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Selective hinge removal strategy for architecting
hierarchical auxetic metamaterials
Ehsan Jalali1, Hadi Soltanizadeh2, Yao Chen 3✉, Yi Min Xie 4 & Pooya Sareh 1✉

Mechanical metamaterials are man-made structures capable of achieving different intended

mechanical properties through their artificial, structural design. Specifically, metamaterials

with negative Poisson’s ratio, known as auxetics, have been of widespread interest to sci-

entists. It is well-known that some pivotally interconnected polygons exhibit auxetic beha-

viour. While some hierarchical variations of these structures have been proposed,

generalising such structures presents various complexities depending on the initial config-

uration of their basic module. Here, we report the development of pivotally interconnected

polygons based on even-numbered modules, which, in contrast to odd-numbered ones, are

not straightforward to generalize. Particularly, we propose a design method for such

assemblies based on the selective removal of rotational hinges, resulting in fully-deployable

structures, not achievable with previously known methods. Analytical and numerical analyses

are performed to evaluate Poisson’s ratio, verified by prototyping and experimentation. We

anticipate this work to be a starting point for the further development of such metamaterials.
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Mechanical metamaterials1–11 have been of widespread
attraction over the past few decades as a result of their
unusual, but often desirable, mechanical properties12–43.

Such properties are, in general, not found in natural materials, but
are the results of specific approaches to the internal structural
design of mechanical metamaterials. Among such properties,
negative Poisson’s ratio has been of widespread interest within the
scientific community, with metamaterials with such a property
known as ‘auxetics’. This property is unusual and counter-intui-
tive, given that Poisson’s ratio, ν, is in the range −1 < ν < 0.5 for
conventional isotropic materials, and in the range −∞ < ν <∞ for
anisotropic materials1,3,44–51. Auxetic materials benefit from
enhanced shear moduli, indentation resistance, and fracture
toughness, and can achieve extremely large strains and shape
changes in comparison with conventional materials52,53. As a
result, a considerable number of analytical, numerical, and
experimental studies have been devoted to the design and analysis
of auxetic metamaterials in recent years1–3,54–56.

A well-known family of auxetic metamaterials is the pivotally-
interconnected assemblies of polygons, first introduced by Ronald
D. Resch in 196557. He devised a design principle enabling the
construction of various geometric arrangements of articulated,
identical polygonal units (or elements), where each unit is con-
nected to its neighbours by rotational hinges at its corners.
Assuming the polygonal units to be perfectly rigid, these struc-
tures deform by the rotation of the rigid units rather than any
deformation of these units. In 2000, Grima and Evans58 revived
the attention of the scientific community to Resch’s invention by
highlighting the auxetic behaviour (with ν=−1) of such
assemblies. Since then, in particular, assemblies with square ele-
ments have been welcomed by scientists59–72 with a diverse range
of proposed applications, e.g. in the development of novel med-
ical stents73–79, deformable batteries80, and flexible electronics81.

Several recent developments of Resch’s interconnected assem-
blies considered ‘hierarchical’ generalisations of these
structures45,75,80,82–88. In hierarchical structures/materials, a
distinct structural pattern repeats in different scales89, that is why
they are also called ‘multiscale’ structures/materials7. Many
materials in nature—e.g. bone, nacre, diatoms, and spider silk—
have hierarchical structures, resulting in some beneficial
mechanical properties such as increased toughness and resistance
to crack propagation90–94.

In general, by increasing the level of the hierarchy, the number
of degrees of freedom (DoFs) of a pivotally-interconnected hier-
archical structure will increase82,85. Seifi et al.82 introduced the
method of rotate-and-mirror (RAM) to limit the number of DoFs
when the hierarchical level increases. However, it was concluded
that this method is only able to generate hierarchical assemblies
with odd-numbered modules (e.g., the module in the upper part of
Fig. 1a), whereas even-numbered modules (e.g., the module in the
upper part of Fig. 1b) must be avoided. Hereafter, we call hier-
archical assemblies generated based on the former sort of module
‘odd-numbered assemblies’ (‘ONAs’), and those generated based
on the latter sort of module ‘even-numbered assemblies’ (‘ENAs’).
Here we focus on tackling the problem of synchronous deploy-
ment of RAM-generated ENAs of square units.

A range of ENAs was presented in several previous studies. For
instance, Cho et al.85 used fractal-cuts to expand a sheet of
material into a wider pattern with particular properties. Gatt
et al.75 investigated the effect of stiffness of hinges on the degree
of auxeticity of the hierarchical assemblies. They generated a
level-3 ENA that was not able to be contracted completely (more
information is provided in Supplementary Note 4, and also
Supplementary Movie 4). Tang et al.95 studied the nonlinear
stress-strain behaviour and phononic bandgaps of hierarchically
cut thin sheets of elastomer as super‐stretchable mechanical

metamaterials. Kunin et al.83 investigated the static and dynamic
elastic behaviour of fractal-cut materials. Tang and Yin87 studied
kirigami-based hierarchical auxetic sheets capable of achieving
high stretchability and compressibility, and examined the effect of
raising the hierarchal level on the stretchability of such meta-
materials. Dudek et al.45 investigated the effect of the resistance of
hinges on the final configuration and mechanical properties of
ENAs. Kim et al.80 used the hierarchical fractal-cut method to
produce a flexible auxetic battery. An et al.86 exploited kirigami
for embedding an array of cuts into a thin plastic sheet to create
an ENA of squares; they devised a type of programmable hier-
archical metamaterial by tuning a set of geometric parameters
associated with the pattern of cuts as well as the physical speci-
fications of the thin sheet. Using hierarchical cuts, Han et al.81

developed high-performance conductors with biaxial mechanical
stretchability and stable conductivity.

Here we use the method of RAM to generate hierarchical
assemblies in which the level-(N− 1) assembly rotates by
0 < θ < 90°, followed by reflections with respect to the Y- and X-
axes, respectively, to generate the level-N assembly. It should be
noted that we choose θ= 45° as the rotational position to gen-
erate the models in their fully-expanded state, where the rotating
direction can be either clockwise (CW) or counter-clockwise
(CCW). We demonstrate that by applying the generation method
RAM to even-numbered modules, some elements will undergo
translational transformations (in addition to rotational transfor-
mations) during deformation. This observation inspired us to
propose a new design approach, called the selective hinge removal
(SHR) strategy, which facilitates the complete deployment of
ENAs through removing selective hinges from their assemblies.
We first present the method of identification of the hinges to be
removed at each level of the hierarchy to ensure that the structure
can be completely deployed. Subsequently, in order to evaluate
Poisson’s ratio, three different methods are used to calculate the
dimensions of the assemblies in two directions. These methods
are as follows: (1) analytical models based on geometrical trans-
formations, (2) numerical simulations using Working Model 2D,
and (3) experimental measurements using physical models.
Finally, we will present and discuss the variations of Poisson’s
ratio for the ENAs of levels 1, 2, and 3.

Results
Generating ONAs. For generating the level-1 assembly, first, the
square of level 0 should be rotated by +45° (or −45°). In this
article, CW-rotating squares are coloured in orange, whereas
CCW-rotating squares are coloured in blue. The next step is to
mirror the rotated elements, followed by connecting them to each
other by rotational hinges. At level 1, every square is connected to
each of its neighbouring squares by only one hinge, enabling two
connected squares to rotate in opposite directions. In Fig. 1a, b,
hinges are represented by white small circles.

In the case of generating and deforming assemblies of level 2,
ONAs are discussed first to investigate their translational
elements and determine the difference between their behaviour
with that of ENAs. For this purpose, the set of squares of level 1
rotates 45° (either CW or CCW), followed by a reflection with
respect to the mirror lines (MLs), as shown by red dashed lines in
Fig. 1a, b. Because the colours of the squares at the corner of the
ONAs of level 1 are similar, the direction of rotation is not
important. As illustrated in Fig. 1a, on both sides of the vertical
and horizontal MLs, the structures are geometrically similar, but
their corresponding squares have different colours, as a result of
reflection transformations. In other words, if a square on one side
of a ML is orange, its image on the other side will be blue, and
vice versa.
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Fig. 1 Generating hierarchical levels using the method of rotate-and-mirror (RAM) and simulating the motion of each element. This diagram
demonstrates how we generate the hierarchical level of Type I or/and Type II with a odd, and b even numbers of square elements. After generating each
assembly, rotationally-neutral elements are labelled as grey elements. By removing a pair of red or yellow hinges, it is possible to contract the even-
numbered assembly (ENA) of level 2. The red cross shows which pair of hinges should be removed in each ENA. c Schematic representation of the
connecting hinges, represented by black circles, that facilitate the generation of the assembly of the next level of the hierarchy from the sub-assemblies
represented by green circles.
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In this paper, those elements that can only move on the XY-
plane translationally are coloured in grey, which play an
important role in the behaviour of such hierarchical structures.
In the process of generating level-2 from the level-1 assemblies,
after mirroring, there is a ‘labelling’ step as designated in Fig. 1a,
b, where translational elements are labelled by grey ‘stickers’. To
assign labels to appropriate elements, we first determine the
colours of connected squares on the two sides of the horizontal
and vertical MLs. At level 2, the colours of the squares which are
in contact with the MLs are opposite (while they have the same
rotational speed). Given that such elements are mutually
connected by two hinges, they restrain the rotational DoF of
each other, therefore should be labelled by ‘rectangular’ grey
stickers. In other words, the rectangular labels indicate which
squares should be identified as grey elements on the two sides of
the MLs. As a consequence, these labelled squares will neutralise
their corresponding homochromatic squares in the hierarchical
assembly of the lower level, i.e. level 1. These neutralised squares
are labelled by ‘small square’ grey stickers (see Supplementary
Movie 1).

After labelling the level-2 ONAs and colouring the appropriate
squares in grey, some orange and blue squares will remain in the
structure, enabling the assembly to contract and expand. Figure 1a
illustrates how the assemblies of level 2 can be contracted
synchronously, shown in particular configurations with θ= 90°,
60°, 30°, and 0, where deployment angle θ is the angle between
two adjacent squares at level 1. As can be seen from the two fully-
contracted level-2 ONA models depicted in Fig. 1a, there is no
difference between these two models, as one can be isometrically
transformed into the other by a 90° rotation. As a result, the
rotational direction of the level-1 structure during the generation
process does not affect the final result in higher hierarchical
levels. Conversely, in ENAs, the rotational direction of the
assembly of level N− 1 determines the type of the assembly of
level N. Depending on the colour of the first rotating square, in
ENAs, two different types of assemblies will be achievable: (1)
Type I, in which the first square is orange; and (2) Type II, in
which the first square is blue.

Selective hinge removal (SHR) strategy for architecting ENAs.
For ENAs, the generation process is, in general, similar to that of
ONAs. However, unlike ONAs, after constructing the two types
of level-2 structures for ENAs, the mirrored level-1 structures will
be in contact with their neighbours through elements with
opposite colours, connected by two hinges on the vertical or
horizontal MLs (Fig. 1b). Therefore, as explained in the labelling
step, these squares should be labelled with grey rectangular
stickers. Every labelled square which is in contact with its
neighbour with two hinges on the vertical ML will label its cor-
responding sub-assembly at level 1. This similarly applies to every
square which is in contact with the horizontal ML. As a result, in
the labelling step, the entire assembly will be labelled. In other
words, after labelling an ENA of level 2, all the elements of the
structure will become grey. Therefore, the ‘all-grey’ structure will
be locked due to the absence of rotating elements (see Supple-
mentary Movie 1). As a result, in order to revive the rotational
elements of level 2, it is necessary to selectively remove hinges on
the contact lines (edges) of the assemblies of level 1, which are
located on the MLs associated with level 2. As a convention, we
will not make any changes to the hinges located on the vertical
ML. However, where there are two squares connected on the
horizontal ML, one hinge should be removed from the pair. This
enables the proper function of local rotating squares, and con-
sequently those of the entire assembly. In this paper, the outer
hinges on the horizontal ML are shown in red, whereas the inner

hinges are depicted in yellow. As a result of particular arrange-
ments of connections among blue and orange squares, in Type-I
assemblies the red hinges must be removed, whereas in Type-II
assemblies the yellow hinges are those to be removed. These
alternations enable us to contract ENAs appropriately. In Fig. 1b,
the deformation of models of level 2 is illustrated in particular
deployment angles. Supplementary Movie 1 demonstrates the
labelling process and reveals the differences between Type-I and
Type-II assemblies.

Fertile versus barren ENAs. The next question is whether both
types of ENAs of level 2 can generate the next hierarchical level.
To deal with this problem, a simplified model is illustrated in
Fig. 1c, where each green circle represents a level-(N− 1) struc-
ture, by assembling four of which, a level-N structure can be
achieved. The black small circles denote the hinges that should be
shared by a similar assembly to generate the next level of hier-
archy, i.e. level N+ 1. After being rotated by 45°, the hinges will
be located in their correct positions. In Fig. 1c, the black circles
are indicated on all of the final assemblies. By following them, it is
possible to determine the capability of each structure for the
generation of the next hierarchical level. We first start tracking
these black circles in ONAs. As shown in Fig. 1a, after the
completion of the deformation, the black dots will be located on
the four vertices of the final models, which are larger squares
ABCD and EFGH. Therefore, both final ONAs can generate level
3, because these hinges can be shared with their neighbouring
assemblies to generate the next level of the hierarchy.

On the other hand, in ENAs, the locations of black hinges are
not identical in the fully-closed configurations of Type I and II
(squares IJKL and MNOP in Fig. 1b). More specifically, for Type-
I assemblies, in which the red hinges are removed, the black
hinges will be located on the four vertices of the 4 × 4 fully-
contracted structure IJKL. As a result, Type I can generate the
next level of the hierarchy because it can share these hinges to
facilitate appropriate connectivities to generate the next level. On
the contrary, in Type II, the black hinges are located on sides MN
and OP of the corresponding fully-contracted structure, i.e.
square MNOP, not on its vertices; consequently, the Type-II
assembly cannot be the parent of level 3 because it is not able to
appropriately share the black hinges with its neighbours. We call
such a structure to be ‘barren’ because it is unable to produce the
next level of the hierarchy. (See Supplementary Movie 1 to track
the positions of the black circles).

Generalized generation process of ENAs. The deployment of
Type-I and -II assemblies of levels 3 and 4 are illustrated in
Fig. 2a, b, respectively. In Fig. 2, all squares are coloured in green,
denoting elements with unspecified motion, where the role of
black dots is similar to that of Fig. 1c. By tracking the black dots
in Type-I assemblies of both levels 3 and 4, it can be observed that
at θ= 0, the black hinges will be located on the four vertices of
fully-contracted squares ABCD and IJKL. They also appear on the
upper and lower sides of the two squares (i.e., sides AD, BC, IL,
and JK), facilitating hinge-sharing to generate the next level of the
hierarchy. Therefore, Type-I assemblies of levels 3 and 4 are able
to generate their next levels. As illustrated in Fig. 2, Type-I
assemblies of level 3 can generate two types of level-4 assemblies
depending on which direction it is rotated while mirroring. It is
also shown how the Type-I assembly of level 3 rotates in the
deployment process of an assembly of level 4, and how its black
hinges make appropriate connections. A red dashed ML is added
as a guideline to the figures to indicate the rotation direction of
the assembly. On the contrary, by investigating the Type-II
assemblies of levels 3 and 4, it can be understood that when the
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Fig. 2 The generation flowchart of hierarchical even-numbered assemblies (ENAs). Contraction phases of a level-3, and b level-4 assemblies of Types I
and II (in the figures, L(N) denotes level N). c Representations of Type-I and Type-II assemblies of level N, where the CW- and CCW-rotated assemblies
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structures are fully-contracted (squares EFGH and MNOP), the
black hinges are located on the right and left sides of the con-
tracted models (i.e. EF and GH at level 3, and MN and OP at level
4), not on their vertices. As mentioned earlier, these hinges
cannot be shared with similar structures to generate the next level
of the hierarchy; consequently, such Type-II assemblies with
removed inner hinges turn out to be barren.

The two types of assemblies at each level of the hierarchy are
schematically represented in Fig. 2c, where circles represent
assemblies (corresponding to grey circles in Fig. 2a, b). There is
an arrow in each circle that indicates the rotation direction of the
assembly; CW- and CCW-rotated assemblies are indicated by
ACW and ACCW, respectively. The pairs of white hinges located on
the vertical MLs will be retained because they connect the sub-
assemblies of lower levels to form the assemblies of higher levels.
On the other hand, hinges located on the horizontal MLs are
shown in either yellow or red. More specifically, in Type-I
assemblies, yellow and red hinges represent those which are to be
retained and removed, respectively. In contrast, in Type-II
assemblies, red hinges are retained whilst yellow hinges are
removed.

A generalized generation flowchart of hierarchical ENAs is
shown in Fig. 2d, where the assemblies of level N− 1 are shown
by pink-shaded circles which consist of the assemblies of the
lower level. As explained before, the Type-II assembly of level
N− 1 cannot generate the next level, whereas the Type-I
assembly of level N− 1 can generate assemblies of both Types I
and II at level N which are depicted by light grey circles. At this
level, the Type-I assembly will generate Types-I and -II
assemblies of level N+ 1, but the Type-II assembly is barren.
The deployment sequence of hierarchical assemblies of Types I
and II by up to level 5 are shown in Supplementary Figs. 8 and 9,
respectively.

In-plane Poisson’s ratio of ENAs. As a result of alterations in the
connectivity of elements in ENAs, their Poisson’s ratios vary as a
function of deployment angle θ. More specifically, depending on
the configuration, their Poisson’s ratio can be positive or negative,
or tend to positive or negative infinity. In this section, we present
the method of determining Poisson’s ratio for such structures by
up to level 3. In order to achieve this aim, the first step is to find
XLðNÞ
θ and YLðNÞ

θ , which represent the dimensions of a level-N
assembly at a deployment angle θ, in the X- and Y-directions,
respectively. To this end, three different methods are used in this
paper (see Fig. 3). The first method is analytical based on geo-
metrical relations; the second method relies on the numerical data
extracted from motion simulations; and as the third method, and
to verify the analytical and numerical results, we experimentally
measure the values of XLðNÞ

θ and YLðNÞ
θ in some particular

deployment angles of the physical models. By inputting the data
of XLðNÞ

θ and YLðNÞ
θ at each hierarchical level, it is possible to find

the corresponding amount of true (i.e., logarithmic) strain using
Eqs. (1) and (2); finally, Poisson’s ratio in the two directions can
be calculated from Eqs. (3) and (4), as follows:

εðCÞY ðθÞ ¼
Z Yθ

Y90

dY
Y

� �
¼ ln

Yθ

Y90

� �
and εðCÞX ðθÞ ¼

Z Xθ

X90

dX
X

� �
¼ ln

Xθ

X90

� �
;

ð1Þ

εðEÞY ðθÞ ¼
Z Yθ

Y0

dY
Y

� �
¼ ln

Yθ

Y0

� �
and εðEÞX ðθÞ ¼

Z Xθ

X0

dX
X

� �
¼ ln

Xθ

X0

� �

ð2Þ

ν
ðCÞ
XY ðθÞ ¼ � εðCÞY ðθÞ

εðCÞX ðθÞ
and ν

ðCÞ
YX ðθÞ ¼ � εðCÞX ðθÞ

εðCÞY ðθÞ
; ð3Þ

ν
ðEÞ
XY ðθÞ ¼ � εðEÞY ðθÞ

εðEÞX ðθÞ
and ν

ðEÞ
YXðθÞ ¼ � εðEÞX ðθÞ

εðEÞY ðθÞ
; ð4Þ

where superscripts (C) and (E) denote contraction and expansion,
respectively, and θ is in degrees. It should be noted that, in this
study, we calculate the ‘accumulated logarithmic’ Poisson’s ratio
rather than the ‘instantaneous’ Poisson’s ratio. The reason behind
such a choice of Poisson’s ratio is provided in Supplementary
Note 5 and Supplementary Fig. 12.

In the analytical method, we can find equations relating XLðNÞ
θ

and YLðNÞ
θ by considering the parallelism or perpendicularity of

the edges with respect to the MLs of different levels (see
Supplementary Fig. 1). To calculate XLðNÞ

θ and YLðNÞ
θ at each level,

they should be divided into measurable segments, indicated by
red lines in Fig. 3. In other words, the distance between the two
red points, shown for each level, is divided into smaller line
segments that can be calculated geometrically. By increasing
the level of the hierarchy, the number of these segments will rise
considerably; however, thanks to the mirror symmetry of the
assemblies, it is sufficient to perform calculations in each
coordinate direction for only a half of each model. These
equations enable us to find the dimensions of a model as a
function of deployment angle θ. The calculations using this
method are explained in detail for the hierarchical structures of
levels 1, 2, and 3 in Supplementary Note 1 (including
Supplementary Figs. 2–6), with the final equations given here.
Considering a0 to be the side length of the basic square of level 0,
the side length of the basic square associated with each level N,
denoted by aN, can be expressed as:

aN ¼ a0
2N

; ð5Þ
where N is the level of the hierarchy. For level 1, we will have:

XLð1Þ
θ ¼ YLð1Þ

θ ¼ a0 cos
θ

2

� �
þ sin

θ

2

� �� �
: ð6Þ

For level 2, we will obtain:

XLð2Þ
θ ¼ a0

2
ð2þ sin θÞ; ð7Þ

YLð2Þ
θ ¼ a0

2
ð 2 sin θ þ cos θ þ 1Þ: ð8Þ

Finally, for level 3, the equations will be as follows:

XLð3Þ
θ ¼ a0

4
5 sin

θ

2

� �
þ 4 cos

θ

2

� �
þ sin

3θ
2

� �� �
; ð9Þ

YLð3Þ
θ ¼ a0

4
2 sin

θ

2

� �
þ 4 cos

θ

2

� �
þ 2 sin

3θ
2

� �
þ 2 sin θ sin

θ

2

� �� �
:

ð10Þ
Given that the side lengths of the fully-contracted structures

are equal to a0, and assuming a0= 24 cm in this research,
parameters a2 and a3 will be 6 and 3 cm, respectively, according
to Eq. (5).

An alternative method to calculate the instantaneous
dimensions of the structures during deformation is to exploit
the numerical data obtained from motion simulations. To this
end, the structures were modelled and simulated (materials and
methods; motion simulation), the results of which are
compared with those of the analytically-derived equations. As
can be seen from Fig. 3, the results of both methods are exactly
compatible for levels 2 and 3. Furthermore, to verify the
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Fig. 3 Geometric variations during deformations for ENAs of levels 2 and 3 in terms of deployment angle θ. The analytical results are compared with
numerical and experimental results. At 60°, it is shown how Xθ and Yθ (i.e., the distance between red circles in the X- and Y-directions, respectively) are
divided into smaller, measurable segments on the plan views of the experimental models. The analytical and numerical results are represented
continuously, whereas the experimental results are measured at different deployment angles from 90° to zero in increments of 10°.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00322-7 ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:97 | https://doi.org/10.1038/s43246-022-00322-7 | www.nature.com/commsmat 7

www.nature.com/commsmat
www.nature.com/commsmat


analytical/numerical results, experimental models were fabri-
cated and tested (Materials and Methods; Physical models),
where the dimensions of the models were calculated at
different deployment angles from 90° to zero in increments
of 10° (i.e., 90°, 80°, 70°, …, and 0). Subsequently, these
experimental results were compared with the analytical/
numerical data. As shown in Fig. 3, the error is within the
range of ±3%, so it can be concluded that these results are in
very good agreement with our analytical/numerical data.

Since in this study we consider the deformation of the
assemblies over a period of time during which the structure
undergoes a ‘large’ (i.e., ‘geometrically nonlinear’) deformation,
the accumulated Poisson’s ratio might be different in tension and
compression. Therefore, in this section, we demonstrate that the
ENAs show different mechanical properties during the contrac-
tion and expansion processes, and calculate Poisson’s ratios for
both cases. Because we create the structures in their fully-
expanded configurations, the investigation of Poisson’s ratio
diagrams starts with contraction and continues with expansion.
During contraction, the deployment angle runs from θ= 90° to
θ= 0. On the contrary, during expansion, the deformation starts
at the θ= 0 and ends at θ= 90°. In Fig. 4, the yellow squares
represent the initial dimensions of the structures. Importantly, if
any of the two dimensions of the model at a position is equal to
the side length of the yellow squares, the corresponding
deployment angle will be a critical angle in the diagram of
Poisson’s ratio because it would tend to infinity (Supplementary
Movie 2).

The geometric behaviour of the level-1 assembly was
previously investigated58, so here we only report the results for
the assemblies of levels 2 and 3. Also, in Fig. 4, only the
assemblies of Type I are illustrated, because they can be the
parents of the next level. Nevertheless, it is important to note that
Poisson’s ratio is similar at each level of the hierarchy for
structures of Type I and Type II, the difference between which is
only the order of connecting the CW and CCW assemblies
(Fig. 2c). Therefore, XLðNÞ

θ and YLðNÞ
θ , and consequently Poisson’s

ratios, are equal in both types. The variations of strains in each
direction, i.e. εX and εY, in terms of deployment angle θ, are
shown in Fig. 4 (see also Supplementary Movie 2 for more
information).

Contraction and expansion processes of level-2 ENAs. As
shown in Fig. 4a, at the onset of contraction, εY gradually
increases while εX is ~0, making vXY drop form +∞ gradually
(Fig. 4b). At θ= 54.0°, the strains are equal in magnitude but
opposite in sign, leading to νXY ¼ νYX ¼ 1. Importantly, θ ¼
36:3� is a critical angle for the structure where YLð2Þ

36 ¼ YLð2Þ
90 ,

resulting in εY ¼ νXY ¼ 0; however, vYX tends to +∞ and −∞
at the left and right sides of this point, respectively. In fact, the
structure exhibits auxetic behaviour only starting from this
angle towards complete contraction where νXY ¼ νYX ¼ �1.

lim
θ!ð90�Þ�

νXY ¼ þ1; ð11Þ
and

lim
θ!ð36:3�Þþ

νYX ¼ þ1 and lim
θ!ð36:3�Þ�

νYX ¼ �1: ð12Þ

On the other hand, we can observe a different behaviour from
the level-2 structure during expansion. At the commencement of
the expansion process, as shown in Fig. 4c, εY is twice as εX, so
initially we have νXY ¼ �2 and νYX ¼ �0:5. However, as the
structure starts to expand, the difference between the two strains
gradually reduces and eventually the model will have a negative
Poisson’s ratio of −1 at 90°, i.e. at its fully-expanded

configuration. Hence, during the entire expansion process, the
level-2 structure shows auxetic behaviour. Importantly, in the
expansion of the level-2 structure, there are no critical angles,
because the values of XLð2Þ

θ and YLð2Þ
θ are never equal to XLð2Þ

0 and

YLð2Þ
0 , respectively.

Contraction and expansion processes of level-3 ENAs. In the
contraction of the level-3 structure, deformation starts with a
Poisson’s ratio of −1 in both directions, i.e. νXY ¼ νYX ¼ �1 at
θ ¼ 90� (Fig. 4f); however, as deformation continues, we can
observe that θ ¼ 64:7� and 49.2° are two critical angles for the
system as we have:

lim
θ!ð64:7�Þþ

νXY ¼ �1 and lim
θ!ð64:7�Þ�

νXY ¼ þ1; ð13Þ

lim
θ!ð49:2�Þþ

νYX ¼ þ1 and lim
θ!ð49:2�Þ�

νYX ¼ �1: ð14Þ
As can be seen from Fig. 4f, if Poisson’s ratio in one

direction tends to infinity, the corresponding Poisson’s ratio in
the other direction will be zero. Between 90° and 64.7°, the
structure is auxetic; this is because vYX approaches −∞, whilst
vYX has finite negative values approaching zero. From 64.7° to
49.2°, εY is positive whilst εX is negative, so the structure is not
auxetic in this range. Then at the right of 64.7°, vYX tends to
+∞, whereas vYX is zero. Similarly, at the left of 49.2°, vYX
tends to +∞, whereas vYX is zero. Importantly, at θ= 55.5°, we
have εY ¼ �εX (i.e. νXY ¼ νYX ¼ 1), so the Poisson’s ratio
curves cross each other at this angle. Between 49.2° and zero,
the dimensions of the model decrease in both directions,
therefore εX and εY are both negative, so the structure shows
auxetic behaviour. As can be seen from Fig. 4e, f, during the
final 20° of deformation, the plots of εX and εY tend to overlap,
ending up with νXY ¼ νYX ¼ �1 at θ ¼ 90�. In the expansion
of the level-3 structure, as shown in Fig. 4g, εX and εY are
always positive, so the structure is always auxetic in both
directions, with the initial and final Poisson’s ratios of −1. The
slight gap between the plots of vYX and vYX (Fig. 4h) is a result
of the selective removal of hinges in ENAs which facilitates the
deployment of the assemblies.

Discussion
As revealed earlier in this study, the ONAs created using the
method of RAM have deployment behaviours different from
those of the ENAs created by this method. In this paper, by a
detailed investigation of the transformation behaviour of each
element in the ENAs, we devised a new design strategy, called
‘SHR’, allowing these assemblies to contract and expand, without
which the ENAs are ‘locked’ and their elements have only
translational motion.

To figure out which hinges should be removed, we demon-
strated that two types (i.e., Type I and Type II) of assemblies
can be generated at each level of the hierarchy. We observed
that Type-I assemblies can be the parents of higher hierarchical
levels, whereas Type-II assemblies are barren structures which
cannot produce any assemblies of a higher level. For example,
an assembly presented in ref. 75, which is similar to a Type-II
ENA in this research, was used to generate the next levels of the
hierarchy. As explained and discussed in Supplementary
Note 4 and visualised in Supplementary Movie 4, the higher-
level assemblies generated based on the Type-II ENAs are not
able to undergo a complete deployment cycle (see also Sup-
plementary Figs. 10 and 11).

To evaluate and validate the Poisson’s ratio of the hierarchical
assemblies, three different methods were utilised to determine the
dimensions of the structures during the process of deployment.
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As depicted in Fig. 3, the numerical results of motion simulation
and the analytical outputs of the mathematical model were fully
compatible. Moreover, experimental results based on physical
models acceptably validated the analytical/numerical data with an

error within the range of ±3%. Sources of error affecting the
experimental results include: (1) the use of polyurethane foams in
the fabrication of the physical models, in which the elements are
not perfectly rigid and the hinges are not ideal rotational
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Fig. 4 In-plane Poisson’s ratio in hierarchical ENAs of levels 2 and 3. a, b Plots of the strains and Poisson’s ratio of the contraction of the level-2 structure.
c, d Plots of the strains and Poisson’s ratio of the expansion of the level-2 structure. e, f Plots of the strains and Poisson’s ratio of the contraction of the
level-3 structure. g, h Plots of the strains and Poisson’s ratio of the expansion of the level-3 structure. 3D assemblies are used to exhibit the deformation of
the models. Yellow squares represent the initial dimensions of the structures; when during the deformation process any of the two instantaneous
dimensions of the structures are equal to the respective dimensions of the yellow squares, the corresponding deployment angle is a critical angle.
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mechanisms; and (2) the manual actuation of the models by two
people with imperfect synchronisation.

Results from the current study revealed that Poisson’s ratio
changes as a function of deployment angle in the ENAs of levels 2
and 3 of the hierarchy. It is already known that at level 1, Pois-
son’s ratio is −1 throughout the deformation process58. In con-
trast, at level 2, due to the selective removal of hinges, Poisson’s
ratio not only changes as a function of deployment angle, but also
its variation curves in the contraction process are completely
different from those of the expansion process. Normally, Pois-
son’s ratio is the same in tension and compression at any specific
point in time, but if the deformation is considered over a period
of time (i.e., when the accumulated Poisson’s ratio is calculated),
the diagrams of Poisson’s ratio will be different during expansion
and contraction. Importantly, at some particular deployment
angles during the contraction of the ENAs of levels 2 and 3, the
instantaneous dimensions of the models will be equal to their
initial values. Therefore, at these critical angles, corresponding to
the vertical asymptotes in Fig. 4b, f, Poisson’s ratio tends to
infinity in one direction while it is zero in the other direction.
Between these critical angles, the models do not show auxetic
behaviour.

Conclusions
In summary, we have established a systematic design strategy for
ENAs based on the selective removal of rotational hinges,
resulting in fully-deployable structures, which were not achiev-
able with previously known methods. Furthermore, we demon-
strated that there is a significant difference in the deployment
behaviour of ONAs and ENAs. The obtained diagrams of Pois-
son’s ratio versus the deployment angle in pivotally-
interconnected assemblies showed that this index can have dif-
ferent finite or infinite values.

As a result of the findings of this research, now both odd- and
even-numbered hierarchical assemblies can be generated theo-
retically by level N, where N is an arbitrary natural number.
While we have presented the results by up to level 3, one can
perform this study by level N using the method introduced in this
paper (Supplementary Note 1). In this sense, we have enlarged the
design space of functional pivotally-interconnected mechanical
metamaterials which could be used by researchers and designers
for various applications including the development of novel
reconfigurable structures, medical devices, flexible electronics,
and deformable batteries.

Materials and methods
Mathematical modelling. Object-oriented programming was used to generate
hierarchical structures in Delphi, where each hierarchical level is considered as an
object or class, and a new class is added to update the code for generating the next
level of the hierarchy. The governing equations were derived for the hierarchical
structures of levels 1, 2, and 3 (for details, see Supplementary Note 2), resulting in
the development of the application software ‘HiElm’ (standing for ‘hierarchical
elements’) which provides a graphical user interface (GUI) to simulate the beha-
viour of the structures (Supplementary Software 1). The algorithm is divided into
two main parts: (1) the generation of the hierarchical levels, which is the same as
the procedure illustrated in Fig. 2d, and (2) the geometric transformations of units,
in which a rotation is applied to the ‘parent’ of each level, that is a large square
containing all the small squares associated with that level. Parent units are illu-
strated as grey squares in Fig. 5, in which the colour of their borders represents
their rotational direction (orange: CW; blue: CCW). For all the three levels, only
Type-I ENAs are presented in HiElm.

As can be seen from Fig. 5 and Supplementary Fig. 7, the rotation of the parent
squares is around their centroids which are represented by black circles. Although
the deployment angle is 0 < θ < 90°, the rotation angle of the parent squares is
0 < φ < 45° (the rotation angle of the 45°-rotated parent squares changes from 45°
to zero). Importantly, the distance between the centroids and the vertical/
horizontal MLs is always constant. The second measurable distance is between the
centroids and the farthest point of each assembly along the X- and Y- directions
denoted by XLðNÞ

φ and YLðNÞ
φ , respectively, where φ is the rotation degree of the

parent square and N is the level of the hierarchy. The derivations of XLðNÞ
φ and YLðNÞ

φ

up to three levels of the hierarchy are presented in Supplementary Note 2 (see
Supplementary Figs. 2–6). The final relations are provided as Eqs. (15)–(25). By
calculating the values of ΔXLðNÞ

φ and ΔYLðNÞ
φ , it is possible to find the exact position

of the centroids of squares at each deployment angle.
Level 1

XLð1Þ
φ ¼ a0

ffiffiffi
2

p

4
cos

π

4
� φ

� �
ð15Þ

ΔXLð1Þ
φ ¼ XLð1Þ

45 � XLð1Þ
φ ¼ a0

ffiffiffi
2

p

4
1� cos

π

4
� φ

� �� �
ð16Þ

ΔYLð1Þ
φ ¼ ΔXLð1Þ

φ ð17Þ
Level 2

XLð2Þ
φ ¼ a0

4
ðsinφ cosφþ 1Þ ð18Þ

ΔXLð2Þ
φ ¼ XLð2Þ

45 � XLð2Þ
φ ¼ a0

4
1
2
� sinφ cosφ

� �
ð19Þ

YLð2Þ
φ ¼ a0

4
ðsin2φþ cosð2φÞ þ sinð2φÞÞ ð20Þ

ΔYLð2Þ
φ ¼ YLð2Þ

45 � YLð2Þ
φ ¼ a0

4
3
2
� sin2φ� cosð2φÞ � sinð2φÞ

� �
ð21Þ

Level 3

XLð3Þ
φ ¼ a0

8
ðsinð2φÞ cosφþ 2 sinφþ 2 cosφÞ ð22Þ

ΔXLð3Þ
φ ¼ XLð3Þ

45 � XLð3Þ
φ ¼ a0

8
5

ffiffiffi
2

p

2
� sinð2φÞ cosφ� 2 sinφ� 2 cosφ

� �
ð23Þ

YLð3Þ
φ ¼ a0

8
ðsinð2φÞ sinφþ 2 cosφþ sinφþ sinð3φÞÞ ð24Þ

ΔYLð3Þ
φ ¼ YLð3Þ

45 � YLð3Þ
φ ¼ a0

8
5

ffiffiffi
2

p

2
� sinð2φÞ sinφ� 2 cosφ� sinφ� sinð3φÞ

� �

ð25Þ
Interestingly, in pivotally-interconnected assemblies, square units can be

replaced by alternative, convex or concave polygonal units. In this section, we have
adapted some motifs from Persian-Islamic geometric patterns—known as ‘gereh’
(also written ‘girih’)—used in traditional Persian architecture96. To this end, two
motifs are chosen from the ceiling decorative design of the palace ‘Hasht-Behesht’
located in Isfahan, Iran (Fig. 6a). The first gereh is an 8-pointed star called ‘Shamse’
(Fig. 6b) and the second gereh is a regular octagon known as ‘Setareh Chahar-
Lenge’ (Fig. 6c).

In the application software HiElm provided as Supplementary Software 1, users
can select different motifs and simulate the deployment of the hierarchical ENAs
developed based on these motifs. An array of results within the GUI of HiElm is
depicted in Fig. 6d.

Motion simulation. To simulate the deformation of the structures, the motion
simulation software Working Model 2D was used, where rigid squares were con-
nected to each other using frictionless hinges. Then, depending on the level of the
hierarchy, a number of motors were added to each assembly. To run a synchronous
simulation, the angular speed of all motors was considered to be 2° per second. The
effect of gravity was assumed to be negligible.

Physical models. To simulate the rotational hinges and rigid squares, we fabri-
cated a glued two-layer structure of polyurethane (PU) foams, where the first layer
had a thickness of 10 mm and density of 45 kg m−3, and the second layer had a
thickness of 20 mm and density of 25 kg m−3. The thickness of the hinges was
considered to be 2.5 mm. The ENAs of levels 2 and 3 were designed in their fully-
expanded configurations and cut using a CO2 laser cutting machine. Parameters a2
and a3 were considered to be 60 and 30 mm, respectively; therefore, the dimensions
of both structures in their fully-contracted configurations were 240 mm (Fig. 7).

To limit the number of DoFs, the loci of the centroids of some squares were
extracted from the motion simulations performed in Working Model 2D and cut
using the CO2 laser cutter on square sheets of three-layered corrugated cardboard.
Plastic straws were connected to the less dense foam layer at the centroids of the
selected squares. By inserting the straws into their corresponding slots, the models
were able to be contracted and expanded in a controlled way. Figure 7 and
Supplementary Movie 3 show the deformation behaviour of Type-I ENAs of levels
2 and 3.
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Fig. 5 The method of hinging in HiElm. a–c Depict the hinging method at levels 1, 2, and 3, respectively. On the right-hand side of each part (corresponding
to each level), it is shown how ΔXLðNÞ and ΔYLðNÞ are calculated during deformation, where φ is the rotation angle of respective parent (grey) squares, and
dashed lines represent mirror lines.
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Fig. 6 Hierarchical ENAs inspired by Persian-Islamic geometrical patterns and the software HiElm. a The ceiling of the palace ‘Hasht-Behesht’ located in
Isfahan, Iran, constructed in the seventeenth century97. Schematics of the deployment of level-3 ENAs in which square units are replaced by b ‘Shamse’
and c ‘Setareh Chahar-Lenge’. d Graphical User Interface (GUI) of HiElm. In this application, in addition to square elements, four different Persian-Islamic
motifs are provided which can be used to generate assemblies of up to level 3 of the hierarchy.
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