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The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the
development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To
address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8* T-cell
responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute
infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with
detectable CD8* T-cell responses, indicative of positive selective immune pressures. An additional 18% of
amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of
which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of
reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8*
T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease
indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in
mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C
viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and
global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints

limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.

One of the greatest challenges facing the design of an effec-
tive human immunodeficiency virus type 1 (HIV-1) vaccine is
the extensive global sequence diversity of this pathogen. Nu-
merous clades of HIV-1 predominate worldwide (22, 41), and
even within individual clades there is sufficient sequence diver-
sity to make selection of optimal antigens for vaccine design
extremely difficult. These issues are compounded by the in-
creasing emergence of recombinant viruses, especially in re-
gions of Southeast Asia and Central Africa (24, 52, 53), likely
arising through dual infection or superinfection of individuals
with different strains (8, 18). This sequence diversity of HIV-1
is thought to result from random errors introduced during
reverse transcription (47) as well as host immune selection
pressures (44).

Equally challenging to vaccine development is the ability of
HIV-1 to evolve within an individual during the course of
infection. Viral escape from both CD8" T-cell responses (4,
10, 11, 27, 39, 44, 45) and neutralizing antibodies (2, 9, 12, 36,
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46, 55) in HIV-1 and simian immunodeficiency virus (SIV)
infection is well documented. However, while evolution within
the envelope protein is clearly associated with strong autolo-
gous neutralizing antibody responses (46, 55), the contribution
of immune selection pressure to viral evolution in nonenvelope
proteins of HIV-1 is less clear. With few exceptions (39, 40),
most studies have focused on examining viral evolution within
only a single or a few epitopes, although there is now strong
evidence for adaptation of HIV-1 to host CD8* T-cell re-
sponses at the population level (37), suggesting a role for
escape from immune responses in driving global HIV-1 se-
quence diversity. Therefore, the extent to which HIV-1 evolves
over the course of infection remains unclear, as does the de-
gree to which these changes are specifically driven by CD8™
T-cell-associated selective pressures.

Conversely, recent reports of reversion of CDS§ escape mu-
tations upon transmission of HIV-1 and SIV to a new host (3,
20, 30), and of the impact of some SIV CD8 escape mutations
on viral fitness (20, 21, 43), imply structural or functional
constraints on evolving mutations (20, 21, 32, 51). However,
little is known still regarding the extent to which biochemical
sequence constraints impact the accumulation of mutations
arising from immune selection pressures, or the relationship
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FIG. 1. Clinical course of HIV-1 infection in four study subjects. Viral loads and CD4* T-cell counts are shown for four subjects identified
during acute HIV-1 infection and followed longitudinally. Arrows indicate time points from which viral sequences were derived. Shaded regions,

time under treatment with highly active antiretroviral therapy.

between immune selection pressures and global HIV-1 diver-
sity.

MATERIALS AND METHODS

Subjects. The four acutely HIV-1 infected subjects were enrolled from the
Boston Acute Infection Cohort and identified during primary HIV-1 infection.
Subjects AC-04 and AC-16 were enrolled in a structured treatment interruption
protocol described previously (48). Chronically infected subjects were enrolled
from the Massachusetts General and Shattuck Hospitals in Boston, Queen Elisa-
beth Hospital in Bridgetown, Barbados (19), Praxis Heiko Jessen, Berlin, Ger-
many, and Department of Internal Medicine, University of Bonn, Germany.
HLA class T typing of the four acute-phase study subjects was as follows: for
AC-38, A01, A03, B07, B57, C06, and C07; for AC-59, A02, B07, B44, C05, and
C07; for AC-04, A02, All, B18, B44, C05, and C12; and for AC-16, A28, A29,
B14, B44, and C08. HLA class II typing was as follows: for AC-38, DR7/15,
DRw51/53, and DQ6/9; for AC-59, DR8/13, DRw52, and DQ4/6; for AC-04,
DR4/15, DRw51/53, and DQ1/7; and for AC-16, DR7/13, DRw52/53, and
DQ2/7. Time points for each subject, defined from the day of presentation with
symptomatic acute HIV-1 infection, are as follows: for AC-38, days 64, 408,
1,073, 1,213, and 1,510; for AC-59, days 41 and 111; for AC-04, days 0 and 1,650;
and for AC-16, days 0 and 1,934.

IFN-y ELISPOT assay. HIV-1-specific CD8" T-cell responses were quantified
by a gamma interferon (IFN-y) enzyme-linked immunospot (ELISPOT) assay as
described previously (57), using overlapping peptides (15- to 18-mer peptides
overlapping by 10 amino acids) spanning the entire expressed HIV-1 clade B
2001 consensus sequence, as well as peptides corresponding to optimal described
clade B cytotoxic T-lymphocyte (CTL) epitopes (13) and autologous virus se-
quences. IFN-y-secreting T cells were counted by an automated reader and
expressed as spot-forming cells (SFC) per 10° input cells after subtraction of the
negative control. A response was considered positive if there were =50 SFC per
10° cells and this level was least 3 times greater than mean background activity.

Sequencing of autologous virus. Viral DNA was isolated from peripheral
blood mononuclear cells (5 X 10° cells), and viral RNA was extracted from
plasma samples and reverse transcribed as described previously (8). A set of 49
primary and nested PCR primer pairs amplified the entire HIV-1 genome as
described previously (8). When necessary, PCR fragments were gel purified, and
PCR products were then population sequenced bidirectionally on an ABI 3100
PRISM automated sequencer. Sequencher (Gene Codes Corp., Ann Arbor, MI)

and MacVector 4.1 (Oxford Molecular) software were used to edit and align
sequences.

Identification of HLA-associated sequence polymorphisms. HLA-associated
sequence polymorphisms were identified using the customized software program
Epipop, as described previously (37). The Epipop analysis utilized partial or
whole-genome sequences (>75% from clade B) derived from 230 subjects HLA
typed to 4 digits by using high-resolution HLA-A, -B, and -C typing.

Statistical analysis. Wilcoxon rank sum tests and Fisher exact tests were
conducted using Prism 4.0 (GraphPad, San Diego, CA).

Nucleotide sequence accession numbers. Sequence data for autologous virus
are available from GenBank under accession no. DQ127534 to DQ127551. Data
for HLA-associated sequence polymorphisms are listed under GenBank acces-
sion no. AY856956 to AY857186.

RESULTS

In vivo sequence evolution is strongly associated with virus-
specific CD8* T-cell responses. To determine the relationship
between immune selection pressure and intrahost viral evolu-
tion, we performed whole-genome sequencing together with
assessment of CD8* T-cell responses for four HIV-1-infected
subjects identified during acute infection, two of whom were
transiently treated with antiretroviral drugs (Fig. 1). For this
analysis, we excluded the envelope gene, which is known to be
under dominant humoral immune selection pressure (46, 55).
Population sequencing of virus circulating in plasma, per-
formed at the time of acute infection, showed a relatively
homogeneous virus population in each person, with the infect-
ing clade B viruses differing from one another by 8.7% to
10.8% (data not shown).

Longitudinal viral sequence data indicated a progressive ac-
cumulation of amino acid mutations that occurred in a step-
wise fashion. Representative data are presented in Fig. 2A for
subject AC-38, in whom a total of 52 amino acid mutations
arose sequentially over the 4 years of follow-up. Nearly half of
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FIG. 2. Sites of sequence variation and associated CD8 T-cell responses. Longitudinal whole-genome sequencing, excluding Env, was con-
ducted on four subjects. (A) Mutations accumulating in subject AC-38 over 4 years of follow-up (O). (B) Mutations developing in each subject over
0.3 to 5.3 years of follow-up (O). ®, mutations associated with detectable IFN-y ELISPOT CD8* T-cell responses. Numbers corresponding to
mutations associated with reversions are boxed in black. (C) Summary of mutations associated with detectable CD8" T-cell responses in either
defined or newly identified epitopes or with reversions. Mutations strongly associated with HLA alleles at the population level are indicated
separately.
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these mutations occurred in the first year after infection, be-
fore viral loads rose above 5,000 copies/ml; all but one muta-
tion remained stable subsequently. Similar analyses were per-
formed for all four persons, ranging from 0.3 to 5.3 years of
follow-up, and showed evolution of 7 to 52 mutations per
individual (Fig. 2B). Of note, there were an additional 82 silent
nucleotide mutations in these subjects which did not code for
amino acid substitutions (data not shown).

Peripheral blood mononuclear cells from subjects were also
screened by an IFN-y ELISPOT assay to determine the spec-
ificity of the CD8" T-cell response against all nonenvelope
proteins (8, 57). Where indicated, peptides corresponding to
autologous virus sequences were also tested when the autolo-
gous virus differed from the clade B consensus sequence in a
region undergoing evolution (see Table S1 in the supplemental
material). Of the 98 amino acid mutations defined in these
subjects, 29 resided within previously defined CDS8 epitopes
restricted by HLA alleles expressed in the individual subjects,
and in each case a CD8" T-cell response was detected against
the optimally defined CDS8 epitope or the autologous variant
(Fig. 2B). An additional 23 mutations were also targeted by
circulating CD8* T cells in these individuals, representing
previously undescribed novel epitopes (Fig. 2B; see also Fig. S1
and Table S1 in the supplemental material). Thus, 52 of the 98
mutations (53% overall; range, 48% to 60%) arising from the
time of acute infection were linked to CD8" T-cell selection
pressures documented to be present in vivo.

We next compared these evolving mutations to an extensive
HIV-1 clade B sequence database in which allele-specific poly-
morphisms have been defined for the most frequently ex-
pressed alleles and statistically linked to immune selection
pressure, but for which direct immunologic evidence has been
lacking (37). Allele-specific polymorphisms were identified us-
ing the customized software program Epipop, as previously
described (37). Eleven mutations were strongly associated at
the population level in subjects expressing the respective re-
stricting HLA class I alleles (Table 1), providing direct exper-
imental support for the notion that these population sequence
polymorphisms are linked to host CD8" T-cell responses.

We also addressed the proportion of CD8* T-cell epitopes
that remained invariant despite documented selection pressure
in the three subjects monitored for more than 1 year. In addi-
tion to the 21, 6, and 13 CD8™ T-cell responses against evolv-
ing regions in subjects AC-38, AC-04, and AC-16, another 22,
16, and 16 responses, respectively, that never varied despite the
persistence of responses were detected in each subject (see
Table S2 in the supplemental material). Thus, a majority of the
CD8" T-cell responses in these subjects (51% to 73%) tar-
geted regions that remained invariant over time. Including
those epitopes that were associated with variation and those
that remained stable, 9% to 18% of the non-Env residues in
the viral genomes of these subjects were exposed to CD8™
T-cell selective pressures, and mutations were >7-fold more
likely to occur within CD8* T-cell-targeted regions of the virus
than in nontargeted regions (P < 0.0001), indicating that viral
evolution was not random but rather was due to specific selec-
tion pressures.

HIV evolution following acute infection is also influenced by
reversion of transmitted CD8-associated mutations. In addi-
tion to mutations arising under CD8" T-cell selection pres-
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sure, other mutations arose in regions with no detectable
CD8" T-cell response. A possible cause of these sequence
changes is reversion of transmitted mutations selected by
CD8™" T-cell responses in the prior host, which occurs in the
absence of the original selection pressure (3, 20, 30). Of the 46
mutations not associated with CD8* T-cell responses, 18
(39%) represented evolution toward the more common HIV-1
clade B consensus sequence, and most of these represented
highly conserved residues in the database, consistent with mu-
tations that are intrinsically unstable in the absence of selection
pressure (see Table S1 in the supplemental material). Notably,
in Fig. 2A, of the 11 mutations representing reversions in
subject AC-38, 8 (72%) were evident at the earliest time point,
while only 15/41 (36%) of forward mutations had arisen within
a similar time frame. This observation may suggest that rever-
sions preferentially occur early after infection, perhaps repre-
senting a driving force for early evolution of HIV. Again, by
use of the Epipop program (37), 9 of the 18 mutations were
found to be associated with allele-specific polymorphisms at
the population level, and in each case the associated allele was
not expressed by the respective acutely infected subject (Table
1). Therefore, in addition to the 52 mutations associated with
detectable CD8™" T-cell responses in the host, at least 9 and as
many as 18 additional mutations are consistent with adapta-
tions due to previous CD8" T-cell selective pressures. These
data suggest that reversion of HLA class I-associated muta-
tions following transmission is a common event. Thus, together
with mutations associated with detectable CD8 responses, 62%
to 71% of all nonenvelope mutations in these subjects were
associated with cellular immune pressures (Fig. 2C).
Evidence of selective escape in CD8 T-cell epitopes. The
above data suggest that the majority of mutations arising dur-
ing HIV-1 infection do not simply reflect random variation but
rather arise in response to specific selection pressures. To
further address the predictability of mutations, we examined
whether precise sites in evolving epitopes are reproducibly
selected in the context of specific class I alleles. We focused on
HLA-B57, an allele known to be associated with enhanced
immune control following acute infection (6, 35) and therefore
likely exerting substantial selective pressures (34). Each of the
12 previously defined HLA-B57-restricted CD8 epitopes (13)
was targeted in the untreated subject AC-38, and viral evolu-
tion was observed in 8 of these (see Table S1 in the supple-
mental material). We focused on the seven HLA-B57 epitopes
residing in Gag and Pol, since these conserved proteins were
most likely to reveal clear evolutionary patterns. Viral evolu-
tion within these seven Gag and Pol epitopes was examined in
10 additional HLA-B57 subjects exhibiting high levels of viral
replication, which are clinically linked to disease progression
(33). Four of these epitopes exhibited strikingly similar muta-
tions at seven residues, with six out of seven residues signifi-
cantly more variable in persons expressing HLA-B57 than in
the Los Alamos National Laboratory (LANL) database overall
(Table 2; range, P < 0.05 to P < 0.0001). A fifth epitope, QW9,
exhibited only a low frequency of mutations at positions 3 and
5 (P3 and P5), whereas the remaining two epitopes, KF11 and
KF9, were rarely observed to exhibit any sequence variation
and were similarly highly conserved in the LANL database
(Table 2). For some of these CDS8 epitopes in Gag, similar
patterns of viral evolution have also been observed previously
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TABLE 1. HIV-1 mutations
Subject and mutation” Protein  Site Sequence Polymorphism  HLA association OR® P
Mutations associated with HLA
alleles expressed by current host
AC-38
1 Gag 28 RLRPGGKKK K—Q A*0301 8.44  <0.0001
2 Gag 79 GSEELRSLY Y—F A*0101 2.71 0.0048
3 Gag 147 ISPRTLNAW I-L C*0602 6.41 0.0001
5¢ Gag 310 YKTLRAEQATQEVKNWMTE T—-S B*0702 10.16 0.0034
37 Rev 30 LLYQSDPPPSPEGTRQARR S—N C*0702 2.63 0.0182
48 Nef 114 RQDILDLWVY V-1 C*0701 5.88 0.0001
49 Nef 116 HTQGYFPDWQ H—-N B*5701 530 <0.0001
AC-04
2 Gag 357  ACQGVGGPGHK G—S A*1101 2.99 0.0153
9 Tat 32  CCEHCQVC F—X C*1203 23.15 0.0043
A*0207 8.92 0.0486
AC-16
10 Pol 726 QEEHEKYHSNW E—A B*4402 1776 <0.0001
10 Pol 726 QEEHEKYHSNW E—A B*4403 544  <0.0018
13a Vit 183  WNKPQKTKGYRGSHTMSGH Y—H B*4402 2.09  <0.0001
Transmitted HLA-associated
mutations reverting to
consensus
AC-38
5 Gag 310 YKTLRAEQATQEVKNWMTE T-S A*3001 0 <0.0001
B*4201 0 <0.0001
B*1503 0.07 0.0493
6 Gag 403 NCGKEGHIAKNCRAPRKKG K—R A*3101 0.04 0.0028
A*3303 0.05 0.0066
B*1801 0.28 0.0317
B*5301 0.08 0.0328
29b Tat 67 APQDsQTHQASsISKQPTSQ A—V C*1502 0 <0.0001
32 Vpu 44  RQRKIDRLIERIRERAEDS E—D C*0102 0.25 0.0276
33 Vpu 65 ESDGDQEEL--LVEMGHLA =S C*0202 0.21 0.0413
51 Nef 152 FKLVPVDPDEVEEANEGEN E—K C*0501 0.18 0.0213
AC-59
2 Vpr 48 LHGLGQQIYGTYGDTWEGV G—E B*4601 0.05 0.0008
A*3001 0.04 0.0102
B*4901 0.13 0.0107
B*1503 0.13 0.0311
AC-16
14 Tat 71  SQTHQVPLPEQPNSQPRGD E—K A*0101 0.19 0.0230
C*0304 0.21 0.0379
21 Nef 71 EDEEVGFPVKPQVPLRPMT K—R C*0702 0.07 0.0000
B*4002 0.13 0.0491

“ Mutation numbers correspond to Fig. 2A and to Fig. S1 and Table S1 in the supplemental material.

» OR, odds ratio.
¢ Associations observed for both forward and reverse mutations.

(30, 34). These data provide support for the concept of pre-
dictable viral evolutionary dynamics in persons sharing the
same HLA allele, and they reveal that viral evolution within
CDS8 epitopes may be stereotypic in nature.

The reproducibility of mutations in the HLA-B57 epitopes
suggested that a relationship may exist between the mutations
induced by immune pressures and highly polymorphic residues
of HIV-1 at the population level. We therefore determined the
degree to which mutating and nonmutating residues within
each CDS8 epitope were associated with sequence polymor-
phisms at the population level. Using sequences reported in
the LANL HIV Sequence Database (www.hiv.lanl.gov), nor-
malized Shannon entropy scores (50) were determined for
each residue of HIV-1 clade B, providing an overall assessment
of the sequence diversity present at each residue in circulating
HIV-1 clade B strains (58). Figure 3A illustrates the relative

conservation (1/entropy) of each residue within the seven
HLA-B57-restricted CDS8 epitopes studied and the position
where mutations reproducibly arose. This analysis showed not
only that the residues commonly mutating in a subject reflected
the most polymorphic residues in each epitope at the popula-
tion level but also that the majority of nonmutating residues
within these CDS epitopes remained highly conserved at the
population level.

The analysis was then broadened to examine the additional
CDS8 epitopes defined in the four longitudinally followed sub-
jects as well as published epitopes with documented CDS es-
cape mutations (3, 17, 23, 25, 26, 28, 30, 34), again focusing on
responses to the more conserved structural proteins Gag and
Pol. Here, 18 of the 28 mutations (64%) in these epitopes were
found to lie within the most variable residue in the epitope
(Fig. 3). Therefore, within the epitopes demonstrating escape,
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the most variable residue was significantly more likely to un-
dergo an amino acid change in a subject than all other residues
(P < 0.00005). One exception was the A3-AK9 Pol epitope
(AIFQSSMTK) (Fig. 3B), in which viral escape was observed
at P9 rather than at the most polymorphic residue (P5). No-
tably, a second epitope, B7-SM9 (SPAIFQSSM) (Fig. 3B),
with an escape mutation at the same residue, overlaps A3-AK9
and may account for this increased variability at PS in the
A3-AK9 epitope. Therefore, within these highly conserved
proteins of HIV-1, the same residues are repeatedly selected
for sequence variation, both in an individual and at the popu-
lation level. These data suggest that selection against deleteri-
ous mutations (purifying selection) (38, 51) may be functioning
to conserve important residues in clade B while allowing se-
quence variation only at precise residues to facilitate evasion of
host immune pressures.

As a result of these strong relationships, we conducted a
similar analysis of the remaining more variable accessory and
regulatory proteins of HIV-1. By combining previously de-
scribed CD8 escape mutations in Tat and Nef (14, 45), as well
as evolving targeted CDS8 epitopes in our study subjects, a total
of 23 epitopes were examined. In this analysis, however, only
8/26 mutations correlated with the most variable residue in
each epitope (see Fig. S2 in the supplemental material). The
inability to draw similar correlations between host CD8 escape
mutations and sequence diversity in these proteins is likely due
to the greater overall sequence variability within these pro-
teins. This increased variability may reflect either a more in-
tense targeting of these regions of HIV-1 by host CD8" T-cell
responses (1,5, 7, 31, 58) or a reduced requirement to maintain
such sequence conservation in these nonstructural proteins
(20).

In order to determine whether the inherent variability of a
region of HIV-1 containing a CD8 epitope was predictive of
epitopes undergoing sequence variation in a subject, we com-
pared the average entropy scores of mutating epitopes with
those of epitopes refractory to sequence changes, again using
sequences from the LANL database. A comprehensive analysis
of the 57 evolving and nonevolving minimally defined CDS§
epitopes in this study, including those from the regulatory and
accessory genes, demonstrated that epitopes exhibiting evolu-
tion in a subject were significantly more variable in the popu-
lation than epitopes that remained unchanged in the subjects
(P < 0.0005). Evolving epitopes exhibited average entropy
scores of 90.5% per residue, versus 94.8% per residue for
nonevolving epitopes. However, this finding may have been
influenced by a trend for mutating epitopes to reside within the
more variable nonstructural proteins while nonmutating
epitopes reside within the more conserved structural proteins
(P = 0.0531). Indeed, those proteins that accumulated the
most mutations in these subjects, after adjustment for protein
length (Rev > Tat > Vpr > Vpu > Nef > others), closely
reflect the relative variability of each of the HIV-1 proteins
(Vpu > Tat > Rev > Nef > others) (58). Therefore, the
inherent variability of a targeted CDS8 epitope, or protein,
appears to influence whether sequence variation is likely to
occur in response to CD8" T-cell selective pressures.

Polymorphic residues are shared across different HIV-1
clades. The above data suggest that within HIV-1 there are
restrictions influencing which residues within an immune-tar-

J. VIROL.

geted region are able to mutate. If purifying selective pressures
are indeed playing a role in dictating these restrictions, then
similar patterns of conserved and variable residues would be
expected to exist within other clades of HIV-1. Seventeen of
the 19 mutations in the clade B CDS8 epitopes in Gag and Pol
which correlated with the most polymorphic residue at the
population level (Fig. 3) also reflected the most polymorphic
residue in clade C (Fig. 4). In fact, for the majority of residues
in these epitopes, very similar patterns of conserved and vari-
able residues were observed between clades B and C, even at
highly polymorphic residues (Fig. 4).

An analysis of CD8" T-cell-associated mutations in the ac-
cessory and regulatory proteins again did not exhibit any strong
associations, although similar patterns of conserved and vari-
able residues were still evident. Therefore, we broadened the
analysis to all 2,299 amino acid residues of HIV-1 (excluding
Env). In total, 84% of residues exhibited similar entropy scores
(difference within 10%) between clades B and C, indicating
similar conserved and variable residues between these clades.
This was despite the fact that as many as one-third of all
residues exhibited some degree of variability (>10%) in one
clade or the other (data not shown). These data suggest that
purifying selective pressures are at work to maintain the overall
structure and function of HIV-1 proteins across multiple
clades, while certain residues preferentially support sequence
variation in the presence of host immune selective pressures.

DISCUSSION

These data assessing the impact of CD8" T-cell selective
pressures on HIV-1 evolution suggest that nearly two-thirds of
all mutations arising in nonenvelope proteins during the tran-
sition from acute to chronic infection can be attributed to
either CD8" T-cell-associated selective pressures in the in-
fected individual or reversion of HLA class I-associated mu-
tations selected in a previous host. These data are in surpris-
ingly close agreement with data recently derived from the
SIV-infected rhesus macaque model (40), in which >60% of
sequence variation outside of the envelope occurs within rec-
ognized CD8 T-cell epitopes. Similarly, a recent study by Jones
et al. analyzing responses to Gag, Env, and Tat in four HIV-
infected subjects observed similar extensive escape from CD8
T-cell responses very soon after infection (27). Viral evolution
following acute HIV-1 infection is thus not a random process
but rather is substantially influenced by adaptive CD8" T-cell
selection pressures. The preferential selection of individual
residues for mutation and the repeated selection for identical
mutations suggest that there are significant biochemical con-
straints on viral evolution and explain the ability to repeatedly
link certain sequence polymorphisms in HIV-1 with various
HLA alleles (37). Moreover, these data, showing selective mu-
tation of specific residues within epitopes in concordance with
highly variable sites among different clades, provide support
for the idea that immune selection pressures contribute to
global HIV-1 sequence diversity.

These studies also indicate that while a substantial propor-
tion of the HIV proteome is under immune selection pressure,
with as many as 20% of all residues being targeted in a given
individual, a majority of CD8" T-cell responses do not result in
sequence evolution. Since the nonmutating residues are more
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highly conserved at a population level, these data indicate
substantial constraints on HIV evolution. Indeed, comparison
of the entropy values of clade B and clade C sequences indi-
cated very similar patterns of conserved and variable residues,
suggesting that viral escape in different HIV-1 clades may
occur at similar residues despite unique distributions of HLA
alleles present in infected populations. This implies that the
same purifying selection pressures contribute to maintaining
specific residues and preserving the basic structure of HIV-1

proteins in different HIV-1 clades, while routinely allowing
other residues to fluctuate. Indeed, the same residues observed
to mutate in CDS8 epitopes in clades B and C reflect those
consistently capable of supporting alternative amino acids in
many other HIV-1 clades, including clades O and CPZ (data
not shown), whereas conserved residues are maintained across
different HIV-1 clades. Similar findings have recently been
reported in the analysis of HIV-1 Env sequences (15, 22, 54).

Although the majority of viral mutations in these subjects
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were associated with adaptive immunity to HIV-1, a substantial
number of mutations remain to be explained. The methods
used to detect CD8" T-cell responses relied on measuring
IFN-y production and did not include in vitro expansion or
alternative measurements of CD8" T-cell immune function
such as cytolytic capacity, production of other cytokines, or
HLA class I tetramers (29, 49). It is noteworthy that four of the
mutations not associated with CD8" T-cell responses are
within regions exhibiting CD4 " T-cell proliferative responses
(data not shown), and viral escape from CD4 responses has
been described in murine models of viral infection (16). Fi-
nally, compensatory mutations accommodating CDS8 escape
mutations (21, 28, 30, 42) and antigen processing mutations (3,
17) are likely to account for additional sequence polymor-
phisms. Although our findings are in close agreement with data
recently derived from the SIV-infected rhesus macaque model
(40), they contrast with those of Yang et al., who previously
reported a strong association between sites undergoing posi-
tive selection in HIV and CD4 T-helper epitopes, but not CD§
T-cell epitopes (56). This discrepancy is likely due to different
approaches used in these studies to address this issue.

Together these data indicate predictability within individual
subjects and across multiple clades in the evolution of HIV-1,
and linking of CD8 escape mutations in the host with highly
variable residues in the HIV-1 population as a whole supports
host immune pressures as playing a major role in driving the
global diversity of HIV-1. The striking reproducibility of many
escape mutations, their predominance at highly polymorphic
sites across different HIV-1 clades, and the observed reversion
of HLA-associated polymorphisms together suggest that struc-
tural or biochemical constraints limit which residues within a
targeted HIV-1 CDS8 epitope are likely to mutate in response
to CD8™" T-cell selective pressures. These results are consistent
with the hypothesis that some mutations induced by immune-
mediated selective pressures have an impact on viral replica-
tion capacity (3, 20, 21, 27, 30, 43), especially mutations devel-
oping within more conserved regions of the virus. Targeting of
highly conserved regions and identification of ways to exploit
the limitations of the sequence evolution of HIV-1 may hold
promise for the rational design of vaccines against such highly
polymorphic chronic viral pathogens.
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