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Aqueous sulphides, including hydrogen sulphide, have important roles in biological signalling 

and metabolic processes. Here we develop a selective sulphide-trapping strategy involving 

sulphide addition to an aldehyde; the resulting hemithioacetal undergoes a Michael addition 

with an adjacent unsaturated acrylate ester to form a thioacetal at neutral pH in aqueous 

solution. Employing this new strategy, two sulphide-selective fluorescent probes, SFP-1 and 

SFP-2, were synthesized on the basis of two different fluorophore templates. These probes 

exhibit an excellent fluorescence increase and an emission maximum shift (SFP-1) in response 

to Na2S and H2S in a high thiol background as found under physiological conditions. We show 

the utility of the probes for the selective detection of sulphides, and the capacity of our probes 

to monitor enzymatic H2S biogenesis and image free sulphide in living cells. 
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H
ydrogen sulphide (H2S), along with nitric oxide (NO) and 
carbon monoxide (CO), belongs to the gasotransmitter family  
of signalling molecules in biology1,2. H2S, or aqueous sulphide,  

elicits diverse physiological responses, including modulation of blood 
pressure and reduction of ischemia reperfusion injury3–5, exer-
tion of anti-in�ammatory e�ects6 and reduction of metabolic rate7. 
�e production of H2S is catalysed by the two pyridoxal 5′-phos-
phate-dependent enzymes, cystathionine β-synthase (CBS)8, and 
cystathionine γ-lyase9, and indirectly, via a pyridoxal 5′-phosphate- 
independent enzyme, 3-mercaptopyruvate sulphurtransferase10.

�e lack of methods for accurate measurement of H2S has limited 
advances in the �eld. As a result of the technical limitations of avail-
able methods11,12, H2S concentrations spanning 105 orders of magni-
tude have been reported in the literature13. Moreover, many of the 
commonly used methods are not amenable for application in vivo 
or for analysis of tissue or blood samples. Until recently, no probe 
was available for the detection of aqueous sulphides in vivo (while 
this manuscript was under review, a related probe was reported14). 
A major challenge is to develop molecular probes that are capable  
of detecting aqueous sulphides (H2S and HS −  at neural pH) in 
the presence of other cellular molecules, in particular, millimolar 
concentrations of thiols found inside most cells. Recently, a thiol-
 maleimide reaction was employed to tune photoinduced electron 
transfer of a conjugated �uorophore for thiol detection and imag-
ing15. Although e�ective for detection of abundant thiol molecules, 
this method is unable to di�erentiate sulphide from thiols.

Partially inspired by this previous work, we envisioned an aro-
matic framework substituted by α, β-unsaturated acrylate methyl 
ester and aldehyde (–CHO) ortho to each other. �e aldehyde 
group can react readily and reversibly with free sulphide to form a 
hemithioacetal intermediate with an exposed thiol, which is set up 
for a Michael addition to the proximal acrylate to yield a trapped 

thioacetal. �is tandem reaction could tune photoinduced electron  
transfer of the aromatic system, thus potentially a�ecting �uores-
cence of a conjugated �uorophore. As reversible addition of a thiol 
to the same aldehyde yields a thioacetal that cannot perform the sub-
sequent Michael addition step, the intermediate simply decomposes 
to yield the original probe, thus it will not signi�cantly interfere 
sulphide detection. In addition, H2S in aqueous solution has a pKa 
of ~7.0, whereas thiols have higher pKa values around 8.5. Hence, 
aqueous sulphide is expected to be a better nucleophile at neutral 
pH than free thiols. In this study, we report the development of two 
highly sulphide-selective �uorescent probes (SFP-1 and SFP-2),  
using a chemical strategy for e�ective in vivo and in vitro detection 
of H2S. We demonstrate the utility of the probe in enzymatic H2S 
quanti�cation and cell-based imaging applications.

Results
Synthesis and �uorescent measurements of SFP-1. We selected 
1,3,5-triaryl-2-pyrazoline as the �rst �uorophore template because 
its �uorescence is sensitive to the electronic changes of the 
substituted aromatic groups16. During synthesis of the probe, we 
inadvertently obtained 1,3,5-triaryl-pyrazole because of a required 
oxidation step (Fig. 1). �e �nal probe 12 (SFP-1) was characterized 
by nuclear magnetic resonance (NMR), mass spectrometry and 
X-ray crystallography (CCDC 843032; Supplementary Figs S1–S3, 
Supplementary Tables S1–S5, Supplementary Data 1). �e phenyl 
substitution at C5 of the pyrazole core is designed to react with 
sulphide to a�ord 12a (Fig. 2), thus yielding a �uorescence change.

Reaction of probe 12 (10 µM) with Na2S (50 µM) as an aque-
ous sulphide source at 37 °C in PBS bu�er (pH 7.4) yielded a time-
dependent �uorescence increase, which was completed within 
60 min (Fig. 2a, Supplementary Fig. S4). A  > 10-fold increase in the 
�uorescence intensity accompanied by a blue shi� in the emission 
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Figure 1 | Probe SFP-1 synthesis. (a) MeOH, H2SO4 (2.0 equivalent), 80 °C, 12 h, 87%; (b) CrO3 (3 equiv.), AcOH (30 equiv.), Ac2O (18 equiv.) H2SO4 

(4.5 equiv.) 0 °C, 1 h, 57%; (c) H2SO4, MeOH/H2O (1:1), 100 °C, 30 min, then THF, HCl, 80 °C, 2 h, 78%; (d) 1,3-propanediol (6 equiv.), p-TsOH (0.35 

equiv.), anhydrous Na2SO4, 80 °C, 24 h, 80%; (e) NaBH4 (10 equiv.), 1, 4-dioxane/H2O (3:2), 65 °C, 12 h, 70%; (f) PCC (1.5 equiv.), celite, CH2Cl2, 25 °C, 

1 h, 90%; (g) 3′,5′-difluoroacetophenone (1.1 equiv.), 5 N NaOH (20 equiv.), EtOH, 25 °C, 2 h, 91%; (h) HCl, THF, 25 °C, 5 h, 99%; (i) RuCl2(PPh3)3 (0.7% 

equiv.), HCOOH (2.8 equiv.), Et3N (1.7 equiv.), THF, 25 °C, 2 h, 83%; (j) phenylhydrazine (1.3 equiv.), HCl (1.3 equiv.), K2CO3 (0,25 equiv.), EtOH, 90 °C, 

12 h, 65%; (k) PCC (5 equiv.), celite, CH2Cl2, 25 °C, 2 h, 86%; (l) Pd(OAc)2 (0.1 equiv.), methyl acrylate (1.2 equiv.), Bu4NAc (3 equiv.), K2CO3 (1.5 equiv.), 

KCl (1.5 equiv.), DMF, 90 °C, 2 h, 56%. DMF, N,N-dimethylformamide; Et3N, triethylamine; NaBH4, sodium borohydrid; PCC, pyridinium chlorochromate; 

THF, tetrahydrofuran; p-TsOH, p-toluenesulfonic acid.
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maximum from 428 to 391 nm was observed (ε = 2,320 M − 1 cm −1, 
Φ = 0.058). Addition of sulphide most likely eliminates the quench-
ing e�ects of the conjugated, unsaturated acrylate ester and aldehyde 
on the 5-substituted phenyl group. Consistently, a blue shi� of emis-
sion indicates a break of conjugation of SFP-1 on sulphide addition. 
We isolated product 12a and con�rmed its molecular formula by 
high-resolution mass spectrometry (Supplementary Fig. S3).

Next, varying concentrations of Na2S (10–50 µM) were added to 
the test reaction solution. �e �uorescence intensity increased lin-
early with the concentration of Na2S up to 50 µM (Supplementary 
Fig. S5), and, therea�er, reached a steady state (Fig. 2b). To char-
acterize the direct response of the probe towards H2S, the probe 
was added to a bu�ered solution that had been bubbled with H2S 
gas. �e presence of low concentrations of H2S led to a signi�cant 
�uorescence change, con�rming the utility of SFP-1 for monitoring 
aqueous H2S (Supplementary Fig. S6). �e speci�city of the probe 

was examined by measuring its response a�er exposure to various 
thiols in PBS bu�er. Strikingly, even at high concentrations (1 mM), 
the response of SFP-1 to any of the tested thiols was very low, exhib-
iting at least 50- to 100-fold selectivity towards sulphide (Fig. 2c). 
In addition, the emission maximum of 12a is di�erent from those 
of potential thiol addition products; monitoring emission at lower 
wavelength should allow further distinction between sulphide ver-
sus thiol adducts. For instance, if emission can be monitored at 
350 nm, the most abundant thiol in mammalian cells, glutathione, 
does not interfere with sulphide, thus providing potential superb 
selectivity for sulphide detection and imaging.

To investigate whether the probe can be used to monitor enzy-
matic H2S generation, we tested its e�cacy with recombinant 
human CBS (Fig. 2d). H2S production by CBS was readily detected 
in the presence of millimolar concentrations of the thiol substrates, 
homocysteine and/or cysteine. Doubling CBS concentration or the  
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Figure 2 | SFP-1 reacts with sulphide to give a turn-on fluorescence response. (a–c) Fluorescence spectra of the SFP-1 probe (10 µM) in PBS buffer 

(10 mM, pH 7.4, 10% CH3CN) at 37 °C for 60 min. Excitation: 300 nm, emission: 310–550 nm. The data represent the average of three independent 

experiments. (a) Incubated with 50 µM Na2S after 5, 15, 30, 45, 60, 90 and 120 min. (b) Incubated with different concentrations of Na2S (10, 20, 30, 40, 50, 

60 and 80 µM). (c) Incubated with various thiols at 1 mM (CYS, cysteine; BME, 2-mercaptoethanol; DTT, dithiothreitol). (d) Fluorescent detection of H2S 

generation by CBS. Human CBS was mixed with either homocysteine (H) or cysteine (C) + homocysteine (10 mM each). The H2S–producing activity of CBS 

in the presence of cysteine and homocysteine and 5 µM probe was set at 1 and the data represent the mean ± s.d. of at least three independent experiments.
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probe concentration (from 5 to 10 µM) resulted in increased  
signal intensity. �ese results demonstrate the excellent selectivity 
of the probe to H2S in a high thiol background and its utility as a 
molecular probe for detecting H2S biogenesis in in vitro assays. �is 
�uorescence-based assay could be readily implemented into a high 
throughput format for screening compound libraries for inhibitors 
or activators of H2S production.

Synthesis and �uorescent measurements of SFP-2. To further test 
the general applicability of the sulphide-trapping chemical strategy 
and to develop a �uorescent probe with visible-wavelength excita-
tion and emission, we employed 4,4-Di�uoro-1,3,5,7-tetramethyl-4-
bora-3a,4a-diaza-s-indacene (BODIPY) as the second �uorophore 
template owing to its high brightness and photostability17. We syn-
thesized the BODIPY-based probe SFP-2 (20) as shown in Figure 3. 
�e �nal probe 20 (SFP-2) was characterized by NMR and mass spec-
trometry (Supplementary Fig. S7). We expected a turn-on response 
of the probe a�er reacting with sulphide to a�ord 20a (Fig. 4).  
We also isolated product 20a and con�rmed its molecular formula 
by high-resolution mass spectrometry (Supplementary Fig. S8).  
We evaluated this new SFP-2 probe (5 µM) with Na2S (50 µM) as 
an aqueous sulphide source at 37 °C in 20 mM PBS bu�er (pH 7.0) 
(Fig. 4a, Supplementary Fig. S9). SFP-2 showed a  > 13-fold increase 
of the �uorescence intensity in the emission maximum at 510 nm 
when excited at 465 nm (ε = 47,100 M − 1 cm −1, Φ = 0.208). �e high 
optical brightness of the probe allows for detection of free sulphide 
without undergoing the full intensity change.

We further examined the sensitivity of SFP-2 for sulphide. �e 
�uorescent intensity increased by 2.6–16 folds with addition of 
5–100 µM Na2S (Fig. 4b; Supplementary Figs S10, S11). �e turn-
on �uorescence response is also highly selective for sulphide versus 
various biological relevant thiols in the PBS bu�er (Fig. 4c). �e SFP-
2 probe is ~260-fold more selective towards Na2S than to cysteine, 
and ~150-fold more selective for Na2S than for glutathione. Direct 
response towards H2S was also tested. A�er addition of 1 µl H2S 

bu�ered solution (10 min H2S bubbling), a signi�cant �uorescence 
increase was observed a�er 5 s to 20 min of mixing, and the reaction 
was complete in 20 min at 25 °C (Fig. 4d). A smaller amount of H2S 
can still induce a signi�cant response, further con�rming that SFP-2 
probe is a sensitive and selective probe for H2S detection (Supple-
mentary Fig. S12).

Cellular imaging experiments. Additionally, we tested the utility 
of both probes for live-cell imaging of sulphide. Even at high con-
centrations of SFP-1 (50 µM), adverse e�ects of the probe on cell 
viability were minimal (Supplementary Fig. S13). HeLa cells were 
incubated with either probe for 15 min before replacing the culture 
medium with fresh medium containing varying concentrations of 
Na2S. Whereas some background �uorescence was observed even 
in the absence of added sulphide for 10 µM of SFP-1 (Fig. 5a), the 
signal intensity increased as the concentration of sulphide was 
increased from 10 to 100 µM (Fig. 5b–d). SFP-2 (2 µM) responded 
at slightly higher concentrations of Na2S, with the sulphide concen-
tration ranging from 0 to 200 µM (Fig. 5e–h). However, SFP-2 is a 
brighter probe and excites and emits at visible range that is desirable 
for cell-based imaging. �ese results demonstrate that these probes 
are selective for sulphide and amenable for live-cell imaging.

In addition to supplementing cells with extraneous sources of 
sulphide, we sought to determine whether we could detect intrin-
sically produced H2S by perturbing the pool of precursors to H2S 
biosynthesis inside the cell. �e amino acid cysteine and glutath-
ione (reduced) (GSH) can both serve as potential sulphide sources. 
�e previously mentioned enzymes, CBS and cystathionine γ-lyase, 
both use cysteine as a substrate for H2S production8,9,18–20. GSH can 
be broken down by γ-glutayml transpeptidase and a dipeptidase to 
give cysteine21–23, which can then be converted to H2S. �erefore, 
we tested whether a perturbation of the intracellular levels of either 
cysteine, or GSH could result in an increased cellular concentra-
tion of H2S. Imaging experiments were carried out with SFP-2, as 
previously described, and cells were incubated with either 100 µM 
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GSH or cysteine. A�er 30 min of incubation, addition of both thiol 
species elicited a signi�cant response rivalling that observed for 
Na2S (Fig. 6). Other biologically relevant sulphur sources, including 
a thioether and a disulphide, did not generate a similar response 
(Supplementary Fig. S14). �ese results further indicate that these 
probes are capable of detecting not only external sulphides supple-
mented to cell cultures, but also sulphides biologically produced by 
the cells.

To generate a signi�cant response for both SFP-1 and SFP-2, 
higher concentrations of Na2S are required for the live-cell imaging 
experiments than the in vitro experiments. We reason that sodium 
sulphide, with its high charge density, could have di�culty passing 
through the cell membrane. �e addition of this extraneous sul-
phide may lead to a much smaller �uctuation of the free sulphide 
level inside cells. With GSH and cysteine, 1 mM of either thiol gave 
a very weak response for SFP-1 and SFP-2 in vitro (Figs 2c and 4c), 
whereas only 100 µM of each elicited a signi�cant response approxi-
mating that of Na2S in vivo. Considering the inability of the probe 

to detect cysteine or GSH in vitro and the millimolar concentra-
tions of thiols already existing inside cells, we believe the response 
is a result of the free sulphide generated intracellularly owing to  
a response to the perturbed cellular levels of cysteine or GSH. We  
suspect that supplementing extra amounts of glutathione may  
disrupt glutathione homeostasis and H2S biogenesis, leading to an 
increased level of H2S. �us, the probe shows great promise as a 
reporter for monitoring sulphide �uctuation inside cells, and could 
help elucidating pathways for sulphide production and uncovering 
new genes responsible for sulphide homeostasis.

Discussion
�e development of innovative �uorescent imaging probes has 
revolutionized cell biology, allowing localization and dynamic 
monitoring of cellular metabolite and inorganic ion pools15,16,24–29. 
A signi�cant bottleneck in the emerging �eld of H2S/aqueous  
sulphide signalling is the absence of technology for e�ective in vivo 
detection and imaging, a problem that is exacerbated by the high 
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intracellular thiol concentration. In this study, we have success-
fully developed a chemical strategy for selective sulphide detection, 
which can be used to monitor sulphide generation from enzymes 
and for cell-based sulphide imaging in live cells in the presence of 
large excess of thiols. Tandem chemical reactions, consisted of a  
sulphide addition to an aldehyde and the resulting hemithioacetal 
performing a Michael addition to an unsaturated acrylate ester to 
form a thioacetal at neutral pH in aqueous solution, provide the 
basis for the sulphide selectivity. We show that the same chemistry 
can be readily adapted to di�erent �uorescent templates for sulphide 
detection and imaging. �e same chemistry will lead to new probes 
with faster response, which may help to monitor �uctuations of H2S  
in situ. Further optimization and utilization of this strategy and  
this class of probes should dramatically accelerate future studies of 
H2S in biology.

Methods
Probe synthesis. Detailed description of the synthesis of each probe can be found 
in the Supplementary Methods. Each step was characterized by thin-layer chroma-
tography, high-resolution mass spectra, and both 1H and 13C NMR (Supplementary 
Figs S15–S54).

Fluorometric analysis. All �uorescence measurements were carried out at room 
temperature on a Varian Cary Eclipse �uorescence spectrophotometer. Samples 
were excited at 300 and 465 nm with the excitation and emission slit widths set at 5 
and 10 nm for SFP-1 and SFP-2, respectively. �e emission spectrum was scanned 
from 310 to 550 nm and from 480 to 580 nm at 120 nm min − 1, respectively. �e 
photomultiplier voltage was set at 1,000 V for SFP-1 and 600 V for SFP-2. �e probe 
was dissolved in CH3CN or dimethylsulphoxide (DMSO) to make a 10 mM stock 
solution, which was diluted to the required concentration for measurement.

Cytotoxicity assay. HeLa cells were grown up in DMEM media with 10% FBS and 
penicillin/streptomycin (Invitrogen). Cells were allowed to grow to 80% con�uency 
before being collected using trypsin-EDTA. �e cell number was determined and 
solution was diluted to a �nal concentration of 2.22×105 cells ml − 1 in the aforemen-
tioned media. A �nal number of 2×104 cells (90 µl) was transferred to each well in 
a 96-well plate (BD Falcon). Cells were incubated overnight at 37 °C in a 5% CO2 
atmosphere. A serial dilution on SFP-1 was performed in DMEM media, with 10 µl 
added to each well to give �nal concentrations of 0.4, 0.8, 1.6, 3.1, 12.5, 25, 50 and 
100 µM probe. Cells were allowed to incubate for 20 h. Wells containing only cells 
and only probe were also set up to serve as positive and negative controls.

Dye solution and stop/solubilization mix were obtained from a CellTiter 
96 non-radioactive cell proliferation assay (Promega). Cytotoxicity assay was 
performed as per manufacturer’s instructions. Absorbance at 570 was monitored 
using a Synergy plate reader (Biotek). Data was collected for three separate serial 
dilutions and averaged.

Cellular imaging experiments. HeLa cells were grown, as previously described. 
Cells were allowed to grow to 80% con�uency before being collected and trans-
ferred to a 6-well plate (BD Falcon). �ese cells were allowed to grow overnight at 
37 °C in a 5% CO2 atmosphere. Cells were maintained at these conditions until im-
mediately before imaging experiments. At this time, a �nal concentration of 10 µM 
SFP-1 or 2 µM SFP-2 was added to the cells and they were allowed to incubate at 
the previous conditions for 15 min. Media was then removed, and fresh media was 
added to remove any probe le� in solution and optimize the background signal.  
�e sulphur source was then added (Na2S, cysteine, or GSH) to the desired concen-
tration and cells were incubated for 15–30 min at room temperature before imaging.

All imaging experiments were performed on a �xed cell DSU spinning confocal 
microscope (Olympus). Wide�eld �uorescence capture was used to visualize SFP-1 
under all conditions. Excitation and emission monitored using the 4′,6-diamidino-
2-phenylindole dihydrochloride (DAPI) �lters provided with the scope, set at 387 
per 11 nm and 440 per 40 nm, respectively. Confocal �uorescence capture was used 
to visualize SFP-2. Excitation and emission were monitored using green �lter pro-
vided with the scope, set at 485 per 20 nm and 525 per 30 nm, respectively. Imaging 
performed using either the X20 or X40 dry objectives that are provided with the 
scope. Images were captured using Slidebook so�ware. 
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