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Selective etching of high-k HfO2 films over Si in hydrogen-added
fluorocarbon „CF4 /Ar/H2 and C4F8 /Ar/H2… plasmas

Kazuo Takahashi
a�

and Kouichi Ono

Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku,
Kyoto 606-8501, Japan

�Received 3 June 2005; accepted 23 February 2006; published 20 April 2006�

Inductively coupled hydrogen-added fluorocarbon �CF4 /Ar/H2 and C4F8 /Ar/H2� plasmas were

used to etch HfO2, which is a promising high-dielectric-constant material for the gate of

complementary metal-oxide-semiconductor devices. The etch rates of HfO2 and Si were drastically

changed depending on the additive-H2 flow rate in C4F8 /Ar/H2 plasmas. The highly selective

etching of HfO2 over Si was done in the condition with an additive-H2 flow rate, where the Si

surface was covered with the fluorocarbon polymer. The results of x-ray photoelectron spectroscopy

indicated that the carbon content of the selectively etched HfO2 surface was extremely low

compared with the preetched surface contaminated by adventitious hydrocarbon in atmosphere. In

the gas phase of the C4F8 /Ar/H2 plasmas, Hf hydrocarbide molecules such as metal-organic

compounds and Hf hydrofluoride were detected by a quadrupole mass analyzer. These findings

indicate that the fluorine species, carbon, and hydrogen can work to etch HfO2 and that the carbon

species also plays an important role in selective etching of HfO2 over Si. © 2006 American Vacuum

Society. �DOI: 10.1116/1.2187997�

I. INTRODUCTION

As dimensions of metal-oxide-semiconductor field-effect

transistor �MOSFET� devices are scaled down in integrated

circuits, the gate width will shrink to much less than 100 nm.

The thickness of gate dielectrics should be reduced down to

2 nm or less for the present material, SiO2.
1

Then, the thick-

ness reduction of SiO2 brings a number of serious problems

such as increased gate-leakage current and reduced oxide

reliability. Therefore, it will be necessary to integrate the

high-dielectric-constant �k� materials, which can give higher

specific capacitance at a larger thickness than SiO2 and

which enable the reduction of gate-leakage current. Integra-

tion of high-k materials will be one of the important issues in

scaling MOSFET devices at critical dimensions below

65 nm.

Recently, replacing SiO2 with silicon oxynitrides of

slightly higher dielectric constant has been tried. In the fu-

ture, high-k ��20� dielectrics or metal oxides such as HfO2,
2

ZrO2,
3,4

HfSixOy,
5,6

and ZrSixOy �Refs. 6 and 7� will be de-

veloped to replace SiO2. When integrating these materials

into devices, these materials must be removed completely

from the source and drain regions. Therefore, an understand-

ing of the etch characteristics of high-k materials is required

for the removal process.

Plasma etching of high-k materials has been studied re-

cently for gate dielectric applications. Pelhos et al. reported

on the etching of high-k gate dielectric Zr1−xAlxOy thin films

with helical-resonator plasmas in Cl2 /BCl3.
8

Sha et al. re-

ported on the etching of ZrO2 with electron-cyclotron-

resonance plasmas in Cl2 and BCl3 /Cl2.
9,10

Furthermore, Sha

et al. also etched HfO2 thin films in the chlorine

chemistries.
11,12

In their studies of HfO2 etching, chlorine-

based chemistries �not fluorine� were chosen because the

HfO2 was prevented from etching in the CHF3 plasmas

where Hf fluoride compound can be formed as the sidewall

mask.
13,14

Norasetthekul et al. reported on the etching of

HfO2 with inductively coupled plasmas in Cl2 /Ar, SF6 /Ar,

and CH4 /H2 /Ar.
15

Maeda et al. tried to integrate a MOSFET

with a HfO2 dielectric by using etching in CF4 and

Cl2 /HBr-based chemistries.
16

Emphasis in these studies has

been placed on etch chemistries giving the selectivity of

more than 1 over the underlying Si substrate and on a better

understanding of physics and chemistry for the etching.

The thickness of the gate dielectrics for next-generation

MOSFET devices �in the 65-nm technology node and be-

yond� will be several nanometers. Therefore, selectivity to

underlying layers or mask materials will be more important

than etch rate in the gate process.
17

From the point of view of

HfO2 /Si selectivity, highly selective etching can be achieved

in fluorocarbon plasmas. We found that HfO2 can be etched

by fluorine and that the selectivity of HfO2 /Si can be more

than 5 in C4F8 /Ar plasmas.
18

In the plasmas, carbon species

work as a surface inhibitor on Si not containing oxygen and

contribute to obtaining the high selectivity.

To enhance selectivity of HfO2 /Si, HfO2 etching should

be enhanced and/or Si etching should be suppressed. In

SiO2 /Si selective etching, fluorocarbon polymer deposited

on the surface plays an important role in enhancing the se-

lectivity. The H2 addition has an effect on the polymer for-

mation in fluorocarbon plasmas.
19–21

Such chemistries may

also be applied to HfO2 /Si selective etching. This article

presents results of the etching of HfO2 thin films on Si sub-

strates in inductively coupled hydrogen-added fluorocarbon

�CF4 /Ar/H2 and C4F8 /Ar/H2� plasmas. We discuss the etcha�
Electronic mail: takahashi@kuaero.kyoto-u.ac.jp
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mechanism of HfO2 affected by H2 addition in the plasmas

compared with that of SiO2, which is well known in previous

works.
22

II. EXPERIMENT

The samples for etching were 60-nm-thick HfO2 films on

Si substrates prepared by chemical vapor deposition, SiO2

films formed by thermal oxidation, and bare Si. The samples

were cleaved into 2-cm2 pieces and attached to a

4-in.-diameter Si wafer, which was then clamped onto a wa-

fer stage.

Etching experiments were performed in a low-pressure

inductively coupled plasma �ICP� reactor supplied with

13.56-MHz rf power.
18

The reactor consisted of a grounded

stainless-steel chamber 25 cm in diameter and 25 cm in

height. The rf power was coupled to the plasma via a three-

turn planar rf induction coil 15 cm in outer diameter that was

positioned on a quartz window 20 cm in diameter and

1.2 cm in thickness located at the top side of the chamber.

The wafer stage was 13 cm in diameter and located at the

bottom side of the chamber, where a close-fitting ground

shield surrounded the stage. The distance from the bottom

edge of the rf coupling window to the wafer stage was 5 cm.

Gas mixtures of CF4 /Ar�/H2�, C4F8 /Ar�/H2� and CH4 /Ar,

and pure Ar were introduced into the reactor, which was

evacuated to a base pressure �1�10−6 Torr. The gas pres-

sure and flow rate were maintained at 20 mTorr and

5–300 SCCM �SCCM denotes cubic centimeter per minute

at STP�, respectively.

The discharge was established at a nominal rf power of

280 or 300 W, corresponding to net powers of the �-type

matching circuit driving the induction coil. The wafer stage

was capacitively coupled to a separate 13.56-MHz rf power

supply for additional biasing; the rf bias power was varied

between 10 and 150 W �net power�, resulting in a dc self-

bias voltage on the stage down to between −40 and −160 V.

Sample pieces covered with masks of Si wafer were

etched for several minutes. Steps appearing on the sample

pieces were measured by stylus profilometry. The chemical

composition of the surface was analyzed by x-ray photoelec-

tron spectroscopy �XPS� using Mg K� x-ray radiation and a

pass energy of 50 eV at a takeoff angle of 90°. The plasma

parameters �ion density, electron temperature, and plasma

potential� were determined by using a cylindrical Langmuir

probe located at 2 cm above the wafer stage. The optical

emissions from the F atom �3s4P5/2−3p4D7/2
0 , 685.6 nm�, H

atom �2p2P3/2
0 −3d2D3/2, 656.3 nm�, HF molecule

�486 nm�,23–25
and Ar atom �4s�� 1

2
�0

−4p�� 1

2
�, 750.4 nm�

were observed to understand the chemical reactions in the

gas phase. The etch products were detected by quadrupole

mass spectrometry. A commercial quadrupole mass analyzer

�QMA� was mounted on the chamber. Gas-phase species

were introduced to the differentially pumped analyzer

through a 100 �m orifice. The orifice was placed 3 cm from

the stage and 2 cm above the wafer surface.

III. RESULTS AND DISCUSSION

A. Selective etching of HfO2 over Si

Figure 1 shows the etch rates of �a� HfO2 and �b� SiO2 in

CF4 /Ar/H2 plasmas as a function of the additive-H2 flow

rate at constant rf powers of 280 W �to the coil� and 50 W

�for bias�, together with that of Si, and the etch selectivities

of �a� HfO2 /Si and �b� SiO2 /Si. In generating the plasmas,

the gas flow rates of CF4 and Ar were 2.5 and 247.5 SCCM,

respectively. The pressure was maintained at 20 mTorr. Fig-

ure 2 shows the etch rates of �a� HfO2 and �b� SiO2 in

C4F8 /Ar/H2 plasmas. The gas flow rate of C4F8 was

2.5 SCCM. The other parameters were the same as in the

CF4 /Ar/H2 plasmas. The etch depth was measured as a

function of etch time up to several minutes and exhibited an

approximately linear increase with time. Thus, the etch rate

was calculated as the ratio of the depth to time. In the figure,

error bars correspond to variance in the measurements,

which are not extended to calculating selectivities.

In the CF4 /Ar/H2 plasmas, the etch rates of HfO2, Si, and

SiO2 were maintained to be almost constant in all the tested

H2 flow rates. On the other hand, the etch rates of HfO2 and

Si in the C4F8 /Ar/H2 plasmas were drastically changed de-

pending on H2 flow rate. The fluorocarbon polymer was de-

posited on the Si surface between 4 and 8 SCCM in the H2

flow rate. When H2 is added to fluorocarbon plasmas, fluo-

rine is scavenged by hydrogen with the production of the HF

molecule in the gas phase,
26,27

FIG. 1. Etch rates of �a� HfO2 and �b� SiO2 in CF4 /Ar/H2 plasmas plotted

with that of Si, and etch selectivities of �a� HfO2 /Si and �b� SiO2 /Si as a

function of additive-H2 flow rate. The rf bias power was constant at 50 W.

438 K. Takahashi and K. Ono: Selective etching of high-k HfO2 films over Si 438

J. Vac. Sci. Technol. A, Vol. 24, No. 3, May/Jun 2006

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. Download to IP:  130.54.110.32 On: Mon, 25 Jan 2016 04:23:40

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



CxFy + H → CxFy−1 + HF, �1�

F + H → HF. �2�

Involving these reactions, the C/F ratio in fluorocarbon spe-

cies becomes higher. The carbon-rich species are likely to

have high sticking probability and to deposit on the surface.

If the flow rate of CF4 is increased, much more carbon-rich

species are produced. Even in CF4 /Ar/H2 plasmas, the spe-

cies abundant in the gas phase can form deposited films.

At 6 SCCM in H2 flow rate, the polymer also appeared on

the HfO2 surface in the C4F8 /Ar/H2 plasmas. At 4 and

8 SCCM, however, HfO2 was etched selectively. In the case

of a constant rf bias power, the self-bias voltage on the wafer

stage was varied from −40 to −70 V with increasing

additive-H2 flow rate. The polymer formation on the surface

can be affected by ion-bombarding energy changed with the

self-bias voltage. Therefore, the etch characteristics were ex-

amined in the C4F8 /Ar/H2 plasmas at a constant self-bias

voltage.

Figure 3 shows the etch rates in the plasmas where the

self-bias voltage was maintained at a constant value of

−90 V. The etch rates of HfO2, Si, and SiO2 were drastically

changed between 0 and 6 SCCM in the H2 flow rate and

remained almost unchanged at flow rates more than

6 SCCM. The HfO2 was etched selectively at 2 and 6 SCCM

in the H2 flow rate. Since the ion density was decreased with

increasing H2 flow rate from 0 to 6 SCCM �Fig. 4�, the ion

flux to the surface also decreased. The etching reactions of Si

and fluorocarbon polymer on the surfaces seemed to be sup-

pressed with decrease of the ion flux.

Optical-emission intensities of F, H, and Ar atoms and HF

molecules were measured. It may be crucial to estimate the

density of emitting species from the emission intensities. The

intensity depends on many factors, such as electron density,

electron energy-distribution function, density of the emitting

species, excitation cross section of the excited state, and so

on. Usually, actinometry is employed to quantify the density

FIG. 2. Etch rates of �a� HfO2 and �b� SiO2 in C4F8 /Ar/H2 plasmas plotted

with that of Si, and etch selectivities of �a� HfO2 /Si and �b� SiO2 /Si as a

function of additive-H2 flow rate. The rf bias power was constant at 50 W.

At the conditions shown by the open triangle, complete selective etching of

HfO2 or SiO2 was done.

FIG. 3. Etch rates of �a� HfO2 and �b� SiO2 in C4F8 /Ar/H2 plasmas plotted

with that of Si, and etch selectivities of �a� HfO2 /Si and �b� SiO2 /Si as a

function of additive-H2 flow rate. The self-bias voltage was maintained at

−90 V.

FIG. 4. Ion density and electron temperature determined in the Langmuir

probe measurement as a function of additive-H2 flow rate.
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of species by using noble gases.
28

In this work, all the

optical-emission intensities were normalized by the emission

intensity of Ar atoms at 750.4 nm. Figure 5 shows the nor-

malized intensities of F and H atoms and HF molecules.

Strictly speaking, since there is a difference in the electron

excitation cross sections between the target species �F, H,

and Ar atoms and HF molecules�, the normalized intensities

cannot represent quantitatively the density of the species.

However, since the electron temperature �ranging between

2.8 and 3.0 eV in Fig. 4� was not changed significantly over

the tested regime, the normalized intensities represent the

qualitative trend in density for the species.

The density of H atoms increased with increasing H2 flow

rate. Especially, the density increased immediately between 6

and 8 SCCM in H2 flow rate, where the reaction on the Si

surface changed from deposition to etching. The F atoms

were scavenged from fluorocarbon species and in the gas

phase by H atoms from 2 to 6 SCCM in H2 flow rate. The

scavenging reaction reached saturation at 6 SCCM. The den-

sity of HF molecules increased with the increase of H atoms

between 8 and 16 SCCM in the H2 flow rate, where the H

atom is abundant.

The density of F atoms between 2 and 6 SCCM in the H2

flow rate became lower than that at 0 SCCM, since H atoms

scavenged F atoms with the formation of HF molecules.

Then, the density of F atoms was recovered between 8 and

16 SCCM, indicating that F atoms were produced by the

electron-impact dissociation of HF molecules.
29,30

Thus, the

etch rate of Si was decreased between 0 and 6 SCCM in the

H2 flow rate, with decreasing density of F atoms being an

etchant for Si. In this regime, the deposition species, which

were produced by the scavenging reaction of F, also reduced

the etch rate of Si. The etch rate of SiO2 was maintained,

which can be etched by fluorocarbon species �including

deposition species on Si surface� as well as by F atoms.

Regarding the dissociation reaction of HF molecules, there

are two possible paths:
29

HF + e → H + F + e , �3�

H + HF*
→ H2 + F, �4�

where HF* means vibrationally excited HF molecules, which

can be present in hydrogen-added fluorine-containing

discharges.
31–33

Here we consider the role of H atoms in fluorocarbon

plasmas. To elucidate the reaction of H atoms, the etch rates

of HfO2, Si, and SiO2 were measured in C4F8 /H2 and

CF4 /H2 plasmas �shown in Figs. 6 and 7, respectively�. The

flow rates of C4F8 and CF4 were 5 SCCM and that of H2 was

varied from 0 to 20 SCCM. The power to the coil and self-

bias voltage were maintained at 280 W and −90 V, respec-

tively. The pressure was set at 20 mTorr. In the C4F8 /H2

plasmas, the etching reaction occurred between 0% and

150% in the gas-mixture ratio of �H2� / �C4F8�. The deposi-

tion film appeared at more than 150%. However, in CF4 /H2

plasmas, the surface reactions on HfO2 and Si were changed

from etching to deposition with increasing gas-mixture ratio.

Then the reactions were turned into etching again, since the

FIG. 5. Optical-emission intensities of F and H atoms and HF molecules as

a function of additive-H2 flow rate. These intensities were normalized by

optical-emission intensity of Ar atoms.

FIG. 6. Etch rates of HfO2 and SiO2 in C4F8 /H2 plasmas plotted with that of

Si as a function of gas-mixture ratio of �H2� / �C4F8�. The fluorocarbon gas

flow rate, pressure, power to the coil, and self-bias voltage were maintained

at 5 SCCM, 20 mTorr, 280 W, and −90 V, respectively.

FIG. 7. Etch rates of HfO2 and SiO2 in CF4 /H2 plasmas plotted with that of

Si as a function of gas-mixture ratio of �H2� / �CF4�. The experimental pa-

rameters were the same as in Fig. 6.
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deposition film was made thinner with H2 addition. Further-

more, when the C4F8 flow rate is less than 5 SCCM, the

thickness of the deposition film is thinner and the etching

reaction can occur at more than 400% of the gas-mixture

ratio. Therefore, it is essential that the reaction on the Si

surface changes from etching to deposition and from depo-

sition to etching with the addition of H2 atoms. These facts

show that the excess H atoms, which do not contribute to the

production of HF molecules or are produced by the dissocia-

tion of HF molecules, can etch the deposition film of the

fluorocarbon polymer. One can understand the etching of

fluorocarbon polymer by H atoms by the analogy of the etch-

ing of graphite by H atoms in the process of diamond

synthesis.
34

In Fig. 3, the etching of HfO2 and Si can proceed

from 8 to 16 SCCM in the H2 flow rate, since etchants �in-

cluding F atoms� can reach the HfO2, Si, and SiO2 surfaces,

as a result of the etching of excess H atoms and removing of

the deposition film of the fluorocarbon polymer.

Figure 8 shows the XPS spectra of F1s and C1s on HfO2,

Si, and SiO2 etched in the C4F8 /Ar/H2 plasmas, and on

preetched surfaces �indicated by notation of “Ref.”�. The ex-

perimental conditions were the same as in Fig. 3. In the

figure, the numbers from 0 to 6 correspond to the additive-H2

flow rate. The carbon content on preetched surfaces can be

detected from the adventitious hydrocarbon of atmospheric

contaminants. On SiO2 surfaces, intensities of F1s and C1s

signals were weak compared with other samples. This means

that SiO2 can be etched by various fluorocarbon species with

the formation of volatile products containing F and C atoms.

On Si surfaces, the spectra of 2, 4, and 6 SCCM in the

additive-H2 flow rate show the chemical composition of the

deposition film of fluorocarbon polymer. The F content de-

creased and C content increased with the increased additive-

H2 flow rate, indicating that the deposition film became more

carbon rich with the increasing additive-H2 flow rate. On

HfO2 surfaces, especially, at 8 SCCM in the additive-H2

flow rate, the intensity of the C1s signal was extremely low,

which was lower than that of the reference surface contami-

nated by adventitious hydrocarbon in atmosphere. Further-

more, the C/F ratio on the HfO2 surface at 8 SCCM was

lower than that of the fluorocarbon polymer film on Si sur-

face. These facts imply that the etching of HfO2 could pro-

ceed involving volatile etch products containing C atoms.

To understand species reactive with HfO2, the etch char-

acteristics of HfO2 were examined in C4F8 /Ar/H2

�2.5/247.5/16 SCCM�, pure Ar �250 SCCM�, and CH4 /Ar

�12.5/237.5 SCCM� plasmas. Figure 9 shows the etch rates

in these plasmas. Here, the ion energy was defined by �Vp

−Vdc�, where Vp and Vdc correspond to plasma potential mea-

sured by Langmuir probe and self-bias voltage, respectively.

The power to the coil and pressure were maintained at

300 W and 20 mTorr, respectively. The ion densities in the

C4F8 /Ar/H2, pure Ar, and CH4 /Ar plasmas were 1.5�1011,

3.6�1011, and 1.5�1011 cm−3, respectively. The etch rates

in the pure Ar plasmas did not exceed those in the

C4F8 /Ar/H2 plasmas, although the ion density in the pure Ar

plasmas was two times higher than that in the C4F8 /Ar/H2

plasmas. Therefore, the etching of HfO2 can proceed with

involving chemical reactions related to C, F, and H species in

the C4F8 /Ar/H2 plasmas. In addition, the etch rates in the

CH4 /Ar plasmas did not exceed those in the pure Ar plasmas

and is not dependent on the CH4 flow rate. The deposition of

carbon species suppressed etching of HfO2.

B. Volatile products in HfO2 etching

As mentioned above, at least the F species is necessary to

etch HfO2. The carbon species may also play a role in the

etching of HfO2, as implied by the results of XPS measure-

ments. Understanding the etch mechanism is one of the most

important issues in knowing the etchants of HfO2 in fluoro-

carbon plasmas. In this study, a QMA with a mass range

from 0.4 to 500 amu was used to observe the ionic species

FIG. 8. XPS spectra of F1s and C1s on HfO2, Si, and SiO2 surfaces etched in

the C4F8 /Ar/H2 plasmas and on preetched surfaces �indicated by notation of

“Ref.”�. The experimental conditions were the same as in Fig. 3. The values

of additive-H2 flow rate from 0 to 6 SCCM are shown in the graphs.

FIG. 9. Etch rates of HfO2 in C4F8 /Ar/H2 �2.5/247.5/16 SCCM�, pure Ar

�250 SCCM�, and CH4 /Ar �12.5/237.5 SCCM� plasmas as a function of

ion energy. The pressure and power to the coil were maintained at 20 mTorr

and 300 W, respectively.
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and the etch products in the gas phase. The ionic species

were detected in the C4F8 /Ar plasmas, where the C4F8 flow

rate, pressure, and power to the coil were maintained at

2.5 SCCM �1% of the total�, 20 mTorr, and 280 W, respec-

tively �Fig. 10�. The various ionic species of fluorocarbon

were observed in the plasmas, including those with mass

higher than the parent molecule ��200 amu�. In the etching

of HfO2 with a self-bias voltage of −90 V, the ionic species

as etch products were detected. The several peaks appearing

in etching were assigned to Hf+, HfF+, HF2
+, and HF3

+ in the

spectrum �Fig. 10�, compared with the calculated mass pat-

terns using the relative abundance of naturally occurring Hf

isotopes,
35

i.e., 177Hf �18.6%�, 178Hf �27.3%�, 179Hf �13.6%�,
and 180Hf �35.1%�. These Hf fluoride ions may be produced

by the electron-impact dissociation of HfF4. These cannot be

identified to be the primary etch products, nor secondary or

higher. It is certain that the Hf fluoride must be included in

the etch products as volatile species.

In C4F8 /Ar/H2 plasmas, the etch products were also ob-

served. The gas flow rates of C4F8, Ar, and H2 were 2.5,

247.5, and 8 SCCM, respectively. The pressure, power to the

coil, and self-bias voltage were set at 20 mTorr, 280 W, and

−90 V, respectively. These experimental parameters corre-

spond to the condition where HfO2 can be selectively etched

�Fig. 3� and where the etch products may contain C atoms, as

implied by the XPS results �Fig. 8�. Figure 11 shows the

mass spectrum of ionic species with mass ranging from

189 to 201 amu. The spectrum was obtained by subtracting

the spectrum in the nonbiased condition from that in the

biased condition. Therefore, the spectrum indicates the con-

tents of etch products only. The peaks of the contents can be

assigned to HfCHx
+ �x=0–4� and HfHxF

+ �x=0–2�. The

peaks from 193 to 196 amu also correspond to HfO+. Since

these peaks were not observed in CF4 /Ar and C4F8 /Ar plas-

mas, the peaks should be assigned to HfCH4
+, whose molecu-

lar structure is unknown. Since the molecules of Hf carbide

were detected as etch products, a carbon-poor surface pre-

pared in C4F8 /Ar/H2 plasmas with an additive-H2 flow rate

of 8 SCCM was formed in etching reactions involving car-

bon species.

The HfCHx
+ and HfHxF

+ may be produced by the disso-

ciation of molecules with the structure like metal-organic

compounds. Although HfC+ was detected, the molecule may

be produced from HfCHx
+, since the yield of C atoms is too

low to etch HfO2.
36

It may be natural that HfO2 is etched

with the production of metal-organic compounds as etch

products, since such compounds are used for chemical vapor

deposition of HfO2.
37–39

In addition, it may be possible to

etch HfO2 by CH4 chemistries with optimized experimental

parameters, although the results in CH4 /Ar plasmas �Fig. 9�
could not prove this possibility in the present work.

IV. CONCLUSION

In the present study, the etch characteristics of HfO2 were

examined in CF4 /Ar/H2 and C4F8 /Ar/H2 plasmas. When

H2 was added to the C4F8 /Ar plasmas, the highly selective

etching of HfO2 over Si could be done. The HfO2 was etched

even in the condition where fluorocarbon polymer film was

deposited on a Si surface.

On the HfO2 surface etched selectively in the

C4F8 /Ar/H2 plasmas, the carbon content was lower than the

adventitious hydrocarbon of the atmospheric contaminant on

the preetched surface. This implied that the carbon and/or

hydrocarbon species may be etchants of HfO2 and the etch

products may contain Hf and carbon atoms. The sputtering

rates of HfO2 in pure Ar plasmas did not exceed the etch

rates in the C4F8 /Ar/H2 plasmas and were higher than the

etch rates in CH4 /Ar plasmas. Therefore, fluorine species are

necessary to etch HfO2 in our examples. In the gas phase,

HfCHx
+ �x=0–4� and HfHxF

+ �x=0–2� were detected by

QMA. The Hf hydrocarbidelike metal-organic compound

was determined to be one of the volatile etch products in the

C4F8 /Ar/H2 plasmas. The formation of metal-organic com-

pounds is an interesting topic for the etching and depositing

of materials containing transition metals. Further analyses

will be important for the materials introduced to next-

generation devices.

FIG. 10. Mass spectra of ionic species in C4F8 /Ar plasmas. The species were

observed in the cases without �upper graph indicated by “With bias”� and

with bias power �lower graph indicated by “Non-bias”�. The HfO2 was

etched in the condition with bias power, resulting in self-bias voltage of

−90 V.

FIG. 11. Mass spectrum of ionic species as the etch products with mass

range from 189 to 201 in C4F8 /Ar/H2 plasmas. The additive-H2 flow rate,

pressure, power to the coil, and self-bias voltage were set at 8 SCCM,

20 mTorr, 280 W, and −90 V �with biased condition�. The spectrum was

obtained by subtracting the spectrum in the nonbiased condition from that in

the with biased condition where the HfO2 could be selectively etched.

442 K. Takahashi and K. Ono: Selective etching of high-k HfO2 films over Si 442

J. Vac. Sci. Technol. A, Vol. 24, No. 3, May/Jun 2006

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. Download to IP:  130.54.110.32 On: Mon, 25 Jan 2016 04:23:40

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



In the actual gate processes, the highly selective etching

of HfO2 over Si can be performed with precise control of H2

addition in C4F8 /Ar/H2 plasmas. The polymer deposition

brought by H2 addition is effective for reducing the etch rate

of Si. Furthermore, the polymer may even prevent etching of

HfO2 in narrow trenches of musks. Therefore, for practical

use, the experimental parameters such as additive-H2 flow

rate should be optimized while observing the etch profiles.

ACKNOWLEDGMENTS

This work was supported by the New Energy and Indus-

trial Technology Development Organization �NEDO�/
Millennium Research for Advanced Information Technology

�MIRAI� project.

1
The International Technology Roadmap of Semiconductor, 2001 ed.

�International Sematech, Austin, TX, 2001�.
2
Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, Appl. Phys. Lett. 81,

2041 �2002�.
3
J. P. Chang, Y.-S. Lin, S. Berger, A. Kepten, R. Bloom, and S. Levy, J.

Vac. Sci. Technol. B 19, 2137 �2001�.
4
M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76, 436 �2000�.

5
G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 74, 2854 �1999�.

6
G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484

�2000�.
7
W.-J. Qi, R. Nieh, E. Dharmarajan, B. H. Lee, Y. Jeon, L. Kang, K.

Onishi, and J. C. Lee, Appl. Phys. Lett. 77, 1704 �2000�.
8
K. Pelhos et al., J. Vac. Sci. Technol. A 19, 1361 �2001�.

9
L. Sha, B.-O. Cho, and J. P. Chang, J. Vac. Sci. Technol. A 20, 1525

�2002�.
10

L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 21, 1915 �2003�.
11

L. Sha, R. Puthenkovilakam, Y.-S. Lin, and J. P. Chang, J. Vac. Sci.

Technol. B 21, 2420 �2003�.
12

L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 22, 88 �2004�.
13

K. K. Shih, T. C. Chieu, and D. B. Dove, J. Vac. Sci. Technol. B 11, 2130

�1993�.

14
J. A. Britten, H. T. Nguyen, S. F. Falabella, B. W. Shore, and M. D. Perry,

J. Vac. Sci. Technol. A 14, 2973 �1996�.
15

S. Norasetthekul et al., Appl. Surf. Sci. 187, 75 �2002�.
16

T. Maeda et al., Jpn. J. Appl. Phys., Part 1 43, 1864 �2004�.
17

K. Ono, 2004 Semiconductor Technology Outlook �unpublished�, p. 331

�in Japanese�.
18

K. Takahashi, K. Ono, and Y. Setsuhara, J. Vac. Sci. Technol. A 23, 1691

�2005�.
19

L. M. Ephrath, J. Electrochem. Soc. 126, 1419 �1979�.
20

J. W. Coburn, J. Appl. Phys. 50, 5210 �1979�.
21

G. S. Oehrlein and H. L. Williams, J. Appl. Phys. 62, 662 �1987�.
22

M. Sekine, Appl. Surf. Sci. 192, 270 �2002�.
23

R. G. Frieser and J. Nogay, Appl. Spectrosc. 34, 31 �1980�.
24

M. M. Millard and E. Kay, J. Electrochem. Soc. 129, 160 �1982�.
25

R. d’Agostino, F. Cramarossa, and S. De Benedictis, Plasma Chem.

Plasma Process. 4, 21 �1984�.
26

C.-P. Tsai and D. L. McFadden, J. Phys. Chem. 93, 2471 �1989�.
27

M. A. Ioffe, Y. M. Gershenzon, V. B. Rozenshtein, and S. Y. Umanskii,

Chem. Phys. Lett. 154, 131 �1989�.
28

J. W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 �1980�.
29

R. d’Agostino, F. Cramarossa, V. Colaprico, and R. d’Ettole, J. Appl.

Phys. 54, 1284 �1983�.
30

Y. Hikosaka, M. Nakamura, and H. Sugai, Jpn. J. Appl. Phys., Part 1 33,

2157 �1994�.
31

O. D. Krogh and G. C. Pimentel, J. Chem. Phys. 67, 2993 �1977�.
32

L. Bertrand, J. M. Gagne, B. Mongeau, B. Lapointe, Y. Conturie, and M.

Moisan, J. Appl. Phys. 48, 224 �1977�.
33

L. Bertrand, J. M. Gagne, R. G. Bosisio, and M. Moisan, IEEE J. Quan-

tum Electron. 14, 8 �1978�.
34

B. V. Derjaguin and D. V. Fedoseev, Surf. Coat. Technol. 38, 131 �1989�.
35

D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. �CRC,

Boca Raton, FL, 1998�.
36

K. Karahashi, N. Yamagishi, T. Horikawa, and A. Toriumi, Proceedings

of the American Vacuum Society 50th International Symposium,

Baltimore, MD, 2003 �unpublished�.
37

K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 42, L685 �2003�.
38

S. Horii, K. Yamamoto, M. Asai, H. Miya, and M. Niwa, Jpn. J. Appl.

Phys., Part 1 42, 5176 �2003�.
39

W. Wang, T. Nabatame, and Y. Shimogaki, Jpn. J. Appl. Phys., Part 1 43,

L1445 �2004�.

443 K. Takahashi and K. Ono: Selective etching of high-k HfO2 films over Si 443

JVST A - Vacuum, Surfaces, and Films

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. Download to IP:  130.54.110.32 On: Mon, 25 Jan 2016 04:23:40

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp


