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Abstract: This research paper proposes the application of a meta-heuristic algorithm, namely the
water cycle algorithm (WCA), for optimizing the performance of a multi-level inverter for a dis-
tributed energy resources-based smart grid system. The aim is to find the optimal switching angles
to achieve selective harmonic elimination. To exhibit the effectiveness of the proposed algorithm
and evaluate the results, a three-phase seven-level cascaded multilevel inverter (CHBMLI) is used.
This paper demonstrates the efficacy of the proposed algorithm by performing a rigorous compar-
ison with existing meta-heuristic algorithms. Independent sample t-tests for different population
sizes are demonstrated, which reflect the better performance of the proposed algorithm’s results.
For the comparison, crucial parameters for optimization, including population size and number of
iterations, are kept the same for the proposed WCA and other algorithms. Since we are solving a
minimization problem, a lower fitness value is focused. In our research paper, we show how the
proposed algorithm attains a lower fitness value and fast rate of convergence. For different values of
the modulation index, WCA performs better than particle swarm optimization (PSO) and the firefly
algorithm (FA). For a particular case of a modulation index value of 0.8, the minimum value found
by WCA over 50 samples is 0.0001, whereas that of PSO and FA are 0.0223 and 0.0433, respectively,
which shows that WCA has better accuracy. The results clearly present that the proposed algorithm
provides a competitive percentage of elimination of selected harmonics when compared with other
meta-heuristic algorithms.

Keywords: cascaded multilevel inverter; meta-heuristic optimization; renewable energy; selective
harmonic elimination; water cycle algorithm

1. Introduction

Over the last few decades, multilevel inverters have found many industrial applications.
They are being employed in medium voltage and high power electrical drives [1]. Multilevel
inverters have also been extensively utilized in flexible AC transmission (FACT) and
high voltage direct transmission (HVDC) based systems [2,3]. Multilevel inverters have
three types: flying capacitor, diode clamped and cascaded H-bridge multilevel inverters
(CHBMLI) [4–6]. Modularity and repetitive structure makes CHBMLI extensively used
in renewable energy systems (RES) [7–9]. Additionally, CHBMLI has a fewer number of
components. The employment of separate DC sources is also its desirable feature, especially
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in PV systems [10,11]. Figure 1 presents an application of CHBMLI in a distributed energy
resources-based power grid system. It consists of pre-defined H-bridge cells connected
in series. Each cell has its independent DC power supply, and these power supplies can be
the same or different. The number of levels obtained in a k-level CHBMLI is (2k + 1).

Figure 1. Multi-level inverter for distributed energy resources-based smart grid system.

Nowadays, a major challenge with a multilevel inverter (MLI) is focused on improving
the power quality. For CHBMLI control, several modulation techniques exist in the literature.
Conventional pulse width modulation (PWM), sinusoidal PWM, and space vector modulation
are high-frequency switching techniques with a transient response. Furthermore, different
carrier-based PWM techniques and carrier-less PWM techniques are introduced that effectively
reduce distortion and reduce the electromagnetic interference (EMI). Inverter efficiency can be
improved by the employment of low-pass filters of a high-order, which suppress high-order
harmonics. However, dominant low-order harmonics, namely the third, fifth and seventh
harmonics, cannot be eliminated completely using PWM-based switching techniques.

Selective harmonic elimination (SHE) is a low switching frequency technique. In SHE,
switching angles are determined that eliminate the specific lower order harmonics while
maintaining a fundamental order harmonic. These switching angles are determined by
solving SHE equations. Various constraints need to be taken care of while determining
switching angles using SHE equations. These include restricting angles between 0 and π

2
(assuming quarter-wave symmetry) and maintaining the fundamental to a defined value.
The challenge associated while eliminating harmonics using the SHE technique is the
solution to solve complex non-linear equations, as they contain trigonometric terms and
exhibit a multi-modal nature.

Various methods have been discussed in the literature to solve SHE transcendental
equations, which include numerical, algebraic methods, and bio-inspired methods [12].
In particular, numerical methods have been discussed in the literature to solve SHE equations.
In [13], the application of Walsh functions for solving SHE equations is discussed. To solve
SHE equations, the homotopy algorithm is applied in [14]. Sequential programming and
Newton–Raphson methods are also discussed to solve SHE equations in [15,16], respectively.
Although numerical methods give accurate solutions, they have a tendency to get trapped
in local optima due to dependency on initial guess.

Algebraic methods, such as the resultant theory method [17], theory of Groebner
bases [18], Wu method [19], symmetric polynomial [20], and power sum methods [21],
have also been discussed in the literature to solve SHE complex nonlinear equations.
Algebraic methods work by transforming non-linear algebraic equations into polynomial
equations, and they do not require an initial guess. Hence, they are better as compared to
numerical methods due to the non-requirement of an initial guess. However, these methods
are only suitable for low-level inverters. With the increase in the number of inverter levels,
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the complexity and computational burden of these methods also increase and they become
unsuitable for real-time control of high-level power inverters.

In the past, many bio-inspired metaheuristic algorithms have been reported in the
literature to solve SHE equations for CHBMLI. Early metaheuristic algorithms include the
genetic algorithm (GA) and its variants [22]. GA is applied for the harmonic elimination of
the 5th, 7th, and 11th harmonics in a three-phase nine-level inverter in [23], but the authors
do not provide solutions for all values of the modulation index. Particle swarm optimization
(PSO) is also applied to CHBMLI for SHE in [24]. In [25], the author presents the application
of the bee algorithm (BA) to a 7-level inverter and compares its performance with GA.
The author concludes that BA surpasses GA in the attainment of an accurate global minima,
and the rate of convergence of BA is also better. In [26], the cuckoo search algorithm (CSA)
is utilized for SHE in a 7-level CHBMLI. The author compares the performance of CSA
with BA and GA and determines that CSA performs better than BA in eliminating selected
harmonics, but the comparison in terms of convergence speed is not provided. The bat
optimization algorithm (BOA) is applied to a three-phase 7-level CHBMLI for solving SHE
equations [27], and the comparison of the reported algorithm is performed with GA and
BA. The author reports the superiority of BOA over GA and BA in eliminating harmonics
but does not compare the aforementioned techniques in terms of speed of convergence.
In [28], employment of the firefly algorithm (FA) is reported for SHE in 11-level CHBMLI,
having equal and unequal DC sources. The author suggests that FA performs better than
PSO, GA, modified PSO, and NR, but a convergence comparison is not performed. Recently,
many newly developed evolutionary algorithms have been applied for the SHE problem in
CHBMLI [12]. The ant colony optimization (ACO) algorithm is applied to a three-phase
5-level inverter, and it is compared with GA in [29]. In [30], grey wolf optimizer (GWO)
is reported for harmonic elimination in 11- and 15-level CHBMLIs, and its comparison
is performed with PSO. It is reported that GWO outperforms PSO. In [31], the modified
grey wolf optimizer (MGWO) is reported for the harmonic elimination problem in hybrid
CHBMLI. In [32], a bacterial foraging algorithm is applied to solve SHE equations. The
newly developed salt swarm algorithm (SSA) is also reported for the harmonic elimination
problem in a 5-level inverter, and the author shows that SSA performs better than PSO in
terms of convergence [33].

In the aforementioned papers, various algorithms have been applied to solve SHE
equations for multilevel inverters. These algorithms require the tuning of multiple pa-
rameters for their optimal performance. This research proposes a state-of-the-art water
cycle algorithm (WCA) for solving the SHE equations in a CHBMLI. WCA is simple to
implement and requires the tuning of only one parameter for its optimal performance. The
major contributions of this paper are as follows:

• Application of water cycle algorithm for solving selective harmonic equations of a
cascaded H-bridge multi-level inverter.

• Comparison of computational complexity along with accuracy and speed of conver-
gence with other meta-heuristic algorithms are provided to prove the effectiveness of
the water cycle algorithm.

• Statistical comparison between different meta-heuristic algorithms using the indepen-
dent sample t-test is also provided.

The remaining paper is organized as follows: Section 2 explains the problem formu-
lation for CHBMLI; Section 3 illustrates the water cycle algorithm; Section 4 explains the
simulation setup; Section 5 presents the results and analysis; and finally, Section 6 concludes
the findings of the proposed work.

2. CHBMLI Problem Formulation

The SHE technique involves solving non-linear equations for CHBMLI. These equa-
tions are obtained by decomposing the waveform into its Fourier series. The even and
cosine terms get zero due to the quarter wave symmetry due to the nature of the function
being odd. Triplen harmonics also becomes canceled out in the line voltage.
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For a M-Level three phase CHBMLI, having k cells, the degree of freedom is k, and k− 1
harmonics can be eliminated. The transcendental equations expressing the fundamental
and dominant low order non-triplen harmonics for a CHBMLI can be formulated as given
in Equations (1) and (2).

V1 =
4Vdc

π
(cos(ψ1) + cos(ψ2) + cos(ψ3)......cos(ψk)) (1)

0 =
4Vdc
nπ

(cos(nψ1) + cos(nψ2) + cos(nψ3)......cos(nψk)) (2)

The fundamental component can be expressed in terms of the modulation index (ma)
as given in Equation (3).

cos(ψ1) + cos(ψ2) + cos(ψ3)......cos(ψk) = kma = m (3)

where,

m =
V1

4Vdc
π

(4)

ma =
V1

Vmax
=

V1
4kVdc

π

=
m
k

(5)

where V1 is the fundamental value of the phase voltage obtained by the H-bridge. Vmax
is the maximum value of the phase voltage obtained by CHBMLI, and k is the number of
H-bridge cells. Vmax is obtained when all the switching angles are zero, i.e.,

Vmax =
4kVdc

π
(6)

For a 7-level CHBMLI, the stepped waveform is shown in Figure 2. Following the
illustration and modeling, SHE equations for a 7-Level CHBMLI can be formulated as
follows:

cos(ψ1) + cos(ψ2) + cos(ψ3) = 3ma (7)

cos(5ψ1) + cos(5ψ2) + cos(5ψ3) = 0 (8)

cos(7ψ1) + cos(7ψ2) + cos(7ψ3) = 0 (9)

Taking the cosine terms in Equation (7) to the right hand side, we obtain

3ma − (cos(ψ1) + cos(ψ2) + cos(ψ3)) = 0 (10)

Since we are eliminating specific harmonics while maintaining the fundamental compo-
nent to a particular value, we define an objective function which relates all the harmonics and
the fundamental component. Taking this into consideration, an objective function is formu-
lated, which is defined as the minimization function of the absolute sum of Equations (8)–(10),
and it is given as below:

Min |(3ma − (cos(ψ1) + cos(ψ2) + cos(ψ3)))|
+ |(cos(5ψ1) + cos(5ψ2) + cos(5ψ3))|
+ |(cos(7ψ1) + cos(7ψ2) + cos(7ψ3))|

(11)

where the first term minimizes the error between the desired fundamental value defined
by the modulation index and the obtained fundamental value, while the second and third
terms minimize the 5th and 7th harmonics.
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Figure 2. Stepped waveform for a 7-level inverter.

3. Water Cycle Algorithm

The water cycle is an evolutionary algorithm proposed by Ali Sadollah [34]. It is based
on the natural water cycle and the downhill flow of rivers and streams toward the sea. In
a natural water cycle, water is evaporated and clouds are formed through the process of
condensation. After that, water comes down to earth through the process of rain. This
water then takes the form of rivers and streams and is evaporated again, and this whole
cycle is repeated. In WCA, solutions are termed as ‘raindrops’. Initially, the raining process
is assumed. The raindrops that give the best and good fitness values are designated as ‘sea’
and ‘rivers’, respectively. The rest of the solutions are designated as ’streams’. According to
the magnitude of flow, streams are absorbed by the rivers which eventually fall into the sea
(the global best). The flowchart of WCA is illustrated by Figure 3. The steps of WCA are
explained in the following subsections.

3.1. Generation of Initial Population

For initiation of the algorithm, the initial random population of the raindrops is
generated. For an optimization problem with a number of variables Nvar, the initial
solution vector (raindrop) with dimensions 1 × Nvar is represented by Equation (12).

R1×Nvar = [r1 r2 r3 · · · · · · · · · rNvar ] (12)

For a population size of Npop, the initial solution matrix with dimensions Npop × Nvar
is generated, and it is modeled in Equation (13).

R(Npop , Nvar) =


r1,1 r1,2 · · · r1,Nvar

r2,1 r2,2 · · · r2,Nvar
...

...
. . .

...
rNpop ,1 rNpop ,2 · · · rNpop ,Nvar

 (13)

3.2. Evaluation of Fitness Function

For each raindrop r, the fitness function value is evaluated by

FFi = FF(r1, r2, r3, · · · , rNvar) (14)
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Figure 3. Flowchart illustrating working of water cycle algorithm.

The number of rivers, denoted as nr, is chosen by the user. The rest of the raindrops
are chosen as streams. The quantity Nsr, defined in Equation (15), is equal to the sum of the
rivers and sea (1 represents sea).

Nsr = nr + 1 (15)

The number of streams denoted by Ns is given using Equation (16).

Ns = Npop − Nsr (16)

3.3. Allocation of Streams to Rivers and Sea

Streams are allocated to respective rivers and sea based on their magnitude of flow
given by Equation (17).

NSi = round{| Costi

∑Nsr
n=1 Costn

|} × Ns (17)

where i = 1, 2, . . . , Nsr. Costi is the value of the objective function evaluated at specific
rivers and the sea. NSi is the number of streams, which move toward specific rivers and
the sea.
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3.4. Position Update

The flow of streams toward rivers and rivers toward the sea is along a straight line,
which connects them. The length of the line is a randomly chosen distance Z, which is
given in Equation (18).

Z ε (0, C× d) (18)

where C ranges between [1, 2] and it is usually taken as 2. The value of C being greater
than unity makes the streams able to flow toward rivers in different directions. d is the
current distance between the river and stream. Based on the above principle of flow, the
updated positions of streams are given by Equation (19).

Sj+1 = Sj + rand× C× (Rj − Sj) (19)

where Sj and Sj+1 are the current and updated positions of the stream, respectively. Rj

is the position of river at j-th iteration. The updated position of the river is given by
Equation (20) as

Rj+1 = Rj + rand× C× (Seaj − Rj) (20)

where Rj and Rj+1 are the current and updated positions of the river, respectively. Seaj

represents the position of the sea.

3.5. Evaporation Condition

The condition of evaporation helps to prevent becoming trapped in the local optima.
If the distance between sea and river is less than a pre-defined value dmax, the process of
rain starts. dmax is a small number close to zero. Its impact on the global optimal search is
that the large value of dmax hinders the search, while its small value encourages the search
closer to the sea [34]. Its value successively decreases after each iteration. The raining
process occurs after evaporation.

3.6. Formation of New Streams

The locations of the newly formed streams are given by Equation (21).

Snew = LB + rand× (UB− LB) (21)

where Snew is the position of new streams, which directly flow to the sea. Equation (22) is
used to generate streams whose flow is aimed directly toward the sea. This enhances the
exploration near the optimal point in the feasible region for constrained problems.

Snew = Sea +
√

ν× randn(1, Nvar) (22)

where ν shows the searching region range near the optimal point. In the majority of cases,
the value of ν is taken to be 0.1.

4. Simulation Setup

WCA is used to solve the fitness function to find the optimal switching angles such
that the 5th and 7th harmonics are eliminated while the fundamental frequency is kept to a
fixed value. MATLAB is used to implement WCA for SHE in a PC with Intel (R) Core™,
i7, 2.7 GHz CPU and 8.00 GB RAM. Solutions obtained through WCA are compared with
those obtained using PSO and FA. Parameters such as population size, number of iterations,
and number of runs are kept same for the three algorithms for comparison. The parameters
used for these algorithms are listed in Table 1.

Matlab-Simulink is used to perform simulation for a 7-level CHBMLI. To observe the
effects of optimized switching angles on the eliminated harmonics, FFT analysis is also
performed. The maximum DC voltage is selected as 300 V. Figure 4 explains the working
flow of WCA with CHBMLI.
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Table 1. Algorithm parameters.

Algorithm Parameter

WCA

Population size 20
Iterations 100

Number of Rivers 4
dmax 0.001

Number of Runs 50

PSO

Population Size 20
Iterations 100

c1,c2 2
Number of Runs 50

FA

Population Size 20
Iterations 100

Attractiveness Co-efficient 1
Randomization parameter 0.5

Absorption Co-efficient 1
Number of Runs 50

Figure 4. Working flow of water cycle algorithm with CHBMLI.

The phase and line voltage waveforms obtained corresponding to modulation index 0.8
are shown in Figure 5. FFT analysis is than performed in SIMULINK to determine the
percentages of eliminated harmonics with respect to fundamental. Figure 6 shows the
result of the FFT analysis of the line voltage corresponding to a modulation index of 0.8.

(a) (b)
Figure 5. (a) Phase voltage and (b) line voltage for ma = 0.8.
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Figure 6. FFT Analysis.

5. Results and Analysis

This section presents results and analysis on the selection of the switching angles,
analysis of the percentage of the eliminated harmonics, and the convergence behavior of
the algorithms while finding the solution. Moreover, due to the stochastic nature of the
meta-heuristic optimization algorithms, different statistical tests are suggested to compare
the performance of each algorithm statistically over a defined sample set. Figure 7 shows
optimal switching angles obtained using WCA against different values of modulation index.
From the given figure, it is evident that the value of the optimum solution set, comprising
different switching angles, converges to a lower value with the increase in the value of
the modulation index. ψ1, ψ2, and ψ3 represent the switching angles at different values
of the modulation index. Figure 8 shows the percentages of eliminated harmonics with
respect to the fundamental against different values of the modulation index. From the
given bar graph, it is clear that WCA outperforms PSO and FA by giving lower values
of the harmonic percentage for CHBMLI. Moreover, the performance of FA and PSO is
comparable, giving optimal results at different values of the modulation index. It is also
obvious that the percentage of the 5th harmonic at different values of the modulation index
dominates the 7th harmonic content in the overall harmonics percentage.

Figure 7. Switching angles for different values of modulation index.
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(a)

(b)
Figure 8. Percentages of eliminated harmonics against each modulation index (ma). (a) Contribution
of 5th harmonic, (b) contribution of 7th harmonic.

5.1. Convergence Analysis

In order to obtain the convergence characteristic comparison, each meta-heuristic
optimization algorithm is tested at different values of the modulation index. Further, the
total number of iterations is kept at 100 for each algorithm, and the population size used is
selected as 50 particles/fireflies or rain drops. Figures 9–14 show the results of the fitness
value comparison of different algorithms against the modulation index values. From the
given graphs, it can be observed that WCA outperforms the remaining algorithms by
giving a lower fitness value. Moreover, WCA also converges to an optimal solution in fewer
iterations. FA tends to become trapped in the local optima as the value of the modulation
index increases.
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Figure 9. Fitness value comparison of different algorithms for modulation index value of 0.4.

Figure 10. Fitness value comparison of different algorithms for modulation index value of 0.5.

Figure 11. Fitness value comparison of different algorithms for modulation index value of 0.6.
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Figure 12. Fitness value comparison of different algorithms for modulation index value of 0.7.

Figure 13. Fitness value comparison of different algorithms for modulation index value of 0.8.

Figure 14. Fitness value comparison of different algorithms for modulation index value of 0.9.

5.2. Fitness Values

The maximum, minimum and mean values obtained by the three algorithms for all
modulation indexes for 50 runs are given in Table 2. It can be observed that the mean
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value obtained by WCA for 50 samples over all modulation indexes is less as compared to
PSO and FA.

Table 2. Maximum, minimum, and mean fitness values obtained by algorithms.

ma Algorithm FF Value

Max Min Mean

0.4
PSO 0.6728 0.014 0.1257
FA 0.3312 0.0361 0.1266

WCA 0.298 2.08 × 10−5 0.05

0.5
PSO 0.37 0.013 0.081
FA 0.21 0.001 0.12

WCA 0.35 0.001 0.06

0.6
PSO 0.3316 0.012 0.08
FA 0.1703 0.03 0.1

WCA 0.1867 0.0001 0.05

0.7
PSO 0.4821 0.0219 0.1514
FA 0.3561 0.03 0.1506

WCA 0.2618 0.0001 0.101

0.8
PSO 0.5738 0.016 0.16
FA 0.6484 0.03 0.238

WCA 0.3679 0.0001 0.0823

0.9
PSO 0.8629 0.0676 0.1729
FA 0.8871 0.0761 0.2016

WCA 0.4647 0.0558 0.0912

Figure 15 illustrates a graphical representation of the minimum, maximum and av-
erage fitness values obtained by the three algorithms for a modulation index of 0.8 over
50 samples. It is evident that the mean value obtained by WCA is less than that of PSO
and FA over 50 samples. Moreover, the minimum value found by WCA over 50 samples is
0.0001, whereas those of PSO and FA are 0.0223 and 0.0433, which shows that WCA has
better accuracy while finding the optimal solution.

Figure 15. Fitness value for 50 runs.

5.3. Statistical Results

Meta-heuristic algorithms have a random nature. Due to this random nature, we obtain
different results after each run. So, for comparing the performance of two metaheuristic
algorithms, some statistics-based methods are used over a fixed sample size. In this research,
we compare the average fitness value obtained by the algorithms for different population
sizes, and to statistically differentiate them, we employ independent sample t-test results.
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The independent sample t-test has two parts: one is Levene’s test, which plays a role
in the comparison of variances, and the second is the t-test, which is responsible for the
comparison of means.

According to Levene’s test and the t-test, for the results to be statistically different for
the 95% confidence interval, the significant value should be smaller than the critical value
of 0.05. In the case of the statistical comparison between PSO and WCA, we can see from
Table 3 that for the population sizes of 20, 35 and 50, the significant values for both the
t-test and Leven test of inequality, are less than 0.05, which means that the results obtained
through WCA and PSO are statistically different for these population sizes. The execution
time of WCA is more than that of PSO. In the case of FA and WCA, for a population size
of 20, the t-test significant value is less than 0.05, so we can say that means are different,
whereas variances are same. The same applies in the case for a population size of 35. It can
be seen from Table 4 that the execution time of WCA is less than that of FA.

Table 3. Statistical comparison between WCA and PSO for 50 samples.

Size of Population Avg. Fitness Value Max Fitness Value Min Fitness Value Avg. Execution Time (Sec) Sig. Values for Each Test
PSO WCA PSO WCA PSO WCA PSO WCA t-Test Levene’s Test

5 0.3341 0.4037 0.6835 0.8436 0.02 0.04 0.015 0.05 0.296 0.398
20 0.2233 0.1721 0.4537 0.549 0.033 0.0005 0.0451 0.1032 0.001 0.003
35 0.1196 0.0632 0.3789 0.1344 0.033 0.0003 0.0679 0.2817 0.004 0.006
50 0.1196 0.0411 0.3919 0.1199 0.02086 0.0002 0.124 0.3817 0.012 0.04

Table 4. Statistical comparison between WCA and FA for 50 samples.

Size of Population Avg. Fitness Value Max Fitness Value Min Fitness Value Avg. Execution Time (Sec) Sig. Values
FA WCA FA WCA FA WCA FA WCA t-Test Levene’s Test

5 0.4500 0.4031 0.7538 0.8436 0.2101 0.0403 0.05 0.05 0.822 0.833
20 0.1204 0.1721 0.2028 0.549 0.07 0.3135 0.2049 0.1523 0.001 0.594
35 0.1026 0.0632 0.1560 0.1344 0.0548 0.0003 0.8251 0.2817 0.02 0.44
50 0.1707 0.0411 0.5919 0.1199 0.0589 0.0002 1.6473 0.3817 0.215 0.04

6. Conclusions

The water cycle algorithm is easy to implement, as it has only one tuning parameter
as compared to particle swarm optimization and firefly algorithms. The water cycle
algorithm gave competitive results compared to particle swam optimization and firefly
algorithms for harmonic elimination in a seven-level cascaded H-bridge multi-level inverter.
It also converges to the optimal solution in less number of iterations and its accuracy is
better. The mean fitness value achieved by water cycle algorithm over 50 samples is less as
compared to particle swarm optimization and firefly algorithms. For most of the population
sizes, results obtained through water cycle algorithm are better from those obtained through
particle swarm optimization and firefly algorithms. The drawback of WCA is the initial
tuning and online tuning with faults, which needs to be further studied. In future, the
application of water cycle algorithm can be applied for solving SHE equations for harmonic
elimination in higher-level inverters.
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Nomenclature
The following abbreviations and notations are used in this manuscript:

Abbreviations
CHBMLI Cascaded H-Bridge Multilevel Inverter
EMI Electromagnetic Interference
FA Firefly Algorithm
MLI Multilevel Inverter
PSO Particle Swarm Optimization
RES Renewable Energy Systems
SHE Selective Harmonic Elimination
WCA Water Cycle Algorithm
NR Newton–Raphson
BA Bee Algorithm
GA Genetic Algorithm
CSA Cuckoo Search Algorithm
BOA Bat Optimization Algorithm
ACO Ant Colony Optimization
GWO Grey Wolf Optimizer
MGWO Modified Grey Wolf Optimizer
SSA Salt Swarm Algorithm
Notations
Vdc DC Voltage applied to H–Bridge Cell
V1 Fundamental component
FF Fitness function
ma Modulation index
Npop Population size
Nvar Number of variables
nr Number of rivers
Ns Number of streams
Nsr Sum of sea and rivers
NSi Number of streams allocated to particular sea or rivers
d Current distance between stream and river
Sj Current position of stream at j-th
Sj+1 Updated position of stream at j + 1 iteration
Rj Current position of river at j-th
Rj+1 Updated position of river at j + 1 iteration
Snew Position of new streams which directly flow towards sea
LB Lower bound
UB Upper bound
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