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Abstract. An approach for detecting hazardous volatile organic compounds (VOCs) in ppb and sub-ppb concen-

trations is presented. Using three types of metal oxide semiconductor (MOS) gas sensors in temperature cycled

operation, formaldehyde, benzene and naphthalene in trace concentrations, reflecting threshold limit values as

proposed by the WHO and European national health institutions, are successfully identified against a varying

ethanol background of up to 2 ppm. For signal processing, linear discriminant analysis is applied to single sensor

data and sensor fusion data.

Integrated field test sensor systems for monitoring of indoor air quality (IAQ) using the same types of gas sen-

sors were characterized using the same gas measurement setup and data processing. Performance of the systems

is reduced due to gas emissions from the hardware components. These contaminations have been investigated

using analytical methods. Despite the reduced sensitivity, concentrations of the target VOCs in the ppb range

(100 ppb of formaldehyde; 5 ppb of benzene; 20 ppb of naphthalene) are still clearly detectable with the systems,

especially when using the sensor fusion method for combining data of the different MOS sensor types.

1 Introduction

The quality of indoor air (IAQ) is determined by the con-

tamination of the air with various chemical compounds, such

as carbon dioxide (CO2), carbon monoxide (CO), nitrogen

dioxide (NO2) and volatile organic compounds (VOCs). Sev-

eral investigations have been performed to determine the oc-

currence of these substances in indoor air, e.g., by Bernstein

et al. (2008) or in European projects like the Airmex study

(Geiss et al., 2011) and the INDEX project (Koistinen et al.,

2008).

Negative health effects of exposure to these substances,

even at low concentrations, mainly including the respira-

tory system and skin irritations, have been observed (Jones,

1999). Additionally, some VOCs (e.g., benzene) are carcino-

genic, while others (e.g., formaldehyde) are suspected to be

carcinogenic (Gou et al., 2004).

Hazardous VOCs pose a special problem. Despite that

threshold limits for single substances are recommended for

indoor air, e.g., by the WHO (World Health Organization,

2010), there is currently no online measurement technol-

ogy commercially available to identify and quantify different

volatile organic substances reliably and at reasonable cost.

Monitoring total VOC (TVOC) concentrations is state of the

art (Umweltbundesamt, 2007), but this parameter is not sig-

nificant in terms of health effects since it also includes benign

substances and cannot be attributed to symptoms like the sick

building syndrome (Burge, 2004; Brinke et al., 1998). Se-

lective VOC detection and quantification is today based on

gas sampling and analytical techniques, especially gas chro-

matography coupled with mass spectrometry (GC-MS; Wu

et al., 2004). The resulting high cost for individual measure-

ments prevents ubiquitous VOC monitoring in IAQ applica-

tions today.

A possible application for selective VOC monitoring is

demand-controlled ventilation in smart buildings. VOC lev-

els can be used as an additional parameter for control-

ling indoor ventilation in addition to other indicators like
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Figure 1. Temperature cycle (solid line) and normalized tempera-

ture cycle sensor signals (UST GGS 1330) in the presence of differ-

ent gases.

temperature and CO2 levels. Then, selective measurement

of single VOCs is necessary since ventilation should be in-

creased only if thresholds of hazardous VOCs are exceeded.

From the wide range of VOCs, three compounds were

selected for further investigations on selective detection:

formaldehyde, benzene and naphthalene, which are three of

the first priority harmful VOCs (Koistinen et al., 2008; World

Health Organization, 2010). The selected target concentra-

tions of these gases are 10 ppb for formaldehyde, 0.5 ppb

for benzene and 2 ppb for naphthalene, based on interna-

tional and European national regulations (e.g., World Health

Organization, 2010; French decree no. 2011-1727, 2011;

Sagunski and Heger, 2004). For benzene, the World Health

Organization even states that there is no safe level due to

its high carcinogenicity (World Health Organization, 2010).

Thus, not only a high selectivity is required for identifying

these gases but also a very high sensitivity in order to detect

ppb levels of these specific VOCs.

One type of sensors which can detect VOCs in this con-

centration range is a metal oxide semiconductor (MOS) gas

sensor (Schüler et al., 2013). MOS sensors in temperature cy-

cled operation (TCO) are used here to measure the selected

VOCs against a high background of interfering gas, similar

to Reimann and Schütze. (2012). These sensors were also in-

tegrated in low-cost sensor systems designed for field testing

and as a basis for future commercial online VOC monitoring

devices.

2 TCO optimization

Semiconductor gas sensors are very sensitive sensors, but

usually they are broadband sensors and show little selec-

tivity to specific gases. One method to improve selectivity,

sensitivity and also stability is temperature cycled operation

Figure 2. Sensor responses to 25 ppb of benzene and 500 ppb of

ethanol during TCO optimization cycle at 12.5 % relative humidity

(Fricke et al., 2014).

(Lee and Reedy, 1999; Gramm and Schütze, 2003; Schüler

et al., 2013). By modulating the operating temperature of the

MOS sensing layer, different states of the sensor material it-

self (i.e., surface coverage with oxygen) and its interaction

with gas molecules are activated, and thus different sens-

ing characteristics are obtained. Figure 1 shows normalized

sensor signals of the same temperature cycle when different

gases are applied to a MOS gas sensor. The differences of the

recorded signal shapes (i.e., slopes, average values in differ-

ent sections) are obvious; these features are characteristic of

specific gases.

Three types of ceramic substrate MOS gas sensors were

evaluated for detection of the target VOCs: GGS 1330,

GGS 2330 (both SnO2 based) and GGS 5330 (WO3 based)

by UST Umweltsensortechnik GmbH (Geschwenda, Ger-

many).

A method for optimizing the TCO cycle was evaluated. In

order to find the most sensitive and most selective tempera-

ture transitions, the relaxation behavior from a high tempera-

ture to different lower temperatures was investigated. Specif-

ically, temperature changes from 400 to 200 ◦C, 250 ◦C and

300 ◦C were performed with a GGS 1330 SnO2 sensor with

benzene and ethanol as test gases. The results are shown in

Fig. 2.

The sensor response was calculated by dividing the sen-

sor signal (conductivity of the sensitive layer) of a cycle in

gas by the sensor signal of a cycle in pure air for each point

of the cycle. The response has distinct peaks several seconds

after the temperature steps from the high temperature to the

lower temperatures – e.g., for ethanol 50 s after changing the

sensor temperature from 400 to 200 ◦C. The sensor response

after cooldown from 400 to 200 ◦C reaches approx. 67 for

ethanol and then drops to approx. 9 at the steady state. Thus,

the sensitivity is significantly increased in TCO mode due to

non-equilibrium state of the sensor surface after temperature

changes (Sauerwald et al., 2014). For benzene, the sensor
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Figure 3. 180 s temperature cycle for the GGS 1330 and GGS 2330

SnO2-based sensors.

response rises to 2.1 at the peak 36 s after the temperature

transition from 400 to 250 ◦C compared to 1.3 at the steady

state, corresponding to an almost 4-fold increase in sensitiv-

ity.

Based on these results, the temperature steps and the

lengths of these steps were defined. For the SnO2 sensors

(GGS 1330 and GGS 2330) a two-step temperature cycle

with ramp transitions was chosen (see Fig. 3). The ramps

were implemented in order to achieve a defined heating up

and cooling down of the sensitive layer independent of am-

bient temperature and humidity. The durations of the ramps

are the result of the heating and cooling characteristics of the

sensors. Due to the size of the ceramic substrates, heating up

the sensors takes up to 20 s and cooling down even longer, up

to 30 s. These are the values chosen for the respective ramps.

The length of the low temperature step is 100 s to cover

all the response peaks of the previous optimization measure-

ment. The total duration of the temperature cycle is 180 s,

which is sufficiently short for the target application in IAQ

monitoring.

The WO3-based sensor (GGS 5330) did not show any de-

layed response maxima, but only a temperature-dependent

response. Thus, a simple ramp up and down between 400 and

200 ◦C was selected covering the range of maximum sensi-

tivity to the target gases (Fig. 4). The duration of a cycle is

60 s; to synchronize all sensors, three cycles of the WO3-

based sensor are run during one cycle of the two SnO2-based

sensors.

3 Sensor characterization measurements

The three target VOCs were applied in two concentrations

each: one at the respective threshold limit value and one at

the 10-fold value. Additionally, the measurements were per-

formed with two concentrations of ethanol as a background

Figure 4. 60 s temperature cycle for the GGS 5330 WO3-based

sensor; three cycles are run in order to synchronize the signals with

the 180 s cycle for the SnO2 sensors.

interference gas and two values for the relative humidity

(RH). Table 1 gives an overview for all concentration and

humidity values.

The measurements were conducted with a gas mixing sys-

tem which was designed and set up specifically for trace

gas generation with wide concentration ranges by Helwig et

al. (2014). The VOCs were diluted into a carrier gas stream

of synthetic air (purity 5.0) either from a gas cylinder or from

a permeation furnace. Total gas flow was 200 mL min−1; the

three sensors were set up in a stainless steel sensor cham-

ber. Each of the 36 VOC gas configurations was applied for

30 min; between the VOC exposures the sensors were flushed

with background (humid air plus ethanol) for 30 min to al-

low their return to the baseline and prevent carryover. The

complete data set contained 940 temperature cycles for the

SnO2-based sensors and 2820 cycles for the WO3-based sen-

sor. Not all of the cycles were used for signal processing; for

the “background” groups without the target VOCs, six sec-

tions with a length of approx. 15 SnO2 cycles each were se-

lected, one after each change of the background conditions

(humidity, ethanol).

4 Signal evaluation and data processing

4.1 Sensor characterization

As a first analysis of the data, quasistatic sensor signals are

examined. These are generated by choosing one point of the

temperature cycle and extracting the signal value at this point

in the cycle for every cycle of the measurement. These val-

ues are then plotted over the respective cycle number, which

generates a plot of the sensor signal of a specific point of the

cycle over time. An example is given in Fig. 5.

The sensor reactions to all target gases and especially to

the ethanol background are clearly visible. This method is
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Table 1. Test gas setup

Gas Conc./ppb (µg m−3) RH/% EtOH background/ppm (mg m−3)

Synthetic air 40; 60 0; 0.4; 2 (0; 0.21; 1.06)

Formaldehyde 10; 100 (12.3; 123) 40; 60 0; 0.4; 2 (0; 0.21; 1.06)

Benzene 0.5; 4.7 (1.6; 15) 40; 60 0; 0.4; 2 (0; 0.21; 1.06)

Naphthalene 2; 20 (10.5; 105) 40; 60 0; 0.4; 2 (0; 0.21; 1.06)

Figure 5. Section of the quasistatic sensor signal, UST GGS 1330,

60 %RH; the selected point of the cycle is the end of the low tem-

perature step at 99 s (see Figs. 3/6).

helpful for checking the nominal performance of the gas mix-

ing system and to check the general response of the sensors

to the gases. It is independent of the pattern recognition data

analysis.

For further signal processing, the method of linear

discriminant analysis (LDA) is applied (Gutierrez-Osuna,

2002). This pattern recognition technique can be used to sep-

arate different classes of input data while grouping data sets

of the same type. In this case, it is used to assign the temper-

ature cycle sensor signals to the different target gases. Thus,

in the resulting plots, the algorithm should arrange all cycles

of each target gas and background into one compact group

while separating the groups of the different target VOCs and

the background without VOCs from each other.

The approach used here is basically the same as presented

by Bur et al. (2014). Input data sets for the LDA algorithm

(“training”, i.e., determination of LDA coefficients for the

projection, and evaluation) are generated by extracting a set

of features from each temperature cycle sensor signal. The

temperature cycle is divided into several sections; 20 sections

were chosen for the 180 s cycle for the GGS 1330/2330 sen-

sors (see Fig. 6). From each section, features are calculated,

in this case the mean value of the sensor signal and the slope

of a linear fit. These features were chosen with regard to later

Figure 6. Selected feature ranges of the GGS 1330 and GGS 2330

sensor.

implementation of the LDA calculations on the field test sys-

tem microcontroller since they are easy to calculate. For the

GGS 5330 sensor, the 60 s cycle was divided into 14 sections.

This generates a data set of 40 (28) values for each sensor for

each temperature cycle, which is used as input for the LDA.

As mentioned above, in the presented measurement the

aim is identification of the target VOCs. The extracted data

sets were therefore assigned to four groups, one group for

each target VOC and one for the background gas without any

of the three targets. Each of the three VOC groups thus con-

tains the cycles that ran during the application of one VOC

with both VOC concentrations, both gas humidities and all

ethanol backgrounds, i.e., a total of 12 different conditions.

The “background” group contains sections of synthetic air

with both humidities and all ethanol background concentra-

tions.

The result of the LDA calculation for the GGS 1330 sen-

sor is shown in Fig. 7. Separation of the four groups is quite

successful, but there is still some overlap. As a validation of

the results, leave-one-out cross-validation (LOOCV) is per-

formed (Gutierrez-Osuna, 2002). This method checks how

many feature vectors are classified correctly if the LDA is

trained by all other vectors. For the GGS 1330 sensor, 98.9 %

of the 435 used data sets are classified correctly if the method

of k nearest-neighbors classification (kNN, k = 5) is applied.

So despite the overlap of the groups, nearly all TCO feature

sets are assigned to the correct gas.
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Figure 7. LDA plot of the UST GGS 1330 sensor.

Figure 8. LDA plot of the UST GGS 2330 sensor.

Figure 8 shows the result of the LDA for the GGS 2330

sensor. Separation of the groups does not appear quite as dis-

tinct as for the GGS 1330 sensor, especially with formalde-

hyde and benzene having slightly more overlap. Leave-one-

out cross-validation with kNN results in a correct classifica-

tion of 96.6 % of all temperature cycles.

The result for the GGS 5330 sensor (Fig. 9) also shows

a partial overlap of the groups, especially for formaldehyde

and air; compared to the GGS 2230, however, the validation

shows a slightly higher number of correct classifications at

98.4 %.

In addition to evaluating the single sensors, a combined

processing of the data from the sensors is applied. In this

sensor fusion, the feature vectors of two or three sensors

are merged into a single data set for each temperature cycle,

e.g., a 108-value vector for fusion of all three sensors. LDA

Figure 9. LDA plot of the UST GGS 5330 sensor.

Figure 10. LDA plot based on data fusion of all three sensors.

calculation with the combined data results in a much better

separation of the groups, shown in Fig. 10 for the combi-

nation of all three sensor types. Now there is no overlap of

the gas groups. Validation shows a classification accuracy of

100 %; all temperature cycles are classified correctly.

4.2 Field test sensor system characterization

For use in field tests, the sensors were integrated into field

test electronics (Conrad et al., 2014). The systems are de-

signed to operate two MOS gas sensors independently in

temperature cycled operation, with different temperature cy-

cles. Each sensor is mounted on a plug-in PCB (printed cir-

cuit board), which also contains an EEPROM (electronically

erasable programmable read-only memory) for calibration

data and LDA parameters of the individual sensor. With this

setup, fast replacement of a sensor is possible without having
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Figure 11. Exterior view of modular field test sensor system con-

taining electronics (PCB) with two MOS gas sensors (Conrad et al.,

2014).

to perform a new calibration of the overall system. The sen-

sor signals are acquired at a rate of up to 10 ksps and are

stored on an SD memory card, which also contains general

configuration data and the temperature cycle data sets. An

on-board sensor measures air temperature and humidity; in

addition, the system can be equipped with a dual-beam NDIR

(nondispersive infrared) CO2 sensor. Online preview of the

measured data is possible via a selection of communication

interfaces. The electronics are installed in a polymer housing

(Fig. 11).

The performance of the systems was determined using the

same test gas profile as for the sensor characterization in the

stainless steel sensor chamber (Table 1). Three systems were

characterized simultaneously, each equipped with two differ-

ent UST gas sensor types with the temperature profiles iden-

tified during the lab optimization. A total of six MOS sensors

were operated, two of every type; one sensor of every type

was used for offline LDA signal processing. The systems

were placed in a stainless steel measurement chamber with a

volume of 3.5 L. The total gas flow was set to 800 mL min−1,

resulting in an air exchange rate of 13.7 ach (air changes per

hour). Signal acquisition, pre-processing and feature extrac-

tion was performed identically to the characterization mea-

surement of the sensors in the stainless steel sensor chamber.

The LDA result obtained with data from one of the

GGS 1330 sensors is shown in Fig. 12.

Separation of the different gases is significantly less suc-

cessful compared to the sensor characterization measurement

(Fig. 7). Each VOC group is split into two sub-groups, re-

flecting the two tested VOC concentrations. While the higher

concentrations are still discriminated from the background,

the lower concentrations can no longer be separated from the

background group. Using LOOCV, only 71.7 % of tempera-

ture cycles are now classified correctly, a significant reduc-

tion compared to the result of the sensor in the stainless steel

sensor chamber which achieved 98.9 %.

Figure 12. LDA plot of the lab characterization of a UST

GGS 1330 sensor integrated in a field test system.

Figure 13. LDA plot of the lab characterization of a UST

GGS 2330 sensor integrated in a field test system.

Similar results were obtained for the other two sensor

types. In the plot of the GGS 2330 LDA output (Fig. 13),

the data groups of naphthalene and especially benzene are

hardly separated from the background group and only the

high formaldehyde concentration can be clearly discrimi-

nated. Only 66.1 % of the temperature cycles are assigned

to the correct gas.

The GGS 5330 type sensor is much more sensitive to

benzene and naphthalene compared to formaldehyde. This

clearly shows in the LDA result (Fig. 14), where both

formaldehyde concentrations are plotted overlapping with

the background group. However, only the high concentra-

tions of benzene and naphthalene are separated from the

background, while the lower concentrations are not. The ra-

tio of correct classifications is 62.0 %.
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Table 2. List of leave-one-out cross-validation results with kNN-5 for the LDAs of the single sensors and sensor fusions

Correct classifications Correct classifications

for the sensors in the stainless for the sensors integrated in

Sensor(s) steel sensor chamber the field test systems

GGS 1330 98.9 % 71.7 %

GGS 2330 96.6 % 66.1 %

GGS 5330 98.4 % 62.0 %

GGS 1330 + GGS 2330 100 % 81.6 %

GGS 1330 + GGS 5330 100 % 76.5 %

GGS 2330 + GGS 5330 99.8 % 71.7 %

GGS 1330 + GGS 2330 + GGS 5330 100 % 83.4 %

Figure 14. LDA result plot of the lab characterization of a UST

GGS 5330 sensor integrated in a field test system.

Data fusion was applied to the field test system sensor data

as well; the resulting LDA plot for fusion one sensor of each

of the three sensor types is shown in Fig. 15. As for sensor

characterization setup, discrimination of the gases is signifi-

cantly improved. Not only can the high concentrations of all

three target gases be clearly discriminated, but now also the

low concentrations are separated more clearly from the back-

ground compared to the results obtained with the individual

sensors in the systems. LOOCV yields 83.4 % of all temper-

ature cycles classified correctly, an improvement of 11.7 %

over the best single sensor (71.7 % for the GGS 1330).

The results of the LDA validations for all the sensors and

all possibilities of sensor fusion are listed in Table 2. For the

sensors in the stainless steel sensor chamber, fusion of two

sensors – GGS 1330 combined with any of the other two

sensors – is already sufficient for reliable identification of

the VOC. For the sensors integrated in the field test sensor

systems, fusion of all three sensors is necessary for best se-

lectivity.

Figure 15. LDA plot based on data fusion of three sensors (one of

every type) integrated in field test systems.

Detailed LOOCVs of the LDA results of the sensors in-

tegrated in the systems are listed in Table 3. The different

gas sensitivities of the three sensor types are clearly shown

by the validation results for the different VOCs. While the

GGS 1330 sensor has a similar sensitivity to all the gases,

the GGS 2330 has an enhanced sensitivity to formaldehyde

and a reduced sensitivity to the other two target VOCs. The

GGS 5000 sensor is not very sensitive to formaldehyde but

has higher numbers of correct classifications for naphthalene

and especially benzene compared to the GGS 2330. These

values show that the data from the different sensor types can

reasonably be used in sensor fusion as the sensors comple-

ment each other in their responses to the target gases.

The reason for the reduced sensitivity of the sensors in-

tegrated in the field test systems was investigated further

(Leidinger et al., 2014). As the main problem, gas emissions

from the sensor system hardware components were deter-

mined. These emissions were identified and quantified using

analytical methods, namely GC/MS VOC measurements ac-

cording to the ISO 16000 standard.
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Table 3. Detailed LOOCV results of the LDAs of the field test system MOS sensors; ratio of correct classifications for the single groups and

overall.

Sensor(s) Background Formaldehyde Benzene Naphthalene Overall

GGS 1330 82.8 % 60.8 % 52.6 % 61.5 % 71.75 %

GGS 2330 77.7 % 74.2 % 35.8 % 45.8 % 66.1 %

GGS 5330 84.0 % 11.3 % 48.4 % 46.9 % 62.0 %

GGS 1330 + GGS 2330 84.5 % 87.6 % 67.4 % 79.25 % 81.6 %

GGS 1330 + GGS 5330 84.5 % 66.0 % 61.1 % 72.9 % 76.5 %

GGS 2330 + GGS 5330 80.8 % 79.4 % 35.8 % 66.7 % 71.7 %

GGS 1330 + GGS 2330 + GGS 5330 87.7 % 85.6 % 68.4 % 80.2 % 83.4 %

Figure 16. LDA result plot of the lab characterization of a UST

GGS 1330 sensor integrated in a field test system, evaluated only

for the high VOC concentrations.

For gas sampling, Tenax tubes were inserted into the

outlet gas flow of the stainless steel measurement cham-

ber containing three field test systems. Due to the require-

ments of this sampling method, air flow had to be reduced

to 120 mL min−1 or 2.06 ach. The most significant results of

the GC/MS analysis of the gas samples are listed in Table 4.

The results obtained with the low flow rate were converted

to the high flow rate of 13.7 ach used for the system charac-

terization measurements, assuming that the gas emission rate

from the systems is constant and independent of the gas flow

at these air exchange rates. The conversion factor is 0.15,

which is the ratio of the two gas flows (120 mL min−1 vs.

800 mL min−1).

The TVOC value (last row Table 4) proves that there

are significant VOC emissions from the systems, especially

when heated up during operation. Measured TVOC emis-

sions of three operating systems increase by a factor of ap-

prox. 20 compared to the unloaded test chamber and a fac-

tor of 12 compared to the systems being switched off and at

room temperature. Thus, VOCs are produced by the systems,

i.e., outgassing from either the PCB or the polymer housing

(cf. Fig. 11). This is also confirmed by the reduced contami-

nation observed after a heat treatment of the field test sensor

systems (cf. last row in Table 4).

Figure 17. LDA plot based on data fusion of a GGS 1330 and a

GGS 5330 integrated in field test systems, evaluated only for the

high VOC concentrations.

Looking at the specific gases, the amount of benzene

measured is especially conspicuous. A concentration of

11.4 µg m−3 was determined, corresponding to 3.6 ppb. This

strong benzene background, generated by the systems them-

selves, readily explains the reduced sensitivity to the applied

benzene concentrations, especially the lower concentration

of 0.5 ppb, compared to the single sensor measurements.

Naphthalene is not emitted from the systems in relevant

amounts; the concentration measured with the systems op-

erating is 0.2 µg m−3 or 0.04 ppb. Similarly, the concentra-

tion of formaldehyde was 1.2 ppb, or only 10 % of the lower

test gas concentration of the calibration measurement. The

most significant compound identified in the GC/MS analysis

is 1,2-dimethoxyethane, with 168.8 µg m−3 or 45.8 ppb. The

origin of this substance could not be determined.

Despite the high contamination levels, discrimination is

still possible for the high concentrations of the target gases,

as shown for the GGS 1330 sensor in Fig. 16. The high con-

centrations of formaldehyde and naphthalene can be mostly

separated from the background. For benzene, discrimina-

tion does not seem as clear, but LOOCV shows that 94.5 %

of temperature cycles are classified correctly. Sensor fusion

further improves discrimination. Figure 17 shows the LDA
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Table 4. Measured contaminations caused by outgassing of the field test system, converted from 2.06 ach to 13.7 ach; in µg m−3 according

to the ISO 16000 standard (n.d.: not detectable; n/a: data not available).

Measurement Systems ON

Synthetic chamber, Systems Systems after heat

Compound air 5.0 no systems OFF ON treatment

Acetone 0.7 9.5 11.5 10.6 n/a

1,3-Dioxolane 0.3 0.4 1.9 24.8 12.8

1,2-Dimethoxyethane 0.1 1.9 12.3 168.8 84.2

Benzene 0.0 0.3 n.d. 11.4 5.7

Toluene 0.1 4.6 4.0 7.3 1.0

m/p-xylene 0.1 0.3 0.1 10.2 3.2

Naphthalene n.d. 0.1 0.0 0.2 2.4

Formaldehyde n/a 0.3 n/a 1.5 n/a

Acetaldehyde n/a n.d. n/a 1.9 n/a

TVOC 1.74 14.1 22.2 270 164.6

Table 5. List of LOOCV results for the 2-D and 3-D LDAs of the single sensors and sensor fusions of the field test system sensors for the

high VOC concentrations.

Correct LOOCV classifications Correct LOOCV classifications

Sensor(s) with kNN-5, 2-D LDA with kNN-5, 3-D LDA

GGS 1330 94.5 % 97.8 %

GGS 2330 80.7 % 82.2 %

GGS 5330 87.4 % 87.0 %

GGS 1330 + GGS 2330 94.5 % 99.4 %

GGS 1330 + GGS 5330 98.6 % 99.2 %

GGS 2330 + GGS 5330 96.0 % 98.4 %

GGS 1330 + GGS 2330 + GGS 5330 95.3 % 99.6 %

plot for fusion data of a GGS 1330 sensor and a GGS 5330

sensor. With this sensor combination, 98.6 % of temperature

cycles are classified in the correct group. The classification

results for all sensor types in the field test systems and the

combinations are listed in Table 5.

The results can be improved further by calculating 3-

dimensional LDAs. Then the ratio of correct classifications

reaches more than 99 % with sensor data fusion (Table 5,

last column). One example of the 3-D LDA plot is given in

Fig. 18.

A method to prevent or at least reduce gas emissions from

the systems (PCB and housing) is heat treatment of the de-

vices. This was performed in a climate chamber where the

systems were kept for 13 h at 70 ◦C inside the stainless steel

chamber while pure air was continuously flowing through the

chamber in order to flush out all emissions from the systems.

Afterwards, another gas sample was taken; see Table 4, last

column. Obviously, VOC emissions have been reduced sig-

nificantly by approx. 40 %, but are still more than 7 times

higher compared to the unloaded test chamber. Thus, fur-

ther heat treatment at higher temperature and/or different

materials for the housing are required to achieve acceptable

contamination levels of the integrated sensor systems.

Figure 18. 3-D LDA plot based on data fusion of three sensors (one

of every type) integrated in field test systems, evaluated only for the

high VOC concentrations.
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5 Conclusions and outlook

We have demonstrated that standard metal oxide semicon-

ductor gas sensors operated in dynamic mode using TCO can

detect and identify hazardous VOCs at ppb and sub-ppb lev-

els, even in the presence of a much higher background con-

centration of ethanol (up to a factor of 4000 higher compared

to the lower benzene concentration in the measurements).

In the sensor characterization measurements, when the

sensors were installed in a stainless steel sensor chamber, the

data sets from the sensor signals, containing several ethanol

concentrations as well as gas humidities, could be assigned

to the correct target gas with high reliability using a one-step

LDA algorithm. The results of the data evaluation were im-

proved significantly by sensor fusion, i.e., based on features

obtained from two or three different sensors. For this mea-

surement, 100 % of the temperature cycles were assigned to

the correct gas by this method as verified by LOOCV. Further

optimization of the sensor performance, e.g., using hierarchi-

cal data analysis (Schütze et al., 2004) or taking into account

the information of further sensors, will be studied in the fu-

ture.

For the integrated field test systems, however, the classifi-

cation rate was reduced significantly compared to the sensor

tests. Even with sensor fusion, only 83.4 % of the tempera-

ture cycles were classified correctly. This was attributed to

VOC gas emissions from the system hardware, which have a

profound effect on the performance of the individual sensors

and the combined sensor array; the sensing capabilities are

clearly impaired by the VOC emissions. Using only the high

test gas concentrations for LDA processing, the ratio of cor-

rect classification rises to more than 95 % in a 2-D LDA and

over 99 % in a 3-D LDA. These VOC concentrations, still in

the ppb range, can be identified by the systems with a high

success rate.

A first test of baking out the system showed promising re-

sults, as VOC emissions were significantly reduced. Separate

heat treatment of the PCB and the housing would allow for

application of a higher temperature to the PCB and should

reduce gas emissions even further. The expected positive in-

fluence of reduced emissions on the sensing performance of

the integrated sensor systems will be verified in future ex-

periments. With these optimized integrated sensor systems

field tests will be carried out in various typical indoor en-

vironments, e.g., offices and meeting rooms, to validate the

performance of these systems for continuous monitoring of

indoor air quality.
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