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Abstract 

Completely parallel object recognition is NP-complete. Achieving 

a recognizer with feasible complexity requires a compromise be
tween parallel and sequential processing where a system selectively 

focuses on parts of a given image, one after another. Successive 

fixations are generated to sample the image and these samples are 
processed and abstracted to generate a temporal context in which 

results are integrated over time. A computational model based on a 

partially recurrent feedforward network is proposed and made cred

ible by testing on the real-world problem of recognition of hand
written digits with encouraging results. 

1 INTRODUCTION 

For all-parallel bottom-up recognition, allocating one separate unit for each possible 

feature combination, i.e., conjunctive encoding, implies combinatorial explosion. It 

has been shown that completely parallel, bottom-up visual object recognition is 
NP-complete (Tsotsos, 1990). By exchanging space with time, systems with much 

less complexity may be designed. For example, to phone someone at the press of a 

button, one needs 107 buttons on the phone; the sequential alternative is to have 
10 buttons on the phone and press one at a time, seven times. 

We propose recognition based on selective attention where we analyze only a small 
part of the image in detail at each step, combining results in time. N oton and Stark's 
(1971) "scanpath" theory advocates that each object is internally represented as a 

feature-ring which is a temporal sequence of features extracted at each fixation and 

the positions or the motor commands for the eye movements in between. In this 
approach, there is an "eye" that looks at an image but which can really see only a 

small part of it. This part of the image that is examined in detail is the fovea. The 
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Figure 1: The block diagram of the implemented system. 

fovea's content is examined by the pre-attentive level where basic feature extraction 

takes place. The features thus extracted are fed to an a660ciative part together 

with the current eye position. If the accumulated information is not sufficient for 

recognition, the eye is moved to another part of the image, making a saccade. To 

minimize recognition time, the number of saccades should be minimized. This is 

done through defining a criterion of being "interesting" or saliency and by fixating 

only at the most interesting. Thus sucessive fixations are generated to sample the 

image and these samples are processed and abstracted to generate a temporal con
text in which results are integrated over time. There is a large amount of literature 

on selective attention in neuroscience and psychology; for reviews see respectively 

(Posner and Peterson, 1990) and (Treisman, 1988). The point stressed in this paper 

is that the approach is also useful in engineering. 

2 AN EXAMPLE SYSTEM FOR OCR 

The structure of the implemented system for recognition of handwritten digits is 

given in Fig. 1. 
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We have an n x n binary image in which the fovea is m x m with m < n. To 

minimize recognition time, the system should only attend to the parts of the image 

that carry discriminative information. We define a criterion of being "interesting" 

or saliency which is applied to all image locations in parallel to generate a 8aliency 

map, S. The saliency measure should be chosen to draw attention to parts that 

have the highest information content. Here, the saliency criterion is a low-pass filter 
which roughly counts the number of on pixels in the corresponding m x m region 

of the input image M. As the strokes in handwritten digits are mostly one or two 

pixels wide, a count of the on pixels is a good measure of the discontinuity (and 

thus information). It is also simple to compute: 

i+lm/2J HLm/2J 

Sij = L L MkIN2((i,jl, (Lm/6J)2 *1), i,j = 1. .. n 

k=i-Lm/2J l=j-Lm/2J 

where N2 (p., E) is the bivariate normal with mean p. and the covariance E. Note 

that we want the convolution kernel to have effect up to L m/2 J and also that the 

normal is zero after p.± 30-. In our simulations where n is 16 and m is 5 (typical for 

digit recognition), 0- ~ 1. The location that is most salient is the position ofthe next 
fixation and as such defines the new center of the fovea. A location once attended 

to is no longer interesting; after each fixation, the saliency of all the locations that 

currently are in the scope of the fovea are set to 0 to inhibit another fixation there. 

The attentive level thus controls the scope of the pre-attentive level. The maximum 

of the saliency map through a winner-take-all gives the eye position (i*, j*) at 

fixation t. 

(i*(t),j*(t)) = arg~B:XSij 
',J 

By thus following the salient regions, we get an input-dependent emergent sequence 

in time. 

Eye-Position Map 

The eye p08ition map, P, stores the position of the eye in the current fixation. It is 

p x p. p is chosen to be smaller than n for dimensionality reduction for decreasing 

complexity and introducing an effect of regularization (giving invariance to small 

translations). When p is a factor of n, computations are also simpler. We also blur 

the immediate neighbors for a smoother representation: 

P( t) = blur( subsample( winner-take-all( S))) 

Pre-Attentive Level: Feature Extraction 

The pre-attentive level extracts detailed features from the fovea to generate a feature 

map. This information and the current eye position is passed to the associative 
system for recognition. There is a trade-off between the fovea size and the number 

of saccades required for recognition: As the operation in the pre-attentive level is 

carried out in parallel, to minimize complexity the features extracted there should 
not be many and the fovea should not be large: Fovea is where the expensive 

computation takes place. On the other hand, the fovea should be large enough to 

extract discriminative features and thus complete recognition in a small amount of 
time. The features to be extracted can be learned through an supervised method 

when feedback is available . 
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The m x m region symmetrically around (i*, j*) is extracted as the fovea I and is 

fed to the feature extractors. The r features extracted there are passed on to the 

associative level as the feature map, F. r is typically 4 to 8. Ug denote the weights 

of feature 9 and Fg is the value of feature 9 that is found by convolving the fovea 
input with the feature weight vector (1(.) is the sigmoid function): 

M i o(t)-Lm/2J+i,jo(t)-Lm/2J+j, i,j = 1 ... m 

f ( ~ ~ U"jI,j(t») , g = 1. .. r 

Associative Level: Classification 

At each fixation, the associative level is fed the feature map from the pre-attentive 

level and the eye position map from the attentive level. As a number of fixations 
may be necessary to recognize an image, the associative system should have a short

term memory able to accumulate inputs coming through time. Learning similarly 
should be through time. When used for classification, the class units are organized 
so as to compete and during recognition the activations of the class units evolve 

till one class gets sufficiently active and suppresses the others. When a training 

set is available, a temporal supervised method can be used to train the associative 

level. Note that there may be more than one scanpath for each object and learning 

one sequence for each object fails. We see it is a task of accumulating two types of 

information through time: the "what" (features extracted) and the "where" (eye 

position). 

The fovea map, F, and the eye position map, P, are concatenated to make a 
r + p X P dimensional input that is fed to the associative level. Here we use an 

artificial neural network with one hidden layer of 8 units. We have experimented 

with various architectures and noticed that recurrency at the output layer is the 
best. There are 10 output units. 

f (L VhgFg(t) + L L WhabPab(t)) , h = 1. .. s 
gab 

LTchHh + L RckPk(t - 1), c = 1. .. 10 

h k 

exp[Oc(t)] 

Lk exp[Ok(t)] 

where P denotes the "softmax"ed output probabilities (Bridle, 1990) and P(t - 1) 

are the values in the preceding fixation (initially 0). We use the cross-entropy as 

the goodness measure: 

1 
C = L t L Dk 10gPc(t), t ~ 1 

t c 

Dc is the required output for class c. Learning is gradient-ascent on this goodness 
measure. The fraction lit is to give more weight to initial fixations than later ones. 

Connections to the output units are updated as follows (11 is the learning factor): 
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Note that we assume 8PIc(t -1)/8Rc lc = o. For the connections to the hidden units 
we have: 

c 

We can back-propagate one step more to train the feature extractors. Thus the 

update equations for the connections to feature units are: 

Cg(t) = L Ch(t)Vhg 
h 

A series of fixations are made until one of the class units is sufficiently active: 

3c, Pc > 8 (typically 0.99), or when the most salient point has a saliency less than a 

certain threshold (this condition is rarely met after the first few epochs). Then the 

computed changes are summed up and the updates are made like the exaple below: 

Backpropagation through time where the recurrent connections are unfolded in time 

did not work well in this task because as explained before, for the same class, there is 

more than one scanpath. The above-mentioned approach is like real-time recurrent 

learning (Williams and Zipser, 1989) where the partial derivatives in the previous 
time step is 0, thus ignoring this temporal dependence. 

3 RESULTS AND DISCUSSION 

We have experimented with various parameter settings and finally chose the archi

tecture given above: When input is 16 x 16 and there are 10 classes, the fovea is 

5 x 5 with 8 features and there are 16 hidden units. There are 1,934 images for 
training, 946 for cross-validation and 943 for testing. Results are given in Table 
1. ( It can be seen that by scanning less than half of the image, we get 80% gen

eralization. Additional to the local high-resolution image provided by the fovea, a 

low-resolution image of the surrounding parafovea can be given to the associative 

level for better recognition. For example we low-pass filtered and undersampled the 

original image to get a 4 x 4 image which we fed to the class units additional to 
the attention-based hidden units. Success went up quite high and fewer fixations 

were necessary; compare rows 1 and 2 of the Table. The information provided by 
the 4 x 4 map is actually not much as can be seen from row 3 of the table where 
only that is given as input. Thus the idea is that when we have a coarse input, 

looking only at a quarter of the image in detail is sufficient to get 93% accuracy. 

Both features (what) and eye positions (where) are necessary for good recognition. 
When only one is used without the other, success is quite low as can be seen in rows 

4 and 5. In the last row, we see the performance of a multi layer percept ron with 

10 hidden units that does all-parallel recognition. 

Beyond a certain network size, increasing the number of features do not help much. 

Decreasing 8, the certainty threshold, decreases the number of fixations necessary 
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Table 1: Results of handwritten digit recognition with selective attention. Values 
given are average and standard deviation of 10 independent runs. See text for 
comments. 

NO OF TEST TRAINING NO OF 
METHOD PARAMS SUCCESS EPOCHS FIXATIONS 

SA system 878 79.7, 1.8 74.5, 17.1 6.5,0.2 

SA+parafovea 1,038 92.5,0.8 54.2, 10.2 3.9,0.3 
Only parafovea 170 86.9,0.2 52.3,8.2 1.0, 0.0 
Only what info 622 49.0,21.0 66.6, 30.6 7.5,0.1 
Only where info 440 54.2, 1.4 92.9,6.5 7.6,0.0 

MLP, 10 hiddens 2,680 95.1, 0.6 13.5,4.1 1.0,0.0 

which we want, but decreases success too which we don't. Smaller foveas decrease 

the number of free parameters but decrease success and require a larger number 
of fixations. Similarly larger foveas decrease the number of fixations but increase 

complexity. 

The simple low-pass filter used here as a saliency measure is the simplest measure. 

Previously it has been used by Fukushima and Imagawa (1993) for finding the next 
character, i.e., segmentation, and also by Olshausen et al. (1992) for translation 
invariance. More robust measures at the expense of more computations, are possi

ble; see (Rimey and Brown, 1990; Milanese et al., 1993). Salient regions are those 
that are conspicious, i.e., different from their surrounding where there is a change 
in X where X can be brightness or color (edges), orientation (corners), time (mo

tion), etc. It is also possible that top-down, task-dependent saliency measures be 

integrated to minimize further recognition time implying a remembered explicit 
sequence analogous to skilled motor behaviour (probably gained after many repeti

tions). 

Here a partially recurrent network is used for temporal processing. Hidden Markov 
Models like used in speech recognition are another possibility (Rimey and Brown, 

1990; Haclsalihzade et al., 1992). They are probabilistic finite automata which can 

be trained to classify sequences and one can have more than one model for an object. 

It should be noted here that better approaches for the same problem exists (Le Cun 
et al., 1989). Here we advocate a computational model and make it plausible by 

testing it on a real-world problem. It is necessary for more complicated problems 
where an all-parallel approach would not work. For example Le Cun et al. 's model 

for the same type of inputs has 2,578 free parameters. Here there are 

(mx m+1) x r+(r+pxp+ 1) x 8+(S+ 1) x 10+10 x 10 
, #' #~~ 

iT v';w T R 

free parameters which make 878 when m = 5, r = 8, S = 16. This is the main 
advantage of selective attention which is that the complexity of the system is heavily 

reduced at the expense of slower recognition, both in overt form of attention through 

foveation and in its covert form, for binding features - For this latter type of 
attention not discussed here, see (Ahmad, 1992). Also note that low-level feature 

extraction operations like carried out in the pre-attentive level are local convolutions 
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and are appropriate for parallel processing, e.g., on a SIMD machine. Higher
level operations require larger connectivity and are better carried out sequentially. 
Nature also seems to have taken this direction. 
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