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Selective cortical representation of attended speaker
in multi-talker speech perception
Nima Mesgarani1 & Edward F. Chang1

Humans possess a remarkable ability to attend to a single speaker’s
voice in a multi-talker background1–3. How the auditory system
manages to extract intelligible speech under such acoustically com-
plex and adverse listening conditions is not known, and, indeed, it
is not clear how attended speech is internally represented4,5. Here,
using multi-electrode surface recordings from the cortex of sub-
jects engaged in a listening taskwith two simultaneous speakers, we
demonstrate that population responses in non-primary human
auditory cortex encode critical features of attended speech: speech
spectrograms reconstructed based on cortical responses to themix-
ture of speakers reveal the salient spectral and temporal features of
the attended speaker, as if subjects were listening to that speaker
alone. A simple classifier trained solely on examples of single
speakers can decode both attended words and speaker identity.
We find that task performance is well predicted by a rapid increase
in attention-modulated neural selectivity across both single-
electrode and population-level cortical responses. These findings
demonstrate that the cortical representation of speech does not
merely reflect the external acoustic environment, but instead gives
rise to the perceptual aspects relevant for the listener’s intended
goal.
Separating out a speaker of interest from other speakers in a noisy,

crowded environment is a perceptual feat that we perform routinely.
The ease with whichwe hear under these conditions belies the intrinsic
complexity of this process, known as the cocktail party problem1–3,6:
concurrent complex sounds, which are completely mixed upon enter-
ing the ear, are re-segregated and selected from within the auditory
system. The resulting percept is that we selectively attend to the desired
speaker while tuning out the others.
Although previous studies have described neural correlates ofmask-

ing and selective attention to speech4,5,7–9, fundamental questions
remain unanswered regarding the precise nature of speech representa-
tion at the juncturewhere competing signals are resolved. In particular,
when attending to a speaker within a mixture, it is unclear what key
aspects (for example, spectrotemporal profile, spoken words and
speaker identity) are represented in the auditory system and how they
compare to representations of that speaker alone; how rapidly a selective
neural representation builds up when one attends to a specific speaker;
and whether breakdowns in these processes can explain distinct per-
ceptual failures, such as the inability tohear the correctwords, or follow
the intended speaker.
To answer these questions, we recorded cortical activity from

human subjects implanted with customized high-density multi-
electrode arrays as part of their clinical work-up for epilepsy surgery10.
Although limited to this clinical setting, these recordings provide
simultaneous high spatial and temporal resolution while sampling
the population neural activity from the non-primary auditory speech
cortex in the posterior superior temporal lobe.We focused our analysis
on high gamma (75–150Hz) local field potentials11, which have been
found to correlatewell with the tuning ofmulti-unit spike recordings12.
In humans, the posterior superior temporal gyrus has been heavily
implicated in speech perception13, and is anatomically defined as the

lateral parabelt auditory cortex (including Brodmann areas 41, 42
and 22)14.
Subjects listened to speech samples from a corpus commonly used

in multi-talker communication research15,16. A typical sentence was
‘‘ready tiger go to red two now’’ where ‘‘tiger’’ is the call sign, and ‘‘red
two’’ is the colour–number combination. One male and one female
speaker were selected, each speaking the same 12 unique combinations
of two call signs (ringo or tiger), three colours (red, blue or green) and
threenumbers (two, fiveor seven). Example acoustic spectrograms from
two individual speakers are shown in Fig. 1a, b. The two voices differ
along several dimensions including pitch (male versus female), spectral
profile (different vocal track shapes) and temporal characteristics
(speaking rate). Subjects first listened to each of the speakers alone
and were able to report the colour and number with 100% accuracy.
Subjects then listened to a monaural, simultaneous mixture of the two
speakers’ phrases with different call signs, colours and numbers. The
subjectswere instructed to respondby indicating the colour andnumber
spoken by the talker who uttered the target call sign. The target call sign
(ringo or tiger) was fixed and shown visually on a monitor during each
trial block, which contained 28 different mixture sounds. As the target
speaker was changed randomly from trial to trial, the subjects were
required to monitor both voices initially (divided attention) to identify
the target speaker. The target call sign was switched after each block,
turning the previous target speaker in each mixture into a masker. This
resulted in two sets of behavioural and neural responses for each ident-
ical mixture sound, which differed only in the focus of attention.
Subjects reported correct responses in 74.8% of trials.
Figure 1c illustrates the mixture spectrogram and how difficult it is

to tell which sound parts belong to one speaker versus the other. The
energy for both speakers is distributed broadly across the spectral and
temporal domains, with overlap in some areas and isolated sound parts
in others, as shown in their difference spectrogram (Fig. 1d; average
spectrograms in Supplementary Fig. 1a).
To determine the spectrotemporal encoding of the attended

speaker, themethodof stimulus reconstructionwas used17–19 to estimate
the speech spectrogram represented by thepopulationneural responses.
Reconstructed spectrograms provide an intuitive way to examine how
the population neural responses encode the spectrotemporal features of
speech, and more importantly, can be compared with the original
acoustic spectrograms as well as across attentional conditions.We first
calculated the reconstruction filters from a passive listening task using
a separate continuous speech corpus (TIMIT20) that consisted of 499
unique short sentences spoken by 402 different speakers. The filters
were then fixed and applied to a novel set of population neural res-
ponses to the single and attended mixture speech for spectrogram
reconstruction.
When listening to a single speaker alone, the reconstructed spectro-

grams frompopulationneural activity correspondedwell to the spectro-
temporal features of the original acoustic spectrograms (Fig. 1e, f
compared to Fig. 1a, b, respectively), exhibiting fairly precise temporal
features and spectral selectivity (for example, correspondence between
thehigh frequencybursts of energy in ‘‘tiger’’ and ‘‘two’’, in Fig. 1a, b, e, f).
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The average and standard deviation of the correlation between recon-
structed and original spectrograms over 24 sentences were
0.606 0.034 (0.60 and 0.62 for the examples in Fig. 1e, f). When
attending to each of the two speakers, the reconstructed spectrograms
from the same speechmixture showed a marked difference depending
upon which speaker was attended (Fig. 1g, h). For each pair, the key
temporal and spectral features of the target speaker are enhanced rela-
tive to themasker speaker (Fig. 1g, h compared to Fig. 1e, f, respectively).
To compare directly, the energy contours from these reconstructed
spectrograms are overlaid in Fig. 1i. Important spectrotemporal details
of the attended speaker were extracted, while the masker speech was
effectively suppressed.
Attentionalmodulation of the neural representationwas quantified,

separately for correct and error trials, by measuring the correlation of
the reconstructed spectrograms from the mixture in two attended
conditions with original acoustic spectrograms of the speakers alone
(Fig. 2a–d). During correct trials (Fig. 2a, c), we observed a significant
shift of average correlation values towards the target speaker repres-
entation. During error trials, in contrast, no significant shift was

observed (Fig. 2b, d). Furthermore, the correlations between the
reconstructed mixture and the masker speaker were higher than the
average intrinsic correlation between randomly chosen original
acoustic speech phrases (Fig. 2c, d, dashed lines), revealing a weak
presence of the masker speaker in mixture reconstructions, even in
correct trials.
The difference in speaking rate of the two speakers, coupled with the

stereotyped structure of the carrier phrases, results in specific average
temporal modulation profiles for each speaker (average spectrogram
for each speaker is shown in Supplementary Fig. 1a, b). To investigate
encoding of the distinct spectral profile and characteristic temporal
rhythmof the target compared to themasker speaker, we estimated the
average difference between reconstructed spectrograms of the two
speakers, when presented alone and in the attended mixture (Fig. 2e,
f). The comparison between the two average difference reconstructed
spectrograms reveals enhanced encoding of both temporal and
spectral aspects of the attended speaker (Supplementary Fig. 1c, d).
To study the time course of attention-induced modulation of recon-
structed mixture spectrograms towards the attended speaker, we
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Figure 1 | Acoustic and neural reconstructed
spectrograms for speech from a single speaker or
a mixture of speakers. a, b, Example acoustic
waveform and auditory spectrograms of speaker
one (male; a) and speaker two (female;
b). c, Waveform and spectrogram of themixture of
the two shows highly overlapping energy
distributions. d, Difference spectrogram highlights
the mixture regions where speaker one (blue) or
two (red) has more acoustic energy. e, f, Neural-
population-based stimulus reconstruction of
speaker one (e) and speaker two (f) alone shows
similar spectrotemporal features as the original
spectrograms in a and b. g, h, The reconstructed
spectrograms from the same mixture sound when
attending to either speaker one (g) or two
(h) highly resemble the single speaker
reconstructions, shown in e and f, respectively.
i, Overlay of the spectrogram contours at 50% of
maximum energy from the reconstructed
spectrograms in e, f, g and h.
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Figure 2 | Quantifying the attentional
modulation of neural responses. a, b, Correlation
coefficients of reconstructed mixture spectrograms
under attentional control and the corresponding
single speaker original spectrograms in correct and
error trials (examples in Fig. 1g, h shownwith black
outline). c, d, Mean and standard error of
correlation values for correct and error trials (28
mixtures). The dashed line corresponds to the
average intrinsic correlation between randomly
chosen original speech phrases. Brackets indicate
pairwise statistical comparisons. NS, not
significant. e, f, Average difference reconstructed
spectrograms of speakers one and two from
responses to single speaker (e) and attended
mixture (f). g, Time course of average and standard
error of AMIspec of 28 mixtures for correct (black)
and error (red) trials. Grey curve shows the upper
bound of AMIspec.
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calculated an attentional modulation index (AMIspec), using a sliding
window of 250ms throughout the trial duration:

AMIspec5Corr(SP1spec, SP1attend) 2 Corr(SP1spec, SP2attend)
1Corr(SP2spec, SP2attend)2Corr(SP2spec, SP1attend) (1)

where SP1spec and SP2spec are the original acoustic spectrograms of
speakers one and two, respectively, and SP1attend and SP2attend are the
spectrograms reconstructed fromneural responses to themixturewith
attended targets, speaker one and two, respectively. Positive values of
this index reflect shifts towards the target, negative values reflect shifts
to the masker representation, and values around zero reflect no shift
(AMIspec5 0.58 for the example in Fig. 1). An upper bound for the
AMIspecwas calculated by assuming that attention, at best, restores the
single speaker reconstructions of the target speaker (replacing SP1attend
and SP2attend in equation (1) with SP1alone and SP2alone; Fig. 2g, grey
line). The AMIspec from the mixture was first estimated from correct
trials (Fig. 2g, black line), and could resolve the time point at which the
reconstructed spectrograms were modulated by attention. After the
end of the call sign, which cues the speaker that should be attended, a
rapid positive shift in the AMIspec was observed, implying the
enhanced representation of the target speaker. In error trials, this effect
shows a bias towards the masker speaker, which, in contrast, occurred
far earlier in the time course. The neural response shift towards the
masker, which occurs as early as the call sign, suggests that listeners
had prematurely attended to the wrong speaker during those error
trials.
Although the reconstruction analyses showed clear attention-

based spectrotemporal modulation, we wanted to determine explicitly
whether the attended speech in a mixture could be decoded from a
model of a single speaker. A regularized linear classifier21 was trained
on neural responses to the single speakers and then used to decode
both the spoken words and speaker identity of the attended speech
mixture. To keep the chance performance at 50% across all com-
parisons, classification results were limited only to the choices that
were present in eachmixture. For correct trials, the colour and number
of the attended speech were decoded with high accuracy (77.2% and
80.2%,P, 103 1024, t-test; Fig. 3a). However, the decoding perform-
ance during error trials was significantly below chance (30.0%, 30.1%,
P, 103 1024, t-test; Fig. 3b), indicating a systematic bias towards
decoding the words of the masker speaker. In addition, for correct
trials, the call sign was classified at chance performance (Fig. 3a).
However, for incorrect trials the classifier detected the masker call
sign significantly more often than the target call sign (34.1%,
P, 103 1024, t-test; Fig. 3b), which again shows errors due to an
early selection of the masker (incorrect) speaker.

For the speaker identification analyses, we divided the behavioural
error types into two subsets. The first type occurred when the reported
colour–number combination was incorrect for either speaker (‘in-
correct’; 16.5% of trials). The second type occurred when subjects
reported the correct colour–number for the masker instead of the
target speaker (‘correct for masker’; 8.6% of trials).
In correct trials, the classifier identified the target speaker 93.0% of

the time (P, 103 1024, t-test; Fig. 3c). During incorrect trials, the
classifier performance was at chance. However, during correct for
masker trials, the classifier identified the masker rather than the target
speaker (27.3%; P, 103 1024, t-test; Fig. 3c). These classification
results confirm the observed restoration seen in spectrotemporal
reconstruction, without necessarily assuming a linear relationship
between the neural responses and the stimulus. Furthermore, they
extend recent findings using similar methods to decode speech sounds
presented in isolation22 to full words and sentences under complex
listening conditions.
We next asked whether the observed robust encoding of attended

speech results as an emergent property of the distributed population
activity or is driven by a few spatially discrete sites. The cortical regions
with reliable evoked responses to speech stimuli were found using a
t-test between neural responses during speech and silence (P, 0.01),
and were confined to the posterior superior and middle temporal gyri
(Fig. 4a). An example of the attentional response modulation at a
single electrode is shown in Fig. 4b–d. The spectrotemporal receptive
field (STRF, estimated using the http://www.strflab.berkeley.edu
package) of this electrode in passive listening to speech (TIMIT20)
showed a strong preference for high frequency sounds (Fig. 4b)
(STRFs for all electrodes of one subject are provided in Supplemen-
tary Fig. 2b). This tuning was also evident in the increased neural
response at this electrode (Fig. 4d, dashed lines) to each of the single
speakers’ high frequency sound components (circled in Fig. 4c, res-
ponses are delayed about 120ms from the stimulus). However, the
responses to the same speech mixture sound (Fig. 4d, solid lines) were
significantly modulated by attention. The responses to high frequency
components were enhanced for the attended speaker, but suppressed
for similar sounds in themasker speaker (Fig. 4d, solid lines compared
to dashed lines). This highly modulated yet fixed feature selectivity
probably contributes to the constancy of the single speaker representa-
tion observed in our previous analyses. To quantify this effect for each
individual electrode, we measured the correlation between the neural
responses to the attended mixture and to those of the speakers in
isolation (AMIelec, equation (2) in Methods). We found a varying
degree of bias towards the attended speaker distributed across the
population (Supplementary Fig. 3d; AMIelec5 0.28 for the example
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in Fig. 4), which gradually builds up after the end of the call sign
(Supplementary Fig. 3e).Wedid not observe any particular anatomical
pattern for the attentional modulation across sites (Supplementary
Fig. 3f). Rather, it appeared to be distributed over responsive sites,
consistent with previous findings of higher-order sound processing23.
In summary, we demonstrate that the human auditory system

restores the representation of the attended speaker while suppressing
irrelevant competing speech. Speech restoration occurs at a level where
neural responses still show precise phase-locking to spectrotemporal
features of speech. Population responses revealed the emergent rep-
resentation of speech extracted from a mixture, including the
moment-by-moment allocation of attentional focus.
These results have implications for models of auditory scene ana-

lysis. In agreement with recent studies, the cortical representation of
speech in the posterior temporal lobe does not merely reflect the
acoustical properties of the stimulus, but instead relates strongly to
the perceived aspects of speech10. Although the exact mechanisms are
not fully known, multiple processes in addition to attention are likely
to enable this high-order auditory processing, including grouping of
predictable regularities in speech acoustics24, feature binding3,25 and
phonemic restoration26. Conversely, behavioural errors seem to result
fromdegradationof the neural representation, a direct result of inherent
sensory interference such as energetic masking16 (Supplementary
Fig. 3g, h) and/or the allocation of attention27.
In speech, the end result represented in the posterior temporal lobe

appears to be unaffected by perceptually irrelevant sounds, which is
ideal for subsequent linguistic and cognitive processing. Following one
speaker in the presence of another can be trivial for a normal human
listener, but remains a major challenge for state-of-the-art automatic
speech recognition algorithms28. Understanding how the brain solves
this problem may inspire more efficient and generalizable solutions
than current engineering approaches29. It will also shed light on how
these processes become impaired during ageing and in disorders of
speech perception in real-world hearing conditions7.

METHODS SUMMARY
Three human subjects with normal hearing underwent the placement of a
subdural electrode array as part of their clinical treatment for epilepsy. We used
speech samples from a publicly available database called Coordinate Response
Measure (CRM15). One male and one female speaker were selected with two call
signs (ringo and tiger), three colours (red, blue or green) and three numbers (two,
five or seven). We generated 12 unique combinations of call sign, colour and
number per speaker (total of 24 single speaker phrases) and 28 mixture speech
samples by selecting from combinations of the 24 single speaker sentences (0 dB
target-to-masker ratio). Speech sounds were presented monaurally from a loud
speaker. We used stimulus reconstruction17–19 to map the population electro-
corticographic response to the spectrogram of the speech stimulus.
Reconstruction filters were estimated from neural responses to a separate speech
corpus (TIMIT20). Test speakers were not used in the estimation of filters. For
word and speaker decoding analysis, a regularized linear classifier21was trained on
neural responses of the single speakers and then used to decode the spoken words
and speaker identity of the attended speech mixture.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
The experimental protocol was approved by the Committee for Human Research
at the University of California, San Francisco.
Subjects. Three human subjects underwent the placement of a high-density
subdural electrode array (4mm pitch) over the language-dominant hemisphere
as part of routine clinical treatment for epilepsy. Subjects gave their written
informed consent before surgery. All subjects had self-reported normal hearing
and underwent neuropsychological language testing (including the Boston nam-
ing and verbal fluency tests) and were found to be normal. The intracarotid
sodium amobarbital (Wada) test was used for language dominance assessment.
The electrodes in the study were located over the posterior dorsolateral temporal
lobe. The location and corresponding spectrotemporal receptive fields of all the
included electrodes for a subject are shown in Supplementary Fig. 2.
Data acquisition and pre-processing. The electrocorticography signal was
recorded with a multichannel amplifier optically connected to a digital signal
processor (TuckerDavis Technologies). Each channel time series was visually
and quantitatively inspected for artefacts or excessive noise. The data were then
segmentedwith a 100mspre-stimulus baseline and a400mspost-stimulus interval.
The common mode signal was estimated using principal component analysis with
channels as repetitions andwas removed fromeachchannel time series using vector
projection.
Task design and behavioural testing. We used speech samples from a publicly
available database called Coordinate Response Measure (CRM15) containing
sentences in the form ‘‘ready (call sign) go to (colour) (number) now’’. One male
and one female speaker (speakers one and five in CRM corpus) were selected with
two call signs (ringoand tiger), three colours (blue (B), red (R) or green (G)) and three
numbers (two, five or seven). For each of the two call signs, we generated six colour–
number combinations (B2, B5, R2, R7, G5, G7), resulting in 12 different phrases.We
chose the same phrases for each of the two speakers, resulting in 24 single speaker
sentences. We then produced 28 unique mixture speech samples by selecting from
combinations of the 24 single speaker sentences at 0 dB target-to-masker ratio. Each
mixture samplewas chosen such that therewas nooverlap between call signs, colours
or the numbers of the two phrases. In addition, each speaker had the samenumber of
call signs (ringo or tiger) in each trial block. The sounds were presented monaurally
from a loudspeaker connected to a laptop, which was also used to collect subjects’
responses through a customized graphical user interface. Each trial block consisted of
28 trials and the target call sign was fixed for each block. The target call sign was
displayed visually before and during the trial block. Subjects first listened to each of
the speakers alone and were able to report the colour and number with 100%
accuracy. Subjects then listened to a monaural, simultaneous mixture of the two
speakers’ phrases with different call signs, colours and numbers. The subjects were
instructed to respond by indicating the colour and number spoken by the talker who
uttered the target call sign. The target speaker changed from trial to trial pseudo-
randomly, requiring the subjects to initially monitor both speakers until they detect
the target call sign. After each trial block, the target call sign was changed, switching
the role of target and masker speakers in each mixture sound.
Electrode selection. The cortical sites on the superior and middle temporal gyri
with reliable evoked responses to speech stimuli were selected for all the
subsequent analysis. Our inclusion criteria consisted of a t-test between responses
to randomly selected time frames during passive speech presentation (TIMIT)
and in silence (P, 0.01, resulting in 83, 92 and 102 electrodes for subjects one to
three. One example subject is shown in Supplementary Fig. 2a). Solely for
visualization, we also estimated the STRFs of these selected sites from passive

listening to TIMIT using normalized reverse correlation algorithm (STRFLab
software package, http://www.strflab.berkeley.edu; Supplementary Fig. 2b).
Correlation histogram of STRF predictions for all 275 electrode sites is shown
in Supplementary Fig. 1c.

Stimulus reconstruction. We used stimulus reconstruction to map the popu-
lation neural responses to the spectrogram of the speech stimulus17–19.
Reconstruction filters were estimated from neural responses to a separate speech
corpus (TIMIT20) containing a total of 499 unique short sentences from 402
different speakers. Filters were obtained using normalized reverse correlation to
minimize the mean squared error of the reconstructed spectrograms17 with filter
time lags from 2420 to 0ms (causal filters). The filters were then fixed in all
subsequent conditions and were applied to the neural responses to CRM samples.
Neither of the speakers or phrases in the CRM data set was used in estimation of
the filters. The output of the reconstruction algorithmwas further processedwith a
band-pass filter applied to each frequency channel of reconstructed spectrograms
to remove the baseline. All the processing steps for stimulus reconstruction were
identical in all conditions (single and mixture speakers).

AMI.Toquantify the change in similarity between the representation of single and
attended speaker in mixture speech, we defined the AMIspec in equation (1). The
stereotypical format of theCRMphrases results in an intrinsic correlation between
the neural responses to different sentences, particularly at the beginning (‘‘ready’’)
and middle of the carrier phrase (‘‘go to’’), which results in reduced possible
AMIspec values for these segments. To estimate an upper bound for unbiased
comparison, AMIspec was calculated where the representation of an attended
speaker in a mixture is ideally assumed to be identical to the representation of
that speaker when presented alone; therefore, replacing SPattend in equation (1)
with the reconstructed spectrogram of single speaker SPalone. The upper bound
peaks at the call sign, colour and number where different phrases are most
dissimilar. The overall increase in the upper bound is due to the progressive
asynchrony between the two speakers.

The same statistics can be used to estimate the AMI of an individual electrode
site by calculating the correlation values between the neural response of that site to
attended mixture and single speaker presentations:

AMIelec5Corr(R-SP1alone, R-SP1attend)2Corr(R-SP1alone, R-SP2attend)1
Corr(R-SP2alone, R-SP2attend)2Corr(R-SP2alone, R-SP1attend) (2)

where R-SP1alone and R-SP2alone are the responses of an electrode to speakers one
and two alone, respectively, and R-SP1attend and R-SP2attend are the responses of
the same electrode to the mixture of the two when the attended target is speaker
one and two, respectively.

Classification of spoken words and speaker identity. A linear-frame-based
regularized-least-square classifier21 was used to investigate the discriminability
of the spoken words and speaker identity from electrocorticographic responses.
Two binary classifiers were trained to classify the call sign and speaker identity,
and two separate three-way classifiers were used for colour and for number
classification. Classifiers were trained only on the neural responses of single speak-
ers (24 sentences) and tested on the mixtures. The classifiers produced a linear
weighted sum of the neural responses at each time instance and the classifier that
produced the maximum average output over the duration of words was chosen as
classification result. The classifier decision was limited to only the colours and
numbers that occurred in each mixture, therefore resulting in same 50% chance
performance in all cases.
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