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Abstract: The absence of effective vaccines for most viral infections highlights an urgent necessity

for the design and development of effective antiviral drugs. Due to the advancement in virology

since the late 1980s, several key events in theviral life cycle have beenwell delineated and a number

ofmolecular targets have beenvalidated, culminating in the emergence ofmany new antiviral drugs

in recent years. Inhibitors against enteroviruses and rhinoviruses, responsible for about half of the

human common colds, are currently under active investigation. Agents targeted at either viral

protein 1 (VP1), a relatively conserved capsid structure mediating viral adsorption/uncoating

process, or 3C protease, which is highly conserved among different serotypes and essential for viral

replication, are of great potential to become antipicornavirus drugs.� 2004Wiley Periodicals, Inc. Med

Res Rev, 24, No. 4, 449–474, 2004
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1 . I N T R O D U C T I O N

Enteroviruses and rhinoviruses are the common cause of infections in human. The human

enteroviruses caused various illnesses, some easily recognized clinically while others diagnosed as

non-specific viral syndromes. The severity of enterovirus infection depends mainly on the

somatotopic localization after primary replication in gastrointestinal tract and subsequent bloodborne

dissemination. Clinical manifestations of enterovirus infections include fever alone, or specific
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syndromes such as hand, foot, and mouth disease, and herpangina. However, the same viruses also

cause potentially severe and life-threatening infections such as meningitis, encephalitis, myocarditis,

polio-like syndrome, and neonatal sepsis. Human rhinoviruses infections cause nasopharyngeal

syndrome (the ‘‘common cold’’) in general population of all ages. Although rhinovirus infection is

self-limited, complications could still occur in patients with asthma, congestive heart failure,

bronchiectasis, and cystic fibrosis.

To date, no antiviral agent has been approved by FDA for the treatment of either enterovirus or

rhinovirus infection. Clinical treatments are directed toward symptomatic relief of the most

prominent symptoms of each clinical syndrome. Steps such as viral attachment, uncoating, viral RNA

replication, and protein synthesis in the replication cycle of enteroviruses/rhinoviruses can serve as

potential targets for antiviral agents. The following sections briefly review the virology and clinical

diseases of enteroviruses and rhinoviruses, and the capsid-binding/protease-inhibitingmolecules that

are potential agents for drug development.

2 . V I R O L O G Y

Enterovirus and rhinovirus are two important pathogens within the family of picornaviridae. The

human enteroviruses, so-called because most inhabit the enteric tract, include the polioviruses (types

1, 2, and 3), coxsackieviruses A (23 serotypes), coxsackieviruses B (6 serotypes), the echoviruses

(32 serotypes), and the numbered enteroviruses 68–73 (Table I).1–4 Enterovirus 72 has been

reclassified as the hepatitis Avirus.5,6 The rhinoviruses, so-called because of their special adaptation

to the nasopharyngeal region, are the most important etiologic agents of the common cold in adults

and children. There are more than 100 serotypes of rhinoviruses in existence.

A. Viral Genome and Replication

The picornaviral genome consists of a single-stranded, positive sense (messenger-active) RNA. This

viral RNA has a small protein called VPg covalently attached to its 5 0-end and is polyadenylated at its
3 0-terminus.7,8 The genomic RNAs vary in length from 7,200 to 7,500 bases.7,9–13 The 5 0-non-coding
region (5 0-NCR) is long and highly structured, containing a cloverleaf-like structure that is important

for negative strand viral RNA synthesis14,15 and an internal ribosome entry site (IRES) that is essential

for directing translation of mRNA.16–18 The 3 0-NCR is short, ranging in length from 47 to 125 bases.

The 3 0-NCR also contains a secondary structure, notably a pseudoknot that plays a role in controlling

viral synthesis.19 Replication of picornaviruses takes place entirely in cytoplasm. After attachment to

the host cell, the viral genomic RNA is uncoated from the viral capsid. The positive stranded viral

RNA is translated to viral proteins that are essential for viral gene replication and production of new

viral particles. Genome replication andmRNA synthesis occur in small membranous vesicles that are

induced by several viral proteins. A single replication cycle ranges from 5 to 10 hr. The speed of viral

Table I. Members of Enteroviruses

Subgroup Serotypes

Poliovirus 1^3

Coxsackievirus A 1^22, 24

Coxsackievirus B 1^6

Echovirus 1^9,11^27, 29^31

Numberedenteroviruses 68^71,73

CoxsackievirusA23hasbeenreclassifiedasechovirus9.Echovirus10and28havebeenreclassi-

fiedasreovirus1andrhinovirus1A.Enterovirus72hasbeenreclassifiedashepatitisAvirus.
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replication depends on many factors, such as virus strain, environmental temperature, pH, host cell

type, and multiplicity of infection.

B. Viral Capsid Proteins

Picornavirus virions are spherical in shape with a diameter of about 40 nm. The viral particle has no

lipid envelope. Enteroviruses are acid stable and retain infectivity at pH lower than 3.0. Rhinoviruses,

in contrast, are labile at pH less than 6.0. The capsids of picornaviruses are composed of four structural

viral proteins, namely, VP1, VP2, VP3, and VP4. The capsid contains 60 structural proteins arranged

into an icosahedral lattice.20,21 The basic building block of the picornaviral capsid is the protomer,

which contains one copy of each VP1, VP2, VP3, and VP4. The shell is formed by VP1, VP2, and

VP3, VP4 lies on its inner surface. VP1, VP2, and VP3, thoughwith no homology in sequence, form a

common structure: the b-barrel jelly roll. Themain structural difference between VP1, VP2, and VP3

is the loop that connects the b-strands and the N- and C-terminal sequences that extend from the b-
barrel domain.22 The amino acid sequences give each picornavirus its distinct antigenicity. The

surface of the virion has a prominent star-shaped plateau at the fivefold axis of symmetry, surrounded

by a deep depression (‘‘canyon’’). It has been proven, in poliovirus and rhinovirus, that the canyon

serves as a receptor-binding site.23–26

C. Viral Proteases

The viral RNA is translated into a long polyprotein. This single polyprotein then undergoes

proteolysis by virus-encoded protease 2A and 3C (Fig. 1). Cleavage of the Tyr–Gly pairs which

connect coat precursors P1 to P2–P3 and 3C 0–3D 0 in enterovirus is accomplished by viral proteinase

2A,27 but the cleavage of 3C 0–3D 0 by protease 2A is not essential for viability of the virus.28 The

remaining cleavage in P2–P3 at Gln–Gly pair is executed by viral protease 3C, which is essential for

enterovirus replication.29,30 Sequence alignment for enterovirus 3C protease reveals no homology

with mammalian protease. Therefore, 3C protease is a potential target for drug discovery.

In addition to the cleavage of viral polyprotein, it has been shown that 2Apro cleaves the host cell

protein eIF4G.31–35 Cleavage of eIF4G prevents eIF4F from recruiting 40S ribosomal subunits to

cappedmRNAs, because the cleavage releases the N-terminal domain of eIF4Gwhich binds to eIF4F

Figure 1. Proteolyticprocessingof enteroviruspolyprotein.
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which in turn binds to the 5 0 cap of cellular mRNA. This event shuts off the translation of host cellular

mRNA. The viral proteases 2A and 3C also contribute to poliovirus-induced apoptosis.36–38

Poliovirus 2A induces apoptosis through the cleavage of translation initiation factor eIF4G,36whereas

poliovirus 3C kills cells by apoptosis through the activation of caspase.38,39 Similar apoptotic

pathways have also been demonstrated in enterovirus 71 (EV71). Transient expression of EV71 2A

protease results in triggering apoptosis.40 EV71 3C protease induces apoptosis in the human neural

cells via the activation of caspase.41

3 . C L I N I C A L D I S E A S E S

Rhinoviruses usually cause ‘‘common cold,’’ while enteroviruses may cause very different clinical

manifestations as listed in Table II.

A. Respiratory Illness

The common cold (summer cold), pharyngitis, tonsillitis, and croup have been frequently reported.42

Most of the respiratory illnesses caused by human rhinovirus and enterovirus are benign, but

symptomsmay persist for several days, and the resultant interruption in school and work days may be

substantial. In an etiology study of viral respiratory illness, rhinoviruses infection has been found to

be the top cause (35.8%).43 The enteroviruses are responsible for approximately 15% of upper

respiratory infections for which etiology is identified.44,45 Group A coxsackieviruses are the most

common cause of herpangina. However, coxsackie B viruses and echoviruses have also been reported

to have the same clinical manifestations.46 Children 1- to 7-year-old are the group with the highest

incidence. There is usually an abrupt onset of fever associated with sore throat, dysphagia, and

malaise. Grayish white vesicles can be seen in the posterior portion of the palate, uvula, and the

tonsillar pillars. The fever lasts for 1–4 days and the symptoms begin to improve in 4–5 days, and

recovery is usually within 7 days of onset.

B. Hand-Foot-and-Mouth Disease (HFMD)

HFMD is one of the common diseases in children, especially the children under 4 years of age. The

disease is usually mild, and the onset is associated with a sore throat with or without fever. Scattered

vesicular lesions can be observed in themouth, hands, feet, and hip. EV71 and coxsackievirusA16 are

closely related in genetics and both are causative agents of HFMD. However, EV71 is associated with

Table II. Diseases Caused by Enteroviruses
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severe neurological disease, such as encephalitis, meningitis, poliomyelitis syndrome, and even fatal

pulmonary edema.48–52 The neurovirulence of EV71 first came to attention in 1975 in Bulgaria when

44 people died of a polio-like disease.53 Epidemics of EV71 causing CNS disease subsequently

occurred in New York, Australia, Europe, and Asia.47,54–58 An unusual epidemic of HFMD

complicated with fatal myocarditis and pulmonary edema occurred in Malaysia in 1997, and EV71

was implicated as the etiology of the outbreak.50 In 1998, therewas a large scale ofHFMDoutbreak in

Taiwan. Cox A 16 was presumed to be the cause of HFMD at the beginning of this enterovirus

epidemic.However, numerous severe complicationswere later found to follow cases ofHFMDand78

patients died rapidly during this outbreak. EV71 proved to be the major cause of this HFMD

outbreak.51,52,59

C. Enteroviral Meningitis and Encephalitis

Enteroviral meningitis is the most common cause of aseptic meningitis, and occurs in 4.5–30 per

100,000 population annually with a duration of illness lasting between 7 and 14 days.60–62 Cox-

sackievirus B was associated with aseptic meningitis in 62% of infants.63 Echovirus is a very

important pathogen for meningitis.64 The onset of enteroviral meningitisis is usually sudden, with

high fever of 38–40�C. The fever pattern may be biphasic. Symptoms and signs may include

headache, nausea, vomiting, stiff neck, myalgia, rash, and muscle weakness. Aseptic meningitis

caused by certain enterovirus serotypes is associated with particular clinical stigmata. Encephalitis

due to enterovirus infection is also well documented. Unlike aseptic meningitis, enteroviral

encephalitis may have more profound acute disease and long-term sequelae.65 The illness usually

begins like aseptic meningitis, with fever and other symptoms. Central nervous system (CNS) signs

include confusion, weakness, lethargy, drowsiness, and irritability. Coma or seizures may also occur.

Enteroviral meningitis/encephalitis usually has a good prognosis. However, as mentioned previously,

EV71 meningitis/encephalitis may accompany pulmonary edema and leads to fatality.48–52

D. Poliomyelitis

With the great success of the poliovirus vaccination program, poliomyelitis has now been eliminated

from most of the world. When polio was widespread, most of the wild-type poliovirus infections are

asymptomatic and only 0.1% of poliovirus infections result in paralysis. The remaining infections

causedmild flu-like illness. The paralyticmanifestations of poliovirus infections reflect the regions of

CNS severely affected.66,67 The overall mortality rate of spinal poliomyelitis is about 5%; bulbar and

medullary poliomyelitis are of higher mortality rate (near 50%).

E. Cardiovascular Diseases

The enteroviruses are the common pathogens that cause acute myocarditis.68 Neonates and young

infants are particularly susceptible to coxsackievirus B virus-associated myocarditis. RT-PCR-based

studies of endomyocardial biopsies and autopsy specimens revealed that enteroviruses were the cause

of acute myocaditis. Symptoms include palpitations, chest pain, and fever. Most of the patients

recover uneventfully while small percentage of patients develop congestive heart failure, chronic

myocarditis, or dilated cardiomyopathy.69,70

F. Hemorrhagic Conjunctivitis

Among enteroviruses, enterovirus 70, and coxsackievirus A 24 are the most common pathogens

causing hemorrhagic conjunctivitis. Clinical manifestations caused by these two enteroviruses are

indistinguishable, including eyelid swelling, lacrimation, and pain in the eyes. Recovery is usually

complete within 1–2 weeks after onset while rare cases develop a poliomyelitis-like illness.71–74
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4 . S M A L L M O L E C U L E S A G A I N S T R H I N O V I R U S E S A N D E N T E R O V I R U S E S

For some viral infectious diseases, such as those infected by poliovirus, hepatitis B virus (HBV) and

influenza virus types A and B, vaccination appears to be an efficient and feasible way for disease

prevention. For human rhinoviruses and enteroviruses, however, this protocol may be difficult to

follow due to a broad spectrumof variants. To date, at least 102 and 65 distinct serotypes, respectively,

for human rhinoviruses and enteroviruses have been reported. In addition to numerous variants, the

high-mutation rate during viral replication also presents a formidable challenge for the development

of effective vaccines. For these reasons, effective antiviral drugs to treat diseases caused by infection

of rhinoviruses and enteroviruses should not only possess high potency and low toxicity but have also

a broad spectrum of activity.

In common with many other viral pathogens, several steps in the life cycle of picornaviruses,

including initial attachment, RNA polymerization, and polyprotein processing, could be targeted for

potential antiviral therapy. Over the past two decades, inhibiting viral attachment/uncoating by VP1

blockers and interrupting viral replicationvia targeting 3A coding region or 3C protease have all been

attempted in order to find effective antipicornaviral agents. However, these efforts havemet with little

success up to this point. Despite the disappointing results, the capsid protein VP1 is considered the

most promising therapeutic target due to the fact that pleconaril, a drug candidate of the Win series

with potential use in fighting cold, has reached a very advanced stage (Phase III–IV) in its clinical

trials. Although pleconaril was finally rejected because of safety concerns, it is believed that the

underlying cause of the adverse side effects is structure-based rather than target-based in nature. The

remaining sections of this review will focus on the current efforts in developing small-molecule

antiviral agents, with a particular emphasis on chemical structures exerting biological activities on

either VP1 capsid protein or 3C protease.

A. Capsid-Binding Agents

Capsid-binding molecules block viral infection by inhibiting viral uncoating and/or viral attachment

to cellular receptors on host cells. The binding site for capsid-binding compounds appears to be a

hydrophobic pocket inside VP1 located under the canyon floor. Between the floor and pocket is a

section containing the GH loop, a region displaying the greatest changes in viral structure induced by

compound binding. Two hypotheses have been proposed to explain how capsid binders mediate

antiviral functions mentioned above. In terms of uncoating, insertion of a compound into the VP1

hydrophobic pocket leads to an increase in the stability of the viral particle, rendering the virus more

resistant to uncoating, a process necessary for the release of viral RNA. It is believed that uncoating of

viral particle requires certain degree of capsid flexibility. Interactionwith capsid bindersmay produce

amore compacted capsid structurewith limited vacant space for conformational changes essential for

uncoating to take place. As for attachment, binding of inhibitors to the VP1 pocket may induce a

conformational change in the viral canyon floor, the binding site of cellular receptors such as ICAM-1

molecule identified as the major rhinovirus receptor, and thus prevent adsorption of the viruses to the

host cells.

Among capsid-binding compounds, the Win series of compounds in Figure 2 play a remarkable

role in the development of antiviral agents against both rhino- and entero-viral infections. Disoxaril,

also known as Win 51711, was the first compound of this family with satisfactory biological profiles

to enter the clinical trial. This compound was found to be effective in vitro against most rhino- and

enteroviral serotypes tested.75–79 It also showed oral efficacy in preventing poliovirus-2 and

echovirus-9 induced paralysis in mice. However, its clinical studies were discontinued due to the

appearance of crystallurea in healthy volunteers at high dosage. A successor, Win 54954, was

subsequently evaluated in Phase II for invivo efficacy against two rhinoviruses (RV23 and 39) and one

enterovirus (coxsackievirus A21).80–82 The compound significantly attenuated viral titers and the
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severity of colds induced by coxsackievirus A21 but failed to show any efficacy against either

rinhovirus. Win 54954 had a very short half-life, presumably due to the acid lability of the oxazoline

ring, and was not further developed for clinical use owing to adverse effects of flushing and rash.

Attempts were thenmade to discover more hydrolytically stable analogues with comparable antiviral

potency. These studies led to the discovery of a series of 2-methyltetrazole compounds which are not

only resistant to acidic conditions butmaintain a broad spectrum of activity.80,83Win 61605, regarded

as the most promising candidate in the series, was selected for the treatment of rhino- and entero-viral

infections. Unfortunately, when administered orally to beagles, thismolecule caused hepatotoxic side

effects. The hepatotoxicity is presumbably due to the multiple nitrogen tetrazole ring or its metabolic

product(s). As a result, Win 61605 was dropped for further evaluation. In continuation of the search

for structurally related bioisosteric molecules with reduced hepatotoxicity, Win 63843, also referred

to as pleconaril, finally emerged as a promising new drug candidate for the treatment of human

enteroviral infections.84–86 In addition to a better metabolic stability in the monkey liver microsomal

assay, the newly developed 5-methyl-oxadiazole analogue has also been shown to bemore potent than

its oxazoline (Win 54954) and tetrazole (Win 61605) predecessors against a variety of rhino- and

entero-viruses. Pleconaril can be given by oral administration and is currently being developed by

ViroPharma for the treatment of diseases associatedwith picornavirus infections. This drug candidate

is in its late-stage clinical trials for treating viral respiratory infections and viral meningitis.

Unfortunately, even though pleconaril was demonstrated to be effective in shortening the number of

days patients felt sick and reducing the severity of symptoms, it was not approved by FDA for

marketing due to safety concerns, making the drug’s fate uncertain. Considering the tremendous

synthetic efforts made as well as the two decades consumed on the development of the Win

compounds, this unexpected result is extremely discouraging.

BTA-188 (Biota Scientific Management Pty. Ltd.), a lead of a new class of capsid-binding

antiviral agents, has been shown to possess a broad spectrum of activity against rhinoviruses.87–90

BTA-188 (Fig. 3) inhibits 87 of 100 HRV serotypes. In the cytopathic effect reduction assay for HRV-

14, BTA-188 (EC50 ¼ 1.0 ng/mL) was found to be superior to both pleconaril (EC50 ¼ 30 ng/mL)

Figure 2. StructuresofWin series compounds.

Figure 3. Structuresof Biota.
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and pirodavir (EC50 ¼ 3.2 ng/mL) in potency; in a virus yield reduction assay, a potent inhibition of

HRV-2 with an EC90 value of 0.73 ng/mL was also observed. Cytotoxicity of BTA-188 was detected

only at much higher concentrations and in toxicopharmacokinectic studies. The high-oral

bioavailability, 62–64% in rats and 21–28% in dogs, suggests that BTA-188 can be administered

orally. Replacement of the oxime-substituted phenyl ring with various bicyclic heterocyclic rings led

to another series of compounds, as represented by Biota Benzazole 15 (Fig. 3), with significant

activity against HRV-2 and HRV-14 even at concentrations as low as 0.006 mg/mL (IC50).
91,92 Further

evaluation of these two classes are ongoing and the results have not been disclosed.

Recently, using the skeleton of Win compounds as structural templates, a structure-based drug

design group at National Health Research Institutes (NHRI) in Taiwan has generated a library of

virtual compounds whose minimum-energy conformations bear close similarity to the shape of VP1

pocket of human rhinoviruses and may fit into this cavity well. These studies resulted in the

development of a series of imidazolidinone derivatives, such as BPR0Z 112 and 284 shown in

Figure 4, possessing potent activity against a variety of enteroviruses, including EV71 (IC50 ¼ 0.35–

0.04 mM), coxsackievirus A9 (IC50 ¼ 0.47–0.55 mM) and coxsackievirus A24 (IC50 ¼ 0.47–

0.55 mM).93,94 The antiviral activity for EV 71 makes this series extremely significant and useful for

developing potential anti-EV 71 agents. In 1998, many children in Taiwan fell victim to HFMD,

aseptic meningitis/encephalitis, or acute flaccid paralysis, resulting in about 80 fatalities; EV71 was

identified as a major pathogen in the etiology of these cases. Young children appear to be more

susceptible to EV71 virus infection, also after infection with more severe symptoms. Unfortunately,

after 1998 epidemic outbreak, EV71 has been continually isolated through the whole island all year

round, andmany severe cases caused by EV71 have also been reported. Pleconaril, claimed to possess

broad-spectrum activity against enteroviruses, was tested for its antiviral activity against EV71.

However, Pleconaril failed to neutralize the cytopathic effect (CPE) of cultured cells induced byEV71

isolated from the 1998 outbreak in Taiwan. This finding underscores the necessity of developing

antiviral agents using materials isolated from local strains. Time-course studies showed that

imidazolidinones effectively inhibited the early stages of EV71 viral infection, suggesting that the

surface protein VP1 is highly likely to be the molecular target for this type of compounds. Currently,

this class of compounds is under active investigation to evaluate their potential in therapeutic utility.

Another series of capsid-binding compounds exemplified as SCH 38057 and 47802 (Fig. 5) were

synthesized at Schering–Plough.95,96 SCH 38057, a phenoxyl imidazole compound in its hydro-

chloride salt form, is a water-soluble molecule which inhibited plaque formation of selected

enteroviruses (cox B3, A21, polio 2, and echo 9) and rhinoviruses (HRV 14, 1A, 10, 28, 45, and 61) in

a range of IC50 ¼ 10.2–29.1 mMand IC50 ¼ 20.4–29.1 mM, respectively.When administered orally

(60mg/kg, three times per day), SCH38057 protectedmice infectedwith either coxB3 or echo 9 from

mortality for 21 days. The subsequent SCH 47802 and its derivatives SCH 48972, 48974, 49860,

49861, and 48973 (Fig. 5) exhibited potent activity against a panel of enteroviruses, including polio 2,

echo 3–7, 11, and 30, cox A9, B1–3, and B5, at concentrations (IC50) ranging from 0.02 to 10 mg/mL

in plaque reduction assays. Cytotoxicity assays conducted on HeLa and RD cells showed that

their IC50 values were all over 50 mg/mL. SCH 47802, administered orally, protected mice with polio

2-induced encephalitis frommortality at day 21with survival rates 57, 47, and 66% at a dose of 60, 90,

and 120 mg/kg/day, respectively; its closely related analogue SCH 48973 also showed an increase in

Figure 4. Structures of National Health Research Institutes (NHRI,Taiwan).
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the survival of infected mice when it was administered orally at dosages of 3–20 mg/kg/day. All

untreated animals died at day 14. Interestingly, SCH 48974, an analogue with a slight difference in

structure from SCH 47802, only showed a marginal effect on survival at a dose of 90 mg/kg/day. The

other three derivatives (SCH 48972, 49860, and 49861), although possessing moderate activity

against poliovirus 2 in invitro assay, failed to show invivo efficacy.As formechanisms of action, time-

course studies with SCH 47802 and 48973,96 the two most potent compounds in this series, revealed

that they acted on the early adsorption/uncoating step of the poliovirus infection. The results are not

unexpected, considering these are linear hydrophobic molecules with considerable structural

similarity to the Win compounds. No clinical information is available for this class of compounds up

to the present.

Pirodavir (R 77975) and its predecessor (R 61837), as shown in Figure 6, were discovered at

Janssen Research Foundation. Both compounds possessed significant activity in inhibiting the

replication of many rhinovirus serotypes.98–100 Compared to R 61837, pirodavir showed an

improvement in potency by more than 500-fold in vitro and inhibited about 80% of rhinoviral

serotypes at concentrations of 0.1 mg/mL or less.When the nasal sprays were given six times a day for

5 days to the patients, significant reductions in virus shedding occurred but no clinical benefits were

observed. The lack of clinical efficacy of pirodavir could be due to the low-water solubility of this

series, making it difficult to administer in an aqueous formulation compatible with respiratory

secretion, and/or the labile ester functional group prone to rapid hydrolysis to form the corresponding

inactive acid. Although R 61837 is much less active against most rhinovirus serotypes relative to R

77975, when given prophylactically, it was found to be effective in preventing colds in human

Figure 5. Structuresof Schering^Plough.

Figure 6. Structuresof Janssen Research Foundation.
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volunteers challenged with rhinovirus 9. Given by intranasal spray sixtimes a day for 4 consecutive

days (total dose, 25 mg) commencing 28 hr before virus challenge, R 61837 was able to suppress

symptoms until 48 hr aftermedication ceased. In these studies, both compoundswere formulatedwith

10% 2-hydroxypropyl-b-cyclodextrin to enhance their water solubility.
Independently, a class of compounds which shared the common piperazine-ring motif with R

61837 was discovered at Sandoz Forschungsinstitut.101–103 As typified by SDZ 35682 and 880061 in

Figure 7, these novel piperazine-containing derivatives are potent and selective inhibitors against a

series of human rhinovirus serotypes and some enteroviruses in vitro. The former (SDZ 35682) is

active against rhinovirus serotypes such as HRV 14, 26, 35, 37, 43, and 48 with IC50 less than 0.1 mg/
mL and echovirus 9 with IC50 value of 0.3 mg/mL; the latter (SDZ 880061) is more selective towards

human rhinoviruseswith a relatively broader antiviral spectrum.Of the 89HRVserotypes tested, SDZ

880061 inhibited 31 in 89with IC50 values equal to or lower than 0.0003 mg/mL and 76 in 89with IC50

lower than 3 mg/mL. Similar to the R series, SDZ 35682 and 880061 are also typical capsid-binding

molecules, the evidence of which was individually substantiated by their co-crystallization withHRV

14.102,103 A considerable conformational change at VP1 binding site was observed in the HRV 14/

SDZ 35682 complex in which SDZ 35682, a compound of 19 Å in length, fills the entire VP1

hydrophobic pocket including the innermost end and occupies the space more efficiently than other

long antiviral agents such as Win 51711. It has been suggested that compounds fitting into the entire

pocket might affect the uncoating process of the viral particles. SDZ 880061was also found to bind at

the same pocket in its HRV 14 complex structure. However, the innermost portion of the pocket is

vacant, causing less alteration of the VP1 backbone conformation compared to other antiviral agents

analyzed structurally. As a result, SDZ880061 only has marginal effects on viral uncoating. This may

provide an explanation for the observation that, in the time-course studies, SDZ 880061 was found to

primarily interferewith theHRV14 adsorption to the cell instead of inhibiting viral uncoating. Both of

these compounds showed no detectable cytotoxic effect up to 30 mg/mL. SDZ35682 at a dose of

126mg/kg reduced echovirus 9-induced paralysis and shortened themean time of paralysis by 70% in

mice. Greater than 85% protection from Echovirus 9-induced death can be achieved by either a low

dose (71 mg/kg) given for 6 days or a high dose (126 mg/kg) administered for 2 days. Although SDZ

35682 showed antiviral efficacy in mice, its clinical usefulness may be limited due to a narrow

antiviral spectrum. As for SDZ 880061, its in vivo studies are not available.

Some capsid function inhibitors are synthetic derivatives or analogues based on the core

structures of naturally occurring products. Rhodanine (Fig. 8), 2-thio-4-oxothiazolidine, was

synthesized and evaluated in various biological systems in the 1970s.104,105 The results revealed that

Figure 7. Structuresof Sandoz Forschungsinstitut.

Figure 8. Structures of rhodanineand its analogues.
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the spectrum of the virus inhibitory activity of rhodaninewas extremely narrow. At a concentration of

12.5 mg/mL, only selective inhibition against echovirus 12 was observed. However, it is non-toxic to

the uninfected host cells (monkey kidney cells) at a concentration up to 150 mg/mL. Several

derivatives and analogues of rhodanine were prepared and tested (Fig. 8), but they were all con-

siderably less potent than rhodanine itself.104

4 0,6-Dichloroflavan (BW 683C) as illustrated in Figure 9 with a flavanoid-like skeleton is highly

effective against some of the most prevalent rhinoviral serotypes (1A, 1B, 2, 15, 29, and 31), with

in vitro IC50 values between 0.007 and 0.17 mM/mL.106 Mechanistic studies indicated that BW683C

blocked viral replication by inhibiting a stage immediately after the entrance of the viral RNA into

host cells. In order to improve the potency as well as to broaden the antiviral spectrum, synthetic

flavanoids substitutedwith halo, cyano, and amidino groups were prepared and tested for their in vitro

activity against HRV 1B, polio 2, cox B4, echo 6, and EV71.107–109 Among the synthetic flavanoids

tested (e.g., compounds 1–4 shown in Fig. 9), 4 0-chloro-6-cyanoflavan (3) was found to be not only
more active against HRV 1B infection than parental BW 683C, but also showed good antienteroviral

activity within micro and submicromolar range (IC50 ¼ 0.32–1.28 mM). In contrast, BW 863C was

inactive for most of the enteroviruses tested with the exception of cox B4 for which moderate activity

was observed (�2.6 mM). Among the compounds listed in Figure 9, compound 3 exhibited the most

potent activity against EV71 (IC50 ¼ 0.45 mM). However, relative to those EV71-specific

imidazolidinones (Fig. 4) discovered at NHRI (Taiwan), this compound is much shorter in length

with a decrease in activity by tenfold. The higher potency observed for the imidazolidinones could be

attributed to their more efficient occupation of the VP1 pocket to produce structurally more stable

virions.

4 0-Ethoxy-2 0-hydroxy-4,6 0-dimethoxychalcone (Ro 09-0410) in Figure 10 is a chalcone-like

synthetic compound which possesses significant activity against rhinoviruses, but shows no activity

against other picornaviruses.110,111 Among 53 rhinovirus serotypes tested, 46were sensitive toRo 09-

0410 in HeLa cell cultures. The IC50 value for antiviral activity is around 0.03 mg/mLwhile the CC50

(50% cytotoxic concentration) is more than 30 mg/mL. Ro 09-0410 was found to be ineffective

against rhinovirus infections in human volunteers, probably because of its poor water solubility and

oral bioavailability. Studies on various analogues related to this antirhinovirus agent led to the

identification of a novel class of chalcone amide analogues112 (e.g., 09-0696, 09-0881 in Fig. 10)

which, compared to Ro 09-0410, were 4.5- to 10-fold more active against 12 selected HRV serotypes

at concentrations as low as 2–3 ng/mL and showed very low cytotoxicity (30–50 mg/mL). Labeling

studies indicated that these amide compounds competitively inhibited the binding of Ro 09-0410 [3H]

to the viral capsid site in a manner similar to BW 863C, VP 63843, and WIN 51711. No clinical

information is available for this series of compounds.

Figure 9. Structuresof flavaniod-likeanalogues.
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The mode of action of above-mentioned capsid-binding molecules has been experimentally

verified with evidence indicating that the inhibition of viral replication occurred at the early stages

during viral attachment and/or uncoating. Some compounds, while their mechanisms have not been

studied or reported, are also likely to function as capsid-binding molecules in light of their linear

structural profiles as well as lipophilic properties. For example, a novel class of azolyalkyloxy

compounds synthesized by Synphar Laboratories, Inc., Edmonton, Alberta, Canada is believed to

mimic Win 51711 (disoxaril).113 The active compounds of this series, as typified with 3-

methylisoxazole and 4-methylthiazole derivatives in Figure 11, showed in vitro activity against 33–

40 of a panel of 52 rhinovirus serotypeswith IC50 values ranging from0.5 to 25mg/mL. Some of them

also showed moderate activity (IC50 ¼ 1–25 mg/mL) against 5 to 6 serotypes of 7 enteroviruses

tested. Moreover, the structure–activity relationship studies revealed that, like most of Win

compounds, the optimal length of the alkyl chain between two terminal heterocyclic moieties of this

series is either 6 or 7 methylene units.

In sharp contrast, some antipicornaviral agents, such as the diaryl methanes and arakylamino-

pyridines shown in Figure 12 and the 2-(4-pyridylaminomethyl)benzimidazole derivatives shown in

Figure 13 possess a much shorter chain length in which a linker containing only one or two atoms is

observed. The first two classes, diarylmethanes and arakylaminopyridines, were developed byKenny

et al.114 Among these 26 compounds evaluated against rhinoviruses 1A, 2, and 64 as well as

coxsackievires 21, several were found to exhibit moderate activity with IC50 ranging from 0.3 to 5 mg/
mL. Based on these observations, diarylmethane 6 and arakylaminopyridine 7 (Fig. 12)were selected

for further testing against a larger panel of picornaviruses and their in vivo antiviral efficacy. Both

compounds exhibited similar in vitro activity, inhibiting 12–15 of the 23 picornaviruses tested at

concentrations less than 5mg/mL. In addition, the arakylaminopyridinewas found to bemore active in

vivo in protecting cox A21-infected mice at a single oral dose of 37.5 mg/kg or at a continuous oral

dose of 18.8 mg/mL per day. With these observed in vitro potency and in vivo efficacy, their potential

clinical application to the treatment of picornavirus infection diseases appears to be limited. As for 2-

(4-pyridylaminomethyl)benzimidazole analogues,115 their in vitro activities against polio 2, cox B4,

HRV 14, and enterovirus 70 were tested, showing that these analogues are particularly effec-

tive against enterovirus 70 with IC50 values as low as 0.52 mg/mL. Cytotoxicity evaluation using

Figure 10. Structuresofchalconeandchalconeamides.

Figure 11. Structuresof Synphar Laboratories, Inc.,Edmonton,Canada.
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LLC-MK2 and HaLa cells indicated that this series of compounds is not toxic up to concentrations

more than 100 mg/mL (CC50). Representative compounds 9 and 10 (Fig. 13) prevented the

development of Cox B4-induced hypoglycermia in mice for 2–4 days after infection when given

intraperitoneally (i.p.) with an initial dose of 40 mg/kg/day followed by 80 mg/kg/day for 3 days.

Results of clinical application are not available at the present time.

Some N- and O-substituted amino acid analogues were synthesized during the development of

antiviral agents. Several substituted glycine analogues, as exemplified in Figure 14, showedmoderate

activity against cox A13, B4, and echo 11 with IC50 values around 1.8 mg/mL. No in vivo studies were

reported.

In summary, the active capsid-binding compounds generally are characterized by a long linear

methylene spacer with either an aromatic or heterocyclic ring attached to both ends, making the

molecules considerably hydrophobic. From genetic point of view, these common structural features

implies that the structure of ‘‘sock-like’’ VP1 coat protein are highly conserved through the evolution

of piconarviruses, with the intrinsic hydrophobic property of the VP1 pocket as well as the cavity

shape well preserved. Therapeutically useful antiviral drugs should have broad antiviral spectrum,

high potency, and low cytotoxicity. Therefore, molecules acting at the viral VP1 pocket, where only a

subtle difference in the size is observed for various serotypes in the same genus or even for different

genera, could be promising therapeutic agents for treating picornaviral infection.

B. 3C Protease Inhibitors

To date, numerous compounds with significant in vitro activity against HRVand EV have been found.

However, the majority of these compounds, as shown in the previous section, bind to the viral capsid

and inhibit either viral attachment/adsorption or subsequent uncoating. In addition to agents that

interfere with the early stage in the picornaviral life cycle, attempts have been made recently to

develop inhibitors to block the virus-coded 2A or 3C proteases at the synthetic stage of the virus

replication. Antipicornaviral agents designed to target the 3C protease, which is highly conserved

among different viral serotypes, have exhibited great potential in therapeutic utility.

Figure 12. Structuresofdiarylmethanes andarakylaminopyridines.

Figure 13. 2-(4-Pyridylaminomethyl)-benzimidazole derivatives.
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Since peptide aldehydes have been successfully used as inhibitors for cysteine and serine

proteases and were shown to form reversible covalent adduct, the modified tripeptide aldehydes were

designed and synthesized as inhibitors for HRV 3CP.117 Molecular models based on the apo crystal

structure of HRV-14 3CP and other trypsin-like serine proteases were constructed to approximate the

binding of peptide substrate, generating transition state models of P1–P1
0 amide cleavage. Since

glutaminal derivatives exist predominantly in the cyclic hemiaminal form, several isosteric

replacements for P1 carboxamide side chain were designed and incorporated into the tripeptide

aldehydes. The synthesized compounds were found to be potent inhibitors of purified HRV-14 3CP

with Kis ranging from 0.005 to 0.65 mM. As shown in Table III, these compounds have low

Figure 14. Structuresofaminoacidanalogues.

Table III. Biological Properties of Tripeptide Aldehydes Against HRV-14

Thematerial inthistable istakenpart fromRef.117.
aKi datawasmeasuredagainstHRV-143CP.Standarddeviation ¼ �%.
b
HRV-14 infectedH1-HeLacellprotectionassay.

c
50%effectiveconcentration.
d
50%toxicconcentration.

e
Therapeutic index.
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Table IV. Inhibitory, Anti-HRVActivity, and Cytotoxicity of Compound 13

Thematerial inthistable istakenpart fromRef.118.

Table V. Inhibitory, Anti-HRVActivity, and Cytotoxicity of Compounds 14–22

Thematerial inthistable istakenpart fromRef.119.
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micromolar antiviral activity, low toxicity, and reasonable therapeutic index. Along this line,

structure-based design of ketone-containing tripeptidyl HRV 3CP reversible inhibitors were also

reported.118 An excellent example of such compounds (e.g., 13) displayed potent 3CP inhibition

activity and in vitro antiviral property when tested against HRV serotype-14 (see Table IV).

Table VI. Kinetic Parameters for the Inactivation of HRV-14 3C Protease

by S-Nitrosothiols

Thematerial inthistable istakenpart fromRef.120.

Table VII. Design of HRV 3CP Inhibitors

Thematerial inthistable istakenpart fromRef.121.
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Analogues 14–22 (Table V)were also synthesized to inhibit picornaviral 3C proteases.119 TheKi

for the synthesized molecules were found to be in the range of 0.0045–1.7 mM. Details of the

biological screening results are summarized in Table V.

HRV3C proteasewas also inactivated by a series of S-nitrothiols.120 They include SNAP,GSNO,

Glucose-SNAP-2, S-nitrosocaptopril, and ELAFQCG-SNO,which exhibited inhibitory activities in a

Table VIII. Antirhinoviral Activity of Selected 3CP Inhibitors Against Several

HRV Serotypes

Thematerial inthistable istakenpart fromRef.121.

Table IX. Inhibitory, Anti-HRVActivity, and Cytotoxicity of a-, b-Unsaturated
Keto Benzamides

Thematerial inthistable istakenpart fromRef.127.
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time- and concentration-dependent manner with second-order rate constants (Kinact/K1) ranging from

131 to 5,360/M/min (Table VI). The inactivated enzyme was shown to be reactivated by DDT, GSH,

and ascorbate, indicating that the inactivation process was through an S-transnitrosylation process.

A new class of 3CP inhibitors containing a tripeptide binding determinant as well as a Micheal

acceptormoiety capable of binding irreversibly to the active site cysteine of 3C enzymewas described

as agents against rhinovirus (Table VII).121 Indeed, analysis of the HRV-2 3CP X-ray crystal

structure122 revealed that only the trans P1 Gln amide hydrogen atom interacted with the protease

while the cis NH was found to be exposed to the solvent.

The P1-lactam-containing inhibitors (e.g., 24) display enhanced 3CP inhibition activity along

with improved antirhinoviral properties relative to the corresponding glutamine-derived molecules

(e.g., 23) (Table VIII). Being one of the most potent inhibitors in this class, compound 24 (AG-7088),

which is formulated for intranasal delivery in Phase II trial, exhibited better potency and a broader

spectrum of antirhinoviral activity than pleconaril towards clinical HRV isolates.123,124 The median

EC50 value determined by microscopic CPE inhibition was slightly better for AG-7088 compared to

Table X. 5-Substituted Benzamides

Thematerial inthistable istakenpart fromRef.127.
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pleconaril (P ¼ 0.02) but was indistinguishable by spectrophotometric assay (P ¼ 0.15). In the case

of clinical HRV isolates, however, the median EC50 value determined for AG-7088 either

microscopically or spectrophotometrically was <1.0 mg/mL and was found to be > 10.0 mg/mL for

pleconaril.

Symptom severity in patients with HRV-induced respiratory illness is correlated with elevated

levels of inflammatory cytokines interleukin-6 (IL-6) and IL-8. AG-7088 was tested for its antiviral

activity and ability to inhibit the production of IL-6 and IL-8 in a human bronchial epithelial cell line,

BEAS-2B.125 Infection of BEAS-2B cells with HRV-14 resulted in the production of both infectious

virus and the cytokines IL-6 and IL-8. Treatment of HRV-14 infected cells with AG-7088 resulted in a

dose-dependent reduction in the levels of infectious virus as well as a reduced IL-6 and IL-8 level in

the cell supernatant. AG-7088 was able to inhibit the replication of the virus in BEAS-2B cells.126

In order to have more favorable pharmacokinetic properties and to develop orally available 3CP

inhibitors, certain substituted benzamides as non-peptide inhibitors of HRV 3CPwere invented.127 a,
b-Unsaturated keto benzamides (Table IX) showed good inhibitory property and moderate activity;

yet 5-substituted benzamides (Table X) were found to be more active.

Evaluation of reversible, non-specific inhibitors of HRV 3C protease led to a novel series of 2,3-

dioxindoles (isatins) by using a combination of protein structure-based drug design, molecular

modeling, and structure–activity relationship analysis.128 The C-2 carbonyl of isatin was envisioned

to react in the active site ofHRV3CPwith the cysteine responsible for catalytic proteolysis.Molecular

modeling using the apo crystal structure of HRV-14 3CP and a peptide substrate model provided the

design template for building recognition features into P1 and P2 subsites, respectively, from 5- to

Table XI. Inbibitory Property of 1,5-Disubstituted Isatins Against HRV-14 3CP

Thematerial inthistable istakenpart fromRef.128.
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1-positions of isatin. The synthesized compounds (see Table XI) were found to possess excellent

inhibitory properties toward HRV-14 3CP compared to other proteolytic enzymes, including

chymotrypsin and cathepsin B.

Recently, it was claimed that compounds having quinonemoiety aswell as quinone analogues are

useful inhibitors for cysteine proteases, in particular, caspases and 3C cysteine proteases.129 These

compounds, as exemplified in Figure 15, have been tested against HRVs 1A, 1B, and 14 and show

moderate in vitro activity with IC50 value s around submicro to micromolar range. Mechanistically,

they are assumed to act as active Michael acceptors which are prone to attack by the cysteine residue

and thus disrupt the ability of cysteine protease to cleave a peptide chain.

In summary, viral proteases play an essential role in the life cycle of many viruses such as

picornaviruses, herpesviruses, retroviruses, and coronaviruses, and therefore, have been selected as

targets for developing antiviral drugs. Protease inhibitors including saquinavir, ritonavir, indinavir,

nelfinavir, amprenavir, and lopinavir are available for treating diseases caused by HIV, a species of

retroviruses. Antipicornavirus compounds targeting 3C protease are currently under active

investigation. Among them, AG-7088, a potential treatment against rhinovirus causing the common

cold, is now in Phase II clinical trial. Most recently, AG-7088 has shown to exhibit moderate in vitro

activity against the coronavirus responsible for severe acute respiratory syndrome (SARS).Modeling

studies130 also indicate that AG-7088 is a promising starting point in the search for a treatment for

SARS via targeting 3CL protease, the main protease controlling the coronavirus replication.
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