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Abstract—Multilevel converters have received increased inter-
est recently as a result of their ability to generate high quality
output waveforms with a low switching frequency. This makes
them very attractive for high power applications. A Cascaded H-
Bridge converter is a multilevel topology which is formed from
the series connection of H-Bridge cells. Optimized pulse width
modulation techniques such as Selective Harmonic Elimination
(SHE-PWM) or Selective Harmonic Mitigation (SHM-PWM) are
capable of pre-programming the harmonic profile of the output
waveform over a range of modulation indices. Such modulation
methods may however not perform optimally if the DC links of
the Cascaded H-Bridge Converter are not balanced. This paper
presents a new SHM-PWM control strategy which is capable of
meeting grid codes even under non-equal DC link voltages. The
method is based on the interpolation of different sets of angles
obtained for specific situations of imbalance. Both simulation
and experimental results are presented to validate the proposed
control method.

I. INTRODUCTION

Multilevel converters have become the focus of research in

recent years as a result of their suitability for high power appli-

cations [1]. Amongst the available topologies are the Neutral

Point Clamped (NPC), Flying Capacitor (FC) and Cascaded

H-Bridge converters (CHB) [2]. The latter is constructed from

a series cascade of three-level H-bridges. This connection

enables the converter to produce high quality, high voltage

waveforms whilst utilizing low or medium voltage switching

devices. This functionality makes this converter an attractive

option for grid connected applications such as Uninterruptible

Power Supplies, Static VAR compensators, Series and Shunt

Compensators etc. [3]–[10].

The use of power electronic converters at high power levels

usually demands a reduction in switching frequency in order to

ensure that losses caused by the imperfect nature of practical
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switching devices does not significantly reduce the converter

efficiency. Selective Harmonic Elimination (SHE-PWM), Total

Harmonic Distortion Minimization (THDM) and Selective

Harmonic Mitigation (SHM-PWM) methods are known to

produce waveforms with low switching frequency without

compromising waveform quality. For these methods, mathe-

matical functions can be derived using the Fourier analysis

of a general switched converter waveform which may be

solved to meet a certain pre-defined objective in the waveform

[11], [12]. The waveform objectives may include complete

elimination (SHE-PWM) or reduction (SHM-PWM) of certain

harmonics in the generated waveform or an optimization of

this waveform in order for it to meet a particular harmonic

code for a certain application [13]. The derived functions,

which are transcendental and nonlinear in nature, can be solved

for a range of modulation indices using a variety of methods

[14]–[18]. The solutions can be stored in lookup tables for use

with an appropriate converter control scheme.

For CHB based inverter applications it may be desirable to

ensure that each cell of the converter draws equal energy from

the DC source that it is connected to. This can be achieved

over a single or several fundamental cycles. This would ensure

that these sources discharge at the same rate and that each cell

of the cascade is utilized evenly. In applications where the DC

sources are not exactly equal, distortion may be present in the

converter waveform. This occurs because the switching angles

for the modulation may have been derived assuming that

the DC sources were equal and therefore complete harmonic

elimination or the required level of harmonic suppression no

longer occurs.

In [19], it was found that a large number of different

waveform solutions are required in order to manipulate the

power flow through a CHB converter whilst achieving optimal

harmonic performance. This large number of solutions can be

avoided by decoupling the cells and independently controlling

the modulation index of each cell separately. Unfortunately,

this reduction in the number of required lookup tables poten-

tially reduces the waveform quality of the CHB converter as

the degrees of freedom available in the multilevel converter

waveform are not fully utilized.

This paper presents a SHM-PWM technique based on mul-

tilevel waveforms which enables the required control of power

flow in a CHB converter whilst fully utilizing the waveform

degrees of freedom. The method uses the interpolation of
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Fig. 1. Five-level cascaded H-bridge converter based on the series connection
of two three-level power cells.

lookup table based solutions for a number of imbalances to

control the power flow through the H-Bridges asymmetrically,

thus avoiding the requirement of very large lookup tables

apparent in previous methods [19]. Theoretical and simulated

result are experimentally verified using a five level Cascaded

H-Bridge topology operating as an inverter.

II. CASCADED H-BRIDGE CONVERTERS

Several three-level power cells, formed using full H-bridges,

can be series connected to build a converter with a higher

number of levels as can be observed from Fig. 1. This can be

extended to produce converters with as many levels as required

for a particular application [20], [21]. In general, if n power

cells are connected in series to build the converter and all the

cells have the same DC voltage, the number of levels that

can be achieved is 2n+1. This topology is named the n-cell

CHB converter and it presents a high level of modularity and

redundancy as well as an ability to produce high quality output

voltage waveforms.

If different DC voltages are used, as is the case in an

asymmetric CHB converter, the number of levels can be

increased. For example, using two cells, up to nine levels

may be achieved in the output waveform. This topology is

presented in Fig. 1 where VA is the DC voltage of the upper

cell and VB represents the voltage of the lower cell. However,

this increase in voltage levels is achieved at a cost of reduced

converter structure modularity.

A. The problem of imbalance

Each cell of a CHB converter must be fed from an isolated

DC source to avoid short circuits. Divergences of the DC

link voltages from the desired or assumed values will have

an effect on the operation of the converter [6]. If the converter

is designed to operate with balanced DC link voltages and

this is not the case then the converter is said to be operating

under non-equal DC link voltages. Such operation may have

an undesirable effect on the output voltage waveform of the

converter. This is especially the case when pre-computed

modulation strategies such as SHE-PWM or SHM-PWM are

used as the angles may have been derived under the assump-

tion that the DC link voltages are balanced. The SHE-PWM

methods require special considerations when used in multilevel

converters with non-equal DC link voltages [22].

In many applications it is desirable to share the power flow

amongst all the cells equally in order to avoid overheating

of some specific switching devices and consequently extend

the lifetime of all the elements of the converter [19], [23].

Other, more complicated, CHB based converter structures

may require the power flow to be controlled asymmetrically

through the converter cells as was required in [24]. In both

cases, assuming that the current is undistorted, the power

flow from each cell of the converter can be determined by

considering the fundamental frequency component of each cell

only. It is possible to manipulate SHE-PWM and SHM-PWM

techniques to control the power flow through a CHB converter

as was shown in [19]. The method considered the use of a

low switching frequency SHE-PWM to control power flow

through the cells of a CHB converter whilst still producing

high quality waveforms. Unfortunately, a disadvantage of the

approach presented in [19] is that a specific set of angles

must be calculated for each possible imbalance scenario for

the converter and therefore a very large number of lookup

tables and a complicated lookup table selection scheme would

be required to practically implement the method. This paper

presents a method which may overcome this disadvantage by

attempting to interpolate between lookup tables.

III. SHM-PWM PRINCIPLE

A. Three-level converters

Fourier analysis can be used to study a typical three-level

waveform with k switching angles αi (i=0,...,k − 1) (Fig. 2).

The amplitude of each harmonic can be obtained using the

following expression where Hj is the amplitude of the jth

harmonic:

Hj =
4

jπ

k−1
∑

i=0

[

(−1)i sin(jαi)
]

(1)

This expression can be used to set a specific value for each

harmonic amplitude using the switching angles as degrees

of freedom. The well known SHE-PWM technique is based

on this theory i.e. the switching angles are used to set the

amplitude of the fundamental harmonic and cancel a set of

specific harmonics [11], [12]. The relationship between the

DC link voltage of the converter and the amplitude of the

generated fundamental component is called the modulation

index (Ma) and can be defined as Ma = H1π/4Vdc. As a

result of half wave symmetry in the waveform, even harmonics

have zero amplitude so the chosen harmonic orders would be

3,5,7,. . . and up to k − 1 harmonics can be canceled using k
switching angles. In balanced three-phase topologies without

a neutral connection, the triplen harmonics are also canceled

and so it is possible to eliminate a very high number of the

low order harmonics with a low switching frequency.
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Fig. 2. Three-level pre-programmed PWM switching pattern with five
switching angles (α0,α1,α2,α3,α4). Typical output waveform of the top
power cell represented in Fig.1

Summarizing, the SHE-PWM technique for three-level con-

verters is based on solving the following system of equations

where q is the highest harmonic order that will be canceled:

H1 =
4

π

k−1
∑

i=0

[

(−1)i sin(αi)
]

0 =
4

jπ

k−1
∑

i=0

[

(−1)i sin(jαi)
]

,

where j = 3, 5, 7, 9, 11, . . . , q. (2)

The SHM-PWM technique was presented in [13] and is

based on the idea that it is not necessary to completely

cancel the harmonics in the converter AC waveform. Instead,

they just have to be reduced to levels where they can be

considered acceptable. The maximum harmonic content for

a grid connected inverter can be obtained from the limits

specified in the actual grid codes (Lj represents the limit

for the jth harmonic). The SHM-PWM technique can be

formulated using a system of inequalities (3) which can be

arranged into an objective function to be minimized using an

optimization method as in 4.

|
4MaVdc

π
−H1| ≤ L1

1

|H1|

4

jπ

k−1
∑

i=0

[

(−1)i sin(jαi)
]

≤ Lj ,

where j = 3, 5, 7, 9, 11, . . . , 49. (3)

OF (α0, . . . , αk−1) =
∑

i=1,3,5,...,49

ciE
2

i + cTHDTHD. (4)

The extra flexibility given by the SHM-PWM principle can

be used for different objectives, for example reducing the
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Fig. 3. Nine-level pre-programmed PWM switching pattern with ten
switching angles (αi, i=0, . . .,9). The waveform is symmetrical in order to
eliminate the even harmonics.

THD, considering a higher number of harmonics using the

same number of switching angles, or extending the modulation

index range for the same set of valid solutions.

B. Extension to converters with a higher number of levels

Considering, for instance, a waveform similar to the pattern

shown in Fig. 3 but with N levels and k switching angles αi

(i=0,...,k − 1) the Fourier analysis gives:

Hj =
4

jπ

(

V1 sin(α0) +

k−1
∑

i=1

[

Vi[sin(jαi)− sin(jαi−1)]
])

(5)

The SHE-PWM can be applied with this kind of waveform

[25]. Again, solving the equations, the fundamental harmonic

can be set to the desired value and k − 1 harmonics can be

reduced to zero (Hj = 0 where j = 3, 5, 7, 9, 11, . . . , q).

In order to guarantee that all the cells are sharing the same

power this system of equations needs to be modified. Instead

of using the fundamental harmonic of the global waveform,

the fundamental component generated by each cell is forced to

be equal to the desired value. This way, for a N -cell converter

working with k switching angles per cell only N(k− 1) extra

harmonics can be canceled. The new system of equations can

be formed with (6) and (7) considering that in (7) it is assumed

that the angles of all the cells are rearranged to generate the

suitable multilevel global waveform.

H1 =
4

π

k−1
∑

i=0

[

(−1)i sin(αi−Cell−n)
]

,

where n = 1, 2, . . . , N (6)

0 =
4

jπ

(

V1 sin(α0) +
k−1
∑

i=1

[

Vi[sin(jαi)− sin(jαi−1)]
])

,

where j = 3, 5, 7, 9, 11, . . . , q. (7)

The SHM-PWM technique can also be applied to converters

with more than three levels [26]. Using the SHM-PWM
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principle, based on reducing the harmonic amplitudes to a

reduced but non-zero value, the system of equations changes

to the system of inequalities detailed in (8) and (9). Again, in

(9), it is assumed that the angles of all the cells are used to

generate a global waveform as in Fig. 3. The whole system of

equations can be grouped in the same objective function (4)

shown in section III-A.

|
4Vdc

π
Ma−Cell−n −H1| ≤ L1,

where n = 1, 2, . . . , N (8)

|Hj | ≤ Lj ,

where j = 3, 5, 7, 9, 11, . . . , 49. (9)

Several optimization methods such as Tabu Search, Ant

Colony or Particle Swarm [27] can be used to optimize

the system. As in previous work, in this paper, the well

known Simulated Annealing optimization method [28] has

been chosen because it can be adapted very easily to problems

with many different constraints. In any case, it has to be noted

that since the solutions are calculated only once and then are

stored in lookup tables for use with the power converter, the

optimization method itself is of little consequence.

IV. SHM-PWM FOR BALANCING

Under unbalanced conditions it is necessary to use a strategy

to adjust the modulation index in order to share the power

among all the cells. In [19] a method was presented based on

the SHE-PWM technique that could tolerate any imbalance

situation by decoupling all of the cells of the converter. This

required a single table of solutions which could be applied to

each H-Bridge of the converter to independently control the

power flow. The disadvantage of this method is that since it

does not consider the multilevel waveform of the converter

during angle calculation, a lower number of harmonics can

be eliminated compared with the use of global multilevel

solutions.

In the case of this paper, the global output waveform of the

converter is used in order to increase the number of considered

harmonics. Consequently, a higher number of harmonics can

meet the grid code requirements increasing the quality of

the output waveform. In this work, for a given number of

switching angles, the amplitude of the fundamental harmonic

of each cell is set to the desired value and a certain number

of extra harmonics of the global waveform are considered to

meet the grid code requirements. In this paper three switching

angles have been considered for CHB converters with two

and three cells. For the case of two different cells up to

four extra harmonics can be considered. When three cells are

used up to six extra harmonic components can meet the grid

code requirements. Since the number of degrees of freedom is

equal to the number of switching angles, in this case the extra

flexibility given by the SHM-PWM method is used to find a

new set of solutions for different dc-link imbalance conditions

close to the previous one.

To obtain the specific switching angles for a certain dc-

link imbalance situation, a linear interpolation is used among

different pre-calculated lookup tables in order to be able

to tolerate any imbalance up to a maximum unbalancing

range (previously defined and considered when formulating

the mathematical equations).

Considering a multi-cell cascaded converter, specific lookup

tables can be previously obtained for different unbalancing

conditions. When the DC voltages of each cell are normalized,

the imbalance of each cell can be referred as an increment

or decrement with respect to the theoretical mean value. In

the rest of the paper the following nomenclature will be

used to define the conditions of each lookup table (LUT):

(X1, X2, ..., Xn) where Xn represents the imbalance of cell

n, in percent, of the average desired voltage (perfect balanced

situation).

For example, considering a two-cell converter with a max-

imum tolerable imbalance of 3%, two lookup tables, S1(0, 0)
and S2(−3, 3) are required. Interpolation between the ele-

ments of these two lookup tables can be used in order to

find the required switching angles which achieve the required

waveform objectives over this 0 − 3% imbalance range. For

higher imbalance conditions, extra LUTS could be added to

extend the range. For instance, the range could be extended

to tolerate an imbalance of up to 6% using S3(−6, 6), or

9% using S4(−9, 9) etc. The linear interpolation between

the switching angles stored in the two lookup tables can be

achieved using the following equation on each element of the

two lookup tables:

α(i) = AαLUT1(i) +BαLUT2(i) (10)

This interpolation method is advantageous when compared

to other methods considered in literature as it limits the number

of required lookup tables that are needed to achieve the

waveforms objectives in the presence of a DC imbalance. For

example, using the LUTs described above, for an imbalance

of 1% the constants would be A = 1/3 and B = 2/3.

A. Extension to three-cell cascaded converters

For a three-cell converter, the imbalance may be shared

amongst all of the cells in the converter. For this case,

three lookup tables are required as shown in (11), where X

represents the percentage imbalance (referred to the average

voltage), as previously noted.

S1 = (0, 0, 0)

S2 = (−2X/3, X/3, X/3)

S3 = (−X/3,−X/3, 2X/3)

(11)

Care should be taken with the maximum imbalance which

can be tolerated in this case as excessive values of X will

inhibit the ability to linearly interpolate between lookup tables

(compared to low values of X).
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Now the final set of angles would be obtained from the three

tables. The interpolation constants can be obtained by solving

the linear system of equations obtained by forcing the same

amplitude in the fundamental harmonics generated by all the

cells (this amplitude has been normalized to 1 for simplicity).

AV1 +B
V1

(1 + 2X/3)
+ C

V1

(1 +X/3)
= 1

AV2 +B
V2

(1−X/3)
+ C

V2

(1 +X/3)
= 1 (12)

AV3 +B
V3

(1−X/3)
+ C

V3

(1− 2X/3)
= 1

The principle of the proposed method is based on exploiting

the flexibility given by the SHM-PWM method to obtain a new

set of solutions under different dc-link imbalance conditions

but from a previous set of solutions in such a way that the

switching angles are very similar. This leads with a very small

variation form one table to the other allowing the use of linear

interpolation between both tables to obtain all the unbalanc-

ing conditions not directly stored in the LUTs. The angles

obtained from such similar sets of solutions should share

the same characteristics in terms of power flow control and

output spectrum. We are assuming that the amplitude of each

harmonic component corresponds to the linear interpolating of

the corresponding amplitudes of each set of solutions (based

on the linear property of the Discrete Fourier Transform). It

should be noted that the linear system of equations can be

solved offline and the solution computed by a DSP on demand.

The next sections show some examples for both two and

three-cell CHB converters.

V. SIMULATION RESULTS

This section presents the simulation results that have been

obtained using the SHM-PWM technique in a two and a

three-cell CHB converter. In order to obtain solutions which

could be easily implemented in a real converter, real power

semiconductors have been considered. A minimum margin of

0.01 radians between two consecutive switching angles has

been taken into account as a valid safe margin. In the com-

puting process the limits specified in the EN 50160 [29]and

CIGRE WG 36-05 [30] grid codes have been considered but

any other could have been chosen. These standards include

specific limits for each harmonic up to 49th harmonic the

waveform THD calculated up to 40th harmonic. Table I shows

the harmonic limits specified in these standards.

Fig. 4 shows the switching angles for a two-cell topology

and a switching frequency of 150Hz per H-Bridge. Four

extra harmonics are considered in the global waveform and

a maximum imbalance of 10% has been considered in the

computing process.

In Fig. 5 the harmonic content obtained for an imbalance

of 3% for the complete modulation index range from 0.2 to

0.8 in steps of 0.01 can be observed. It can be seen that in

all the cases the lowest harmonics are fulfilling the grid code.

The bars on this figure represent the limits specified in the

grid code. The triangular waveforms show the amplitude of

the corresponding harmonic component for each value of Ma

TABLE I
GRID CODE EN 50160 REQUIREMENTS + QUALITY GRID CODE CIGRE

WG 36-05

Odd non-triplen Odd triplen Even

harmonics harmonics Harmonics

Order Limit Order Limit Order Limit

(n) (Li) (n) (Li) (n) (Li)

5 6% 3 5% 2 2%

7 5% 9 1.5% 4 1%

11 3.5% 15 0.5% 6...10 0.5%

13 3% 21 0.5% >10 0.2%

17 2% >21 0.2%

19 1.5%

23 1.5%

25 1.5%

>25 0.2+32.5/n
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Fig. 4. SHM-PWM switching angles for the case of two cells and three
angles per cell in the Ma range from 0.20 to 0.80 for a balanced situation
(black), an imbalance of 5% (blue) and an imbalance of 10% (red).
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Fig. 5. Global Harmonic content and THD (on the right) generated by
the converter for each modulation index value for a (-3,3) imbalance and
0.20 < Ma < 0.80 (more detailed in Fig. 6).

in the whole range. A detailed plot showing the lowest order

harmonics is presented in Fig. 6. The maximum theoretical

imbalance level achieved with this method is below 0.1% for

all the values of the modulation index from 0.2 to 0.8 and all

the conditions of imbalance from 0% to 5%.
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0.20 < Ma < 0.80.
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Fig. 7. Switching angles for a set of imbalance conditions of (0,0,0) in black,
(-2,-2,4) in red and (-4,2,2) in blue.

A. Three-cell Converters

This section presents simulation results obtained using a

three-cell converter.

Fig. 7 shows the switching angles corresponding to a set of

imbalance conditions of (0,0,0), (-2,-2,4) and (-4,2,2) for the

three cells.

Fig. 8 presents the spectrum obtained for an imbalance of (-

1.2,1,1.5) for the range 0.44 < Ma < 0.80. It can be observed

that for all the values of Ma the lower harmonic components

are below the limits specified in the grid code.

Using the same set of angles but for an imbalance of (-

2.5,1,3) produces the output spectrum presented in Fig. 9.

The low order harmonics are meeting the grid code. Again,

for three-cell converters, the simulation results obtained using

the presented switching angles give very low theoretical final

imbalance for all the conditions considered in the computing

process.

It must be noted that this strategy can be very useful to

tolerate low unbalancing conditions because a high number of

harmonics can be controlled using a low number of switching

angles. Using a three-cell topology and three angles per cell it

is possible to set the amplitude of the fundamental component

and to control up to six undesirable harmonic components. In

2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

Harmonic order

H
a

rm
o

n
ic

 d
is

to
rt

io
n

 (
%

)

Fig. 8. Output spectrum for an imbalance of (-1.2,1,1.5) and 0.44 < Ma <

0.80.
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Fig. 9. Output spectrum for an imbalance of (-2.5,1,3) and 0.44 < Ma <

0.80.

comparison with the decoupled technique presented in [19] a

higher number of harmonics can be controlled using a lower

number of switching angles. This technique could however be

used in conjunction with the decoupled technique presented in

[19] for use in systems which may present higher imbalance

situations.

VI. EXPERIMENTAL RESULTS

A. Description of the converter

The methods presented have been experimentally supported

using a single phase, five-level cascaded H-Bridge converter

and three switching angles per cell. This converter is con-

figured as an inverter feeding an RL load (R = 360Ω and

L = 15mH). The H-Bridges are constructed using Semikron

SK60GB128 modules. The DC link for each H-Bridge is fed

from a separate DC voltage supply with a maximum output of

300V which is adjusted to obtain the desired imbalance for an

average value of 200V . The total imbalance range from 0%
to 10% in steps of 1% has been studied for the particular case

of Ma = 0.70.

B. Results

All the experimental data have been captured using a digital

oscilloscope and post processed using Matlab. Fig. 10 shows
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Fig. 10. Voltage of both cells and current(bottom) for an imbalance of 0%.
The scales are 200V/div, 0.5A/div and 5ms/div.

Fig. 11. Global output waveform and current(bottom) for an imbalance of
10%. The scales are 100V/div, 0.25A/div and 5ms/div.

the voltages of both cells and the output current of the

converter for a balanced situation. Fig. 11 shows the global

output voltage and the current for an imbalance of 10%. Due

to the limited availability of loads in the laboratory the currents

have an important harmonic content similar to the voltage

waveforms. Using a more practical load the harmonic content

would be reduced.

Table II shows a comparison between the theoretical values

and the experimental results of the real balance obtained in

the converter and the distortion levels of the global output

under different imbalance conditions. From left to right the

table shows the forced DC-Link imbalance, the amplitude

of the fundamental harmonic of the global waveform, the

different distortion levels of the global output and the final H1

imbalance between both cells obtained using the method for

both the theoretical and the experimental results. The effects

of using real switching devices and drivers generate the small

differences shown in the table. It can be observed that in all

the cases the real balance achieved by the method is always

below 1% which is a very good result considering the very

low switching frequency that is being used. It must be also

noted that the corresponding limits of the grid code for all the

considered harmonics (up to 9th) are always met in the global

output of the converter. Fig. 12 shows the experimental results

Fig. 12. Experimental results obtained using SHM-PWM for Ma = 0.7 and
two cells. The DC-Link imbalance range is from 0% to 10% in steps of 1%.

presented in the table and the grid code limits.

VII. CONCLUSION

This paper presents a new control strategy, based on the

SHM-PWM technique, that can tolerate different capacitor

voltage levels for Cascaded H-Bridge Multilevel Converters.

In comparison with other techniques, in this case it is possible

to control the amplitude of each cell under balanced or

unbalanced conditions with a reduced number of lookup tables

whilst still producing very high quality waveforms at low

switching frequency. An example of an applications which

may benefit from such a scheme is in a multilevel UPS. In this

case the technique could be able to meet grid voltage standards

even when the batteries are charged to different voltages.

Different simulation results for two and three-cell converters

have been included to show the viability of the technique.

Experimental results supporting the method in a two-cell

converter validating the technique for an imbalance range from

0% to 10% have been included.
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