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Abstract
Rationale Dysregulation of the serotonin (5-HT) system is a pathophysiological component inmajor depressive disorder (MDD),
a condition closely associated with abnormal emotional responsivity to positive and negative feedback. However, the precise
mechanism through which 5-HT tone biases feedback responsivity remains unclear. 5-HT2C receptors (5-HT2CRs) are closely
linked with aspects of depressive symptomatology, including abnormalities in reinforcement processes and response to stress.
Thus, we aimed to determine the impact of 5-HT2CR function on response to feedback in biased reinforcement learning.
Methods Weused two touchscreen assays designed to assess the impact of positive and negative feedback on probabilistic reinforcement
in mice, including a novel valence-probe visual discrimination (VPVD) and a probabilistic reversal learning procedure (PRL). Systemic
administration of a 5-HT2CR agonist and antagonist resulted in selective changes in the balance of feedback sensitivity bias on these tasks.
Results Specifically, on VPVD, SB 242084, the 5-HT2CR antagonist, impaired acquisition of a discrimination dependent on
appropriate integration of positive and negative feedback. On PRL, SB 242084 at 1 mg/kg resulted in changes in behaviour
consistent with reduced sensitivity to positive feedback. In contrast, WAY 163909, the 5-HT2CR agonist, resulted in changes
associated with increased sensitivity to positive feedback and decreased sensitivity to negative feedback.
Conclusions These results suggest that 5-HT2CRs tightly regulate feedback sensitivity bias in mice with consequent effects on
learning and cognitive flexibility and specify a framework for the influence of 5-HT2CRs on sensitivity to reinforcement.
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Introduction

Adaptive responding requires organisms to detect and inte-
grate the consequences of their actions to guide future behav-
iour. Failure in these processes underlies decision-making im-
pairments in numerous psychopathological conditions, in-
cluding major depressive disorder (MDD) and Parkinson’s
disease (Elliott et al. 1997; Frank et al. 2004). Abnormally
exaggerated affective and behavioural responsivity to nega-
tive feedback is a cardinal feature of MDD, a debilitating
condition characterised by multiple symptoms including per-
sistent low mood, apathy and suicidal ideation (DSM5).
Moreover, abnormalities in feedback sensitivity appear to
causally contribute to the development and maintenance of
MDD (Clark et al. 2009; Roiser et al. 2012), with evidence
that successful antidepressant treatment may reverse this re-
sponse profile (Harmer et al. 2006, 2009). This domain there-
fore represents a promising candidate for the development of
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targeted therapeutics directed at reversing cognitive profiles
implicated in depressive states.

Much of the research directed at elucidating the pathophys-
iological basis of MDD has focussed on the serotonin (5-hy-
droxytryptamine; 5-HT) system (Stern 1970; Young et al.
1985). For example, previous studies have demonstrated that
the short allele of the gene encoding the 5-HT transporter,
SERT, mediates the development of depression following
exposure to stressful life events (Caspi et al. 2003).
Additionally, causal evidence indicates that depletion of
tryptophan, an essential 5-HT precursor, is sufficient to
evoke depressive-like symptoms in otherwise healthy
humans and mice (Young et al. 1985; Franklin et al. 2012).
5-HT has also been implicated in the performance of tasks
requiring feedback integration for goal-directed behaviour
(Evers et al. 2005; Bari et al. 2010; Stolyarova et al. 2014),
including assays of cognitive flexibility (Clarke et al. 2004;
Brigman et al. 2010; Barlow et al. 2015). Thus, feedback-
dependent reinforcement learning represents a strong frame-
work for investigation of the link between emotional and cog-
nitive dysfunction in MDD.

Despite evidence linking 5-HT with reactivity to positive
and negative feedback (Rygula et al. 2015a), the mechanisms
governing the influence of this neurotransmitter on this do-
main are not fully established. Serotonin 2C receptors (5-
HT2CRs) are associated with multiple forms of feedback-
dependent behaviour, including reversal learning, motivation
and food intake (Boulougouris et al. 2008; Alsiö et al. 2015;
Bailey et al. 2016; Xu et al. 2017; Valencia-Torres et al. 2017).
Abnormalities in 5-HT2CR expression, activity and
adenosine-to-inosine RNA editing have been linked with both
depressive symptomology and the mechanisms of common
antidepressant pharmacological interventions (Graeff et al.
1996; Pälvimäki et al. 1996; Martin et al. 2014). 5-HT2CRs,
via GABAergic feedback mechanisms, are also implicated in
anxiety-like behaviours (Spoida et al. 2014). As altered 5-
HT2C-activity may be involved in abnormal feedback reac-
tivity and associated symptoms, drugs with affinity for 5-
HT2CRs represent therapeutic candidates for treating symp-
toms associated withMDD (Opal et al. 2014; Di Giovanni and
De Deurwaerdère 2016).

In this study, we aimed to determine the impact of 5-
HT2CRs on reinforcement feedback sensitivity by using
touchscreen tasks for the assessment of probabilistic reinforce-
ment in C57BL/6 mice. Here, we describe the development of
a modified visual discrimination procedure designed to assess
the impact of positive and negative feedback sensitivity on
learning. This is achieved by leveraging a probabilistically
reinforced ‘neutral’ stimulus presented in conjunction with
standard deterministically reinforced stimuli. The pairing of
a ‘neutral stimulus’ with a stimulus associated with either
reinforcement or non-reinforcement allows for assessment of
the contributions of positive and negative feedback to

deterministic discrimination learning. We also describe the
adaptation of a probabilistic reversal learning procedure pre-
viously performed in rats (Bari et al. 2010), monkeys (Rygula
et al. 2015a) and humans (Murphy et al. 2003) into the mouse
operant conditioning touchscreen chamber. Similar proce-
dures have been used to assess the effects of multiple pharma-
cological manipulations and genetic modifications in mice
(Ineichen et al. 2012; Rygula et al. 2014; Amodeo et al.
2014; Rygula et al. 2015b) and have been extensively used
in human studies (Evers et al. 2005; Reddy et al. 2016). Our
findings indicate that 5-HT2CRs regulate responsivity to pos-
itive and negative feedback in these tasks. These results pro-
vide a substrate for the influence of 5-HT in abnormal reac-
tivity to feedback and further elucidate the results of previous
studies that have investigated the role of 5-HT2CRs in cogni-
tive flexibility (Boulougouris et al. 2008).

Methods and materials

Animals

Male C57BL/6 mice (n = 32) fromCharles River Laboratories
(Margate, UK) were housed in groups of four and used for all
experiments. Animal husbandry is described in detail else-
where (Heath et al. 2015). Animals were maintained under a
12-h reverse light cycle (light off 07:00, lights on 19:00) and
were habituated to the facility for 7 days prior to the beginning
of any procedures. Following habituation, all animals were
weighed for 3 consecutive days to determine free-fed weights.
Animals were then restricted to approximately 85% of this
free-fed weight by daily provision of standard laboratory
chow (RM3, Special Diet Services). Water was available in
the homecage ad libitum throughout. This research has been
regulated under the Animals (Scientific Procedures) Act 1986
Amendment Regulations 2012 following ethical review by the
University of Cambridge Animal Welfare and Ethical Review
Body (AWERB).

Apparatus

Sixteen Bussey-Saksida mouse operant conditioning
touchscreen chambers (Campden Instruments Ltd) were used
for all described experiments. This apparatus has been de-
scribed in full detail elsewhere (Horner et al. 2013; Mar
et al. 2013; Oomen et al. 2013). A trapezoidal arena is
contained within a sound-attenuating fibreboard chamber.
The long wall of the chamber is composed of a touchscreen.
At the other end of the chamber, the walls narrow toward a
magazine with a small aperture to which the liquid reinforcer
is delivered. The touchscreen is protected by a Perspex mask
which contains a defined number of response apertures. The
probabilistic reversal learning procedure (PRL) experiments
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used a three-hole Perspex mask and the valence-probe visual
discrimination (VPVD) procedure used a two-hole mask. The
behavioural programs were controlled by ABET II Touch
software (Campden Instruments Ltd) and Whisker Server
(Cardinal and Aitken 2010).

Drugs

SB 242084 (Tocris Bioscience, Bristol, UK) and WAY
163909 (Pfizer) were selected on the basis of their selectivity
profiles and previous usage in the laboratory. SB 242084 ex-
hibits 100-fold selectivity for the 5-HT2CR over the 5-
HT2BR and 158-fold selectivity for the 5-HT2CR over the
5-HT2AR (Kennett et al. 1997). WAY 163909 exhibits 46-
and 20-fold selectivity for the 5-HT2CR over the 5-HT2BR
and 5-HT2AR respectively (Dunlop et al. 2005). SB 242084
and WAY 163909 were dissolved in 0.9% saline at the re-
quired concentrations and volumes and frozen at − 80 °C in
aliquots until required. All injections were administered intra-
peritoneally with a 20-min delay between injection and start of
behavioural testing. All injections were administered at an
injection volume of 10 ml/kg.

Behavioural procedures

The order of behavioural procedures and pharmacological
manipulations is displayed in Fig. 1a.

Pre-training

Pre-training started following food restriction and was con-
ducted as previously described (Horner et al. 2013; Mar
et al. 2013; Oomen et al. 2013). All animals were habituated
to the chamber environment for 20 min over 2 consecutive
days. Prior to the start of these sessions, 200 μl of liquid
reinforcer was manually placed in the magazine aperture. To
progress to the next stage of training, all animals had to con-
sume the reinforcer for at least one of the two sessions.
Animals were then trained to associate stimuli on the screen
with reinforcement for a single session. This was achieved by
pairing stimulus offset with 5-μl liquid reinforcer delivery. If
the animal emitted a response to the stimulus prior to offset,
15 μl of liquid reinforcer was delivered. Animals were subse-
quently trained to emit responses at the screen for one session.
In this session, animals had to touch the stimulus to earn 5 μl

Fig. 1 Manipulation of performance on touchscreen VPVD by
administration of SB 242084. a Timeline of behavioural procedures and
drug administration in this study. b Percent (mean and SEM) optimal
performance on standard S+ > S− trials by session. c Percent (mean and
SEM) optimal choice on S+ > S50 trials. d Percent (mean and SEM)

optimal choice on S− > S50 trials. e Cumulative errors (mean and SEM)
by phase on S+ > S− trials. fCumulative (mean and SEM) errors by phase
on S+ > S50 trials. g Cumulative (mean and SEM) errors by phase on
S50 > S− trials
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of liquid reinforcer. Next, all animals were trained to initiate
trials by breaking the infrared beamwithin the reinforcer mag-
azine. This was conducted as per the previous stage but all
animals needed to make a head entrance to the magazine for
stimulus onset. Finally, animals were trained that incorrect
responses resulted in a time out. In this session, any touch to
the non-stimulus location resulted in a brief timeout (5 s).

Valence-probe visual discrimination

This task is an adapted version of the previously described
touchscreen visual discrimination procedure (Horner et al.
2013; Nilsson et al. 2016). Following pre-training, all animals
were initially trained on a previously reported standard visual
discrimination except that no correction trials were included at
any stage (Horner et al. 2013). In these sessions, two visual
stimuli were presented on the touchscreen concurrently. One
stimulus was designated as the S+ and was reinforced 100%
of the time, whilst the other was designated as the S− and
never reinforced. The S+ and S− were counterbalanced be-
tween animals. For all sessions, animals were allowed to com-
plete 60 trials. If 60 trials had not been completed after 60 min
had elapsed, the session was terminated.

Once all animals had achieved 80% correct responses,
probe trials were introduced. Now, the same two-choice dis-
crimination as during the previous stage was presented on
75% of the trials. On the remaining trials, a novel stimulus
was introduced and paired with either the learned S+ or S− to
form two new two-choice discriminations. The novel stimulus
was designated as ‘S50’. Responses to the S50 were rewarded
on 50% of the trials and non-rewarded on 50% of the trials
(Nilsson et al. 2015). Thus, when presented with the S+ vs
S50 configuration, the S+ was the optimal response. When
presented with the S− vs S50 configuration, a response to
the S50 was the optimal response. All animals were required
to respond optimally at 70% or more on these trials before
proceeding to drug testing.

Once all animals had successfully reached criterion, a new
set of discriminative stimuli (S+ and S−) were presented. The
S50 stimulus remained the same. On this new discrimination,
all animals were treated with SB 242084 (0, 0.5 or 1.0 mg/kg)
in a between-subject design. Ten sessions of this new discrim-
ination were presented. All animals were treated with their
allocated dose 20 min before each session.

Within-session serial probabilistic reversal learning

Following the conclusion of VPVD testing, all animals were
trained on a serial probabilistic reversal learning procedure
(PRL). The procedure was designed according to previously
reported PRL procedure for the rat and mouse using nose-
poke apparatus (Bari et al. 2010). Initially, all animals were
trained a deterministic reversal learning procedure. The PRL

experiments used a three-hole Perspexmask. At the beginning
of each session, the two flanker locations were illuminated
with white square stimuli. For every session, one of these
was randomly designated as correct and one as incorrect. A
touch to the correct location always resulted in the delivery of
5 μl of liquid reinforcer. Any touch to the incorrect location
resulted in the omission of reinforcement and had no other
programmed consequence. Between trials, an inter-trial in-
terval of 10 s occurred. If five consecutive correct re-
sponses were emitted, the correct and incorrect locations
switched, so the previously correct location became incor-
rect, and the previously incorrect location became correct.
Animals were permitted to complete a maximum of 90
trials in a maximum of 60 min.

When performance was stable, probabilistic feedback was
introduced. These sessions were identical to the deterministic
reversal learning procedure described above except that the
correct location was only reinforced 80% of the time. On the
remaining 20% of trials, a correct response received the same
feedback as an incorrect response. Conversely, incorrect
responses were reinforced 20% of the time whilst the re-
maining 80% were treated as incorrect. Following
stabilisation of performance on PRL (three consecutive
sessions of no significant change in number of reversals
completed), either SB 242084 (0, 0.5 or 1.0 mg/kg) or
WAY 163909 (0, 1 or 3.0 mg/kg) was administered in a
within-subject design, with every animal receiving vehicle
and two doses of the allocated drug in a counterbalanced
Latin square design on consecutive daily sessions.

Data analysis and statistics

All data were automatically committed to a database within
the ABET II Touch software. For VPVD, percent correct for
each trial type was analysed. Total errors on each trial type for
sessions 1–5 or 6–10 were also summed and analysed. For
PRL, number of trials completed, number of reversals com-
pleted and trials per reversal were analysed. In addition, trial-
by-trial analysis was used to determine win-stay and lose-shift
performance by analysing the choice of animals on the trial
following positive or negative feedback. Specifically, a trial
was coded as win-stay if the animal chose the same location as
a previously rewarded trial. A trial was coded as lose-shift if
the animal switched location following a non-rewarded trial.
Win-stay and lose-shift measures are expressed as conditional
probabilities. In addition, response and reward collection la-
tencies (session median per animal to reduce the influence of
extreme outliers) and front and rear beam break rate (beam
breaks per second) were analysed. Whole sessions were ex-
cluded from PRL analysis when the animal failed to complete
the initial acquisition phase. Thus, the final n out of initial n
per condition for PRL was as follows: SB 242084 0 mg/kg =
15/16, 0.5 mg/kg = 15/16, 1 mg/kg = 13/16; WAY 163909
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0 mg/kg = 15/16, 1 mg/kg = 12/16, 3 mg/kg = 13/16. In addi-
tion to whole-session analysis, PRL performance was separat-
ed by task phase. Specifically, performance was calculated in
isolation for ‘retention’ (all trials prior to the first five consec-
utive optimal responses) and ‘first reversal’ (all trials follow-
ing the first five consecutive optimal responses prior to the
second five consecutive optimal responses). Win-stay and
lose-shift proportions for all animals were analysed using
three-factor models with drug (SB 242084 or WAY 163909)
as a between-subject factor and measure (win-stay, lose-shift)
and dose (vehicle, low or high) as within-subject factors.
Significant three-way interactions were investigated using
separate two-factor models for each drug with measure and
dose as within-subject factors.

Data were analysed using linear mixed models with the
package ‘lme4’ in R version 3.2.2 (www.r-project.org). The
Sattherthwaite approximated degrees of freedom were
determined using the R package ‘lmerTest’. Significant
interactions were interrogated with the Tukey adjustment for
multiple comparison using the ‘lsmeans’ function from the R
package ‘lmerTest’. A significance level of 0.05 was used
throughout. Asterisks denote significance in all figures
(*< 0.05, **< 0.01, ***< 0.005). All data are presented
as mean ± standard error of the mean.

Results

SB 242084 impairs VPVD acquisition

Analysis of optimal choice performance on deterministic S+
> S− trials (Fig. 1b) revealed a significant main effect of ses-
sion (F(9,234) = 77.83, p < 0.0001) and interaction between
dose and session (F(18,234) = 2.32, p < 0.005). Post hoc
analysis revealed that 0.5 mg/kg of SB 242084 impaired
performance relative to vehicle at session 8 (p < 0.05) and
that 1.0 mg/kg of SB 242084 impaired performance rela-
tive to 0.5 mg/kg at session 5 (p < 0.05) and facilitated
performance relative to 0.5 mg/kg at session 8 (p < 0.01).
0.5 mg/kg of SB 242084 also impaired performance rela-
tive to vehicle and 1-mg/kg doses in session 9 (p < 0.05).
This suggests that 0.5 mg/kg SB 242084 impaired learning
in the late sessions. There was no effect of dose on S+ > S−
choice trials (F(2,26) = 2.644, p = 0.09).

Analysis of performance on probe trial types together
(Fig. 1c, d) revealed a main effect of session (F(9,520.01) =
7.17, p < 0.0001) and a significant dose-by-trial type interac-
tion (F(2520.01) = 8.10, p < 0.0001) on the percentage of op-
timal performance. Post hoc testing revealed significantly
lower performance on S+ > S50 trials in 0.5-mg/kg animals
compared to 0-mg/kg treated animals (p < 0.005). There was
also a non-significant trend for a trial type by session interac-
tion (F(9,520.01) = 1.86, p = 0.056).

Since the significant dose-by-session interaction on S+ > S
− trials appeared to be driven by different doses of SB 242084
exerting divergent effects at different stages of acquisition, we
split performance into early and late sessions (< 5 sessions, > 5
sessions) and calculated the total number of errors committed
during each phase (Brigman et al. 2013) (Fig. 1e–g). Analysis
of these measures for non-probe S+ > S− choice trials revealed
a significant effect of phase (F(1,26) = 56.15, p < 0.0001) and
a significant interaction between dose and phase for incorrect
responses (F(2,26) = 3.80, p < 0.05) (Fig. 1e). Post hoc
pairwise comparisons did not reveal any significant dose-
related effects. Analysis of S+ > S50 probe trials showed a
significant effect of phase on errors (F(1,26) = 15.83,
p < 0.001) (Fig. 1f) with animals making more errors in the
initial sessions. No other significant effects were detected on
S+ > 50 probe errors and no significant effects were detected
for S50 > S− probe errors (Fig. 1g).

SB 242084 and WAY 163909 alter sensitivity
to feedback in serial PRL

Following VPVD, we investigated the involvement of the 5-
HT2CR in reactivity to positive and negative feedback by
testing animals on PRL (Fig. 2a) following acute administra-
tion of the antagonist SB 242084 and agonist WAY 163909.
On the final session prior to the commencement of drug stud-
ies, an average of 2.76 ± 0.34 (SEM) reversals were complet-
ed. Animals completed an average of 64.567 ± 4.8 (SEM)
trials. On feedback response measures, animals exhibited an
average of 0.67 ± 0.025 (SEM) win-stay and 0.49 ± 0.02
(SEM) lose-shift.

For drug administration, on trials completed (Fig. 2b, c),
there was no effect of SB 242084, but a significant main effect
of WAY 163909 (F(2,21.77) = 9.12, p < 0.005) with reduced
trial completion at 3 mg/kg relative to both 0 mg/kg
(p < 0.005) and 1 mg/kg (p < 0.01). There was no effect of
drug on overall reversals completed for either SB 242084 or
WAY 163909 (Fig. 2d, e). On trials per reversal (Fig. 2f, g),
there was a non-significant trend for SB 242084 in the
direction of a performance impairment (F(2,26.58) =
2.99, p = 0.07).

SB 242084 and WAY 163909 significantly altered feed-
back response measures as measured by win-stay and lose-
shift. A three-factor model containing drug (SB 242084,WAY
163909), dose (vehicle, low, high) and measure (win-stay,
lose-shift) revealed a significant three-way interaction
(F(2,154) = 5.60, p < 0.005) on the conditional probability
measures (win-stay and lose-shift). There was also a non-
significant trend toward a drug by dose interaction
(F(2,154) = 2.44, p = 0.09). To investigate the three-way inter-
action, two-factor models (dose and measure) were fit for each
drug, revealing significant effects of measure (F(1,80) =
67.01, p < 0.0001) and dose (F(2,80) = 4.16, p < 0.05) in
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animals administered SB 242084 (Fig. 2h). Post hoc compar-
ison showed that 1 mg/kg of SB 242084 increased win-stay
relative to vehicle (p < 0.01) and 0.5-mg/kg (p < 0.05) doses.
There was also a significant effect of feedback response mea-
sure (F(1,74) = 70.00, p < 0.0001) and an interaction between
this factor and dose (F(2,74) = 3.90, p < 0.05) (Fig. 2i). WAY
163909 tended to increase win-stay and reduce lose-shift
choice proportions at 3 mg/kg relative to vehicle but post
hoc analysis revealed no significant effects. SB 242084 and
WAY 163909 administration also resulted in a set of changes
in latencies and infrared beam breaks consistent with general-
ised changes in motoric activity (Table S1 and Fig. S1).

SB 242084 and WAY 163909 exert opposing effects
on PRL acquisition performance

Data acquired from reversal tasks can be split into phases
known to be differentially sensitive to manipulations (Bari
et al. 2010; Brigman et al. 2010; Alsiö et al. 2015). To deter-
mine if 5-HT2CR manipulation resulted in task phase selec-
tive effects, we analysed acquisition and first reversal sepa-
rately in the PRL procedure. This analysis revealed a signifi-
cant increase in trials to criterion following SB 242084 admin-
istration (F(2,25.68) = 7.66, p < 0.005) (Fig. 3a). In contrast,
no effect of WAY 163909 administration was detected on this
measure (Fig. 3). For win-stay and lose-shift proportions, a
three-factor model applied to the feedback response measures
revealed a significant three-way interaction between
drug, dose and measure (F(2,116.81) = 3.70, p < 0.05).
To further investigate this effect, a two-factor model was

applied. This showed a significant effect of response measure
in SB 242084-treated animals (F(1,62.028) = 5.34, p < 0.05)
(Fig. 3c) due to a consistently higher proportion of win-stay as
compared to lose-shift. For WAY 163909-treated animals, the
two-factor model revealed a non-significant trend toward a
main effect of response measure (F(1,54.58) = 3.50, p =
0.067) (Fig. 3d).

Analysis of the first reversal performance revealed no sig-
nificant effect of SB 242084 or WAY 163909 on trials to
reversal completion (Fig. 3e, f). When the three-factor model
was applied, a significant three-way interaction between drug,
dose and measure was detected (F(2,119.04) = 3.42, p < 0.05).
In SB 242084-treated animals, both a non-significant trend
toward a significant interaction between dose and measure
(F(1,62.52) = 2.42, p = 0.1)) and a significant effect of mea-
sure were detected with a two-factor model (F(1,62.52) =
16.06, p < 0.0001) (Fig. 3g). A non-significant trend toward
significant interaction between WAY 163909 dose and mea-
sure was detected on feedback response measures
(F(2,56.91) = 2.66, p = 0.08), as well a significant effect of
response measure (F(1,59.31) = 62.07, p < 0.0001) (Fig. 3h).

Discussion

MDD is closely associated with abnormal responsivity to
negative feedback resulting in emotional and cognitive
dysfunction (Elliott et al. 1997; Roiser et al. 2012). Since
5-HT is known to play a critical role in these processes
(Bari et al. 2010; Ineichen et al. 2012) and discrimination

Fig. 2 Whole-session performance on touchscreen PRL. a Illustration of
PRL task. b SB 242084 overall number of trials completed (mean and
SEM). c WAY 163909 overall number of trials completed (mean and
SEM). d SB 242084 number of reversals attained (mean and SEM). e
WAY 163909 number of reversals attained (mean and SEM). f SB

242084 trials per completed reversal (mean and SEM). g WAY 163909
trials per completed reversal (mean and SEM). h SB 242084 win-stay
lose-shift conditional probabilities (mean and SEM). iWAY 163909 win-
stay lose-shift conditional probabilities (mean and SEM)
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learning (Izquierdo et al. 2012), we investigated the impact
of systemic treatments with 5-HT2CR selective drugs on
discrimination learning and positive and negative feedback
responsivity in mice. Using a serial touchscreen PRL task,
we show that 5-HT2CRs are involved in regulating the
balance between positive and negative feedback integra-
tion in reinforcement choice procedures by affecting win-
stay and lose-shift measures.

WAY 163909, a 5-HT2CR agonist, reduced the sensitivity
to negative feedback and improved PRL performance. Similar
to the effect of WAY 163909, high or chronic doses of SSRIs
facilitate 5-HT transmission (El Mansari et al. 2005; Dankoski
et al. 2016), improve reversal learning performance (Brigman
et al. 2010) and decrease sensitivity to negative feedback (Bari
et al. 2010) and we hypothesise that such effects may in part
be mediated by altered activity at 5-HT2CRs. These results
indicate that 5-HT2CRs may represent a significant locus in
the mechanism of effective antidepressant therapeutics
(Martin et al. 2014). Conversely, the effects of SB 2424084
on PRL appeared to be mediated by drug effects during the
acquisition phase, with no detectable effects of administration
of this drug on the first reversal. This is consistent with previ-
ous studies reporting an improvement in deterministic reversal
learning performance following 5-HT2CR antagonist admin-
istration (Boulougouris et al. 2008; Boulougouris and
Robbins 2010; Alsiö et al. 2015). Specifically, on PRL, the
overall reduction in positive feedback sensitivity is
hypothesised to impair acquisition performance by increasing
the likelihood of switching following positive feedback. Since
positive feedback is uncommon in early reversal, no change in
overall reversal performance is detectable. A number of

important limitations necessitate further research into the re-
lationship between 5-HT2CR function and abnormalities in
reinforcement sensitivity observed in MDD. First, these ex-
periments were conducted in mice with an intact 5-HT system
and not a putative model of MDD. The effects of the 5-
HT2CR selective manipulations may differ when applied to
a dysregulated 5-HT system. Therefore, future studies may
seek to determine the effects of 5-HT2CR modulation on re-
inforcement sensitivity in candidate MDD mouse models. In
addition, it is possible that the effects described in this manu-
script are affected by both the order of exposure to the behav-
ioural tasks described and the level of performance attained on
PRL at the point of drug testing. However, the level of perfor-
mance attained in this cohort on PRL prior to the commence-
ment of drug administration was highly comparable to other
cohorts trained in our laboratory and no effect of previous
drug exposure from VPVD was detected on PRL perfor-
mance. Future studies may seek to explore the interaction
between training history and performance with respect to
modulation of the 5-HT system.

5-HT2CRs as antidepressant targets

Compounds with affinity for the 5-HT2CR, typically with
antagonistic mechanisms, have been shown to exert rapid
antidepressant-like effects (Opal et al. 2014) and improve mo-
tivation in mice (Bailey et al. 2016) and constitute a novel
antidepressant candidate. Our results, however, indicate that
5-HT2CR antagonism diminishes sensitivity to positive feed-
back which may potentially accentuate aspects of the negative
symptomology. These results also indicate that 5-HT2CRs

Fig. 3 Performance on PRL
separated by within-session task
phase acquisition and first
reversal. a SB 242084 acquisition
trials to criterion (mean and
SEM). b WAY 163909
acquisition trials to criterion
(mean and SEM). c SB 242084
acquisition win-stay lose-shift
conditional probabilities (mean
and SEM). d WAY 163909
acquisition win-stay lose-shift
conditional probabilities (mean
and SEM). e SB 2424084 first
reversal trials to criterion (mean
and SEM). f WAY 163909 first
reversal trials to criterion (mean
and SEM). g SB 242084 first
reversal win-stay lose-shift
conditional probabilities (mean
and SEM). h WAY 163909 first
reversal win-stay lose-shift
conditional probabilities (mean
and SEM)
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may play a mixed role in depressive symptomology rather
than a straightforward unidirectional modulation. The precise
function is likely to depend on other factors including anatom-
ical location and RNA edited state (Dracheva et al. 2009;
Lyddon et al. 2013; Valencia-Torres et al. 2017). For instance,
previous studies indicate that 5-HT2CRs in the orbitofrontal
cortex (Boulougouris and Robbins 2010; Alsiö et al. 2015),
dorsal raphé nucleus (Spoida et al. 2014) and ventral tegmen-
tal area (Valencia-Torres et al. 2017) are likely to support
highly diverse behavioural functions. Therefore, studies that
seek to establish putative novel antidepressants that target 5-
HT2CRs should consider carefully the mixed effect on de-
pressive symptoms that drugs of this class are likely to evoke.

Relevance of 5-HT2CRs and feedback sensitivity
to cognitive flexibility and relationship
between emotional and cognitive dysfunction inMDD

Numerous studies have established a strong link between
emot iona l and cogn i t ive dys func t ion in MDD.
Contemporary theories ofMDD present a cognitive neuropsy-
chiatric account whereby cognitive biases are closely involved
in the development and maintenance of emotional dysfunction
(Austin et al. 2001). Thus, cognitive abnormalities give rise to
emotional dysfunction that is central to MDD via biases in
reinforcement learning, environmental perception and judge-
ment (Pinto and Whisman 1996).

Previous studies have investigated the impact of 5-
HT2CRs on cognitive flexibility, specifically by using rever-
sal learning procedures that require animals to overcome pre-
vious associations and subsequently learn a new set of contin-
gencies. Since such procedures depend on the successful as-
similation of positive and negative feedback, the results of this
study may provide a powerful complement to previously re-
ported results. Specifically, 5-HT2CR antagonism can im-
prove reversal learning performance (Boulougouris et al.
2008; Boulougouris and Robbins 2010) by facilitating learn-
ing in the early reversal phase (Alsiö et al. 2015). It has also
been reported that 5-HT2CR antagonism can impair late re-
versal performance (Alsiö et al. 2015). These results are con-
sistent with the data described here. Early reversal perfor-
mance is highly dependent on integration of negative feed-
back as the animal persists in responding to the previously
correct stimulus. In late reversal performance, heightened sen-
sitivity to positive feedback is necessary in order to make
repeated similar responses and attain high levels of perfor-
mance. Thus, diminished sensitivity to positive feedback via
SB 242084 administration, as observed here, can impair late
reversal performance by decreasing the probability a rein-
forced choice will be repeated. Consistently, SB 242084 im-
paired visual discrimination in this study. Visual discrimina-
tion does not comprise an ‘early phase’ equivalent to reversal

learning resulting in SB 242084-treated animals displaying an
overall impairment.

Valence-probe visual discrimination task
and touchscreen PRL

The adapted VPVD procedure, originally suggested by
Nilsson et al. (2015), allows for assessment of the impact of
positive and negative feedback on learning performance by
leveraging a probabilistically reinforced ‘neutral’ stimulus.
Mice must learn to select optimally on ‘probe’ trials where
the probabilistically reinforced stimulus is presented alongside
deterministically reinforced alternatives. This can be achieved
by accruing independent associative strength to the stimuli,
such that probe trial performance is determined by the degree
of positive or negative associate strength assigned to the S+ or
S− respectively. This allows positively or negatively biased
reinforcement to be studied in mice in the touchscreen appa-
ratus. Previous studies have extensively evaluated the neural
and pharmacological systems governing standard discrimina-
tion learning (Winters et al. 2010; Brigman et al. 2013;
Graybeal et al. 2014). However, VPVD provides insight into
the processing of positive and negative feedback that deter-
mines performance on reinforcement learning procedures and
may help build upon previous results that have reported dis-
crimination phase-specific results (Brigman et al. 2010, 2013).

This report provides the first description of a touchscreen
spatial probabilistic reversal learning procedure for mice. We
adapted this task from previous reports (Bari et al. 2010) but
optimised the reversal criterion and initially trained the mice
under a deterministic reversal learning procedure. Thus, we
provide methods for the assessment of probabilistic reinforce-
ment in mice in the touchscreen apparatus and demonstrate
both their sensitivity to pharmacological manipulation and the
ways in which their combined use can yield insight into
the relationship between reinforcement learning and bi-
ased responding to positive and negative feedback.
Since rodent models have traditionally suffered from is-
sues related to translational validity (Cryan and Holmes
2005), these tasks in combination may represent a valu-
able tool for the pre-clinical screening of potential thera-
peutics with a lower severity threshold than behavioural
assays traditionally used in this area. This approach is
further bolstered by recently validated touchscreen tasks
for the assessment of motivation and effort related
decision-making in this apparatus (Heath et al. 2015), as
these domains are also critically disrupted in MDD pa-
tients and other disorders characterised by depressive
symptomology (Salamone et al. 2009; Treadway et al.
2012). The operant conditioning touchscreen apparatus
can therefore be used to test mice on a battery of sensitive
tasks for the assessment of motivation and reinforcement
learning (Markou et al. 2013).
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Conclusions

The results obtained using these novel touchscreen procedures
provide a potential link between feedback response abnormal-
ities observed in MDD with a specific function bi-
directionally supported by 5-HT2CRs. Whilst 5-HT2CR an-
tagonists increase motivation (Simpson et al. 2011) and rap-
idly reduce depressive-like behaviour (Opal et al. 2014),
resulting in the identification of 5-HT2CRs as viable therapeu-
tic targets for depressive symptoms (Serretti et al. 2004), the
results observed in this study suggest that they may also dis-
rupt discrimination learning and diminish sensitivity to posi-
tive feedback. These results also expand upon previous find-
ings regarding the role of 5-HT2CRs in reversal learning by
providing a positive and negative feedback integration model
for performance on these tasks and provide touchscreen tasks
for the assessment of these domains in mice.
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