Φ
(

supf∈F d(f(ti), f(ti−1))
(ti − ti−1)λ

)
(ti − ti−1) ≤ C.

A family F ⊂ AC(T ;X) is said to be equi-absolutely continuous if the
function δ(·) from the definition of absolute continuity of mappings can be
chosen to be independent of f ∈ F .

The following theorem is a counterpart for Lipschitzian multifunctions
of the Castaing representation [11] established for measurable set-valued
mappings.

Theorem 7.1. Given a multifunction G : T � X with compact images, we
have: G ∈ Lip(T ; c(X)) if and only if there exists a pointwise precompact
equi-Lipschitzian sequence {gn}∞n=1 ⊂ Lip(T ;X) (of selections of G) such
that

G(t) = {gn(t)}∞n=1 for all t ∈ T.

Proof. Necessity. Let G ∈ Lip(T ; c(X)). Set

S(G) = {g ∈ Lip(T ;X) | Ld(g, T ) ≤ LD(G,T ) and g(t) ∈ G(t) ∀ t ∈ T}.
By Theorem 6.1(a) S(G) 6= ∅, while by Arzelà-Ascoli’s Theorem the set
S(G) is totally bounded (if in additionX were complete, then S(G) would be
precompact), and hence, S(G) is separable. Let {gn}∞n=1 ⊂ S(G) be at most
countable dense subset of S(G). We show that G(t) = {gn(t)}∞n=1, t ∈ T .
In fact, if t ∈ T and x ∈ G(t), then by Theorem 6.1(a) there exists g ∈ S(G)
such that x = g(t), but due to the density of {gn}∞n=1 in S(G) there exists
a subsequence {gnk}∞k=1 of {gn}∞n=1 such that gnk converges to g uniformly
on T and, in particular, gnk(t) → g(t) = x as k → ∞. So, x ∈ {gn(t)}∞n=1,
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and the inclusion ⊂ is established. Conversely, if x ∈ {gn(t)}∞n=1, then some
subsequence {gnk(t)}∞k=1 of {gn(t)}∞n=1 converges to x as k →∞, but by the
construction all gnk(t) belong to G(t) and G(t) is closed, and so, x ∈ G(t).

Sufficiency. Since the sequence {gn}∞n=1 is equi-Lipschitzian, there exists
a constant C ≥ 0 such that Ld(gn, T ) ≤ C for all n ∈ N, and since, given
t ∈ T , G(t) = {gn(t)}∞n=1 is precompact, the closure G(t) = G(t) is compact
in X. If x ∈ G(t), then x = gn(t) for some n ∈ N, and so, if s ∈ T , we have:

inf
y∈G(s)

d(x, y) ≤ d(gn(t), gn(s)) ≤ C|t− s|,

whence e(G(t),G(s)) = supx∈G(t) infy∈G(s) d(x, y) ≤ C|t − s|. By symmetry
in t and s, e(G(s),G(t)) ≤ C|t − s|, i. e., D(G(t),G(s)) ≤ C|t − s|. Taking
into account that

D(A,B) = D(A,B) whenever ∅ 6= A, B ⊂ X, (7.1)

we find that D(G(t), G(s)) ≤ C|t− s|, quod erat demonstrandum. �

This theorem implies the following structural theorem for multifunctions
of bounded variation with compact images:

Theorem 7.2. Let F : T � X be a given multifunction with compact
values. We have:

(a) F ∈ BV(T ; c(X)),
(b) F ∈ BV(T ; c(X)) is continuous,
(c) F is δ(·)-absolutely continuous with T compact,
(d) F ∈ BVΦ(T ; c(X)) with T bounded and Φ ∈ N , or
(e) F ∈ GVΦ(T ; c(X)) with T bounded and Φ ∈ N ,

if and only if there exists

in case (a) a nondecreasing bounded function ϕ : T → R,
in case (b) a continuous nondecreasing bounded function ϕ : T → R,
in case (c) a δ(·)-absolutely continuous function ϕ : T → R,
in case (d) a function ϕ ∈ BVΦ(T ;R), or
in case (e) a function ϕ ∈ GVΦ(T ;R),

respectively, and a pointwise precompact equi-Lipschitzian sequence {gn}∞n=1⊂
Lip(J ;X), where J = ϕ(T ) and supn∈N Ld(gn, J) ≤ 1, such that

F (t) = {gn(ϕ(t))}∞n=1 for all t ∈ T. (7.2)

Given F ∈ BVess(T ; c(X)), the criterion is formulated as in (a) if T is
density-open, X is complete and (7.2) holds a. e. on T .
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Proof. (a) Necessity. Let F ∈BV(T ; c(X)). Set ϕ(t) = VD(F, T ∩ (−∞, t]),
t ∈ T . By Lemma 1.2, there exists G ∈ Lip(J ; c(X)) with J = ϕ(T )
such that LD(G, J) ≤ 1 and F = G ◦ ϕ on T . Theorem 7.1 implies the
existence of a pointwise precompact equi-Lipschitzian sequence {gn}∞n=1 ⊂
Lip(J ;X) of selections of G with Ld(gn, J) ≤ 1 such that F (t) = G(ϕ(t)) =
{gn(ϕ(t))}∞n=1 for all t ∈ T .

Sufficiency. Let ϕ ∈ BV(T ;R), J = ϕ(T ) and {gn}∞n=1 ⊂ Lip(J ;X) be
such that supn∈N Ld(gn, J) ≤ C for some C ∈ R+ and the set {gn(τ)}∞n=1 be
precompact in X for all τ ∈ J . Given t ∈ T , we set F(t) = {gn(ϕ(t))}∞n=1,
so that F (t) = F(t), t ∈ T . If x ∈ F(t), then x = gn(ϕ(t)) for some n ∈ N,
and so, for s ∈ T we have:

inf
y∈F(s)

d(x, y) ≤ d(gn(ϕ(t)), gn(ϕ(s))) ≤ C|ϕ(t)− ϕ(s)|,

whence e(F(t),F(s)) = supx∈F(t) infy∈F(s) d(x, y) ≤ C|ϕ(t)−ϕ(s)|, and the
symmetry in t and s gives D(F(t),F(s))≤C|ϕ(t)−ϕ(s)|. By (7.1), we get,
for all t, s ∈ T ,

D(F (t), F (s)) = D(F(t),F(s)) = D(F(t),F(s)) ≤ C|ϕ(t)−ϕ(s)|. (7.3)

If ξ = {ti}mi=0 is a partition of T , we have:
m∑
i=1

D(F (ti), F (ti−1)) ≤ C
m∑
i=1

|ϕ(ti)− ϕ(ti−1)| ≤ CV (ϕ, T ),

and so, F ∈ BV(T ; c(X)) and VD(F, T ) ≤ CV (ϕ, T ).
The proofs of (b)–(e) follow the lines of the proof of (a), so we exhibit

the necessary changes only.
(b), (c) In the necessity part the function ϕ is also continuous or δ(·)-

absolutely continuous, respectively, and in the sufficiency part the continuity
or δ(·)-absolute continuity of F follows from the continuity or δ(·)-absolute
continuity of ϕ, respectively, and (7.3) with C = 1.

(d) In the necessity part apply Lemma 3.2 instead of Lemma 1.2, so that
ϕ ∈ BVΦ(T ;R). In the sufficiency part the inclusion F ∈ BVΦ(T ; c(X)) is a
consequence of ϕ ∈ BVΦ(T ;R) and inequality (7.3).

(e) In order to prove the necessity part, use a variant of Lemma 3.2 for
GVΦ (see p. 22), so ϕ ∈ GVΦ(T ;R). Let us prove the sufficiency part.
Let ϕ ∈ GVΦ(T ;R), J = ϕ(T ) and let the hypotheses of the theorem with
respect to {gn}∞n=1 be fulfilled. As in the proof of (a), we get inequality (7.3)
with C = 1. If λ > 0 is such that ϕ/λ ∈ BVΦ(T ;R), then for any partition
ξ = {ti}mi=0 of T we find
m∑
i=1

Φ
(
D(F (ti), F (ti−1))

(ti − ti−1)λ

)
(ti − ti−1) ≤

m∑
i=1

Φ
(
|ϕ(ti)− ϕ(ti−1)|

(ti − ti−1)λ

)
(ti − ti−1)

≤ VΦ(ϕ/λ, T ),
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and hence, VΦλ,D(F, T ) <∞, i. e. F ∈ GVΦ(T ; c(X)).
Finally, similarly to (a), the result for F ∈ BVess(T ; c(X)) follows from

Theorem 2.2(c) and Theorem 7.1. �

In other words, Theorem 7.2(a) can be expressed as follows: a set-valued
mapping F : T → c(X) is of bounded Jordan variation if and only if there
exists a pointwise precompact sequence {fn}∞n=1 ⊂ BV(T ;X) (of selections
of F ) of equi-bounded variation such that F (t) is the closure of {fn(t)}∞n=1
in X for all t ∈ T . In a similar manner one can express the other assertions
of Theorem 7.2.

8. Boundary selections

Let cc(RN ) denote the family of all nonempty compact convex subsets
of RN (N ∈ N). In this section we denote by ∂A the boundary of the
set A ⊂ RN .

Theorem 8.1. Let T ⊂ R, F ∈ BV(T ; cc(RN )), t0 ∈ T and x0 ∈ ∂F (t0).
Then there exists a selection f ∈ BV(T ;RN ) of F satisfying the following
conditions: f(t) ∈ ∂F (t) for all t ∈ T , f(t0) = x0 and Vd(f, T ) ≤ VD(F, T ).

Proof. Proof of this theorem resembles the proof of Theorem 5.1, but it
uses an additional observation (taken from Kikuchi and Tomita [60, The-
orem 1]), which we expose as step 1 below. Let (x, y) designate the usual
inner product of elements x and y from RN and ‖x‖ =

√
(x, x) — the

Euclidean norm of x ∈ RN .
1. Let us show that if t0 ∈ T and x0 ∈ ∂F (t0), then for each t1 ∈ T

there exists a point x1 ∈ ∂F (t1) such that ‖x0 − x1‖ ≤ D(F (t0), F (t1));
here D is the Hausdorff metric on cc(RN ) generated by ‖ · ‖. It suffices to
assume that t0 6= t1. If x0 is not in the interior of F (t1), by the closedness
and convexity of F (t1) there exists a unique point x1 ∈ ∂F (t1) such that
‖x0 − x1‖ = dist(x0, F (t1)) ≤ D(F (t0), F (t1)); here the inequality follows
from the definition of D and the equality is a consequence of the projection
theorem (e. g., [61, Lemma I.2.1] and [100, Theorem II.9.36]). Now let x0 be
in the interior of the set F (t1). Since x0 ∈ ∂F (t0) and F (t0) is convex, let P
be the supporting hyperplane for F (t0) passing through the point x0 (cf. [59,
III.2.3, Corollary of Theorem 5]). Thus, P = {x ∈ RN | (x−x0, w) = 0} for
some 0 6= w ∈ RN and F (t0) ⊂ P (−) where P (−) = {x ∈ RN | (x−x0, w) ≤
0}. Let x1 be the point of intersection of the following three sets: X \P (−),
∂F (t1) and the straight line ` orthogonal to P and passing through x0 (since
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x0 is in the interior of the convex set F (t1), ` intersects the boundary ∂F (t1)
in exactly two points). We claim that

‖x0 − x1‖ = dist(x1, F (t0)) ≤ D(F (t1), F (t0)). (8.1)

As above, the inequality follows from the definition of D. In order to obtain
equality in (8.1), it suffices to verify the equivalent condition ([61, Theo-
rem I.2.3]): (x− x0, x1 − x0) ≤ 0 for all x ∈ F (t0). In fact, if this condition
holds and x ∈ F (t0), then

‖x1 − x0‖2 = (x1 − x, x1 − x0) + (x− x0, x1 − x0) ≤ (x1 − x, x1 − x0)

≤ ‖x1 − x‖ · ‖x1 − x0‖,

and so, ‖x1 − x0‖ ≤ ‖x1 − x‖ for all x ∈ F (t0). The condition itself can
be checked as follows. Since x1 ∈ `, x1 = x0 + θw for some θ ∈ R, and
since x1 ∈ X \ P (−), then 0 < (x1 − x0, w) = θ‖w‖2, whence θ > 0. The
inclusion F (t0) ⊂ P (−) implies now that (x−x0, x1−x0) = θ(x−x0, w) ≤ 0
whenever x ∈ F (t0).

2. If T is bounded, the proof of the existence of the desired selection f
of F follows, on the whole, step 1 of the proof of Theorem 5.1 if we take
into account certain modifications. We define elements xni ∈ ∂F (tni ), n ∈ N,
i = 0, 1, . . . , n, inductively as follows. If n ∈ N and a < t0 < b, we set:

(a) xnk0(n) = x0;
(b) if i ∈ {1, . . . , k0(n)} and xni ∈ ∂F (tni ) is already chosen, by step 1 of

this proof pick xni−1 ∈ ∂F (tni−1) such that

‖xni − xni−1‖ ≤ D(F (tni ), F (tni−1)); (8.2)

(c) if i ∈ {k0(n) + 1, . . . , n} and xni−1 ∈ ∂F (tni−1) is already chosen, again
by step 1 pick xni ∈ ∂F (tni ) satisfying (8.2).

If t0 = a or t0 = b we define xni ∈ ∂F (tni ) as in step 1 of the proof of
Theorem 5.1.

Using definition (5.4), we get inequality (5.5). If t ∈ Q, the precompact-
ness of {fn(t)}∞n=1 follows from (a), (b), (c) and the refinement of (5.6):

fn(t) ∈ ∂F (t) for all n ≥ n0(t). (8.3)

If t ∈ T \ Q, we first argue as in step 1 of the proof of Theorem 5.1 up to
(5.7). Then by virtue of definition (5.4) we have: fnk(t) = xnkik ∈ ∂F (tnkik ),
k ∈ N. Applying step 1 for each k ∈ N choose xkt ∈ ∂F (t) such that
‖xnkik − x

k
t ‖ ≤ D(F (tnkik ), F (t)). Thanks to (5.7), tnkik → t − 0 as k → ∞,

and since F is continuous at t, the last inequality implies ‖fnk(t)−xkt ‖ → 0
as k → ∞. Noting that {xkt }∞k=1 ⊂ ∂F (t) and ∂F (t) is compact, without
loss of generality, assume that xkt converges in X to an element xt ∈ ∂F (t)
as k → ∞, and so, in view of (5.8) the sequence {fn(t)}∞n=1 is precompact
in X.
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Applying Theorem 1.3 and taking into account relations (8.3) and (5.8),
we obtain the desired selection f of F , for which f(t0) = x0, f(t) ∈ ∂F (t)
for all t ∈ T and such that its variation does not exceed that of F .

In the case of arbitrary T we repeat with obvious modifications the ar-
guments of step 2 of the proof of Theorem 5.1. �

Making use of refinements similar to those in Theorem 8.1 and its proof
we obtain a theorem on the existence of more regular selections for multi-
functions with more regular properties. We present only the statement of
the corresponding theorem.

Theorem 8.2. Let T ⊂ R, F : T → c(RN ), t0 ∈ T and x0 ∈ ∂F (t0).
If F satisfies conditions of Theorem 5.6 or one of conditions (a)–(e) of
Theorem 6.1, where c(X) is replaced by cc(RN ), then it admits a selection
f with properties from Theorem 5.6 or from items (a)–(e) of Theorem 6.1,
respectively, such that f(t) ∈ ∂F (t) for all t ∈ T and f(t0) = x0.

9. Selections with respect to a given mapping

Given (X, ‖ · ‖) a linear normed space (over the field R or C), we denote
by cc(X) the family of all nonempty compact convex subsets of X. The
addition operation in cc(X) (the Minkowski sum) is defined by A + B =
{a + b | a ∈ A, b ∈ B} whenever A,B ∈ cc(X). If X is real, the triple
(cc(X), D,+) with D = D‖·‖ the Hausdorff metric generated by the norm
‖ · ‖ in X is a metric semigroup in the sense of Section 4: in fact (cf.
R̊adström [93, Lemma 3]), if A,B ∈ cc(X) and ∅ 6= C ⊂ X is bounded,
then D(A+C,B+C) = D(A,B). In order to use the notations for metrics,
we set d(x, y) = ‖x − y‖, x, y ∈ X, and denote by ∆Φ,d the quantity (4.5)
evaluated in metric d.

Theorem 9.1. Let T ⊂ R, (X, ‖ · ‖) be a real linear normed space, a mul-
tifunction F be in BV(T ; cc(X)), t0 ∈ T and η ∈ BV(T ;X). Then there
exists a selection f ∈ BV(T ;X) of F such that

‖η(t0)−f(t0)‖ = dist(η(t0), F (t0)) and ∆1,d(η, f) ≤ ∆1,D(η, F ). (9.1)

Proof. 1. First, let T be bounded, T ⊂ [a, b] and a, b ∈ T . To start with, we
argue as in step 1 of the proof of Theorem 5.1 up to (5.3), where in order to
obtain the set Q we, in addition, append to the set S the set of all discontinu-
ity points of η (which is at most countable as well). Since F (t0) is compact,
choose an element y0 ∈ F (t0) such that ‖η(t0) − y0‖ = dist(η(t0), F (t0)).
Now we define elements xni ∈ F (tni ), n ∈ N, i = 0, 1, . . . , n, inductively as
follows. Suppose that a < t0 < b.
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(a) Set xnk0(n) = y0.
(b) If i ∈ {1, . . . , k0(n)} and xni ∈ F (tni ) is already chosen, pick xni−1 ∈

F (tni−1) such that

‖η(tni−1)− η(tni ) + xni − xni−1‖ = dist
(
η(tni−1)− η(tni ) + xni , F (tni−1)

)
.

(c) If i ∈ {k0(n) + 1, . . . , n} and xni−1 ∈ F (tni−1) is already chosen, pick an
element xni ∈ F (tni ) such that

‖η(tni )− η(tni−1) + xni−1 − xni ‖ = dist
(
η(tni )− η(tni−1) + xni−1, F (tni )

)
.

If t0 = a, i. e., k0(n) = 0, we define xni ∈ F (tni ) following (a) and (c), and if
t0 = b, so that k0(n) = n, we define xni ∈ F (tni ) in accordance with (a) and
(b). Then by (b) we have

‖η(tni−1)−η(tni )+xni −xni−1‖ = dist
(
xni +η(tni−1), η(tni )+F (tni−1)

)
≤ e
(
F (tni )+η(tni−1), η(tni )+F (tni−1)

)
≤ D

(
F (tni )+η(tni−1), η(tni )+F (tni−1)

)
,

and similarly, by (c),

‖η(tni )−η(tni−1)+xni−1−xni ‖ ≤ D
(
η(tni )+F (tni−1), F (tni )+η(tni−1)

)
, (9.2)

so that inequality (9.2) is valid for all i ∈ {1, . . . , n}. It follows that

‖xni − xni−1‖ ≤ ‖η(tni )− η(tni−1) + xni−1 − xni ‖+ ‖η(tni−1)− η(tni )‖ (9.3)

≤ D
(
η(tni ) + F (tni−1), F (tni ) + η(tni−1)

)
+ ‖η(tni )− η(tni−1)‖.

For each n ∈ N we define fn : T → X by (5.4) and ηn : T → X by

ηn(t)=

{
η(tni ) if t = tni , i = 0, 1, . . . , n,
η(tni−1) if T ∩ (tni−1, t

n
i ) 6= ∅ and t ∈ T ∩ (tni−1, t

n
i ), i = 1, . . . , n.

Note that fn(t0) = y0, fn(tni ) = xni and fn(tni−1) = xni−1 for all n and i. Note
also that

Vd(ηn, T ) =
n∑
i=1

Vd(ηn, T ∩ [tni−1, t
n
i ]) =

n∑
i=1

‖η(tni )− η(tni−1)‖

≤ Vd(η, T ), n ∈ N,
and that

ηn(t)→ η(t) in X as n→∞ for all t ∈ T (9.4)

via some subsequence. In fact, if t ∈ Q, then by (5.3) there exists n0(t) ∈ N
such that t ∈

⋂
n≥n0(t) ξn, and so, ηn(t) = η(t) for all n ≥ n0(t). If t ∈ T \Q,

then t is a point of continuity of η, which is a limit point from the left for
T . In this case definition of ηn and (5.7) imply ηnk(t) = η(tnkik ), and since
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tnkik → t− 0, then ηnk(t)→ η(t) as k →∞. In what follows without loss of
generality we assume that property (9.4) holds.

Taking into account (9.3) and definition of ∆1,D from Section 4.1, we find

Vd(fn, T ) =
n∑
i=1

Vd(fn, T ∩ [tni−1, t
n
i ]) =

n∑
i=1

‖xni − xni−1‖

≤ ∆1,D(η, F ) + Vd(η, T ), n ∈ N.
Let us show that for each t ∈ T the sequence {fn(t)}∞n=1 is precompact

in X. If t ∈ Q, this follows from (5.6). If t ∈ T \ Q, we argue as in step 1
of the proof of Theorem 5.1 up to (5.7). Then, given k ∈ N, we have:
fnk(t) = xnkik ∈ F (tnkik ) and there exists xkt ∈ F (t) such that

‖η(t)− η(tnkik ) + xnkik − x
k
t ‖ = dist

(
η(t)− η(tnkik ) + xnkik , F (t)

)
.

By the compactness of F (t) we assume (passing to a subsequence if nec-
essary) that xkt converges in X to an element xt ∈ F (t) as k → ∞. This
implies that

‖fnk(t)−xt‖ ≤ ‖η(t)−η(tnkik )+xnkik −x
k
t ‖+‖η(tnkik )−η(t)‖+‖xkt − xt‖

≤ D
(
η(t)+F (tnkik ), F (t)+η(tnkik )

)
+‖η(tnkik )−η(t)‖+‖xkt −xt‖,

where the last sum tends to zero as k → ∞ thanks to the continuity of F
and η at t and the fact that tnkik → t as k →∞ (cf. (5.7)).

Applying Theorem 1.3 we find a subsequence of {fn}∞n=1, which we still
denote by {fnk}∞k=1, which converges in X pointwise on T to a mapping
f ∈ BV(T ;X) as k → ∞. Clearly, f(t0) = y0, and the first condition
in (9.1) is satisfied. By (5.6) and the arguments in the last paragraph,
f(t) ∈ F (t) for all t ∈ T . It remains to verify the second condition in (9.1).
For this, we note that, by (9.2),

Vd(ηn − fn, T ) =
n∑
i=1

Vd(ηn − fn, T ∩ [tni−1, t
n
i ])

=
n∑
i=1

‖ηn(tni )− fn(tni )− ηn(tni−1) + fn(tni−1)‖

=
n∑
i=1

‖η(tni )− xni − η(tni−1) + xni−1‖

≤
n∑
i=1

D
(
η(tni ) + F (tni−1), F (tni ) + η(tni−1)

)
≤ ∆1,D(η, F ), n ∈ N.
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Now it suffices to pass to the limit via the subsequence n = nk as k → ∞
in this inequality and take into account Lemma 4.1(e) (with Φ(ρ) = ρ) and
property (9.4).

2. If T is arbitrary, we argue almost as in step 2 of the proof of Theo-
rem 5.1 subject to modifications of step 1. To end the proof we only note
that the second inequality in (9.1) is a consequence of Lemma 4.3(g), (c)
with Φ(ρ) = ρ. �

The following theorem is connected with the existence of more regular
selections (with respect to η) of multifunctions with convex images from
classes GVΦ with Φ ∈ N∞ and Lip. For simplicity we restrict ourselves to
the case of an interval T = I = [a, b] in R.

Theorem 9.2. Let (X, ‖ · ‖) be a real Banach space, K ⊂ X be a closed
convex cone, F : I → cc(K) be a set-valued mapping and t0 ∈ I. We have:

(a) if Φ ∈ N∞, F ∈ GVΦ(I; cc(K)) and η ∈ GVΦ(I;K), then F admits a
selection f ∈ GVΦ(I;K), for which the first condition in (9.1) holds
and ∆Φ,d(η, f)≤∆Φ,D(η, F );

(b) if F ∈ Lip(I; cc(K)) and η ∈ Lip(I;K), then F admits a selection f
in the class Lip(I;K) satisfying the first condition in (9.1) and such
that the inequality holds: d`(η, f) ≤ D`(η, F ).

Proof. (a) By the compactness of F (t0), there exists an element y0 ∈ F (t0)
such that ‖η(t0) − y0‖ = dist(η(t0), F (t0)). Given n ∈ N, let ξn = {tni }ni=0
be a partition of I (i. e., a = tn0 < tn1 < · · · < tnn−1 < tnn = b) satisfying the
following two conditions:

1) t0 ∈ ξn, so that t0 = tnk0(n) for some k0(n) ∈ {0, 1, . . . , n}, and
2) limn→∞max1≤i≤n(tni − tni−1) = 0.

We define elements xni ∈ F (tni ), n ∈ N, i = 0, 1, . . . , n, as in step 1(a)–(c)
of the proof of Theorem 9.1, and so, inequalities (9.2) and (9.3) hold. If
n ∈ N, define fn : I → K by

fn(t) = xni−1 +
t− tni−1

tni − tni−1
(xni − xni−1), t ∈ [tni−1, t

n
i ], i = 1, . . . , n,

and ηn : I → K by

ηn(t) = η(tni−1) +
t− tni−1

tni − tni−1

(
η(tni )− η(tni−1)

)
, t ∈ [tni−1, t

n
i ], i = 1, . . . , n.

Note that fn(t0) = y0, fn(tni ) = xni and fn(tni−1) = xni−1 for all n and i. Also,
since η ∈ GVΦ(I;K) and Φ ∈ N∞, the mapping η is (absolutely) continuous
on I, and so,

ηn(t)→ η(t) in K as n→∞ for all t ∈ I. (9.5)
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Moreover,
pΦ(ηn) ≤ pΦ(η), n ∈ N ;

indeed, if µ = pΦ(η) > 0, by the additivity property of VΦµ from Lemma 3.1(c),
piecewise linearity of mapping ηn and Lemma 3.9(b), we find

VΦµ,d(ηn, I) =
n∑
i=1

VΦµ,d(ηn, [t
n
i−1, t

n
i ])

=
n∑
i=1

Φµ

(‖η(tni )− η(tni−1)‖
tni − tni−1

)
(tni − tni−1)

≤ VΦµ,d(η, I) ≤ 1,

proving the inequality. If pΦ(η) = 0, η is constant, so that any ηn is constant
as well.

Let us show that the following inequality holds:

∆Φ,d(ηn, fn) ≤ ∆Φ,D(η, F ) for all n ∈ N. (9.6)

With no loss of generality assume that λ = ∆Φ,D(η, F ) > 0. In order to
calculate WΦλ(ηn, fn, I), let us note that for t, s ∈ [tni−1, t

n
i ] we have:

‖ηn(t)− ηn(s) + fn(s)− fn(t)‖

=
|t− s|
tni − tni−1

‖η(tni )− η(tni−1) + xni−1 − xni ‖.
(9.7)

Taking into account Lemma 4.3(c), definition (4.6), piecewise linearity of ηn
and fn, monotonicity of Φ, inequality (9.2) and Lemma 4.1(b), we get

WΦλ(ηn, fn, I) =
n∑
i=1

WΦλ(ηn, fn, [tni−1, t
n
i ])

=
n∑
i=1

Φλ

(‖η(tni )− η(tni−1) + xni−1 − xni ‖
tni − tni−1

)
(tni − tni−1)

≤
n∑
i=1

Φλ

(
D(η(tni ) + F (tni−1), F (tni ) + η(tni−1))

tni − tni−1

)
(tni − tni−1)

≤WΦλ,D(η, F, I) ≤ 1,

and so, inequality (9.6) follows.
By Lemma 4.1(f) (cf. (9.3)), we have

pΦ(fn) ≤ pΦ(ηn) + ∆Φ,d(ηn, fn) ≤ pΦ(η) + ∆Φ,D(η, F ), n ∈ N. (9.8)

Since Φ ∈ N∞, it follows from Lemma 3.9(a) that the sequence {fn}∞n=1 is
equicontinuous.

Let us check that, given t ∈ I, the set {fn(t)}∞n=1 is precompact in K. For
n ∈ N choose a number i(n) ∈ {1, . . . , n} (also depending on t) such that
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tni(n)−1 ≤ t ≤ tni(n). By condition 2), tni(n) → t and tni(n)−1 → t as n→∞. If
n ∈ N, pick xn(t) ∈ F (t) such that

‖η(t)− η(tni(n)−1) + xni(n)−1− xn(t)‖ = dist
(
η(t)− η(tni(n)−1) + xni(n)−1, F (t)

)
.

By the compactness of F (t) we may assume (taking an appropriate subse-
quence) that xn(t) converges in X to an element x(t) ∈ F (t) as n → ∞.
We show that ‖fn(t) − x(t)‖ → 0 as n → ∞. Since Φ ∈ N∞ and F ∈
GVΦ(I; cc(K)), F is (absolutely) continuous on I with respect to D, and so
is η (with respect to d), and hence, by virtue of (9.3) and (4.3),

‖fn(t)− x(t)‖ ≤ ‖fn(t)− xn(t)‖+ ‖xn(t)− x(t)‖

=
∥∥∥∥xni(n)−1 +

t− tni(n)−1

tni(n) − t
n
i(n)−1

(
xni(n) − x

n
i(n)−1

)
− xn(t)

∥∥∥∥+ ‖xn(t)− x(t)‖

≤ ‖η(t)− η(tni(n)−1) + xni(n)−1 − xn(t)‖+ ‖η(tni(n)−1)− η(t)‖
+ ‖xni(n) − x

n
i(n)−1‖+ ‖xn(t)− x(t)‖

≤ D
(
η(t) + F (tni(n)−1), F (t) + η(tni(n)−1)

)
+ ‖η(tni(n)−1)− η(t)‖

+D
(
η(tni(n)) + F (tni(n)−1), F (tni(n)) + η(tni(n)−1)

)
+ ‖η(tni(n))− η(tni(n)−1)‖+ ‖xn(t)− x(t)‖,

where the sum at the right hand side tends to zero as n→∞.
Applying the Arzelà-Ascoli Theorem we obtain a subsequence of {fn}∞n=1

(for which we keep the notation of the whole sequence), which converges
in X uniformly on I to a mapping f ∈ GVΦ(I;K) (here we have used
Lemma 3.9(e) and (9.8)). The first equality in (9.1) is valid, since f(t0) = y0.
The proof of the precompactness of {fn(t)}∞n=1 shows that f(t) ∈ F (t) for
all t ∈ I. By (9.6), (9.5) and Lemma 4.1(e), we get:

∆Φ,d(η, f) ≤ lim inf
n→∞

∆Φ,d(ηn, fn) ≤ ∆Φ,D(η, F ),

which completes the proof of (a).
(b) The arguments here are as in the proof of (a). We exhibit only the

necessary modifications. Since we have, for t, s ∈ [tni−1, t
n
i ],

‖ηn(t)− ηn(s)‖ =
|t− s|
tni − tni−1

‖η(tni )− η(tni−1)‖ ≤ Ld(η, I)|t− s|,

then Ld(ηn, I) ≤ Ld(η, I) for all n ∈ N. The equicontinuity of {fn}∞n=1
follows from the inequality Ld(fn, I) ≤ D`(η, F ) +Ld(η, I), which in turn is
a consequence of definition of fn, inequality (9.3) and definition of D` from
Section 4.2. The inequality from (b) is established as follows: by (9.7) and
(9.2), Ld(ηn − fn, I) ≤ D`(η, F ), n ∈ N, so that it suffices to pass to the
limit as n→∞ and take into account Lemma 4.4(b). �
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10. Multiselections of bounded variation

A multiselection of the set-valued mapping F : T � X is a multifunction
Γ : T � X satisfying Gr(Γ) ⊂ Gr(F ) or, equivalently, Γ(t) ⊂ F (t) for all
t ∈ T .

In this section we will prove, for a given set-valued mapping F of bounded
variation, the existence of multiselections of bounded variation, which pass
through a given compact set in the image of F . The following theorem is a
generalization of Theorem 5.1.

Theorem 10.1. Let T ⊂ R, (X, d) be a metric space and F ∈ BV(T ; c(X)).
Then, given t0 ∈ T and K ∈ c(X), there exists a multiselection Γ ∈
BV(T ; c(X)) of F such that

D(K,Γ(t0)) ≤ e(K,F (t0)) and VD(Γ, T ) ≤ VD(F, T ). (10.1)

In particular, if K ⊂ F (t0), then by the first condition in (10.1), Γ(t0) = K.

Proof. 1. We need the following assertion:

if K0, F0 ∈ c(X) and K0 ⊂ F0, then for any F1 ∈ c(X)

there exists K1 ∈ c(X) such that (10.2)

K1 ⊂ F1 and D(K0,K1) ≤ e(F0, F1).

To see this, it suffices to define K1 as the metric projection of K0 onto F1:

K1 = {x1 ∈ F1 | ∃x0 ∈ K0 such that d(x0, x1) = dist(x0, F1)}.

In fact, the compactness of nonempty set K1 follows from the compactness
of K0, F1 and closedness of K1. Given x0 ∈ K0, choose x′1 ∈ F1 such that
d(x0, x

′
1) = dist(x0, F1); since x′1 ∈ K1, then infx1∈K1 d(x0, x1)≤d(x0, x

′
1)≤

e(F0, F1), whence by the arbitrariness of x0 ∈ K0 we get e(K0,K1) ≤
e(F0, F1). Now if x1 ∈ K1, then x1∈F1 and there exists x′0 ∈ K0 with
the property d(x′0, x1) = dist(x′0, F1) ≤ e(F0, F1); so, infx0∈K0 d(x0, x1) ≤
d(x′0, x1) ≤ e(F0, F1) for all x1 ∈ K1, and therefore, e(K1,K0) ≤ e(F0, F1).
This proves the inequality in (10.2).

2. Turning to the main part of the proof, first we argue as in step 1 of
the proof of Theorem 5.1 up to (5.3). Setting K0 = F0 = K and F1 = F (t0)
in (10.2) we find a compact subset K1 ≡ Y0 of X such that Y0 ⊂ F (t0) and
D(K,Y0) ≤ e(K,F (t0)). Now we define compact sets Kn

i ⊂ F (tni ), n ∈ N,
i = 0, 1, . . . , n, inductively as follows. Let n ∈ N, and let a < t0 < b, so that
1 ≤ k0(n) ≤ n− 1.

(a) Set Kn
k0(n) = Y0.
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(b) If i ∈ {1, . . . , k0(n)} and the set Kn
i ∈ c(X), Kn

i ⊂ F (tni ), is already
chosen, then setting K0 = Kn

i , F0 = F (tni ) and F1 = F (tni−1) in
(10.2) pick Kn

i−1 ∈ c(X), Kn
i−1 ⊂ F (tni−1), such that D(Kn

i ,K
n
i−1) ≤

e(F (tni ), F (tni−1)).
(c) If i ∈ {k0(n) + 1, . . . , n} and the compact set Kn

i−1 ⊂ F (tni−1) is al-
ready chosen, then setting K0 = Kn

i−1, F0 = F (tni−1) and F1 = F (tni )
in (10.2) pick a compact set Kn

i ⊂ F (tni ) such that D(Kn
i−1,K

n
i ) ≤

e(F (tni−1), F (tni )).
If t0 = a, so that k0(n) = 0, we define compact subsets Kn

i of F (tni ) following
(a) and (c), and if t0 = b, i. e. k0(n) = n, we defineKn

i ⊂ F (tni ) in accordance
with (a) and (b).

Given n ∈ N, we define Γn : T → c(X) by (cf. (5.4))

Γn(t) =


Kn
i if t = tni , i = 0, 1, . . . , n,

Kn
i−1 if T ∩ (tni−1, t

n
i ) 6= ∅ and t ∈ T ∩ (tni−1, t

n
i ),

i = 1, . . . , n.
(10.3)

Then Γn(t0) = Y0, and by (b) and (c) we have a counterpart of (5.5):

VD(Γn, T ) =
n∑
i=1

VD(Γn, T ∩ [tni−1, t
n
i ]) =

n∑
i=1

D(Kn
i ,K

n
i−1)

≤
n∑
i=1

D
(
F (tni ), F (tni−1)

)
≤ VD(F, T ), n ∈ N.

Let us show that {Γn(t)}∞n=1 is precompact in c(X) for all t ∈ T . If t ∈ Q,
by (5.3) there exists n0(t)∈N such that t∈ξn for all n≥n0(t), i. e., t = tn`(n)
for some `(n) ∈ {0, 1, . . . , n} (also depending on t). Hence, thanks to (10.3),
(a), (b) and (c), we have:

Γn(t) = Kn
`(n) ⊂ F (tn`(n)) = F (t) for all n ≥ n0(t).

Therefore, {Γn(t)}∞n=n0(t) ⊂ c(F (t)), but F (t) is compact in X, and so (cf.
[12, II.1.4]), c(F (t)) is compact in c(X), which implies that the sequence
{Γn(t)}∞n=1 is precompact.

Now let t ∈ T \Q. Again we argue as in step 1 of the proof of Theorem 5.1
up to (5.7). By definition (10.3), Γnk(t) = Knk

ik
⊂ F (tnkik ), k ∈ N. Making

use of (10.2), for each k ∈ N choose a compact set Kk(t) ⊂ F (t) such that
D(Knk

ik
,Kk(t)) ≤ D(F (tnkik ), F (t)). By the compactness of c(F (t)), with no

loss of generality we assume that Kk(t) converges in metric D to a compact
set K(t) ⊂ F (t). Since

D(Γnk(t),K(t)) ≤ D(Knk
ik
,Kk(t)) +D(Kk(t),K(t))→ 0, k →∞,

the set {Γn(t)}∞n=1 is precompact in c(X).
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The rest of the proof (application of Theorem 1.3, etc.) is carried out with
obvious modifications as the respective part of the proof of Theorem 5.1. �

A theorem similar to Theorem 10.1 holds for more regular set-valued
mappings. We present the corresponding formulation:

Theorem 10.2. Let T ⊂ R, (X, d) be a metric space, F : T � X be a
multifunction with compact values, t0 ∈ T and K ∈ c(X). If F satisfies
conditions of Theorem 5.6 or one of conditions (a)–(e) of Theorem 6.1, it
admits a multiselection Γ : T → c(X) of the respective class of mappings of
bounded variation (if we replace f by Γ in those theorems, then Γ has the
same properties as f) such that D(K,Γ(t0)) ≤ e(K,F (t0)).

11. Functional inclusion f(t) ∈ F (t, f(t))

Let cb(X) denote the family of all nonempty closed bounded subsets of
the metric space (X, d) equipped with the Hausdorff metric D generated by
d.

Theorem 11.1. Suppose the following conditions hold for F : T × X →
cb(X):

(i) there exists a function ϕ ∈ BV(T ;R) and a number 0 ≤ µ < 1 such
that D(F (t, x), F (s, y)) ≤ |ϕ(t)−ϕ(s)|+µd(x, y) for all (t, x), (s, y) ∈
T ×X;

(ii) ∀ t ∈ T ∃K(t) ∈ c(X) such that F (t, x) ⊂ K(t) for all x ∈ X.
Then, given t0 ∈ T and x0 ∈ X, there exists a mapping f ∈ BV(T ;X)
satisfying :

(a) f(t) ∈ F (t, f(t)) for all t ∈ T ;
(b) d(x0, f(t0)) = dist

(
x0, F (t0, f(t0))

)
, and

(c) V (f, T ) ≤ V (ϕ, T )/(1− µ).
Moreover, if x0 ∈ X is such that x0 ∈ F (t0, x0), then (b) can be replaced by
f(t0) = x0.

Proof. The set F (t, x0) is closed and, by (ii), is contained in K(t), and so,
it is compact for all t ∈ T . Condition (i) implies F (·, x0) ∈ BV(T ; c(X))
and V (F (·, x0), T ) ≤ V (ϕ, T ). By Theorem 5.1, there exists f1 ∈ BV(T ;X)
such that f1(t) ∈ F (t, x0) for all t ∈ T ,

d(x0, f1(t0)) = dist(x0, F (t0, x0)) (11.1)
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and V (f1, T ) ≤ V (F (·, x0), T ) ≤ V (ϕ, T ). Set F1(t) = F (t, f1(t)), t ∈ T .
Then, by (ii), F1 : T → c(X), and for all t, s ∈ T we have, thanks to (i),

D(F1(t), F1(s)) ≤ |ϕ(t)− ϕ(s)|+ µd(f1(t), f1(s)), (11.2)

and so,
V (F1, T ) ≤ V (ϕ, T ) + µV (f1, T ) ≤ (1 + µ)V (ϕ, T ).

Again by Theorem 5.1 we find f2 ∈ BV(T ;X), f2(t) ∈ F1(t) = F (t, f1(t))
for all t ∈ T ,

d(x0, f2(t0)) = dist
(
x0, F (t0, f1(t0))

)
(11.3)

and V (f2, T ) ≤ V (F1, T ) ≤ (1 + µ)V (ϕ, T ). Setting F2(t) = F (t, f2(t)),
t ∈ T , we have F2 : T → c(X) by (ii), and

D(F2(t), F2(s)) ≤ |ϕ(t)− ϕ(s)|+ µd(f2(t), f2(s)), t, s ∈ T,

by virtue of (i), whence

V (F2, T ) ≤ V (ϕ, T ) + µV (f2, T ) ≤ (1 + µ+ µ2)V (ϕ, T ).

By induction, for each n ∈ N there exists fn ∈ BV(T ;X) satisfying (where
f0(t) ≡ x0):

fn(t) ∈ F (t, fn−1(t)) ⊂ K(t) for all t ∈ T, (11.4)

d(x0, fn(t0)) = dist
(
x0, F (t0, fn−1(t0))

)
, and

V (fn, T ) ≤
(n−1∑
i=0

µi
)
V (ϕ, T ) ≤ V (ϕ, T )/(1− µ).

(11.5)

Thus, the sequence {fn}∞n=1⊂BV(T ;X) is pointwise precompact and is of
uniformly bounded variation on T , and so, by Helly’s selection principle
(Theorem 1.3) it contains a subsequence, denoted by the same symbol,
which converges pointwise on T to a mapping f ∈ BV(T ;X) as n → ∞.
Due to the lower semi-continuity of V (·, ·), condition (c) is satisfied. In
order to prove (a), we employ the following inequality: if ∅ 6= A,B ⊂ X and
x, y ∈ X, then

|dist(x,A)− dist(y,B)| ≤ d(x, y) +D(A,B). (11.6)

Since dist
(
fn(t), F (t, fn−1(t))

)
= 0, n ∈ N, by assumption (i) for all t ∈ T

we have: ∣∣∣dist
(
f(t), F (t, f(t))

)
− dist

(
fn(t), F (t, fn−1(t))

)∣∣∣
≤ d(f(t), fn(t)) +D

(
F (t, f(t)), F (t, fn−1(t))

)
≤ d(f(t), fn(t)) + µd(f(t), fn−1(t))→ 0 as n→∞.
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It follows that dist
(
f(t), F (t, f(t))

)
=0, and since the set F (t, f(t)) is closed,

then f(t) ∈ F (t, f(t)) for all t ∈ T . Passing to the limit as n→∞ in (11.5)
and taking into account that, by (11.6) and (i), d(x0, fn(t0)) converges to
d(x0, f(t0)) and dist

(
x0, F (t0, fn−1(t0))

)
converges to dist

(
x0, F (t0, f(t0))

)
,

we arrive at the equality (b).
Now if x0 ∈ F (t0, x0), then f1(t0) = x0 by (11.1), and so, x0 ∈ F1(t0) =

F (t0, f1(t0)), which implies f2(t0) = x0 by virtue of (11.3), and so on. It
remains to note that (11.5) can now be rewritten in the form fn(t0) =
x0. �

If µ = 0, i. e., F (t, x) = F (t) is independent of x ∈ X, Theorem 11.1
reduces to Theorem 5.1, since one can set ϕ(t) = V (F, T ∩ (−∞, t]) (t ∈ T )
in (i) and define K(t) to be equal to F (t) ∈ c(X) in (ii).

An application of Theorem 11.1 and the following Theorem 11.2, corre-
sponding to Theorem 6.1, will be presented in Section 14.

Theorem 11.2. Suppose that assumptions of Theorem 11.1 are satisfied.
If the function ϕ in (i) there is such that (α) ϕ ∈ Lip(T ;R), or (β) ϕ ∈
GVΦ(T ;R) with T bounded and Φ ∈ N , then there exists a mapping f :
T → X satisfying properties (a), (b) and (c) of that Theorem and (α)
f ∈ Lip(T ;X) and L(f, T ) ≤ L(ϕ, T )/(1 − µ), or (β) f ∈ GVΦ(T ;X) and
pΦ(f, T ) ≤ pΦ(ϕ, T )/(1− µ), respectively.

Proof. (α) 1. First let T ⊂ [a, b] and a, b ∈ T . In this case ϕ ∈ BV(T ;R),
so we can repeat the proof of Theorem 11.1 taking into account that due
to Theorem 6.1(a) condition (i) guarantees also that fn ∈ Lip(T ;X) and
the following estimate holds: L(fn, T ) ≤ L(ϕ, T )/(1− µ), n ∈ N. By Theo-
rem 1.3, a (sub)sequence {fn}∞n=1 admits a pointwise limit f ∈ BV(T ;X),
for which conditions (a), (b) and (c) of Theorem 11.1 hold, and the above
uniform estimate for L(fn, T ) means that f ∈ Lip(T ;X) and L(f, T ) ≤
L(ϕ, T )/(1− µ).

2. For arbitrary T we follow the arguments of step 2 of the proof of
Theorem 5.1. Consider, for instance, the case when a = inf T /∈ T and b =
supT /∈ T . Let {tn}n∈Z ⊂ T be an increasing sequence such that tn → b and
t−n → a as n→∞, and set Tn = T∩[tn, tn+1] for n ∈ Z. Applying step 1 for
T0 = T ∩[t0, t1] (instead of T ) we find a mapping f(0) ∈ Lip(T0;X) such that

f(0)(t) ∈ F (t, f(0)(t)) for all t ∈ T0, d(x0, f(0)(t0)) = dist
(
x0, F (t0, f(0)(t0))

)
and L(f(0), T0) ≤ L(ϕ, T0)/(1 − µ). Again apply step 1 to the set T1 and
choose a mapping f(1) ∈ Lip(T1;X) such that f(1)(t) ∈ F (t, f(1)(t)) for all
t ∈ T1, f(1)(t1) = f(0)(t1) and L(f(1), T1) ≤ L(ϕ, T1)/(1 − µ), and proceed
this way for Tn with n ≥ 2 and n ≤ −1. Then for each n ∈ Z we obtain



58 V. V. CHISTYAKOV

a mapping f(n) ∈ Lip(Tn;X) such that f(n)(t) ∈ F (t, f(n)(t)) for all t ∈ Tn,
f(n)(tn) = f(n−1)(tn) and L(f(n), Tn) ≤ L(ϕ, T )/(1− µ). Define f : T → X
as follows: if t ∈ T , so that t ∈ Tn for some n ∈ Z, we set f(t) = f(n)(t).
Then f satisfies conditions (a), (b) and (c) of Theorem 11.1 and inequality
L(f, T ) ≤ L(ϕ, T )/(1−µ), which can be established as in step 2 of the proof
of Theorem 6.1(a).

(β) Without loss of generality assume that λ = pΦ(ϕ, T ) > 0. Since T
is bounded, by (3.24) ϕ ∈ BV(T ;R), so the arguments from the proof of
Theorem 11.1 can be applied. Condition (i) implies F (·, x0) ∈ GVΦ(T ; c(X))
and pΦ(F (·, x0), T ) ≤ λ. By Theorem 6.1(e) there exists a selection f1 ∈
GVΦ(T ;X) of F (·, x0) such that (11.1) holds and

pΦ(f1, T ) ≤ pΦ(F (·, x0), T ) ≤ λ.

Set F1(t) = F (t, f1(t)), t ∈ T . Given a partition {ti}mi=0 of T , by estimate
(11.2), the convexity of Φ and Lemma 3.9(b), for γ = pΦ(f1, T ), Λ=λ+µγ
and i=1, . . . ,m we have:

Φ

(
D(F1(ti), F1(ti−1))

(ti − ti−1) Λ

)
≤ Φ

(
|ϕ(ti)− ϕ(ti−1)|

(ti − ti−1) Λ
+
µd(f1(ti), f1(ti−1))

(ti − ti−1) Λ

)

≤ λ

Λ
Φ

(
|ϕ(ti)− ϕ(ti−1)|

(ti − ti−1)λ

)
+
µγ

Λ
Φ

(
d(f1(ti), f1(ti−1))

(ti − ti−1) γ

)
,

whence

VΦΛ(F1, T ) ≤ λ

Λ
VΦ(ϕ/λ, T ) +

µγ

Λ
VΦγ (f1, T ) ≤ 1.

Therefore,
pΦ(F1, T ) ≤ Λ ≤ (1 + µ)pΦ(ϕ, T ).

In this way we get a sequence {fn}∞n=1 ⊂ GVΦ(T ;X) with properties (11.4),
(11.5) and such that pΦ(fn, T ) ≤ pΦ(ϕ, T )/(1− µ). This inequality, (3.24),
(11.4), Theorem 1.3 and Lemma 3.9(e) imply the existence of f ∈ GVΦ(T ;X)
satisfying the desired conditions. �

Remark 11.3. (a) If T = I = [a, b] and ϕ ∈ AC(I;R) in condition (i) of
Theorem 11.1, then the inclusion f(t) ∈ F (t, f(t)) admits a solution f ∈
AC(I;X); in fact, in view of Theorem 3.6 and (3.20) we have ϕ ∈ GVΦ(I;R)
for some Φ ∈ N∞, and so, by Theorem 11.2 and (3.13), f ∈ GVΦ(I;X) ⊂
AC(I;X).

(b) If, under the assumptions of Theorem 11.1, T is density-open, X is
complete and ϕ ∈ BVess(T ;R), then there exists f ∈ BVess(T ;X) such that
f(t) ∈ F (t, f(t)) for almost all t ∈ T and Vess(f, T ) ≤ Vess(ϕ, T )/(1 − µ).
Indeed, since Vess(ϕ, T ) is finite, by Theorem 2.2(a) there exists a set T0 ⊂ T
of Lebesgue measure zero such that ϕ|T\T0 ∈ BV(T \ T0;R) and V (ϕ, T \
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T0) = Vess(ϕ, T ). Let t0 ∈ T \ T0 and x0 ∈ X. By Theorem 11.1, there
exists f ∈ BV(T \ T0;X) such that f(t) ∈ F (t, f(t)) for all t ∈ T \ T0 and
V (f, T \ T0) ≤ V (ϕ, T \ T0)/(1− µ) ≤ Vess(ϕ, T )/(1− µ). Extending f onto
T0 arbitrarily we find that f ∈ BVess(T ;X) is the required mapping.

(c) Suppose F : T × RN → cc(RN ) satisfies conditions of Theorem 11.1.
If t0 ∈ T and x0 ∈ RN is such that x0 ∈ ∂F (t0, x0), then there exists
f ∈ BV(T ;RN ) such that f(t) ∈ ∂F (t, f(t)) for all t ∈ T , f(t0) = x0 and
inequality (c) from Theorem 11.1 holds.

A generalization of Theorems 10.1 and 11.1 is given by

Theorem 11.4. Suppose F : T × c(X)→ cb(X) satisfies conditions:
(i) there exists a function ϕ ∈ BV(T ;R) and a number 0 ≤ µ < 1 such

that
D(F (t, A), F (s,B))≤|ϕ(t)−ϕ(s)|+µD(A,B) for all t, s ∈ T and A,
B ∈ c(X);

(ii) ∃K : T → c(X) such that F (t, A) ⊂ K(t) for all A ∈ c(X).
Then for any t0 ∈ T and X0 ∈ c(X) there exists X ∈ BV(T ; c(X)) such that

(a) X(t) ⊂ F (t,X(t)) for all t ∈ T ;
(b) D(X0,X(t0)) ≤ e

(
X0, F (t0,X(t0))

)
, and

(c) V (X, T ) ≤ V (ϕ, T )/(1− µ).
Moreover, if X0 ∈ c(X) is such that X0 ⊂ F (t0,X0), then (b) can be replaced
by X(t0) = X0.

Proof. Proof of this theorem is analogous to the proof of Theorem 11.1 if
we apply Theorem 10.1 in place of Theorem 5.1. Only the verification of
property (a) is subject to change. We will use the following inequality

|e(X, A)− e(Y, B)| ≤ D(X,Y) +D(A,B), X, Y, A, B ∈ cb(X), (11.7)

which is a consequence of the following two inequalities:

e(X, A) ≤ e(X,Y) + e(Y, B) + e(B,A),
e(Y, B) ≤ e(Y,X) + e(X, A) + e(A,B).

Let {Xn}∞n=1 ⊂ BV(T ; c(X)) be the constructed sequence satisfying for all
n ∈ N the conditions (with X0(t) ≡ X0):

Xn(t) ⊂ F (t,Xn−1(t)) for all t ∈ T,

D(X0,Xn(t0)) ≤ e
(
X0, F (t0,Xn−1(t0))

)
, and

V (Xn, T ) ≤
(n−1∑
i=0

µi
)
V (ϕ, T ) ≤ V (ϕ, T )/(1− µ),
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and such that D(Xn(t),X(t)) → 0 as n → ∞ for all t ∈ T , where X ∈
BV(T ; c(X)). Noting that e

(
Xn(t), F (t,Xn−1(t))

)
= 0, by (11.7) and as-

sumption (i) for each t ∈ T we get∣∣∣e(X(t), F (t,X(t))
)
− e
(
Xn(t), F (t,Xn−1(t))

)∣∣∣
≤ D

(
X(t),Xn(t)

)
+D

(
F (t,X(t)), F (t,Xn−1(t))

)
≤ D

(
X(t),Xn(t)

)
+ µD

(
X(t),Xn−1(t)

)
→ 0 as n→∞.

Therefore, e
(
X(t), F (t,X(t))

)
= 0 implying (a). �

In a similar manner, making use of Theorem 10.2 one can modify The-
orem 11.2 and remarks following it. We leave the details to the interested
reader.

12. Jensen’s functional equation

The main aim of this and the next section is to provide tools and moti-
vation for the results of Section 14. Moreover, the study of the multivalued
Jensen functional equation in this Section as well as the characterization
of multivalued Lipschitzian superposition operators in the BV setting in
Section 13 is important and interesting in its own right.

Let (Y, ‖·‖) be a real linear normed space. Denote by cbc(Y ) the family of
all nonempty closed bounded convex subsets of Y equipped with the usual
Hausdorff metric D (generated by ‖ · ‖). We define the binary operation of

(∗-) addition
∗
+ in cbc(Y ) by (cf. [106])

P
∗
+ Q = P +Q, P, Q ∈ cbc(Y ),

where P +Q is the Minkowski sum and P means the closure of P in Y . The
following equalities hold in cbc(Y ):

P
∗
+ Q = P +Q, (12.1)

λ(P
∗
+ Q) = λP

∗
+ λQ, (λ+ µ)P = λP

∗
+ µP, λ, µ ∈ R+.

The triple (cbc(Y ), D,
∗
+) is a metric semigroup in the sense of Section 4,

since for any P,Q ∈ cbc(Y ) and ∅ 6= R ⊂ Y bounded, we have

D(P
∗
+ R,Q

∗
+ R) = D(P +R,Q+R) = D(P,Q) (12.2)

(cf. (7.1) for the first equality and [39, Lemma 2.2] for the second equality),
so that D is translation invariant. This metric semigroup is complete if Y is
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a Banach space (which follows from properties of D, e. g., [12, Theorems II-
9, II-14]). Moreover,

D(λP, λQ) = |λ|D(P,Q), P, Q ∈ cbc(Y ), λ ∈ R. (12.3)

Now, let I = [a, b] be an interval, (X, ‖ · ‖) be a linear normed space,
d(x, y) = ‖x−y‖ if x, y ∈ X, and K ⊂ X be a convex cone (i. e., K+K ⊂ K
and λK ⊂ K for λ ∈ R+). Given Φ,Ψ ∈ N , by Theorem 4.2 the triples

(GVΦ(I;K), dΦ,+) and (GVΨ(I; cbc(Y )), DΨ,
∗
+)

are metric semigroups with respect to pointwise operations of addition which
are denoted by the same symbols as in K and cbc(Y ), respectively (i. e.,

(f + g)(t) = f(t) + g(t) if f, g ∈ GVΦ(I;K) and (F
∗
+ G)(t) = F (t)

∗
+ G(t)

if F,G ∈ GVΨ(I; cbc(Y )), t ∈ I). These semigroups are equipped with
the respective translation invariant metrics dΦ and DΨ starting from the
induced metric d on X and the Hausdorff metric D on cbc(Y ) according to
formulas (4.4)–(4.6) from Section 4.

A set-valued operator A : K → cbc(Y ) is said to be linear if it is

∗-additive (i. e., A(x + y) = A(x)
∗
+ A(y) for all x, y ∈ K) and nonneg-

atively homogeneous (i. e., A(λx) = λA(x) for all x ∈ K and λ ∈ R+).
Observe that A(0) = {0}.

Let us denote by L(K; cbc(Y )) the metric semigroup of all linear Lips-
chitzian set-valued operators from K into cbc(Y ) endowed with the metric
(cf. Section 4.2 where a = 0):

DL(A,B) ≡ D`(A,B) (12.4)

= sup
x,y∈K,x 6=y

D
(
A(x)

∗
+ B(y), B(x)

∗
+ A(y)

)/
‖x− y‖

whenever A, B ∈ L(K; cbc(Y )).
Given H : I ×K → cbc(Y ), the operator H : KI → cbc(Y )I defined by

(Hf)(t) ≡ H(f)(t) := H(t, f(t)) if f : I → K and t ∈ I (12.5)

is said to be a (set-valued Nemytskii) superposition operator generated by
H, and the set-valued mapping H is called the generator of H.

The main result of Section 13 is Theorem 13.1 characterizing Lipschitzian
set-valued superposition operators between metric semigroups GVΦ(I;K)
and GVΨ(I; cbc(Y )). In order to prove it, we need the following two lemmas.

Lemma 12.1. If A : K → cbc(Y ) is ∗-additive and continuous, it is linear.
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Proof. It suffices to show that if x ∈ K and λ ∈ R+, then A(λx) = λA(x).
Let {λk}∞k=1 be a sequence of positive rational numbers converging to λ as
k →∞. By the continuity of A we have:

D
(
A(λkx), A(λx)

)
→ 0 as k →∞.

Note that A(λkx) = λkA(x), k ∈ N; in fact, if k is fixed, then λk = n/m for
some n,m ∈ N, and so, the convexity of values of A and the ∗-additivity
of A imply A(x) = A(x/m)

∗
+ · · ·

∗
+ A(x/m) = mA(x/m), or A(x/m) =

A(x)/m, and similarly,

A(λkx) = A(n(x/m)) = A(x/m)
∗
+ · · ·

∗
+ A(x/m)︸ ︷︷ ︸

n times
= nA(x/m) = (n/m)A(x) = λkA(x).

Since the set A(x) is bounded, the mapping µ 7→ µA(x) is continuous from
R into cbc(Y ) (cf. [87, Lemma 3.2]), so

D
(
A(λkx), λA(x)

)
= D

(
λkA(x), λA(x)

)
→ 0 as k →∞.

As k →∞ it follows that

D
(
A(λx), λA(x)

)
≤ D

(
A(λx), A(λkx)

)
+D

(
A(λkx), λA(x)

)
→ 0.

Since the values of A are closed, A(λx) = λA(x). �

The following lemma was established for operators F with compact con-
vex values in Y by Fifer [43, Theorem 2] (if K = R+) and Nikodem [87,
Theorem 5.6] (if K is a cone). An abstract version of this lemma is due to
W. Smajdor [106, Theorem 1]. In the proof of Lemma 12.2 below we follow
the paper [106].

Lemma 12.2. Let Y be a Banach space. Then a set-valued operator F
from K into cbc(Y ) satisfies the Jensen functional equation, i. e.,

F

(
x+ y

2

)
=

1
2

(
F (x)

∗
+ F (y)

)
for all x, y ∈ K,

(12.6)

if and only if there exists a ∗-additive operator A : K → cbc(Y ) and a set

B ∈ cbc(Y ) such that F (x) = A(x)
∗
+ B for all x ∈ K. (The operator A

and the set B are determined uniquely by F .)
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Proof. Necessity. First, note that the following two mappings are continu-
ous:

R+ × cbc(Y ) 3 (λ,A) 7−→ λA ∈ cbc(Y ),

cbc(Y )× cbc(Y ) 3 (A,B) 7−→ A
∗
+ B ∈ cbc(Y ).

(12.7)

Setting F yn (x) = F (2nx + y)/2n, αn = (2n − 1)/2n, x, y ∈ K, n ∈ N, by
(12.6) and induction we have

F (x + y) = F yn (x)
∗
+ αnF (y) for all x, y ∈ K, n ∈ N. (12.8)

Let us show that {F yn (x)}∞n=1 is a Cauchy sequence in cbc(Y ) for all x, y ∈ K.
Given n,m ∈ N, n > m, by (12.2), (12.8), (12.1) and (12.3) we have:

D
(
F yn (x), F ym(x)

)
= D

(
F yn (x)

∗
+ αnF (y), F ym(x)

∗
+ αnF (y)

)
= D

(
F (x+ y), F ym(x)

∗
+ αmF (y)

∗
+ (αn − αm)F (y)

)
= D

(
F (x+ y), F (x+ y)

∗
+ (αn − αm)F (y)

)
= D

(
{0}, (αn − αm)F (y)

)
=
(

1
2m
− 1

2n

)
D
(
{0}, F (y)

)
.

Since cbc(Y ) is complete, for each y ∈ K there exists Ay : K → cbc(Y )
such that D(F yn (x), Ay(x)) → 0 as n → ∞ for all x ∈ K. Passing to the
limit as n→∞ in the equality (12.8), by virtue of (12.7) we get

F (x+ y) = Ay(x)
∗
+ F (y), x, y ∈ K. (12.9)

For each y ∈ K the operator Ay is ∗-additive, since, given x1, x2 ∈ K, by
Jensen’s equation we have in cbc(Y ):

Ay(x1 + x2) = lim
n→∞

F yn (x1 + x2) = lim
n→∞

(
F yn+1(x1)

∗
+ F yn+1(x2)

)
= Ay(x1)

∗
+Ay(x2).

Now we show that the operator Ay is independent of y ∈ K, namely,

Ay(x) = lim
n→∞

F 0
n(x) in cbc(Y ) for all x, y ∈ K. (12.10)

Taking into account (12.6), (12.9) and the ∗-additivity of Ay, we find

F (2x)
∗
+ F (2y) = 2F (x+ y) = 2Ay(x)

∗
+ 2F (y)

= Ay(2x)
∗
+ 2F (y), (12.11)
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and so, the second equality in (12.11) with x = y implies F (2y) = Ay(y)
∗
+

F (y), and this together with the third equality in (12.11) gives:

F (2x)
∗
+ Ay(y)

∗
+ F (y) = Ay(2x)

∗
+ 2F (y).

Cancelling by F (y) here, replacing x by 2n−1x, dividing by 2n and taking
into account the ∗-additivity of Ay, we arrive at the equality:

F 0
n(x)

∗
+

1
2n
Ay(y) = Ay(x)

∗
+

1
2n
F (y).

As n → ∞, thanks to (12.7) we get (12.10). To end this part of the proof,
set y = 0, A = A0 and B = F (0) in (12.9).

Sufficiency. Let A : K → cbc(Y ) be ∗-additive, B ∈ cbc(Y ) and F (x) =

A(x)
∗
+ B, x ∈ K. Then F satisfies the Jensen equation (12.6), for, given

x, y ∈ K, we have

2F
(
x+ y

2

)
= 2A

(
x+ y

2

)
∗
+ 2B = A(x+ y)

∗
+ 2B

= (A(x)
∗
+ B)

∗
+ (A(y)

∗
+ B) = F (x)

∗
+ F (y).

�

13. Multivalued superposition operators

We say that Φ∈N grows at infinity significantly slower than Ψ∈N (in
symbols, Φ�Ψ) if limρ→∞Φ(Cρ)/Ψ(ρ) = 0 for all C > 0. It is known (e. g.,
[23, Lemma 4.2]) that Φ � Ψ if and only if limr→∞Ψ−1(r)/Φ−1(r) = 0. For
instance, if Φ(ρ) = ρq1 , Ψ(ρ) = ρq2 , ρ ∈ R+, q1, q2 ∈ [1,∞), then Φ � Ψ
if and only if q1 < q2. Observe also that Φ � Ψ if and only if Φ 4 Ψ and
Φ 6∼ Ψ.

The main result of this section is the following theorem.

Theorem 13.1. Let I = [a, b], (X, ‖ · ‖) and (Y, ‖ · ‖) be two linear normed
spaces, K ⊂ X be a convex cone, Φ ∈ N and Ψ ∈ N∞. Suppose that
H : KI → cbc(Y )I is a set-valued superposition operator generated by a
mapping H : I ×K → cbc(Y ) via (12.5).

If Y is a real Banach space and

H ∈ Lip
(

GVΦ(I;K); GVΨ(I; cbc(Y ))
)
, (13.1)

then H(t, ·)∈Lip(K; cbc(Y )) for all t∈I and there exist two mappings H0∈
GVΨ(I; cbc(Y )) and H1 : I → L(K; cbc(Y )) with the property that H1(·)x =



SELECTIONS OF BOUNDED VARIATION 65

[t 7→ H1(t)x] ∈ GVΨ(I; cbc(Y )) for all x ∈ K such that the Matkowski
representation holds:

H(t, x) = H0(t)
∗
+ H1(t)x, t ∈ I, x ∈ K. (13.2)

Moreover, under the conditions above if Φ � Ψ, then H(t, x) = H(t, 0) for
all t ∈ I and x ∈ K (so that H is a constant set-valued operator).

Conversely, if Ψ4Φ, H0 ∈GVΨ(I; cbc(Y )), H1 ∈GVΨ(I; L(K; cbc(Y )))
and the generator H is of the form (13.2), then the superposition operator
H satisfies (13.1).

Proof. For the sake of clarity we divide the proof into eight steps.
1. Let condition (13.1) be satisfied. Then there exists a number µ > 0

such that if f1, f2 ∈ GVΦ(I;K) and λ = µdΦ(f1, f2), then DΨ(Hf1,Hf2) ≤
λ and, hence (cf. (4.4) and (4.5)), ∆Ψ,D(Hf1,Hf2) ≤ λ. If dΦ(f1, f2) > 0,
by Lemma 4.1(c) the last inequality is equivalent to WΨλ,D(Hf1,Hf2) ≤ 1,
and so, from the definition (4.6) for all α, β ∈ I, α < β, we get, in particular,

Ψ

(
D
(

(Hf1)(β)
∗
+ (Hf2)(α), (Hf2)(β)

∗
+ (Hf1)(α)

)
(β − α)λ

)
(β − α) ≤ 1.

Applying Ψ−1 and taking into account (12.5) and the definition of function
ωΨ in Section 3 (p. 13), we find

D
(
H(β, f1(β))

∗
+ H(α, f2(α)),H(β, f2(β))

∗
+ H(α, f1(α))

)
≤ µωΨ(β − α)dΦ(f1, f2). (13.3)

Now if dΦ(f1, f2) = 0, then ∆Ψ,D(Hf1,Hf2) = 0, and so, by Lemma 4.1(a)
the left hand side of (13.3) is equal to zero. Thus, inequality (13.3) is valid
for all mappings f1, f2 ∈ GVΦ(I;K) and all α, β ∈ I, α < β.

2. Let us show that H(t, ·) ∈ Lip(K; cbc(Y )) for all t ∈ I. More precisely,
we will show that there exists a function µ0 : I → R+ such that

D
(
H(t, x1),H(t, x2)

)
≤ µ0(t)‖x1 − x2‖, t ∈ I, x1, x2 ∈ K. (13.4)

First, suppose that a < t ≤ b, and let x1, x2 ∈ K. Define two mappings
fj ∈ Lip(I;K), j = 1, 2, by

fj(s) = ηα,β(s)xj , s ∈ I, j = 1, 2, α, β ∈ I, α < β, (13.5)

where

ηα,β(s) =


0 if s ≤ α,
s− α
β − α

ifn α ≤ s ≤ β,

1 if β ≤ s.

(13.6)
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Note that fj(β) = xj and fj(α) = 0 for j = 1, 2. Let us calculate dΦ(f1, f2).
It is clear that if x1 = x2, then ∆Φ,d(f1, f2) = 0. If x1 6= x2, choose λ > 0
such that

WΦλ,d(f1, f2) = Φ
(
‖x1 − x2‖
(β − α)λ

)
(β − α) = 1.

Then by Lemma 4.1(d) we find

∆Φ,d(f1, f2) = λ = ‖x1 − x2‖/ωΦ(β − α).

Since ‖f1(a) − f2(a)‖ = 0, we have dΦ(f1, f2) = ∆Φ,d(f1, f2). Substituting
mappings (13.5) into inequality (13.3), by virtue of the translation invari-
ance of D on cbc(Y ) (cf. (12.2)) for all α, β ∈ I, α < β, and x1, x2 ∈ K we
get

D
(
H(β, x1),H(β, x2)

)
≤ µ ωΨ(β − α)

ωΦ(β − α)
‖x1 − x2‖. (13.7)

Setting α = a β = t, we arrive at (13.4) with µ0(t) = µωΨ(t−a)/ωΦ(t−a).
Now let t = a and x1, x2 ∈ K. Define two Lipschitzian mappings from I

into K by

fj(s) = (1−ηα,β(s))xj , s ∈ I, j = 1, 2, α, β ∈ I, α < β, (13.8)

so that fj(β) = 0 and fj(α) = xj , j = 1, 2. Substituting them into (13.3),
noting that

dΦ(f1, f2) =
(

1 +
1

ωΦ(β − α)

)
‖x1 − x2‖,

and setting α = a and β = b, we obtain (13.4) for t = a with the constant
µ0(a) = µωΨ(b− a)(1 + 1/ωΦ(b− a)).

3. In order to prove (13.2), let α, β ∈ I, α < β, x1, x2 ∈ K, and let
fj ∈ Lip(I;K), j = 1, 2, be defined by

fj(t) =
1
2

(
ηα,β(t)(x1 − x2) + xj + x2

)
, t ∈ I, j = 1, 2.

Substituting these mappings into (13.3), we find

D

(
H(β, x1)

∗
+ H(α, x2),H

(
β,
x1 + x2

2

) ∗
+ H

(
α,
x1 + x2

2

))
≤ 1

2
µωΨ(β − α)‖x1 − x2‖. (13.9)

Since constant mappings from I into K belong to GVΦ(I;K), condition
(13.1) implies H(·, x) = H(x) ∈ GVΨ(I; cbc(Y )), x ∈ K, and so, by
Lemma 4.1(a) and assumption Ψ ∈ N∞ the mapping H(·, x) is (absolutely)



SELECTIONS OF BOUNDED VARIATION 67

continuous on I with respect to D for all x ∈ K. If t ∈ I, then passing to
the limit as β − α→ 0 in (13.9) in such a way that α ≤ t ≤ β, we get:

D

(
H(t, x1)

∗
+ H(t, x2),H

(
t,
x1 + x2

2

) ∗
+ H

(
t,
x1 + x2

2

))
= 0.

Since D is a metric on cbc(Y ) and the images of H are convex (bounded
and closed), it follows that

H(t, x1)
∗
+ H(t, x2) = 2H

(
t,
x1 + x2

2

)
.

Therefore, for each t ∈ I the set-valued operator H(t, ·), mapping K into
cbc(Y ), satisfies the following Jensen functional equation:

H

(
t,
x1 + x2

2

)
=

1
2

(
H(t, x1)

∗
+ H(t, x2)

)
, x1, x2 ∈ K.

By Lemma 12.2, for each t ∈ I there exists a set H0(t) ∈ cbc(Y ) and a
∗-additive set-valued operator H1(t)(·) : K → cbc(Y ) such that

H(t, x) = H0(t)
∗
+ H1(t)x, x ∈ K. (13.10)

Thanks to (13.4) and the translation invariance of D, the operator H1(t)(·)
is (Lipschitz) continuous, and since it is ∗-additive, by Lemma 12.1 it is also
linear, so that H1(t) ∈ L(K; cbc(Y )). Hence, H1(t)(0) = {0}, t ∈ I, and
(13.10) yields H(t, 0) = H0(t) for all t ∈ I. In this way we have proved that
the mapping H0 belongs to the metric semigroup GVΨ(I; cbc(Y )).

Let us prove that H1(·)x ∈ GVΨ(I; cbc(Y )) for all x ∈ K. Let x ∈ K.
Since, as is shown above in this step, H(·, x) and H0 belong to GVΨ(I;
cbc(Y )), there exist numbers λ′ > 0 and µ′ > 0 such that VΨλ′ (H(·, x)) <∞
and VΨµ′ (H0) <∞. By the translation invariance of D and (13.10), for all
t, s ∈ I, s < t, we have:

D
(
H1(t)x,H1(s)x

)
=D

(
H0(t)

∗
+ H1(t)x,H0(t)

∗
+ H1(s)x

)
≤D

(
H0(t)

∗
+ H1(t)x,H0(s)

∗
+ H1(s)x

)
+D

(
H0(s)

∗
+ H1(s)x,H0(t)

∗
+ H1(s)x

)
,

whence

D
(
H1(t)x,H1(s)x

)
≤ D

(
H(t, x),H(s, x)

)
+
(
H0(t),H0(s)

)
. (13.11)

Noting that

D
(
H1(t)x,H1(s)x

)
(t− s)(λ′+µ′)
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is nongreater than

λ′

λ′+µ′
·
D
(
H(t, x),H(s, x)

)
(t− s)λ′

+
µ′

λ′+µ′
·
D
(
H0(t),H0(s)

)
(t− s)µ′

,

by the convexity of Ψ we find

VΨλ′+µ′ (H1(·)x) ≤ λ′

λ′ + µ′
VΨλ′ (H(·, x)) +

µ′

λ′ + µ′
VΨµ′ (H0) <∞.

Thus, H1(·)x ∈ GVΨ(I; cbc(Y )) for all x ∈ K.
4. Suppose now that (13.1) holds and Φ � Ψ. If t ∈ I, t 6= a, and x ∈ K,

then setting β = t, x1 = x and x2 = 0 in (13.7) and noting that (by remarks
before this theorem)

ωΨ(t− α)
ωΦ(t− α)

=
Ψ−1(1/(t− α))
Φ−1(1/(t− α))

→ 0 as α→ t− 0

and that H(·, x) is continuous on I and passing to the limit as α → t − 0
in (13.7), we find that H(t, x) = H(t, 0) for all a < t ≤ b. The continuity of
H(·, x) and H(·, 0) yields H(t, x) = H(t, 0) whenever t ∈ I and x ∈ K.

Now let us prove the reverse assertion. Let H be given by (13.2) and Ψ 4
Φ, so that GVΦ(I;K) ⊂ GVΨ(I;K) and inequalities from Lemma 4.5(b)
hold.

5. First of all, let us show that if H1 ∈ GVΨ(I; L(K; cbc(Y ))) and f ∈
GVΨ(I;K), where Ψ ∈ N , then the mapping H1f defined by (H1f)(t) =
H1(t)f(t) for t ∈ I belongs to the metric semigroup GVΨ(I; cbc(Y )). In
fact, by the definition (from Section 4.2) of Lipschitz constant L(H1(t)) of
the set-valued operator H1(t) ∈ L(K; cbc(Y )) and the definition of metric
DL from (12.4) for all t, s ∈ I we have:

D
(

(H1f)(t), (H1f)(s)
)

(13.12)

≤ D
(
H1(t)f(t),H1(t)f(s)

)
+D

(
H1(t)f(s),H1(s)f(s)

)
≤ L(H1(t))‖f(t)− f(s)‖+DL(H1(t),H1(s))‖f(s)‖.

From Lemma 4.4(c), (12.4) and Lemma 3.9(a) we get (setting |I| = b− a):

|L(H1(t))− L(H1(s))| ≤ DL(H1(t),H1(s)) ≤ ωΨ(|I|)pΨ,DL(H1), t, s ∈ I,

and so, supt∈I L(H1(t)) <∞. Similarly, by Lemma 3.9(a) we get:

‖f(t)− f(s)‖ ≤ ωΨ(|I|)pΨ,d(f), t, s ∈ I, so that sup
s∈I
‖f(s)‖ <∞.

Then due to (13.12) for all t, s ∈ I we have that

D
(

(H1f)(t), (H1f)(s)
)
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is nongreater than(
sup
τ∈I

L(H1(τ))
)
‖f(t)− f(s)‖+DL(H1(t),H1(s))

(
sup
τ∈I
‖f(τ)‖

)
.

By the already standard procedure (used, e. g., in the proof of the first
inequality of Lemma 4.1(f), see (4.9) and (4.10)), this inequality yields

pΨ,D(H1f) ≤
(

sup
t∈I

L(H1(t))
)
pΨ,d(f)+pΨ,DL(H1)

(
sup
t∈I
‖f(t)‖

)
, (13.13)

which proves that H1f ∈ GVΨ(I; cbc(Y )).

6. Now we show that the superposition operator H generated by (13.2)
maps GVΨ(I;K) into GVΨ(I; cbc(Y )). Let f ∈ GVΨ(I;K). Assumption
(13.2) implies

(Hf)(t) = H0(t)
∗
+ H1(t)f(t), t ∈ I. (13.14)

Given t, s ∈ I, by applying property (12.2)) we have

D
(

(Hf)(t), (Hf)(s)
)

=D
(
H0(t)

∗
+ H1(t)f(t),H0(s)

∗
+ H1(s)f(s)

)
≤D

(
H0(t)

∗
+ H1(t)f(t),H0(t)

∗
+ H1(s)f(s)

)
+D

(
H0(t)

∗
+ H1(s)f(s),H0(s)

∗
+ H1(s)f(s)

)
=D

(
H1(t)f(t),H1(s)f(s)

)
+D

(
H0(t),H0(s)

)
,

whence by the (mentioned) standard procedure we get

pΨ,D(Hf) ≤ pΨ,D(H1f) + pΨ,D(H0), (13.15)

and this means that Hf ∈ GVΨ(I; cbc(Y )).

7. Let us prove that the superposition operator H is Lipschitzian. By
hypotheses H0 ∈ GVΨ(I; cbc(Y )), H1 ∈ GVΨ(I; L(K; cbc(Y ))) and H acts
on mappings f ∈ GVΨ(I;K) according to (13.14). Let f1, f2 ∈ GVΨ(I;K).
By definition (4.4),

DΨ(Hf1,Hf2) = D((Hf1)(a), (Hf2)(a)) + ∆Ψ,D(Hf1,Hf2) ≡ Z1 + Z2.

Let us estimate Z1 and Z2 separately. For Z1 we have:

Z1 = D
(
H0(a)

∗
+ H1(a)f1(a),H0(a)

∗
+ H1(a)f2(a)

)
= D

(
H1(a)f1(a),H1(a)f2(a)

)
≤ L(H1(a))‖f1(a)− f2(a)‖.
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In order to estimate Z2, applying definition (4.6), translation invariance of
D, inequality (4.1), ∗-additivity of H1(t), definition of L(H1(t)) and (12.4),
for all t, s ∈ I we have:

D
(

(Hf1)(t)
∗
+ (Hf2)(s), (Hf2)(t)

∗
+ (Hf1)(s)

)
= D

(
H0(t)

∗
+ H1(t)f1(t)

∗
+ H0(s)

∗
+ H1(s)f2(s),

H0(t)
∗
+ H1(t)f2(t)

∗
+ H0(s)

∗
+ H1(s)f1(s)

)
=

= D
(
H1(t)f1(t)

∗
+ H1(s)f2(s),H1(t)f2(t)

∗
+ H1(s)f1(s)

)
(4.1)
≤ D

(
H1(t)f1(t)

∗
+ H1(s)f2(s)

∗
+ H1(t)f2(s)

∗
+ H1(s)f1(s),

H1(t)f2(t)
∗
+ H1(s)f1(s)

∗
+ H1(s)f2(s)

∗
+ H1(t)f1(s)

)
+D

(
H1(t)f2(s)

∗
+ H1(s)f1(s),H1(s)f2(s)

∗
+ H1(t)f1(s)

)
= D

(
H1(t)f1(t)

∗
+ H1(t)f2(s),H1(t)f2(t)

∗
+ H1(t)f1(s)

)
+D

(
H1(t)f1(s)

∗
+ H1(s)f2(s),H1(s)f1(s)

∗
+ H1(t)f2(s)

)
∗-add.= D

(
H1(t)(f1(t) + f2(s)),H1(t)(f2(t) + f1(s))

)
+D

(
H1(t)f1(s)

∗
+ H1(s)f2(s),H1(s)f1(s)

∗
+ H1(t)f2(s)

)
L(H1(t)),(12.4)

≤ L(H1(t))‖f1(t) + f2(s)− f2(t)− f1(s)‖

+DL(H1(t),H1(s))‖f1(s)− f2(s)‖
= L(H1(t))‖(f1 − f2)(t)− (f1 − f2)(s)‖+DL(H1(t),H1(s))‖(f1 − f2)(s)‖.

Thus, for all t, s ∈ I we obtain the inequality:

D
(

(Hf1)(t)
∗
+ (Hf2)(s), (Hf2)(t)

∗
+ (Hf1)(s)

)
≤
(

sup
τ∈I

L(H1(τ))
)
‖(f1 − f2)(t)− (f1 − f2)(s)‖

+DL(H1(t),H1(s))
(

sup
τ∈I
‖(f1 − f2)(τ)‖

)
.

By the standard procedure this implies the estimate:

Z2 = ∆Ψ,D(Hf1,Hf2) (13.16)
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≤
(

sup
t∈I

L(H1(t))
)

∆Ψ,d(f1, f2) + pΨ,DL(H1)
(

sup
t∈I
‖(f1 − f2)(t)‖

)
.

Noting that ∆Ψ,d(f1, f2) = pΨ,d(f1 − f2), by Lemma 3.9(a) we find

sup
t∈I
‖(f1 − f2)(t)‖ ≤ ‖(f1 − f2)(a)‖+ ωΨ(|I|)∆Ψ,d(f1, f2).

Making use of Lemma 4.4(c), definition (12.4) and Lemma 3.9(a), for t ∈ I
we have:

L(H1(t)) ≤ L(H1(a)) +DL(H1(t),H1(a)) ≤ L(H1(a)) + ωΨ(|I|)pΨ,DL(H1),

and so,

sup
t∈I

L(H1(t)) ≤ L(H1(a)) + ωΨ(|I|)pΨ,DL(H1). (13.17)

Therefore, if we set

γ(Ψ) = max{1, 2ωΨ(|I|)} and
‖|H1‖|Ψ = L(H1(a)) + pΨ,DL(H1),

(13.18)

then by (13.16) we arrive at the estimate:

DΨ(Hf1,Hf2) = Z1 + Z2 ≤ L(H1(a))‖(f1 − f2)(a)‖

+
(
L(H1(a)) + ωΨ(|I|)pΨ,DL(H1)

)
∆Ψ,d(f1, f2)

+ pΨ,DL(H1)
(
‖(f1 − f2)(a)‖+ ωΨ(|I|)∆Ψ,d(f1, f2)

)
≤ max{1, 2ωΨ(|I|)}

(
L(H1(a)) + pΨ,DL(H1)

)(
‖(f1 − f2)(a)‖

+ ∆Ψ,d(f1, f2)
)
,

or, finally,

DΨ(Hf1,Hf2) ≤ γ(Ψ) ‖|H1‖|Ψ dΨ(f1, f2). (13.19)

8. To end the proof, if Ψ 4 Φ, then GVΦ(I;K) ⊂ GVΨ(I;K), and
so, H maps GVΦ(I;K) into GVΨ(I; cbc(Y )) and is Lipschitzian (i. e., sat-
isfies (13.1)), since by virtue of (13.19) and Lemma 4.5(b), given f1, f2 ∈
GVΦ(I;K), we have:

DΨ(Hf1,Hf2) ≤ γ(Ψ) ‖|H1‖|Ψ κ0(Φ,Ψ, |I|) dΦ(f1, f2).

This completes the proof of Theorem 13.1. �

Remark 13.2. (a) The result of Theorem 13.1 is valid if we replace the
semigroup GVΦ(I;K) by the semigroup Lip(I;K). We omit the details.
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(b) If in Theorem 13.1 K is a linear subspace of X, the operator H1(t)(·)
from (13.10) is single-valued for all t ∈ I, since it is ∗-additive, and if x ∈ K,
then (−x) ∈ K, and so,

H1(t)(x)
∗
+ H1(t)(−x) = H1(t)(x+ (−x)) = H1(t)(0) = {0}.

(c) The representation of the form (13.2), H(t, x) = H0(t) + H1(t)x,
for generators of Lipschitzian superposition operators on the classical space
of Lipschitzian functions was found by Matkowski [71], [72]. In different
spaces of functions and mappings it was shown to be valid for single-valued
superposition operators ([73], [74], [76], [78], [21], [22], [29], [30], [34]) and
set-valued superposition operators ([105], [77], [106], [19], [23], [25]). The
above Theorem 13.1 extends the results of [77], [78] and [23]. Theorem 13.3
below generalizes the results of [74], [113] and [23].

Let (Y, ‖ · ‖) be a Banach space. Then, by Theorem 4.2, the set BV(I;
cbc(Y )) is a complete metric semigroup equipped with metric D1 defined by
(4.4)–(4.6) with Φ(ρ)=ρ. Suppose that a multivalued mapping H : I×K →
cbc(Y ) is such that H(·, x) is in BV(I; cbc(Y )) for all x ∈ K. Since Y is
complete, (cbc(Y ), D) is a complete metric space (cf. [12, Theorem II-14]),
so that any mapping from BV(I; cbc(Y )) has one-sided limits at each point
of I. The left regularization H− : I ×K → cbc(Y ) of H is defined by

H−(t, x) = lim
s→t−0

H(s, x) if a < t ≤ b and H−(a, x) = lim
t→a+0

H−(t, x)

for all x ∈ K, where the limits are taken with respect to the Hausdorff met-
ric D on cbc(Y ). Let BV−(I; cbc(Y )) denote the subspace of BV(I; cbc(Y ))
consisting of all mappings which are left continuous on (a, b]. ThenH−(·, x)∈
BV−(I; cbc(Y )) for all x ∈ K.

Theorem 13.3. Suppose the hypotheses of Theorem 13.1 are fulfilled. If
Y is a real Banach space and H maps Lip(I;K) or GVΦ(I;K) with Φ ∈ N
into BV(I; cbc(Y )) and is Lipschitzian, then H(t, ·) ∈ Lip(K; cbc(Y )) for
all t ∈ I and there exist two mappings H0 ∈ BV−(I; cbc(Y )) and H1 : I →
L(K; cbc(Y )) with the property that H1(·)x ∈ BV−(I; cbc(Y )) for all x ∈ K
such that H−(t, x) = H0(t)

∗
+ H1(t)x whenever t ∈ I, x ∈ K. Conversely, if

H0 ∈ BV(I; cbc(Y )), H1 ∈ BV(I; L(K; cbc(Y ))) and H is given by (13.2),
then H maps BV(I;K) into BV(I; cbc(Y )) and is Lipschitzian.

Proof. Let H ∈ Lip
(

Lip(I;K); BV(I; cbc(Y ))
)

. As in the proof of Theo-
rem 13.1 (with Ψ(ρ) = ρ) we get the inequality (13.3) where ωΨ(β − α) is
replaced by 1 and dΦ(f1, f2) is replaced by dL(f1, f2). Substituting Lips-
chitzian mappings fj from (13.5) with α = a and β = t ∈ (a, b] and from
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(13.8) with α ∈ [a, b) and β = b into (13.3) we have:

D
(
H(t, x1),H(t, x2)

)
≤ µ‖x1 − x2‖/(t − a), a < t ≤ b, (13.20)

D
(
H(α, x1),H(α, x2)

)
≤ µ

(
1 +

1
b− α

)
‖x1 − x2‖, a ≤ α < b, (13.21)

respectively. This proves that H(t, ·) ∈ Lip(K; cbc(Y )) for all t ∈ I. Passing
to the left limits in (13.20) and to the limits as α → t − 0 with t > a and,
then, as t → a + 0 in (13.21), we obtain inequalities (13.20) and (13.21)
with H replaced by H− and α by a, and so, H−(t, ·) ∈ Lip(K; cbc(Y )) for
all t ∈ I.

In order to prove the validity of the representation for H−(t, x), let a <
t ≤ b, n ∈ N and a < α1 < β1 < α2 < β2 < · · · < αn < βn < t. Since H is
Lipschitzian, we have

n∑
i=1

D
(
H(βi, f1(βi))

∗
+ H(αi, f2(αi)),H(βi, f2(βi))

∗
+ H(αi, f1(αi))

)
≤ µdL(f1, f2)

whenever f1, f2 ∈ Lip(I;K). Substituting into this inequality Lipschitzian
mappings fj : I → K, j = 1, 2, defined by

fj(s) =
1
2

(
ηn(s)(x1 − x2) + xj + x2

)
, s ∈ I, xj ∈ K, j = 1, 2,

where ηn ∈ Lip([a, b]; [0, 1]) is given by

ηn(s) =


0 if a ≤ s ≤ α1,

ηαi,βi(s) if αi ≤ s ≤ βi, i = 1, . . . , n,
1− ηβi,αi+1(s) if βi ≤ s ≤ αi+1, i = 1, . . . , n− 1,
1 if βn ≤ s ≤ b,

and ηα,β is defined in (13.6), we get
n∑
i=1

D

(
H(βi, x1)

∗
+ H(αi, x2),H

(
βi,

x1 + x2

2

) ∗
+ H

(
αi,

x1 + x2

2

))
≤ µ ‖x1 − x2‖/2.

Since H(·, x) = H(x) ∈ BV(I; cbc(Y )), H−(·, x) ∈ BV−(I; cbc(Y )) for all

x∈K. By the continuity of
∗
+ (cf. (12.7)) on cbc(Y ) and definition of H−,

passing to the limit as α1 → t − 0 in the last inequality we have, for all
t ∈ (a, b],

D

(
H−(t, x1)

∗
+ H−(t, x2),H−

(
t,
x1 + x2

2

) ∗
+ H−

(
t,
x1 + x2

2

))
≤ µ ‖x1 − x2‖/2n,



74 V. V. CHISTYAKOV

and so, as n→∞, we get:

D

(
H−(t, x1)

∗
+ H−(t, x2),H−

(
t,
x1 + x2

2

) ∗
+ H−

(
t,
x1 + x2

2

))
= 0.

By definition of H− this equality also holds at t = a. Making use of
the arguments between (13.9) and (13.10), we arrive at the representation

H−(t, x) = H0(t)
∗
+ H1(t)x with H0(t) ∈ cbc(Y ) and ∗-additive set-valued

operator H1(t)(·) : K → cbc(Y ), t ∈ I. From this representation, since
H−(t, ·) is Lipschitzian, by virtue of translation invariance of D we find
that the operator H1(t)(·) is continuous, and since it is also ∗-additive, it
is linear, so that H1 maps I into L(K; cbc(Y )). Since H1(t)(0) = {0},
the above representation implies H−(t, 0) = H0(t) for all t ∈ I. Hence,
H0 ∈ BV−(I; cbc(Y )).

That H1(·)x ∈ BV−(I; cbc(Y )) for all x ∈ K follows in a similar manner
as in the last paragraph of step 3 of the proof of Theorem 13.1; observe only
that instead of (13.11) we get the inequality

D
(
H1(t)x,H1(s)x

)
≤ D

(
H−(t, x),H−(s, x)

)
+D

(
H0(t),H0(s)

)
,

in whichH−(·, x) andH0 belong to BV−(I; cbc(Y )). The case when Lip(I;K)
above is replaced by GVΦ(I;K) is treated similarly.

The converse assertion is a consequence of steps 5–8 of the proof of The-
orem 13.1: replace GVΨ by BV, ωΨ(|I|) — by 1 and pΨ(·) — by V (·). �

14. Linear functional operator inclusion

Example 14.1. Let I = [a, b], (X, ‖ · ‖) be a linear normed space, K ⊂ X
be a closed convex cone, Ψ ∈ N , H0 ∈ GVΨ(I; cc(K)), H1 ∈ L(K; cc(K))
with L(H1) < 1, and there exists K ∈ c(X) such that H1x ⊂ K for all x ∈ K.
Set F (t, x) = H0(t) + H1x, t ∈ I, x ∈ K. Then F satisfies conditions of
Theorem 11.1. In fact, if t, s ∈ I and x, y ∈ K, then, by (4.2), we have:

D(F (t, x), F (s, y)) = D
(
H0(t) +H1x,H0(s) +H1y

)
≤ D(H0(t),H0(s)) +D(H1x,H1y)
≤ D(H0(t),H0(s)) + L(H1)‖x− y‖.

Setting ϕ(t) = V (H0, [a, t]), t ∈ I, from remarks on the structural theorem
for GVΦ on p. 22 we find that ϕ ∈ GVΨ(I;R) ⊂ BV(I;R), which provides
the estimate D(H0(t),H0(s)) ≤ |ϕ(t) − ϕ(s)|. In order to verify condition
(ii), it suffices to put K(t) = H0(t) +K, t ∈ I. Thus, under the hypotheses
above, if x0 ∈ K is such that x0 ∈ H0(a) + H1x0, then by Theorems 11.1–
11.2 there exists a mapping f ∈ GVΨ(I;K) such that f(t) ∈ H0(t)+H1f(t)
for all t ∈ I and f(a) = x0. (Since L(H1) < 1, a point x0 satisfying
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x0 ∈ H0(a)+H1x0 always exists by virtue of Banach’s contraction mapping
principle for set-valued mappings, cf. [70], [85], [49, Theorem 15.1].)

The purpose of this section is to prove the existence of solutions f to the
linear functional operator inclusion f(t) ∈ H0(t) + H1(t)f(t), t ∈ I, for a
variable set-valued operator H1 such that H1∈GVΨ(I; L(K; cc(K))).

Theorem 14.2. Let I = [a, b], (X, ‖ · ‖) be a real Banach space, K ⊂ X a
closed convex cone, D the Hausdorff metric generated by d(x, y) = ‖x− y‖
(x, y ∈ X), Ψ ∈ N , H0 ∈ GVΨ(I; cc(K)) and H1 ∈ GVΨ(I; L(K; cc(K))).
Let γ(Ψ)‖|H1‖|Ψ < 1 (see notation (13.18)). Suppose that for each t ∈ I
there exists K(t) ∈ c(X) such that H1(t)x ⊂ K(t) for all x ∈ K. Let
t0 = a ∈ I and x0 ∈ K be such that x0 ∈ H0(a) + H1(a)x0. Then there
exists a mapping f ∈ GVΨ(I;K) satisfying :

(a) f(t) ∈ H0(t) +H1(t)f(t) for all t ∈ I;
(b) f(a) = x0, and
(c) pΨ,d(f) ≤

(
pΨ,D(H0) + pΨ,DL(H1)‖x0‖

)/(
1− γ(Ψ)‖|H1‖|Ψ

)
.

Proof. Given f ∈ KI , define a superposition operator by (Hf)(t) = H0(t)+
H1(t)f(t), t ∈ I. As is shown in steps 5–7 of the proof of Theorem 13.1, H
maps GVΨ(I;K) into GVΨ(I; cc(K)), and the estimates (13.13) and (13.15)
hold. Taking into account inequalities (13.15), (13.13), (13.17), a conse-
quence of (3.24):

sup
t∈I
‖f(t)‖ ≤ ‖f(a)‖+ V (f, I) ≤ ‖f(a)‖+ ωΨ(|I|)pΨ,d(f),

and notation (13.18), for each f ∈ GVΨ(I;K) we find

pΨ,D(Hf) ≤ pΨ,D(H0) + pΨ,D(H1f)

≤ pΨ,D(H0) +
(

sup
t∈I

L(H1(t))
)
pΨ,d(f) + pΨ,DL(H1)

(
sup
t∈I
‖f(t)‖

)
≤ pΨ,D(H0) +

(
L(H1(a)) + ωΨ(|I|)pΨ,DL(H1)

)
·pΨ,d(f)

+ pΨ,DL(H1)·
(
‖f(a)‖+ ωΨ(|I|)pΨ,d(f)

)
= pΨ,D(H0) + pΨ,DL(H1)‖f(a)‖+ L(H1(a))pΨ,d(f)

+ 2ωΨ(|I|)pΨ,DL(H1)pΨ,d(f)
≤ pΨ,D(H0) + pΨ,DL(H1)‖f(a)‖+ γ(Ψ)‖|H1‖|Ψ pΨ,d(f).

Therefore, the following a priori estimate holds:

pΨ,D(Hf) ≤ C0 + C1‖f(a)‖ + µ pΨ,d(f), f ∈ GVΨ(I;K), (14.1)

where C0 = pΨ,D(H0), C1 = pΨ,DL(H1) and µ = γ(Ψ)‖|H1‖|Ψ < 1.
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Since (Hx0)(t) = H0(t) + H1(t)x0, t ∈ I, then Hx0 ∈ GVΨ(I; cc(K)),
x0 ∈ (Hx0)(a), and by (14.1) we have

pΨ,D(Hx0) ≤ C0 + C1‖x0‖ ≡ C.

By Theorem 9.2 (if Ψ ∈ N∞) or by Theorem 9.1 (if Ψ ∈ N \N∞) there exists
a mapping f1 ∈ GVΨ(I;K) such that f1(t) ∈ (Hx0)(t) ⊂ H0(t) + K(t) for
all t ∈ I, f1(a) = x0 and pΨ,d(f1) ≤ pΨ,D(Hx0) ≤ C. Now for mapping Hf1
we have (Hf1)(t) = H0(t)+H1(t)f1(t), t ∈ I, and so, Hf1 ∈ GVΨ(I; cc(K)),
x0 ∈ (Hx0)(a) = (Hf1)(a), and again by (14.1),

pΨ,D(Hf1) ≤ C0 + C1‖f1(a)‖+ µ pΨ,d(f1)
≤ C + µC = (1 + µ)C.

Applying Theorems 9.1 and 9.2, we find a mapping f2 ∈ GVΨ(I;K) such
that f2(t) ∈ (Hf1)(t) ⊂ H0(t) +K(t) for all t ∈ I, f2(a) = x0 and

pΨ,d(f2) ≤ pΨ,D(Hf1) ≤ (1 + µ)C.

Similarly, Hf2 ∈ GVΨ(I; cc(K)), x0 ∈ (Hf2)(a), and by (14.1),

pΨ,D(Hf2) ≤ C0 + C1‖f2(a)‖+ µ pΨ,d(f2)

≤ C + µ (1 + µ)C = (1 + µ+ µ2)C.

By induction, for each n ∈ N there exists fn ∈ GVΨ(I;K), satisfying (where
f0(t) ≡ x0):

fn(t) ∈ (Hfn−1)(t) = H0(t) +H1(t)fn−1(t) ⊂ H0(t) +K(t), t ∈ I,
fn(a) = x0, and

pΨ,d(fn) ≤
(n−1∑
i=0

µi
)
C ≤ C/(1− µ).

It follows that the sequence {fn}∞n=1 ⊂ GVΨ(I;K) is pointwise precom-
pact and is of uniformly bounded Ψ-variation on I. By virtue of (3.24),
Theorem 1.3 and Lemma 3.9(e) we may assume (passing to a subsequence
if necessary) that the sequence converges pointwise on I to a mapping
f ∈ GVΨ(I;K). It remains to verify condition (a). Applying inequality
(11.6), for t ∈ I we have:∣∣∣dist

(
f(t),H0(t) +H1(t)f(t)

)∣∣∣
=
∣∣∣dist

(
f(t), (Hf)(t)

)
− dist

(
fn(t), (Hfn−1)(t)

)∣∣∣
≤ ‖f(t)− fn(t)‖+D

(
(Hf)(t), (Hfn−1)(t)

)
= ‖f(t)− fn(t)‖+D

(
H0(t) +H1(t)f(t),H0(t) +H1(t)fn−1(t)

)
≤ ‖f(t)− fn(t)‖+ L(H1(t))‖f(t)− fn−1(t)‖ → 0, n→∞,
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whence dist
(
f(t),H0(t) +H1(t)f(t)

)
= 0, which was to be proved. �

Observe that the point t0 ∈ I in Theorem 14.2 can be arbitrarily chosen
since in the respective definitions (4.4)–(4.6) we may set a = t0.
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[55] Helly, E., Über lineare Funktionaloperationen, Sitzungsber. Naturwiss. Kl. Kaiser-
lichen Akad. Wiss. Wien 121 (1912), 265–297 (German).

[56] Hermes, H., Existence and properties of solutions of
:
x ∈ R(t, x), in: “Advances

in Differential and Integral Equations” (Univ. Wisconsin, 1968), J. A. Nohel (ed.),
Studies in Appl. Math. SIAM 5 (1969), 188–193.

[57] Hermes, H., On continuous and measurable selections and the existence of solutions
of generalized differential equations, Proc. Amer. Math. Soc. 29(3) (1971), 535–542.



80 V. V. CHISTYAKOV
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Bol’shaya Pechërskaya St. 25

Nizhny Novgorod 603600

RUSSIA

e-mail: czeslaw@mail.ru


