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Abstract

Background: It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell
cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce
apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising
target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in
oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to
be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid
(4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of
Tamarix aucheriana and was shown to possess proteasome inhibitory activity.

Methods: Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed
derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives:
benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl
3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and
3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores,
synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant
melanoma cells as well as normal human fibroblast cells.

Results: Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant
melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as
normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal
chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2-phases.
They also arrested the growth of HTB68 cells at S- and G2-phase, respectively. Moreover, derivatives 2, 5, and 6

markedly induced apoptosis (≥ 90%) in both HTB66 and HTB68.

Conclusions: Computer-derived syringic acid derivatives possess selective anti-mitogenic activity on human malignant
melanoma cells that may be attributed to perturbation of cell cycle, induction of apoptosis and inhibition of various
26S proteasomal activities.
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Background
It is estimated that 10 million people worldwide are

diagnosed with cancer and about 6.2 million die from

the disease every year [1,2]. Tumour cells often have

multiple alterations in their apoptotic mechanisms and/

or signalling pathways that lead to increased levels of

growth and proliferation [3,4]. Overriding these mutations

stimulates the apoptotic signalling pathway, leading to

tumour cell death, which is a significant area of focus

in anticancer drug research.

Proteasomes are gaining escalating interest since they

play a key role in cancer cell proliferation, inhibition of

chemotherapy-induced apoptosis and drug resistant

development. Proteasome is a multicatalytic protease

complex that degrades most endogenous proteins,

including misfolded or damaged proteins, to ensure

normal cellular function. Proteasome degrades the

majority of intracellular proteins, including p27kip1, p21,

IkB-α, Bax, cyclins, metabolic enzymes, transcription

factors and the tumour suppressor protein p53. In

addition, several of its enzymatic activities (proteolytic,

ATPase, de-ubiquitinating) demonstrate key roles in

protein quality control, antigen processing, signal trans-

duction, cell-cycle control, cell differentiation and apop-

tosis [5-7]. Therefore, proteasome is an attractive target

for a combined chemoprevention/chemotherapeutic ap-

proaches and thus ideal for cancer therapy.

Recently, it has been shown that proteasome inhibition

leads to growth arrest in the G1 phase of the cell cycle

and/or induction of apoptosis [8,9]. However, it was

found that some of these inhibitors do not induce apop-

tosis in several human normal cell lines [9-11]. This se-

lective activity makes proteasome inhibition a promising

target for new generation of anticancer drugs.

Clinical validation of the proteasome, as a therapeutic

target in oncology, has been provided by the dipeptide

boronic acid derivative; bortezomib [12]. Bortezomib has

proven to be effective as a single agent in multiple myeloma

[13] and some forms of non-Hodgkin’s lymphoma [14].

Despite the acceptable therapeutic index, patients

treated with this drug in phases I and II clinical trials

manifest several toxic side effects, including diarrhoea,

fatigue, fluid retention, hypokalaemia, hyponatremia,

thrombocytopenia, anaemia, anorexia, neutropenia and

pyrexia [15,16]. These side effects justify the need to

discover other safer proteasome inhibitors that are

more readily available than synthetic drugs, e.g., natural

products or nutritional compounds with pharmacophores

similar to those of authentic proteasome inhibitors.

The pursuit for nontoxic natural proteasome inhibitors

has been stimulated by the fact that several natural

products, such as green tea polyphenols and the anti-

biotic lactacystin, have been shown to potently inhibit

proteasome. One of the most promising drug candidates

of this type is salinosporamide A, from the bacterium

Salinispora tropica [17,18]. The introduction of salinos-

poramide into phase I clinical trials inspired the search

for additional natural proteasome inhibitory scaffolds.

Over the past two decades, only one FDA-approved drug

(sunitinib for renal carcinoma in 2005) was discovered

based on high-throughput screening of combinatorial

chemistry libraries [19,20]. Natural product-based drugs

(parent compounds, analogues, and mimics) are still

the major new entities source among the FDA-approved

drugs (57.7% of all drugs) [21,22].

TMC-95A, B, C and D, cyclic polypeptides isolated

from Apiospora montagnei, were shown to reduce tryp-

sin-like and peptidylglutamyl-peptide hydrolysing activ-

ity of the proteasomal 20S core particle at a nonmolar

range. This activity data is indicative of a highly selective

inhibitor for the 20S proteasome [21,22].

Since these cyclic polypeptides are not related to any pre-

viously reported proteasome inhibitor, their proteasome

binding mode was determined through crystallographic

analysis. Crystal structure of TMC-95A-proteasome com-

plex indicates a non-covalent linkage to the active β-

subunits, Figure 1. This binding mode does not modify

these β-subunits’ N-terminal threonine residue, in contrast

to all previous structurally analysed proteasome-inhibitor

complexes.

The natural product syringic acid, known chemically as

4-hydroxy-3,5-dimethoxybenzoic acid, was recently iso-

lated from the methanol extract of Tamarix aucheriana.

Additionally, the preliminary results showed that this

phenolic acid possesses potent anti-proliferative activity

against human colorectal and breast cancer cells.

Computer-assisted drug design technique plays an

important role in drug design and discovery, as well as

in preliminary prediction of mechanisms via in silico

exploration of possible binding sites of the target

macromolecule in a non-covalent fashion [23,24].

This report accounts on attempts made to optimize

syringic acid proteasome inhibitory activity via rational

design of some active semisynthetic derivatives. Several

virtual semisynthetic syringic acid derivatives were designed

and docked at the active site of 20S proteasome core

particle. Syringic acid derivatives with high docking

scores were selected, synthesized and their proteasome

inhibitory activities were studied in vitro.

Results and discussion
Chemistry

Eighteen virtual aromatic, heteroaromatic, aliphatic, and

olefinic esters, thioesters, carbamates, and ethers of syringic

acid were proposed to explore the electronic space around

the carboxy and free phenol groups. These structures

were docked at the active site of available crystal struc-

tures of 20S proteasome (PDB 1R0P and 1JD2). Of these
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structures, syringic acid semisynthetic derivatives 2–6,

assessed in this study, were selected for chemical synthe-

sis. This selection was based upon two criteria; the high

docking score and the feasibility of chemical synthesis.

The route used for the semisynthesis of these derivatives

is shown in Scheme 1. These derivatives were synthesized

directly, in good yields, by refluxing equimolar quantities

of syringic acid with benzyl halides in N,N-dimethyl

formamide, followed by reaction work up, extraction

and chromatographic purification. The identity of the

pure derivatives was confirmed based on their spectral

data.

Biological activity

Dose-dependent anti-mitogenic effect of syringic acid

derivatives on human cancer cells and normal human

fibroblast

Derivative 2 The dose-dependent antimitogenic activity

of 2 (0.1 – 2 mg /mL) towards a panel of human breast

(HTB26, HTB132), malignant melanoma (HTB66) and

colorectal (CCL233, CCL235) cancer cell lines as well as

normal human fibroblast (CRL1554) were tested after

144 h of treatment.

All tested cancer cell lines, except melanoma, showed

a maximum growth inhibition of about 20% (Figure 2).

Melanoma cells exhibited a dose-dependent growth

inhibition. However, normal human fibroblast showed a

marked growth inhibition at a concentration higher

than 1.0 mg/mL (Figure 2). The anti-mitogenic activity

of 2 towards malignant melanoma was retested using

lower concentrations of (50, 150, 259, 350 and 400 μg/

mL) and less exposure time, 24 h. Under these condi-

tions, 2, at 50–400 μg/mL, exerted a marked significant

growth inhibition on human malignant melanoma cells

HTB66 (% mean of cytotoxicity = 52.2 ± 8, IC50= 266.7 μg/

mL, p ≤ 0.0001) and HTB68 (% mean of cytotoxicity =

47.2 ± 9, IC50 = 280 μg/mL, p ≤ 0.002) compared to the

effect of 2 on normal human fibroblast CRL1554 (% mean

of cytotoxicity = 12.7 ± 2.9, Figure 3).

These results are consistent with previous studies on

the growth inhibitory effect of other plant phenolic acids

against different types of cancer cells [25,26].

Derivatives 3 and 4 These derivatives were tested for

their anti-mitogenic activities, at different concentrations

and 144 h exposure time towards human colorectal,

breast, malignant melanoma cancer cell lines and normal

human fibroblast. Derivatives 3 and 4 showed a maximum

growth inhibition, between 25-40%, on human melanoma

(HTB66, 40%), colorectal (CCL235, 30%) and breast

(HTB132, 25%) cancer cell lines. Meanwhile, colorectal

(CCL233) and breast (HTB26) cancer cell lines as well as

normal human fibroblast CRL1554 showed a maximum

growth inhibition of 10%. These results showed that

derivatives 3 and 4 possess low anti-mitogenic activities

(Figure 2). Derivatives 3 and 4 were not further investi-

gated due to their low antimitogenic activities and low

synthetic yield.

Derivatives 5 and 6 Dose-dependent anti-proliferative

effects of derivatives 5 and 6 towards human colorectal,

breast, malignant melanoma cancer cell lines and normal

Figure 1 Overlay docking alignment of TMC-95A. Compound TMC-95A docked into in the active site of 20S yeast proteasome (PDB code:
1JD2). Selected structure is of 3D resolution 3.0 Å.
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human fibroblast were tested after 144 h of treatment.

The inhibition study indicated that derivative 5 exerted a

higher growth inhibition of malignant melanoma (> 60%)

compared to other cancer cell lines (≤ 30%) and normal

fibroblast (20%) that were slightly affected (Figure 3).

Lower concentrations of derivative 5 (100–800 μg/mL)

were retested against human malignant melanoma and

normal fibroblast. It showed a higher growth inhibitory

effect on malignant melanoma HTB66 (% mean of cyto-

toxicity = 21 ± 4, IC40 = 600 μg/mL, p ≤ 0.115) and HTB68

(% mean of cytotoxicity = 49 ± 9, IC40 = 440 μg/mL, p ≤

0.001) compared to the normal fibroblast (% mean of

cytotoxicity = 7.8 ± 2) (Figure 3). On the other hand, 6

had a maximum growth inhibitory effect of 20% on the

tested cancer cell lines except for human malignant

melanoma (HTB66) cells that were markedly inhibited

in a dose-dependent manner. However, normal fibroblast

cells were also greatly affected. So, lower concentrations of

derivative 6 (260, 280, 320, 380 and 400 μg/mL) were

retested after 24 h of treatment. Derivative 6 (260–400 μg/

mL) produced a greater growth inhibition of HTB66 (%

mean of cytotoxicity = 33.2 ± 1, IC40 = 398.7 μg/mL, p ≤

0.0001) and HTB68 (% mean of cytotoxicity = 31.5 ± 2.7,

IC40 = 380.6 μg/mL, p ≤ 0.0001) compared to the normal

human fibroblast CRL1554 (% mean of cytotoxicity =

3.5 ± 0.9, Figure 3).

These results are in agreement with those reported

for other phenolic acids in different types of cancers

[27-30].

Inhibition of proteasomal activities in human malignant

melanoma cell extracts by derivatives 2, 5 and 6

The potential of derivatives 2, 5 and 6 to inhibit the

proteasomal activities in human malignant melanoma

cell extracts were evaluated by measuring the various

proteasomal proteolytic activities, chymotrypsin-like, tryp-

sin-like and PGPH, after treatment with derivative 2 (2

mg/mL), derivative 5 (1.3 mg/mL) or derivative 6 (1.75

mg/mL).

Benzyl bromide

NaH/DMF

3-Methoxybenzyl bromide

NaH/DMF

3,5-Dimethoxybenzyl
chloride
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COOH
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OH
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Scheme 1 Semisynthetic routes for syringic acid derivatives 2–6.
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All the tested derivatives produced a significant (p ≤

0.0001) inhibition of proteasomal chymotrypsin-like activ-

ity. Moreover, derivatives 2, 5 and 6 exhibited a significant

(p ≤ 0.0001) inhibition of proteasomal PGPH-like activity.

Furthermore, derivatives 2, 5 and 6 exerted a significant

reduction (p ≤ 0.0001) of proteasomal trypsin-like activity

(Figure 4) compared to untreated malignant melanoma.

Derivatives 3 and 4 were not tested because of their low

anti-mitogenic activities and low synthetic yields, as well.

These results are consistent with those reported for

other natural products, that exhibited anti-proteasomal

activity in various human cancers, such as epigallocatechin

gallate (EGCG) [31-33], gallic acid [25], quercetin

[26], apigenin, a mixture of quercetin and myricetin

[34], curcumin [35-37], genistein [38] and EGCG ana-

logues [39,40].

How derivatives 2, 5 and 6 disturb the cellular prote-

asome function yet to be discovered. They could inhibit

the proteasome function directly by blocking the 20S

proteasome core cavity, or indirectly either by inhibiting

the ubiquitin isopeptidase activity, or through the gener-

ation of oxidative stress. Inhibition of isopeptidase activity

probably leads to the accumulation of ubiquitin-protein

conjugate and polyubiquitin because of the lack of ubiqui-

tin recycling process. Excessive accumulation of ubiquitin-

protein conjugates could conceivably create proteasomal

dysfunction. Derivatives 2, 5 and 6 may also induce pro-

teasomal malfunction through the generation of oxidative

stress. Oxidative stress is known to inhibit the proteasome

function [41,42]. Impairment of proteasome function by

derivatives 2, 5 and 6 warrants further investigation.

Effect of syringic acid derivatives on human malignant

melanoma cell cycle

Treatment of human malignant melanoma cell line HTB66

with 1.3 mg/mL of 2 for 24 h arrested the growth of

HTB66 cells at G1-phase (33.5% vs. 30.9% for UT) and

G2-phase (52.7% vs. 50.9%; untreated, UT) with corre-

sponding decrease in HTB66 cells in S-phase (13.7% vs.

18% for UT) (Figure 5a). On the other hand, derivative

2 arrested the growth of human malignant melanoma

HTB-68 at S-phase (33.4% vs. 28.1% for UT) with cor-

responding decrease in HTB-68 cells in G1-phase

(43.4% vs. 47.8% for UT) and G2-phase (23.1% vs. 23.9

for UT) (Figure 5b). Moreover, treatment of malignant

melanoma cell line HTB66 with 5 (1.9 mg/mL) for 24 h

arrested HTB66 growth at S-phase (23% vs. 17.5 for

UT) and G1-phase (33.6% vs. 32.2 for UT) with

Figure 2 Dose-dependent anti-mitogenic effect of derivatives 2–6 on different human cancer cell lines. Human cancer cell lines (CCL233,
CCL235, HTB26, HTB132, HTB 66, HTB 68) and normal fibroblast (CRL1554) were plated (27x103 cells/well) into 96 well plates and incubated at
37°C in a CO2 and non-CO2 incubators. Cells were treated with different concentrations of derivatives (0.1-2 mg/mL) for 144 h. The cell growth
was measured by MTT assay.
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corresponding decrease in HTB66 cells at G2-phase

(43.3% vs. 50.2% for UT) (Figure 6a). On the other

hand, 5 arrested HTB68 growth at G2-phase (28.1% vs.

24.9% for UT) with corresponding decrease in HTB68

cells at G1-phase (47.9% vs. 49% for UT) and S-phase

(23.8% vs. 26% for UT, Figure 6b).

Induction of apoptosis in human malignant melanoma

treated with derivatives 2 and 5

The induction of apoptosis has been recognized as an

effective tool in the therapeutic treatment of many tu-

mours. In the present study, treatment of human ma-

lignant melanoma cell lines HTB66 and HTB68 with

1.3 mg/mL of 2 for 24 h, markedly induced apoptosis

in HTB66 (% early apoptosis = 90.8% and % late apop-

tosis = 7.6% vs. 12.5% and 2.7% for early and late apop-

tosis, respectively, in UT) (Figure 7a) and HTB68 (%

early apoptosis = 90.8% and % late apoptosis = 7.6% vs.

8.6% and 1.4% for early and late apoptosis, respectively,

in UT, Figure 7b). Similar marked induction of apop-

tosis was noticed when malignant melanoma cell lines

Figure 4 Inhibition of 26S proteasomal activities of human

malignant melanoma cells treated with derivatives 2, 5 and 6.

Human melanoma cells HTB68 were plated (1 × 106 cells/well) in 12
well plates and incubated 24 h at 37°C in CO2 incubator. Cells were
then treated with 2 (1.5 mg/mL), 5 (2.6 mg/mL) and 6 (1.75 mg/mL) or
epoxomicin (50 ng/mL) as a positive control for 24 h. Cells were
harvested and cytosolic fractions were prepared using nuclear/cytosol
fractionation assay kit (Bio-Vision incorporated). The chymotrypsin-like
activity, PGPH activity and trypsin-like activity of 26S proteasome was
monitored using fluorogenic substrates in fluorometer with an
excitation filter of 360 nm and emission filter of 460 nm.

Figure 3 Dose-dependent anti-mitogenic effect of derivatives 2,

5 and 6 on human melanoma cancer cell lines. Human
melanoma cell lines (HTB66 and HTB68) and normal fibroblast
(CRL1554) were plated (27x103 cells/well) into 96 well plates and
incubated at 37°C in a CO2 incubator. Cells were treated with 2
(50–400 μg/mL), 5 (100–800 μg/mL), and 6 (260–400 μg/mL) for 24 h.
The cell growth was measured by MTT assay.
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were treated for 24 h with 1.9 mg/mL of 5. Derivatives

2 and 5-induced apoptosis is mediated through the im-

pairment of the ubiquitin-proteasome system.

When proteasome inhibitors prevent the proteasome

from activating NFκB, factors of angiogenesis, survival,

and growth are down regulated while apoptosis is up

regulated in multiple cell lines [43,44]. This effect is also

noticed in chemotherapy-resistant cells, additionally due

to disruption of proteasomal regulation of caspases and

Bcl2. Further, proteasome inhibition enhances the levels

of p21 and p27 [45]. Such enhancement inhibits CDKs

and consequently arrests cell cycle and halting the growth

of cancer cells. The inhibition of the proteolytic function

of the 26S proteasome has also been shown to impair

the development of new blood vessels from endothelial

cells or angiogenesis that is a vital factor for tumour

growth and metastasis [46]. Disruption of angiogenesis

by proteasome inhibition also occurs by decreasing mic-

rovessel density and the expression of vascular endothelial

growth factor (VEGF) [46]. Thus, the proteasomal inhib-

ition impairs angiogenesis as well as disturbs cellular

homeostasis, hence leading to an antitumor activity. Over-

all, the inhibition of the proteolytic function of the 26S

proteasome induces apoptosis and cell cycle arrest, and

represses angiogenesis as well as metastasis. In fact, apop-

tosis and other antitumor effects have been observed in

various cancer cell lines and xenograft models including

lymphoma, leukaemia, melanoma, pancreatic, prostate,

head and neck, breast, and lung cancers [47,48]. Further,

cancer cells are more sensitive to the cytotoxic effects of

the proteasome inhibition as compared to the normal

cells [49]. Also, cessation of all proteasomal function is

not required to achieve antitumor effects [50]. Together,

these studies have implicated the proteasome inhibition

as an attractive way of treating cancer cells. Several prote-

asome inhibitors have shown significantly improved anti-

tumor activities when combined with other drugs such as

HDAC inhibitors, Akt inhibitors, DNA damaging agent,

Hsp90 inhibitor, and lenalidomide. In summary, prote-

asome inhibitor alone or in combination with other ther-

apies have shown very promising results to treat cancer

patients in the clinic more effectively.

Figure 6 Flow cytometric analysis of cell cycle distribution of

human melanoma cancer cells treated with 5. The human
melanoma cancer cell lines HTB66 (a) and 68 (b) were treated with
5 (1.9 mg/mL), for 24 h, starting 24 h after seeding the cell in
culture. At least 3 samples were analysed and 20,000 events were
scored for each sample. The vertical axis represents the relative
number of events and the horizontal axis represents the
fluorescence intensity.

Figure 5 Flow cytometric analysis of cell cycle distribution of

human melanoma cells treated with 2. Human melanoma cell
lines HTB 66 (a) and 68 (b) were treated with 2 (1.3 mg/mL), for
24 h, starting 18 h after seeding the cell in culture. At least 3
samples were analysed and 20,000 events were scored for each
sample. The vertical axis represents the relative number of events
and the horizontal axis represents the fluorescence intensity.
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The selectivity of the antitumor spectrum activity of

syringic acid derivatives towards human malignant mel-

anoma cells may be associated with several mechanisms

which may be speculated to include disruption of cell

adhesion- and cytokine-dependent survival pathways, e.g.,

NFκB signalling pathway, inhibition of angiogenesis, ac-

tivation of a misfolded protein stress response (or ER

stress), up regulation of proapoptotic or down regula-

tion of antiapoptotic genes. DNA microarray analysis of

the expression of genes controlling these regulatory

mechanisms in melanoma cells-treated with syringic

acid derivatives will clarify the selectivity of the anti-

tumor activity of these derivatives against human ma-

lignant melanoma cells.

Molecular modelling studies

Bortezomib is the best described proteasome inhibitor

and the first to be clinically tested in humans, especially

against multiple myeloma and non-Hodgkin’s lymphoma.

Therefore, bortezomib was selected as a reference stand-

ard in this study. Bortezomib acts by binding β5i and β1i

proteasome subunits [7].

In its bound conformation, bortezomib adopts an anti-

parallel β-sheet conformation filling the gap between

strands S2 and S4. These β-sheets are stabilized by direct

hydrogen bonds between the conserved residues (Gly47N,

Thr21N, Thr21O, and Ala49O) of the β-type subunits and

main chain atoms of the drug [21]. Both Thr21O and

Ala49N, conserved in all proteolytically active centres, are

essential for β-sheet formation. Their respective carbonyl

oxygen and nitrogen atoms tightly interact with bortezo-

mib’s pyrazine-2-carboxyl-phenylalanyl peptide backbone.

The binding mode and conformation was found to be uni-

form in all proteolytically active sites [21].

Docking of syringic acid derivatives showed that the

binding modes of energy-minimized derivatives are similar

to bortezomib bound conformation to crystal structure of

the eukaryotic yeast 20S proteasome which was obtained

from the Protein Database (PDB code: 2 F16).

2 demonstrated a good binding score presented in total

score as compared to bortezomib (Table 1). The carboxyl

moiety of the ester link of 2 formed three hydrogen bonds

with H/Thr1, H/Gly47 and H/Thr21. Furthermore, one

hydrogen bond was formed between the methoxyl group

and H/Thr52 as shown in Figure 8.

On the other hand, derivatives 3 and 4 showed the best

binding score, presented in total score, when compared to

other derivatives (Table 1). These results were in contrary

to what one would expect for in vitro activities, where 3

and 4 were shown to be the least active derivatives. One

reason for these unexpected low biological activities might

be their poor water-solubility when compared to the other

ones. In derivatives 3 and 4, the phenolic and carboxylic

hydroxyl groups were etherified and esterified, respect-

ively. This dramatically reduced their polarity, expected

water-solubility, and hence, limited their available critical

concentrations needed for bioactivities.

The carboxyl moiety of the ester linkage of 3 formed

two hydrogen bonds with H/Gly47 and H/Thr1. Another

hydrogen bond was present between one of the methoxyl

groups of syringic acid and H/Thr52, as shown in Figure 9.

On the other hand, the carboxyl moiety of the ester link-

age of 4 formed a hydrogen bond with H/Ala49. Another

Table 1 Virtual binding scores of syringic acid analogues

and bortezomib

Compound Total score Crash Polar

Bortezomib 8.50 −2.13 2.26

4 6.59 −1.76 1.93

3 6.58 −1.43 3.11

6 6.32 −1.31 2.07

5 6.06 −1.18 3.13

2 5.43 −0.86 3.05

Syringic acid 3.83 −1.52 1.45

Using SYBYL-X Surflex-Dock and the eukaryotic yeast 20S proteasome crystal

structure (PDB code: 2 F16). Total score was expressed in –log (Kd) units to

represent binding affinities. Crash is the degree of inappropriate penetration

by the ligand into the protein and of interpenetration between ligand atoms

that are separated by rotatable bonds. Polar score is the contribution of the

polar non-hydrogen bonding interactions to the total score. The polar score

may be useful for excluding docking results that make no hydrogen bonds.

Figure 7 Assessment of apoptosis in human malignant

melanoma cells by annexin V-FITC and propidium iodide

staining. Untreated and derivative 2-treated (1.3 mg/mL, for 24 h)
human malignant melanoma cell lines HTB66 (a) and HTB68 (b)

were stained with annexin V-FITC and propidium iodide, then
analysed by flow cytometry. B4: percentage of early apoptotic cells,
B2: percentage of late apoptotic cells, B1: percentage of necrotic
cells and B3: living cells.
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hydrogen bond was formed between one of the methoxyl

groups of syringic acid and H/Thr1, while a third hydro-

gen bond was formed between the ether linkage and H/

Thr21. Additional hydrogen bond was also seen between

the m-methoxyl group of the newly added benzyl ether

moiety and H/Ser129 (Figure 10).

Moreover, 5 showed a slightly higher binding score than

2 (Table 1), however, it demonstrated a similar binding

conformation to 2 (Figure 11). Finally, 6 showed a com-

parable binding score and a similar docking conformation

to 3 (Figure 12).

Conclusions
Out of eighteen syringic acid derivatives virtually proposed,

only five derivatives; benzyl 4-hydroxy-3,5-dimethoxyben-

zoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3),

3′-methoxybenzyl 3,5-dimethoxy-4-(3′-methoxybenzyloxy)

benzoate (4), 3′-methoxybenzyl 4-hydroxy-3,5-dimetho-

xybenzoate (5) and 3′,5′-dimethoxybenzyl 4-hydroxy-3,5-

Figure 8 Overlay docking alignment of derivative 2. Derivative 2 docked in the active site of 20S yeast proteasome (PDB code: 2 F16).
Selected structure is of 3D resolution 2.8 Å.

Figure 9 Overlay docking alignment of derivative 3. Derivative 3

docked in the active site of 20S yeast proteasome (PDB code: 2 F16).
Selected structure is of 3D resolution 2.8 Å.

Figure 10 Overlay docking alignment of derivative 4. Derivative
4 docked in the active site of 20S yeast proteasome (PDB code:
2 F16). Selected structure is of 3D resolution 2.8 Å.
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dimethoxy-benzoate (6), showed high binding affinity and,

therefore, were chemically synthesized.

Syringic acid derivatives 2, 5 and 6 were shown to

inhibit human malignant cell growth, and proteasome

activity, and apoptosis inducers. Proteasome inhibitors

are considered promising anticancer agents. Therefore,

syringic acid derivatives 2, 5 and 6, with their safe profile

on normal human fibroblasts, have enormous potential

for future use for the prevention and control of human

malignant melanoma. The intimate coupling of multi-

component computer modelling with natural products-

based prospecting, in bidirectional fashion and the use

of in silico and in vitro tools for efficacy and selectivity

optimization, provide guidance and perfect examples of

rational drug discovery and design approaches.

Methods
Chemistry

The IR spectra were recorded as neat solids using an

FT/IR-4100 JASCO spectrophotometer. The 1H and 13C

NMR were obtained on a Bruker Avance II-600 spec-

trometer operating at 600 and 125 MHz, respectively.

Both 1H and 13C NMR spectra were recorded in CDCl3,

and the chemical shift values were expressed in δ (ppm)

relative to the internal standard TMS. For the 13C NMR

spectra, the number of attached protons was determined

by DEPT 135°. 2D NMR data were obtained using the

standard pulse sequence of the Bruker Avance II-600 for

COSY, HSQC, and HMBC. Mass Spectroscopy was car-

ried out using a Bruker Bioapex FTMS with Electrospray

Ionization Spectrometer. Thin layer chromatography

was performed on pre-coated (0.25 mm) silica gel GF254
plates (E. Merck, Germany) and compounds were visual-

ized via exposure to 254 nm UV lamp and spray with

p-anisaldehyde/ H2SO4 followed by heating.

Benzyl 4-hydroxy-3,5-dimethoxybenzoate (2) and benzyl

4-(benzyloxy)-3,5 dimethoxybenzoate (3)

A solution of syringic acid (320 mg, 1.6 mmol) and

benzylbromide (1000 mg, 5.8 mmol) in N,N-dimethyl

formamide (20 mL) was heated under reflux. Sodium

hydride (38.4 mg, 1.6 mmol) was added portion-wise to

the reaction mixture. The mixture was kept under reflux

for 2 h. Reaction progress was monitored (thin layer

chromatography, solvent system: 100% chloroform) and

was shown go almost to completion. A saturated solution

of sodium carbonate (40 mL) was added to the reaction

mixture and, then, was extracted with chloroform

(40 mL × 3). The combined chloroform layer was dried

over anhydrous MgSO4, and evaporated in vacuo to

afford a yellowish syrupy residue (1.06 g). This residue

was chromatographed over flash silica gel column

(106 g) using chloroform as the eluting solvent. This

process afforded pure derivatives 2 (12 mg) and 3

(8 mg) as colourless oils. Spectral analysis confirmed

the identity of 2 as benzyl 4-hydroxy-3,5-dimethoxy-

benzoate and that of 3 as benzyl 4-(benzyloxy)-3,5-

dimethoxybenzoate. This reaction and chromatographic

processes were scaled up and repeated several times to

afford quantities enough to evaluate their biological

activities (189 mg of 2, and 124 mg of 3).

Derivative 2: yield, 2.6%; IR (neat, cm-1) ν max 3345

(O-H), 1725 (C = O); 1H NMR (CDCl3, 600 MHz) see

Table 2, supplemental data; 13C NMR (CDCl3, 125 MHz)

see Table 2, supplemental data; High resolution ESIMS

m/z 288.0942 [M]+ (calcd for C16H16O5 288.0998).

Derivative 3: yield, 1.3%; IR (neat, cm-1) ν max 1727 (C =

O); 1H NMR (CDCl3, 600 MHz) see Table 3, supplemental

data; 13C NMR (CDCl3, 125 MHz) see Table 3, supple-

Figure 11 Overlay docking alignment of derivative 5. Derivative
5 docked in the active site of 20S yeast proteasome (PDB code:
2 F16). Selected structure is of 3D resolution 2.8 Å.

Figure 12 Overlay docking alignment of derivative 6. Derivative
6 docked in the active site of 20S yeast proteasome (PDB code:
2 F16). Selected structure is of 3D resolution 2.8 Å.
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mental data; High resolution ESIMS m/z 378.1421 [M]+

(calcd for C23H22O5 378.1467).

3′-Methoxybenzyl 3,5-dimethoxy-4-(3′-methoxy benzyloxy)

benzoate (4) and 3′-methoxybenzyl 4-hydroxy-3,5-

dimethoxybenzoate (5)

Likewise, these derivatives were synthesized as men-

tioned above; however, 3-methoxybenzylbromide (920 mg,

4.6 mmol) was used, instead. Removal of un-reacted

syringic acid was achieved via adding saturated solution of

sodium carbonate and extraction with chloroform. Evap-

oration of chloroform layer yielded 1.03 g of a yellowish

syrupy residue. This residue gave, after purification, pure

derivatives 4 (10.6 mg) and 5 (15 mg) as pale yellow oils.

Derivatives 4 and 5 identities were deduced from their

spectral data. The reaction and purification processes were

repeated to yield 93 mg of 4 and 131 mg of 5.

Derivative 4: yield, 1.5%; IR (neat, cm-1) ν max 1727 (C =

O); 1H NMR (CDCl3, 600 MHz) see Table 3, supplemental

data; 13C NMR (CDCl3, 125 MHz) see Table 3, supple-

mental data; High resolution ESIMS m/z 438.1648 [M]+

(calcd for C25H26O7 438.1679).

Derivative 5: yield, 3%; IR (neat, cm-1) ν max 3340 (O-H),

1727 (C =O); 1H NMR (CDCl3, 600 MHz) see Table 2,

supplemental data; 13C NMR (CDCl3, 125 MHz) see

Table 2, supplemental data; High resolution ESIMS m/z

318.1110 [M]+ (calcd for C17H18O6 318.1103).

3′,5′-dimethoxybenzyl 4-hydroxy-3,5-dimethoxy benzoate (6)

Following the above procedure, 3,5-dimethoxybenzyl-

bromide ( 320 mg, 1.7 mmol) was used. This reaction

was sluggish and never went to completion. Reaction

workup, afforded 0.166 g of a yellowish syrupy residue

which upon purification gave 5.4 mg of 6. Derivative 6

identity was confirmed from spectral analysis to be

3′,5′-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate.

Reaction scale up afforded 52 mg of pure 6.

Derivative 6: yield, 1%; IR (neat, cm-1) ν max 3340 (O-H),

1721 (C =O); 1H NMR (CDCl3, 600 MHz) see Table 2,

supplemental data; 13C NMR (CDCl3, 125 MHz) see

Table 2, supplemental data; High resolution ESIMS m/z

348.1200 [M]+ (calcd for C18H20O7 348.1209).

Biological activity

Cell Culture

All cell lines were obtained from ATCC (American Type

Culture, VA, USA). Human colorectal cancer cell lines

(CCL233 and CCL235) and Human breast cancer cell

lines (HTB131 and HTB132) were cultivated in Leibovitz’s

L15 medium, 90%, fetal bovine serum, 10%. L15-medium

formulation is devised for use in a free gas exchange with

atmospheric air. Human melanoma cell lines (HTB-66

and HTB-68) were cultivated in minimum essential med-

ium Eagle with 2 mM L-glutamine and Earle’s BSS ad-

justed to contain 1.5 g/L sodium bicarbonate, 0.1 mM

Table 2 1H and 13C NMR assignments for syringic acid and its derivatives 2, 5 and 6a

Position Syringic acid 2 5 6

δC
b

δH (m, J Hz) δC
b

δH (m, J Hz) δC
c

δH (m, J Hz) δC
b

δH (m, J Hz)

1 128.6, C - 121.1, C - 121.1, C - 121.0, C -

2 107.0, CH 7.31 (s) 106.8, CH 7.36 (s) 106.9, CH 7.35 (s) 106.8, CH 7.38 (s)

3 148.0, C - 146.7,C - 146.7, C - 146.6, C -

4 142.6, C - 139.4, C - 139.4, C - 139.4, C -

5 148.0, C - 146.7, C - 146.7, C - 146.6, C -

6 107.0, CH 7.31 (s) 106.8, CH 7.36 (s) 106.9, CH 7.35 (s) 106.8, CH 7.38 (s)

1' - - 136.3, C - 137.9, C - 136.5, C -

2' - - 128.2, CH 7.45 (dd, 7.8, 1.2) 113.8d, CH 6.98 (d, 2.2) 105.9, CH 6.59 (d, 2.4)

3' - - 128.6, CH 7.39 (dd, 7.8, 7.2) 160.0, C - 160.9, C -

4' - - 128.2, CH 7.34 (dd, 7.2, 1.2) 113.7d, CH 6.88 (dd, 8.1, 2.2) 100.0, CH 6.45 (dd, 2.4, 2.4)

5' - - 128.6, CH 7.39 (dd, 7.8, 7.2) 129.8, CH 7.30 (dd, 10.0, 8.8) 160.9, C -

6' - - 128.2, CH 7.45 (dd, 8.8, 1.2) 120.4, CH 7.02 (d, 7.7) 105.9, CH 6.59 (d, 2.4)

7'-CH2 - - 66.7, CH2 5.36 (s) 66.8, CH2 5.32 (s) 66.5, CH2 5.30 (s)

3,5-OCH3 56.1, CH3 3.86 (s) 56.5, CH3 3.93 (s) 56.6, CH3 3.93 (s) 56.5, CH3 3.95 (s)

3'-OCH3 - - - - 55.3, CH3 3.82 (s) 55.4, CH3 3.82 (s)

5'-OCH3 - - - - - - 55.4, CH3 3.82 (s)

OH - 4.93 (s) - 5.92 (s) - 5.91 (br s) - 5.95 (s)
aSpectra recorded in CDCl3.

bMultiplicities were determined by DEPT 135. cMultiplicities were determined by APT. dAssignments may be interchanged.
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non-essential amino acids, 0.1 mM sodium pyruvate and

Earl’s BSS, 90%, foetal bovine serum, 10%.

Normal human fibroblast cells (CCL1554) were culti-

vated in Eagle modified essential medium (90%) and foetal

bovine serum, 10%.

Dose-dependent anti-mitogenic effect of syringic

acid derivatives

The antimitogenic effects of syringic acid derivatives 2–

6 toward panel of different human cancer cell lines com-

prised of colorectal (CCL233, CCL235), breast (HTB26,

HTB132), breast (HTB26, HTB132), and melanoma

(HTB66 and HTB68) cancer cell lines as well as normal

human fibroblast CRL1554 cells were tested as previously

described [31]. Human cancer cell lines and normal hu-

man fibroblast cells were plated in 96-well microtiter

plates at a cell density of 27x103cells/well. Cells were

incubated in culture medium containing increasing con-

centrations of the tested derivatives (0.1, 0.4, 0.8, 1.2, 1.6

and 2.0 mg/mL) at 37°C in CO2 or non CO2 incubator

depending on the cell lines for 144 h. On the completion

of the treatment period, the media were discarded and

100 μl/well of MTT (5 mg/mL in culture medium filtered

sterilized) was then added and the plate was incubated

for 4 h at 37°C. The MTT solution was then aspirated

and the formazan crystals were dissolved in 200 μl/well

of 1:1 (v/v) solution of DMSO: ethanol for 20 min at

ambient temperature. Change in absorbance was deter-

mined at A540 and 650 nm. Derivatives 2 (50–400 μg/

mL), 5 (100–800 μg/mL) and 6 (260–400 μg/mL) were

retested for their antimitogenic activities against human

malignant melanoma cancer cell lines HTB66 and HTB68

and normal human fibroblast CRL1554 after 24 h of treat-

ment as mentioned above.

Cell extract preparation

A whole-cell extract was prepared as previously described

[7]. Briefly, human melanoma Cancer cells HTB68 were

grown to 60-70% confluency, harvested, washed twice

with PBS and homogenized in a lysis buffer (50 mM Tris

(pH 8.0), 5 mM ethylenediaminetetraacetic acids, 150 mM

NaCl, 0.5% NP40). After 30 minutes of rocking at 4°C, the

mixtures were centrifuged at 14,000× g for 30 minutes

and the supernatants were collected as whole-cell extracts.

Inhibition of the proteasome activities in human melanoma

whole cell extracts by derivatives 2, 5 and 6

Various proteasomal activities were determined in human

melanoma whole cell extract as previously described [31].

Briefly, human melanoma cancer cell extract (6 μg) was

incubated for 90 min at 37°C with 20 μM fluorogenic

peptide substrates: Suc-Leu-Leu-Val-Tyr-AMC (for protea-

somal chymotrypsin-like activity), benzyloxycarbonyl(Z)-

Leu-Leu-Glu-AMC (for proteasomal PGPH activity) and

Z-Gly-Arg-AMC (for proteasomal trypsin-like activity) in

100 μl of the assay buffer in the presence or absence of

Derivatives 2 (1.5 mg/mL), 5 (2.6 mg/mL) and 6 (1.75 mg/

mL). After incubation, the reaction mixture was diluted to

200 μL with the assay buffer followed by a measurement

of the hydrolysed 7-amido-4-methyl-coumarin (AMC)

groups using aVersaFluor™ Fluorometer with an excitation

filter of 380 nm and emission filter of 460 nm.

Flow cytometric analysis of cell cycle

The distribution of cells in cell cycle phases (Go/G1, S,

G2/M) was determined using flow cytometry by the

measurement of the DNA content of nuclei labelled with

propidium iodide as previously described [51]. Briefly,

human melanoma cell lines HTB66 and HTB68 were

plated (2.5×105 cells/mL) into 24-well plates and incu-

bated at 37°C in CO2 incubator. Cells were treated with

Table 3 1H and 13C NMR assignments for syrinigc acid

derivatives 3 and 4a

Position 3 4

δC
b

δH (m, J Hz) δC
b

δH (m, J Hz)

1 125.3, C - 125.2, C -

2 106.9, CH 7.31 (s) 107.0, CH 7.31 (s)

3 153.3, C - 153.2, C -

4 141.1, C - 141.2, C -

5 153.3, C - 153.2, C -

6 106.9, CH 7.31 (s) 107.0, CH 7.31 (s)

1' 136.1, C - 137.6, C -

2' 128.2, CH 7.44 (d, 7.8) 113.8, CH 7.44 (d, 7.8)

3' 128.5, CH 7.39 (dd, 7.8, 7.2) 159.8, C 7.39 (dd, 7.8, 7.2)

4' 128.0, CH 7.28 (dd, 7.2, 7.2) 113.6, CH 7.28 (dd, 7.2, 7.2)

5' 128.5, CH 7.39 (dd, 7.8, 7.2) 129.7, CH 7.39 (dd, 7.8, 7.2)

6' 128.2, CH 7.44 (d, 7.8) 120.4, CH 7.44 (d, 7.8)

1' 137.4, C - 138.9, C -

2' 128.2, CH 7.46 (d, 7.2) 113.5, CH 7.46 (d, 7.2)

3' 128.6, CH 7.34 (dd, 7.8, 7.2) 159.6, C 7.34 (dd, 7.8, 7.2)

4' 128.3, CH 7.32 (m) 113.9, CH 7.32 (m)

5' 128.6, CH 7.34 (dd, 7.8, 7.2) 129.2, CH 7.34 (dd, 7.8, 7.2)

6' 128.2, CH 7.46 (d, 7.2) 120.5, CH 7.46 (d, 7.2)

7'-CH2 66.8, CH2 5.36 (s) 66.7, CH2 5.36 (s)

7'-CH2 74.9, CH2 5.08 (s) 74.9, CH2 5.08 (s)

3,5-OCH3 56.3, CH3 3.86 (s) 56.3, CH3 3.86 (s)

3'-OCH3 - - 55.2c, CH3

5'-OCH3 - - - -

3'- OCH3 - - 55.3c, CH3 -

-COO- 166.2, C - 166.2, C -

OH - - - -
aSpectra recorded in CDCl3.

bMultiplicities were determined by DEPT 135.
cAssignments may be interchanged.
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derivatives 2 (1.3 mg/mL) and 5 (1.9 mg/mL) for 24 h,

starting 18 h after seeding the cells in culture. Untreated

and derivative 5-treated human melanoma cells were

collected by trypsinization and then washed with cold

phosphate buffered saline (PBS) and then counted.

Cells were processed using DNA-prep kit (Beckman

and Coulter, FL, USA) and a DNA-Prep EPICS work-

station (Beckman and Coulter). During this process,

cells were treated with a cell-membrane permeabilizing

agent and then with propidium iodide (PI) and RNAase.

The sample was then incubated at room temperature

for 15 minutes before analysing by aligned flow cytom-

etry (FC500, Beckman and Coulter). The percentage of

cells in different cell cycle phases was calculated using

the Phoenix statistical software package and Advanced

DNA cell cycle software (Phoenix Flow System, San

Diego, CA, USA).

Assessment of apoptosis by Annexin V-FITC and PI staining

The potential of derivatives 2 and 5 to induce apoptosis

in human melanoma cells was determined by Annexin

V-FITC and PI staining (Annexin V-FITC, BD Pharmingen,

San Diego, CA, USA) and according to the manufacturer’s

instruction. Briefly, human melanoma cell lines HTB66 and

HTB68 were plated (2.5 × 105 cells/mL) into 24-well plate

and incubated at 37°C in CO2 incubator. Cells were treated

with derivatives 2 (1.3 mg/mL) and 5 (1.9 mg/mL) for 24 h.

Cells from control and treatment groups were re-sus-

pended in 100 μl staining solution containing V fluorescein

and propidium iodide in HEPES buffer. Following incuba-

tion at room temperature for 15 min, cells were analysed

by flow cytometry. Annexin V binds to those cells that

express phosphatidylserine on the outer layer of the cell

membrane, and propidium iodide stains the cellular

DNA of those cells with a compromised cell membrane.

This allows for the discrimination of live cells (unstained

with either fluorochrome) from apoptotic cells (stained

only with V) and necrotic cells (stained with both V and

propidium iodide).

Molecular modelling studies

Three-dimensional structure building and all modelling

were performed using the SYBYL Program Package,

version X [52], installed on a DELL desktop workstation

equipped with a dual 2.0 GHz Intel® Xeon® processor

running the Red Hat Enterprise Linux (version 5) operat-

ing system. Conformations of bortezomib and syringic

acid derivatives 2–6 were generated using Confort™ con-

formational analysis. Energy minimizations were performed

using the Tripos force field with a distance-dependent

dielectric and the Powell conjugate gradient algorithm

with a convergence criterion of 0.01 kcal/(mol A). Partial

atomic charges were calculated using the semiempirical

program MOPAC 6.0 and applying the AM1.

Surflex-Dock Program version 2.0 interfaced with SYB

YL-X was used to dock TMC-95A, bortezomib and sy-

ringic acid derivatives 2–6 in the active site of 20S yeast

proteasome (PDB code: 2 F16 and 1JD2). Surflex-Dock

employs an idealized active site ligand (protomol) as a

target to generate putative poses of molecules or molecu-

lar fragments [53]. These putative poses were scored using

the Hammerhead scoring function [53,54]. The 3D struc-

tures (PDB: 2 F16 and 1JD2) were taken from the Re-

search Collaboratory for Structural Bioinformatics Protein

Data Bank (http://www.rcsb.org/pdb).
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