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2 Ermaksan Makina Sanayi ve Ticaret A.Ş., 16065 Bursa, Turkey; asyf.rehman@gmail.com (A.U.R.);

Fatih.Pitir@ermaksan.com.tr (F.P.)
3 Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2,

24143 Kiel, Germany; sve@tf.uni-kiel.de (S.V.); oca@tf.uni-kiel.de (O.C.A.)
4 Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;

mishra@mci.sdu.dk
5 Additive Manufacturing Technologies Research Center (EKTAM), Gazi University, 06560 Ankara, Turkey

* Correspondence: peyman.ansari@gazi.edu.tr

Abstract: The parameter sets used during the selective laser melting (SLM) process directly affect the

final product through the resulting melt-pool temperature. Achieving the optimum set of param-

eters is usually done experimentally, which is a costly and time-consuming process. Additionally,

controlling the deviation of the melt-pool temperature from the specified value during the process

ensures that the final product has a homogeneous microstructure. This study proposes a multiphysics

numerical model that explores the factors affecting the production of parts in the SLM process

and the mathematical relationships between them, using stainless steel 316L powder. The effect

of laser power and laser spot diameter on the temperature of the melt-pool at different scanning

velocities were studied. Thus, mathematical expressions were obtained to relate process parameters

to melt-pool temperature. The resulting mathematical relationships are the basic elements to design a

controller to instantly control the melt-pool temperature during the process. In the study, test samples

were produced using simulated parameters to validate the simulation approach. Samples produced

using simulated parameter sets resulting in temperatures of 2000 (K) and above had acceptable

microstructures. Evaporation defects caused by extreme temperatures, unmelted powder defects due

to insufficient temperature, and homogenous microstructures for suitable parameter sets predicted

by the simulations were obtained in the experimental results, and the model was validated.

Keywords: additive manufacturing; selective laser melting; process parameter; mathematical rela-

tionship; 316L austenitic stainless steel; finite element method (FEM); simulation

1. Introduction

Additive manufacturing (AM) technology builds parts layer by layer using powders
as a medium in 3D printers. The powders are exposed to a heat source and are melted.
Referring to the manufacturing method, the heat source could be a laser or electron
beam. It can be regarded as a revolution in fabrication technologies due to its superior
advantages. AM technology leads the part directly from design to production. It reduces
the need for conventional methods like casting and punching and enables building complex
parts directly. Fabrication with additive technology reduces the need for large assembly
and allows manufacture of unique parts in assemblies [1,2]. One of the most favorable
techniques of additive manufacturing technology is selective laser melting (SLM). In the
SLM process, a layer of powder is spread on the build plate. The laser beam respecting
the pattern which is designed and imported to the machine scans the powder layer, and
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the process repeats for every layer, and finally, the part will be ready for post-processes if
needed [3–5].

The properties of the final product, especially its metallurgical properties, are affected
by various parameters, of which the most important one is the formed temperature during
the printing [6]. Subsequently, the forming temperature is affected by various factors
such as laser power, scanning velocity, laser spot diameter, powder size, preheating, and
laser beam properties. Keeping the temperature constant and preventing deviation of
temperature from the specified value is also necessary for having a homogeneous and
uniform structure [7,8]. Currently, the suitable process parameters which lead to a desired
microstructure are often extracted by the experimental methods which are highly costly
and time-consuming. A reliable model will able us to extract the process parameters at
very low cost and in little time. The suitable process parameters will result in a final
product with minimum defects. Zhang et al. [9] investigated a thermal model to study the
melt-pool of alumina ceramics. They showed that the laser power and the scanning velocity
influence the maximum temperature, lifetime, dimensions, and temperature gradients of
the melt-pool. Bruna-Rosso et al. [10] developed a model to compute the thermal field in
millimeter-scale together with the consequent melt-pool dimension and temperature, and
the model was validated with high-speed imaging. A two-dimensional finite difference
model was developed by Foteinopoulos et al. [11] to calculate the temperature of a part in
each time step, and employed an algorithm for node birth and distance adaptation over
time to reduce the computational time.

However, it is not possible to obtain the true and error-free temperature of the weld
pool without considering the driving forces in the weld pool. In other words, modeling the
process only as a thermal model is not realistic, and it needs to contribute the convection in
the flow to the model. Leitz et al. [12] studied the effect of the laser power and laser energy
density on the melt-pool width by developing a multiphysics model. They figured out that
the melt-pool dimensions are wider in steel compared to the molybdenum because of the
thermal conductivity difference in materials. Artinov et al. [13] developed a multiphysics
model to calculate a reliable equivalent heat source and to predict the thermal behavior
during the laser welding using a moving mesh and weak constraints. Bayat et al. [14]
investigated a multiphysics model for laser-based powder bed fusion to study the keyhole
phenomena in the melting of Ti6Al4V and confirmed their work by doing an X-CT analysis.
Courtois et al. [15] simulated the SLM and keyhole formation with a new approach. They
took the reflection of the laser beam in the keyhole into account. Finally, they compared the
melt-pool shapes resulting from modeling with experimental micrographs. T. Mukherjee
et al. [16] developed a three-dimensional (3D), transient, heat transfer, and fluid flow
model to calculate temperature and velocity fields, build shape and size, cooling rates, and
the solidification parameters during the PBF process. Shi, Xuezhi, et al. [17] developed
a single-track method for parameter optimization of Ti-47Al-2Cr-2Nb powder in SLM.
Using the single-track scan results, they developed a parameter window and optimized
the fabrication parameters for Ti-47Al-2Cr-2Nb powder. They also built regression models
to predict the geometric characteristics of single tracks. The listed works do not suppose a
certain process parameter window and do not comprise a sample part experimental task.
Almost all of their experimental confirmation is done in single layer scanning, not sample
part fabrication, which includes the previous and next layers’ effect. As such, these models
are presented only as developed models, and there is a significant gap in the development
of various process parameters and the relationships between them and their application
for sustainable performance during printing. That is to say, what are still missing, are the
various process parameter sets and the mutual relationships between them. These have
been obtained via a reliable model that presents us the temperature values considering the
melt process’s effective aspects.

The special properties of austenitic steels make them the most popular group of
high-alloy stainless steels. The contribution of various alloy elements gives them a very
important and notable feature in the laser powder bed fusion: their weldability and useful-
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ness allocate a special space for them in additive manufacturing, and 316L stainless steel,
as austenitic steel, stands out with its perfect resistance to oxidation at high temperatures
while maintaining a low coefficient of thermal expansion, creep resistance, resistance to
fatigue, and heat resistance [18–21].

Based on these issues, the paper develops vast sets of the process parameters and the
mathematical relationship between them for suitable and controllable fabrication using
stainless steel 316L powder. A 3D multiphysics model is developed. The model solves
three equations of heat transfer, conservation of mass, and time-dependent momentum by
using temperature-dependent material properties. The volumetric moving heat source is
included in heat transfer physics, and driving forces are considered in fluid flow physics.
The model presents parameter sets and discusses the microstructure (defects) of samples
fabricated by employing extracted parameters. In addition, the mathematical relationships
between laser power, laser spot diameter, and temperature of the melt-pool are developed.
These relationships allow one to predict the temperature and consequently to predict the
part structure. The mathematical relationships are the basis of the controller design to form
a sustainable melt-pool temperature during the printing process and to simultaneously
achieve a final designed part with a minimum defect and homogeneous microstructure.

Although the process parameters applicable to 3D printing of 316L stainless steel to
obtain dense structures are available in the literature, the method proposed in this study
has the following advantages:

• The proposed approach develops parameter sets by simulating multiphysics phenom-
ena between the energy source and powder interaction. Therefore, comprehensive
process parameter windows containing sensitive process parameters could be obtained
for adding a promising numerical model to the literature.

• The numerical model is developed using more than one type of physics. Rather
than using heat transfer physics only, laminar flow physics is also included into the
simulation which gives a more realistic approach to the SLM operation.

• Direct mathematical relationships between process parameters are developed to in-
stantly compute the melt-pool maximum temperature. These mathematical relation-
ships could be used as the basic elements in the controller design of the 3D printer
machine to control the melt-pool temperature during the process.

2. Selective Laser Melting

The selective laser melting (SLM) process is the powder laser-based interaction process
that is generally performed on a building plate. The product CAD file is imported to the
3D printer, and the proper process parameters are used to build the part accordingly. As
illustrated in Figure 1, an appropriate amount of powder is spread on the building plate by
powder roller, and the laser beam is exposed to the powder selectively according to the
part geometry. At the end of each layer, the powder delivery piston moves one step/layer
up, and the fabrication piston moves one step down. The process continues until the last
layer is printed, and the process is finished accordingly. A high enough energy laser beam
is exposed to the powder to reach the melting point. Powders are completely melted and
then solidified to compose the part during which phase transformations are introduced.
The process is performed in a gaseous atmosphere in which the material of gas is adjusted
depending on the powder material [22].
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Figure 1. The schematic illustration of the selective laser melting (SLM) process.

3. Equations Governing SLM Process

The mathematical model has been established to simulate laser and powder inter-
action in a 3D environment. Given the laser energy source, QLaser, the temperature and
temperature gradient field relationship is described by the energy Equation (1), which can
be numerically solved to simulate the temperature change in the SLM process:

ρC∗
p

∂T

∂t
+ ρC∗

pu · ∇T = ∇ · (k∇T) + AQLaser + QRad + Qev (1)

where ρ, Cp
∗, T, t, u, k, A, QLaser, QRad, and Qev are density

(

kg/m3
)

, modified specific
heat capacity (J/kg · K), temperature (K), time (s), velocity (m/s), thermal conductivity

(W/(m · K)), absorption coefficient (-), input laser energy source (W/m3), radiated energy
source (W/m2), and evaporation heat loss (W/m3), respectively. Shadowing effect, multi-
reflection, and beam angle effect on the absorption of the laser are neglected [12].

Since the heat source determines the generated energy of laser power and leads to
temperature build-up in the melt-pool, it is important to select an appropriate heat source
model. The forming temperature would affect the microstructure and the mechanical
structure of the final product, so the heat source model should be the nearest model to
reality. The models may be introduced as two-dimensional or three-dimensional. The two-
dimensional Gaussian model involves only the distribution of heat in x and y directions
in time t. In reality, the laser beam acts in 3D and also penetrates the powders. The
volumetric heat source [23] is developed to contribute to the penetration of the laser beam
into the powders. Then it should involve the penetration direction in addition to the surface
directions of the powders. The model used in this paper belongs to the absorptivity profile
group, which is a volumetric Gaussian distribution model and involves the penetration of
the laser beam into the powders [24,25]:

QLaser =
I0

b
exp

(

−2r2

r2
0

)

exp

(

z − z0

b

)

(2)

I0 =
2P

πr0
2

(3)

where I0, b, r, r0, z, and z0 are the intensity of the laser beam at the beam axis (W/m2),
penetration distance of the laser beam (m), distance from the point to the center of the
beam (m), the radius of the laser beam (m), the vertical position of the powder (m), the
position of the top of powder (m), and P denotes the laser power (W). The vertical position
of the powder, r (m), shows the x (m) and y (m) positions of every irradiated point at time
t(s) (r =

√

x2 + y2 ) through the scanning path with a scanning velocity of vx (m/s) that
is equal to vx = x/t [9].

On the other hand, radiative heat loss is illustrated using the Stefan–Boltzmann law,
which is nonlinear and is denoted by:

QRad = −εσ
(

T4 − T4
0

)

(4)
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where ε, σ, and T0 are the emissivity of the powder (-), Stefan–Boltzmann constant for radi-
ation (5.67 × 10−8(W/m2 · K4)), and ambient temperature (K), respectively. Evaporation
heat loss is also introduced, which is determined through the following Equation [26]:

Qev = −
Hevm•

h
(5)

where Hev, m•, and h are latent heat of evaporation (J/kg), evaporation rate (1/s), and
mesh size (m), respectively. Referring to the Hertz–Knudsen equation, the evaporation rate
is determined as [27]:

m• = (pv(T)− p0)

√

M

2πRT
(6)

where pv (T), p0, M, and R are vapor pressure
(

N/m2
)

at the temperature of T (K),
ambient pressure

(

N/m2
)

, molar mass (kg/mol), and ideal gas constant (J/mol · K),
respectively. The vapor pressure at the temperature of T can be determined from the
following Equation [27]:

pv(T) = p0e
Hev M
RTev

(1− Tev
T ) (7)

where Tev is the evaporation temperature (K).
As powder absorbs heat energy from the laser beam, it melts, and phase transforma-

tion occurs from solid to liquid. Here, fluid flow physics solves the conservation of mass
and momentum equations. The equations are:

∇ · u = 0 (8)

ρ

(

∂u

∂t
+ u(∇ · u)

)

= ∇ ·

[

−pI + µ
(

∇u + (∇u)T
)]

+ ρg + F (9)

where I, µ, (·)T , g, and F are pressure
(

N/m2
)

, identity matrix, viscosity (Pa · s), trans-
posed matrix, gravity

(

m/s2
)

, and volume force
(

N/m3
)

, respectively [13].
The volume force contains four terms involved in buoyancy force (first term), Carman–

Kozeny equation (second term), surface tension force (third term), and Marangoni effect
(fourth term) as [16,28,29]:

F = ρgβ(T − Tm)− A1

(

(1 − fl)
2

fl
3 + A2

)

+ κγn +∇sγ (10)

where β, Tm, κ, γ, n, and ∇s are coefficients of thermal expansion (1/K), melting tempera-
ture (K), curvature of interface, surface tension coefficient (N/m), unit normal to the local
surface, and surface gradient operator, respectively. The buoyancy force is the deviation of
the density during changing temperature.

Carman–Kozeny equation defines the mushy zone. The transition from the solid
phase to the liquid phase takes place during a temperature interval, which is named the
melting interval (δT). During this interval, the metal is a mixture of the solid and liquid
phases. This mixed region is named the mushy zone [29]. A1 is a huge constant that is
defined to fix the powders under melting temperature as a solid phase, and A2 is a small
constant to satisfy the convergence during the simulation. Since the liquid fraction ( fl) is
zero under the liquidus temperature (Tl), the presence of A2 in this case does not allow the
denominator to be zero. This damping force acts only in the mushy and solid-state of the
material and vanishes in the liquid phase. The vanishing occurs linearly, along fl , which
changes linearly with respect to the solidus temperature (Ts) and liquidus temperature,

fl =











0 i f T < Tl
T−Ts
Tl−Ts

i f Ts ≤ T ≤ Tl

1 i f T > Tl

(11)
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Conversely to melting, when the solidification of molten metal starts, respectively this
force starts to grow and act on the solidified metal. As an alternative to the Carman–Kozeny
force, powders can be assumed as a highly viscous fluid material in the solid phase in
simulations. Parallel use of these two ways can be used as well, however, this may present
convergence difficulties. Here, the simulations have been performed by applying the
Carman–Kozeny force only.

The melt-pool surface indicates a free surface, which is defined as an open boundary.
The Marangoni effect is a result of spatial variation of the surface tension coefficient due
to temperature gradients. The surface tension acts as normal, and the Marangoni effect
applies a tangential force on the surface. In simulations, the molten flow was assumed to
be laminar and incompressible.

The present study uses the above-introduced multiphysical phenomena to simulate
the powder–laser beam interaction. Although the use of these equations has been reported
before, the main of objective of our study was to find out an allowable process parameter
set for the SLM additive manufacturing of a given material.

4. Multiphysics Model

The multiphysics model described in Section 3 was used to simulate the metal powder–
laser interaction. A three-dimensional model was designed, and a time-dependent study
was used. Considering the powder size distribution in the datasheet of the Concept
Laser (Concept Laser, Lichtenfels, Germany) and the practical layer thickness during the
manufacturing, the average diameter of powders was considered 40 µm (layer thickness).
Then powders were modeled as homogeneous 40 µm spheres, which were assumed to
be homogeneously distributed on the built plate. Simulations were done in one path of
720 µm distance and the model was formulated symmetrically to reduce the calculation
time in the simulations.

Simulation was done by coupling heat transfer and laminar flow physics of the com-
mercial finite element software COMSOL Multiphysics 5.4 (COMSOL Inc., Burlington, MA,
USA). A free tetrahedral mesh was used for all domains, and a mesh size of 5 microns
was used. The volumetric heat source, radiative, and evaporation heat loss heat bound-
aries were employed, and incompressible flow patterns with gravity force, buoyancy force,
Carman–Kozeny force, surface tension force, and Marangoni effect were applied. Computa-
tion times were found to be in a range of 6–15 h for a scanning track of 720 µm on two cores
of a dual CPU Intel Xeon Gold 6230 CPU workstation. The chemical composition of the
material used in the simulation, which was obtained employing the XRF and combustion
analysis, is given in Table 1.

Table 1. Chemical composition of stainless steel 316L powder [30].

Element C Mn Si Ni Cr Mo S P Fe

Mass.-% 0.021 0.95 0.73 12.9 17.8 2.28 0.005 <0.045 Balance

One of the most important factors in the modeling was the temperature-dependent
material properties. Table 2 shows the material properties used for stainless steel 316L
in the model [31–33]. Convergence is a noteworthy point during simulations. There are
different solvers to solve equations numerically in software, such as the fully coupled and
segregated solvers. This paper used a segregated solver (a tolerance factor of 0.005) to
solve the mentioned three equations applying the Newton–Raphson iteration (a minimum
damping factor of 10−6) until the solution was converged. The software, in every time step,
first calculated the temperature in heat transfer physics. Then, it passed to the laminar
flow physic and there, employing the achieved temperature too, calculated the velocity
and pressure. If it converged, the computation continued to the next time step, otherwise,
it repeated the cycle until the convergence was complete.
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Table 2. Material properties of stainless steel 316L [31–33].

Material Property Symbol Value Unit

Melting Temperature Tm 1650 K

Melting Interval δT ±10 K

Evaporation Temperature Tev 3086 K

Latent Heat of Melting Hm 2.8 × 105 J/kg

Latent Heat of
Evaporation

Hev 6.1 × 106 J/kg

Density ρ 7700 (solid)− 8000 (liquid) kg/m3

Thermal Conductivity k 11.82 + 1.06 × 10−2T W/m · K

Specific Heat Capacity Cp
330.9 + 0.563 T − 4.015 ×

10−4 T2 + 9.465 × 10−8 T3 J/kg · K

Absorption Coefficient A 0.55 (solid)− 0.3 (liquid) −

Marangoni Coefficient dγ/dT −0.40 × 10−3 N/m · K

Although finite element methods are widely used to simulate the additive manufac-
turing processes, the main expectations of simulations are either to decide the scanning
strategy or to predict the melt-pool. In this study, the multiphysics simulation model was
used to reveal the effects of laser power, P in (W), the radius of the laser beam, or laser
spot diameter-, r0 in (µm), and velocity -, u, (m/s) on the melting temperature. It is well
known that these are some of the process parameters in SLM, which are mainly determined
by doing a set of experiments.

5. Experimental Approach

To confirm the simulation results, experimental studies were performed at the Ad-
ditive Manufacturing Technology Application and Research Center (EKTAM) of Gazi
University. Experiments were done using a 3D printer of the Concept Laser-M2 CUS-
ING (Concept Laser, Lichtenfels, Germany) model. The machine has a continuous wave
Ipg Ylr 400 ac y14 ytterbium fiber laser (λ = 1070 nm) with a nominal maximum laser
power of 400 W. Fabrication was done in a controlled build chamber under a nitrogen
atmosphere which contained a maximum 0.4% O2. The base plate of the machine is steel
with dimensions of 245 mm × 245 mm × 25 mm. The preparation process was carried
out on the plate and it was made ready for production. The surface was ground with the
FOREMAN ST4080A Surface Grinder (Sezginler Makina A.Ş., Bursa, Turkey) to have a
plate with minimum roughness and maximum flatness. Next, the plate was sandblasted to
prevent reflection.

The powders used for the fabrication were gas atomized Concept Laser SS 316L
powders with a powder size distribution shown in Tables 3 and 4. Figure 2 shows an SEM
image of the powders, which are almost spherical in structure.

Table 3. Results of the sieve analysis of powders used for fabrication of samples [30].

Particle Size <100 µm <80 µm <63 µm <45 µm <32 µm <20 µm

Value (%) 99.88 99.60 99.11 97.59 73.83 23.42

Table 4. Powder size distribution of powders used for the fabrication of samples [30].

Parameter Dv (10) Dv (50) Dv (90) Width (90;10)

Unit µm µm µm

Result 18.680 29.631 47.984 0.989
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Figure 2. SEM image of powders used for the fabrication of samples.

Ten sets of parameters were selected from the results of the simulations, which are
shown in later chapters. Using these parameters, a hatch space of 115 µm and powder
layer of 25 µm, ten samples were fabricated, and their microstructures were examined
to illustrate the conformity of the simulation results. The layer thickness was selected as
40 µm. In the fabrication process, the fabrication piston moved down 25 µm in each layer
to spread the powder for the upcoming layer. However, since the melted preview layer’s
surface was a rough surface and included concavities, as the spread powder fills them too,
the powder layer that should be scanned after powder delivery was therefore 40 µm. That
was why the powder layer in the simulations was assumed to be 40 µm. Every sample was
fabricated in 100 layers using the island scanning strategy, and their final dimensions were
80 mm ×10 mm ×2 mm. The produced samples were prepared under slice cutting to be
ready for the microstructure inspection. Cutting was done with diamond micron wire at
a very slow speed with water cooling to avoid affecting the microstructure. The method
of cutting and preparing samples for microstructure inspection is shown in detail in the
Supplementary Materials. The cross-section of the cut samples was polished using different
metallographic sandpapers and etched with a proper reagent (55%HCl, 20%NHO3 and
25% methanol [34]) for the microstructure inspection. The optical micrographs were
taken by DMi8 Leica Microsystems (Leica Microsystems, Wetzlar, Germany) microscope,
and the scanning electron microscopy (SEM) was done by JSM-6060LV JEOL (JEOL Ltd.,
Tokyo, Japan).

6. Results and Discussion

The simulation model presents coupling of two types of physics, and the results are
shown in Figure 3. An SLM process was simulated and melting during moving laser
heat source was presented. The simulations were done in symmetry mode to reduce the
calculations and process time. Basically, Figure 3 illustrates the temperature values of a
powder layer for a given set of laser power, laser spot diameter, and scanning velocity. The
symmetry view (Figure 3a) shows the laser beam penetration in powder, and the complete
view (Figure 3b) shows a complete scanned row of powders. Isosurface temperature view
(Figure 3c) and the phase change is depicted (Figure 3d). Figure 3d is an illustration of
the melted area. The area with the value of one is the liquid phase, while the zero value
area belongs to the solid phase. Indeed, the area with the value of one is the melt-pool
area. The thin border area, which has a value between one and zero, is the mushy region as
illustrated earlier.

Selecting proper process parameters is undoubtedly crucial for various aspects of
additively manufactured parts. Optimal process parameters can reduce the cracking effect
and reach fully density [35]. This also leads to optimum and adequate microstructure and
mechanical properties [36]. Improper parameters will result in pores and spatters, leading
to undesired mechanical properties; also, low speed of manufacturing or high fabrication
costs will be encountered if improper process parameters are used. The investigated model
enables us to simulate the process with selected parameters. That is to say, the model is a
tool that we can use to predict the process parameters in the SLM.
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	mm s⁄	μmFigure 3. Three-dimensional temperature distributions using 900 mm/s scanning velocity, 150 W

laser power, and 50 µm laser spot diameter: (a) symmetry view, (b) complete view, (c) and isosurface

view showing the zones with various temperature values at the moment. (d) Phase change from

solid phase (0) to liquid phase (1).

Low melt-pool temperature will result in pores in the manufactured parts. Lack
of fusion causes elongated and inconsistent pores. These defects refer to insufficient
temperature in the melt-pool [37]. Through low temperature, there might be unmelted
powders, which will lead to a part full of pore defects. On the other hand, extreme
temperatures will result in defects such as spatter, overcooking, holes, and high heat
tensions. Spatters come up due to evaporation force, which forces the melted metal to
separate from the plane by overcoming surface tension. It leads to surface defects in
layers. Accordingly, the temperature exceeding the evaporation temperature leads to
undesirable products. Evaporation may lead to the formation of keyhole pores that are
deeply embedded in the part [38]. However, fabrication speed is an important issue in the
process; high scanning speeds lead to fast fabrication.

Referring to all the mentioned notes above, the most important goal is to reach a
complete melting without evaporation. Indeed, the favorable parameters are a set of
parameters that melt the distributed powder layer completely and also melt a part of
the prior layers to make a proper bond between layers. For this purpose, the selected
parameters should satisfy the melting phenomena all over the powder layer. The most
critical area is the depth of the powder layer. If the parameter set produces enough
temperature at a depth of the powder layer for melting, and meanwhile the parameter set
does not lead to any evaporation at any part of the powder layer, this may be considered as a
proper and satisfactory parameter set which does not cause any defects due to temperature
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deficiency or excess. Formation of the spatter and residual porosities are related and
promoted by instability regimes at high energy density [39]. For this purpose, in this study,
the maximum temperature was recorded at the depth of 40 µm, since the powder layer
thickness in experiments was 40 µm. To reveal the effects of different process parameters
on the SLM additive manufacturing of stainless steel, the simulations have been carried
out for the various sets of parameters.

6.1. Effect of Laser Power

Simulations were performed for four different scanning velocities. Referring to Equa-
tion (12), regarding Rosenthal’s equation, which approximates the temperature distribution
of a single track in the SLM process [40], the relation between temperature and laser
power, in a constant moving heat point source velocity, is a linear relationship. Figure 4
shows the simulation results and fitted curves of the powder layer temperature at various
laser powers.

T(y) =
AP

2πrk
· exp

(

−vx

2α

)

(12)

where vx (m/s) is the moving heat point source velocity and α is the thermal diffusivity
(m2/s).

Figure 4. Simulation results and fitted curves of melt-pool temperature at various laser powers with

a laser spot diameter of 80 µm and scanning velocity of (a) 0.6 m/s, (b) 0.9 m/s, (c) 1.2 m/s, and

(d) 1.4 m/s.

At each scanning velocity, temperature values were recorded after a steady state was
achieved. Achieving the stability condition and, respectively, the point of recording the
temperature throughout the strip, was different at every scanning velocity.

Table 5 shows equations of the fitted curves for laser power–temperature simulation
results in which the most important factor is the slope. Referring to Table 5, the slope of the
curve increases when the scanning velocity decreases. In fact, the temperature increase rate
rises when scanning velocity decreases. The slope of the linear equation may be used as a
transfer function in a control system design if a process control is considered for the 3D
printer machine. Namely, by using the relationship between temperature and laser power
for a given scanning speed and laser spot diameter, the machine could be able to determine
a suitable laser power to achieve the desired temperature instantly.
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Table 5. Equations of fitted curves of laser power–temperature simulation results with a laser spot

diameter of 80 µm. In equations, T denotes the temperature (K) and P denotes the laser power (W).

Velocity
(m/s)

Fitted Curve
Equation

Slope Domain Range Error (%)

0.6 T = 11.17P + 1491 11.17 60 ≤ P ≤ 160 2161 ≤ T ≤ 3278 1.35

0.9 T = 10.18P + 1227 10.18 60 ≤ P ≤ 190 1837 ≤ T ≤ 3161 1.56

1.2 T = 7.8P + 1160 7.8 60 ≤ P ≤ 260 1628 ≤ T ≤ 3188 2.16

1.4 T = 7.367P + 1094 7.36 60 ≤ P ≤ 280 1491 ≤ T ≤ 3111 2.96

Figure 5 shows the fitted curves of laser power–temperature in various scanning
speeds together. The red lines split the graph into three parts. The upper part of the
evaporation temperature line denotes laser powers, which will cause evaporation mixing
melting and the related defects in part, while the lower part of the melting temperature
line will have unmelted or low-melted/sintered powders in the fabricated part. The laser
power should be able to melt not only the powders of the new layer, but also it should be
able to melt a part of the previous melted layers (lower and neighboring layers) again to
bond the new and prior layers together. The proper laser powers for melting are the areas
between evaporation and melting temperature lines.

Figure 5. Fitted curves of laser power–temperature during various scanning velocities with a laser

spot diameter of 80 µm.

6.2. Effect of Laser Spot Diameter

Figure 6 illustrates the results of the simulations and fitted curves for the effect of
the laser spot diameter changes on the temperature of the powder layer at the depth of
40 µm. Increasing the melt-pool temperature can be explained via the energy density
concept. Energy density is defined as the ratio of laser power to fabrication parameters, one
of which is the laser spot diameter. The smaller the spot diameter, the higher the energy
density and melt-pool temperature.
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Figure 6. Simulation results and fitted curves of melt-pool temperature at various laser spot diameters with a laser power of

150 W and scanning velocity of (a) 0.6 m/s, (b) 0.9 m/s, (c) 1.2 m/s, and (d) 1.4 m/s.

Referring to Equations (2) and (3), the second-order relation of the laser spot diameter
to the heat source could be described. The Gaussian distribution of the heat source for
several laser spot diameters is shown in Figure 7. During constant laser power, the
effect of different laser spot diameters on the heat source is evident. As discussed earlier,
temperature values have been recorded in the same conditions.

Figure 7. Gaussian distribution of the heat source for laser spot diameters of (a) 50 µm, (b) 100 µm,

(c) 150 µm, and (d) 200 µm.

Table 6 denotes the equations of the second-order fitted curves of the laser spot
diameter–temperature curves.

In Figure 8, the red lines split the graph into three parts. It illustrates the fitted curves
of the laser spot diameter–temperature relationship. The diameter values whose relative
temperatures are under the melting line will not have sufficient capability to melt the
stainless-steel powder completely. However, those diameters whose relative temperatures
are above the evaporation line will result in evaporation mixing with melting under the
defined situation of the laser power, scanning velocity, and laser spot diameter. The
temperature below the melting line will lead to defects such as not melting of powders,
district melting, and weak or lack of bonding between layers of printing. On the other
hand, temperatures exceeding evaporation temperature line will lead to defects such as
spatters, holes, overcooking, and high heat tensions. Suitable diameters for fabrication are
the diameters in the middle part of the graph.
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Table 6. Equations of fitted curves of laser spot diameter–temperature simulation results with a

laser power of 150 W. In equations, T denotes the temperature (K) and d denotes the laser spot

diameter (µm).

Velocity (m/s) Fitted Curve Equation Domain Range Error (%)

0.6
T =

0.01945d2 − 15.29d + 4491
100 ≤ d ≤ 310 1620 ≤ T ≤ 3156 1.365

0.9
T =

0.04837d2 − 21.29d + 3999
40 ≤ d ≤ 210 1661 ≤ T ≤ 3224 1.52

1.2
T =

0.0482d2 − 21.33d + 3803
40 ≤ d ≤ 170 1569 ≤ T ≤ 3026 1.98

1.4
T =

0.0398d2 − 18.9d + 3576
40 ≤ d ≤ 170 1513 ≤ T ≤ 2883 1.57

Figure 8. Fitted curves of laser spot diameter–temperature during various scanning velocities with a

laser power of 150 W.

6.3. Experimental Confirmation

Using stainless steel 316L powders, ten samples were manufactured in a Concept Laser
M2 Cusing Machine. Samples were fabricated with ten various sets of parameters, which
are listed in Table 7. Scanning velocities of 0.6 m/s, 0.9 m/s, 1.2 m/s, and 1.4 m/s were
used during the experimental study. Fabricated samples were categorized into two groups
of constant laser spot diameter and constant laser power (for more details, please see the
Supplementary Materials). Based on the simulation results obtained from the multiphysics
software Comsol, three regions were specified which are: “below melting temperature
line”, “between melting temperature and evaporation temperature lines”, and “above the
evaporation temperature line”. The emphasis was given to the region that offers defectless
and usable structures, which is “between melting and evaporation temperature lines”.
This rich area shows the variety of parameters presented by the research. In addition,
samples were fabricated employing parameters from sensitive areas with a potential of
lack of fusion, “below melting temperature line”, and over melting, “above the evaporation
temperature line”, to show the kind of results obtained by selecting parameters from these
sensitive areas. Microstructures were examined and results with respect to the selected
parameters were obtained.
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Table 7. Parameter sets of fabricated samples. A hatch space of 115 µm was used.

Sample Laser Power (W) Laser Spot Diameter (µm) Scanning Velocity (m/s)

a 150 100 0.6
b 150 40 0.9
c 150 130 0.6
d 150 80 0.9
e 150 110 0.9
f 150 160 0.6
g 150 160 1.2
h 130 80 0.6
i 110 80 0.6
j 80 80 1.4

Referring to optic micrographs of the fabricated samples in Figure 9, defects are seen
in samples (a), (b), (g), and (j). Voids in samples (a) and (b) are mainly circular. Defects in
the samples (g) and (j), are large irregular defects that are the result of lack of fusion and
not having sufficient energy in melting. The large irregular defects indicate insufficient
layer–layer or track–track bonding [38]. These defects spread unevenly in the 20–250 µm
length range in cases (g) and (j) in Figure 9. There are some defects in the sample (e), which
may not be, in general, related to parameter selection. They could be related to the inert
gas trapped in the powder production process, powder bed packing or equipment-related
defects such as the deflection of the beam and the calibration error of beam and also
insufficiently qualified Galvano mirrors [41].

Figure 9. Optical micrographs of fabricated samples after etching. Black regions are defects, and the

building direction is perpendicular to the plane. The optical micrographs are arranged from sample

(a) to sample (j), respectively. Table 7 can be consulted for the production parameters of the samples

(scale bar: 100 µm).

As cases (a) and (b) show in Figure 9, extreme laser power triggers various defects.
Powder denudation is one of them, which causes large and grooved defects. Another
defect could be spatter that occurs with high energy inputs, and details are provided in the
Figure 9. Spatter occurs when the metal vapor force overcomes the surface tension force
and it is difficult to be melted in the next layers; usually spatters are larger than powder
size, and would remain as inclusions [42]. Keyholes are one of the most common defects
with high energy inputs, which are a result of the vaporization of metal [38]. In cases
(a) and (b) of Figure 9, the defects are generally in the 35–55 µm range and are typically
larger than the powder size. At high energies, crack defects are another defect that is
related to high-temperature gradients. Excessive energy input increases cracking ability by
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decreasing the cracking stress threshold (see Supplementary Materials) [38]. Two spatters
with a total length of close to 100 µm are shown in Figure 9 as a result of excessive energy
implementation in sample (a). A crack about 50 µm long caused by the same factor in
sample (b) is shown in Figure 9; also, voids could be observed with a diameter of 30–50 µm
with an interlayered morphology. The lines are related to the melt-pool boundaries, and
they possibly are the result of high residual stress in the high-speed cooling process. It
could encourage the formation of the crack along melt-pool boundaries (Figure 10) [43].

Figure 10. SEM images of defects: (a) void with melt-pool boundaries in the sample a, (b) a crack in

the sample b, (c) entrapped gas pore in the sample h, (d,e) unmelted powders in the sample j.

Unmelted regions that belong to the sample j are shown more accurately in Figure 10.
Unmelted powders are evident, and those pores could have two causes. One of them is
the lack of sufficient energy to melt them, and another reason is the balling. The balling
is the agglomeration of powders to minimize the surface energy due to high viscosity
or high wetting angle of the molten track [43]. Regarding the selected parameter set for
the fabrication of sample j and Figure 10, in this case, the reason for the phenomena is
insufficient laser energy to melt powders.

There are some other defects which may not depend on the parameters of fabrication,
and could probably occur during any fabrication parameters. One of them is gas bubbles,
which are entrapped in the melt. Another common defect is due to reusing powder from
the previous fabrications [38,43–51].

The samples of (c), (d), (e), (f), (h), and (i) have minimum defects and are almost clean.
These samples have parameter sets located in the area between the melting and evaporation
lines in the diagram of the simulation results. Their SEM images show favorable structures
(see Supplementary Materials, Figures S3 and S4). Reflection of SEM images of experimen-
tal results on simulation results is shown more conveniently in Supplementary Materials.

It is also important to note that the melt-pool lifetime, the duration in which the
powder melts and eventually solidifies, is a determinative factor in the melting process.
Insufficient lifetime could result in incomplete melting and insufficient wetting of neigh-
boring powders. It hinders the melting phase to propagate. Consequently, this inability
will weaken melting the powders to ensure the stable and continuous melt-pool and satisfy
hatch space. Sample (g) could be an example of this phenomena. Although the relative
temperature for the parameter set of this sample is approximately on the melting temper-
ature line, nevertheless there are unmelted powders in its microstructure. Based on the
few previous sentences, most likely, these unmelted powders are a result of an insufficient
lifetime (47 µs based on the simulation for sample (g) of the melt-pool). Due to this issue,
the area near the melting temperature line is a delicate area for the process fluctuations and
therefore should be avoided for a guaranteed result.
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Appearance of the lack of fusion defects in samples (g) and (j) with energy densities of
19 J/mm3 and 18 J/mm3 and relevant temperatures near to the melting point, reveals that
process parameters should be selected outside of this insecure area. Process parameters that
result in a temperature of more than almost 2000 K and an energy density above 35 J/mm3,
and also do not exceed the evaporation temperature, will be safe and will allow adequate
melt-pool temperature, life-time duration and, as a result, a high-density final product.

Compared with the energy densities reported for producing stainless steel 316L in the
literature, in which Yusuf, Shahir Mohd, et al. [52] reported 42 J/mm3, Kamath, Spierings,
Adriaan B., and Gideon Levy [53] reported 33 J/mm3, and Li, Ruidi, et al. [54] reported
42 J/mm3, the abovementioned milestones show acceptable conformity.

Additionally, the corresponding energy density to the standard parameter set that the
Concept Laser company has given for the machine employed for the experimental study
here is 42.9 J/mm3.

7. Conclusions

The developed model and the formulated mathematical relationships between laser
power, laser spot diameter, and temperature are a powerful tool to calculate melt-pool
temperature and to predict its behavior. The model can predict process parameters by
simulating the formed temperature during the process. The mathematical expressions
could also be used to control melt-pool temperature. The mathematical relationships
between parameters are used to give an overview of the laser-powder interaction, which
reduces the need to simulate for each set of parameters. These equations could also
be potentially used to overcome the challenge of experimental testing for each set of
parameters to obtain the appropriate sets of parameters for production.

For 316L stainless steel powder, temperatures at 40 µm depth of the layer were
obtained for various laser powers, scanning velocities, and laser spot diameters. The
simulation results were fitted on the curves, and the equations (mathematical relationships
between process parameters) of the fitted curves were obtained. One of the most important
pieces of data in laser power–temperature equations is the slope of the equations. The
slopes could be considered as transfer functions in a control system. Therefore, a controller
design could be performed, and the process may be controlled with a temperature or any
other available process parameter feedback(s). The feedback system can feed the control
system using real-time temperatures measured by a thermal camera.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/met11071076/s1, Figure S1: (a) Pattern and dimensions of the fabricated samples. Samples

were cut in line with the plane (A) to examine the microstructure. (b) Cutting and (c) embedding the

samples for microstructure inspection. Figure S2: Reflection of SEM images of experimental results

on simulation results with a laser spot diameter of 80 µm. Figure S3: Reflection of SEM images of

experimental results on simulation results with a laser power of 150 w.
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Nomenclature

Symbol Meaning Unit

ρ Density kg/m3

Cp
∗ Modified specific heat capacity J/kg · K

T Temperature K

t Time s

u Velocity m/s

k Thermal conductivity W/m · K

A Absorption coefficient -

QLaser Input laser energy source W/m3

QRad Radiated energy source W/m2

Qev Evaporation heat loss W/m3

I0 Intensity of the laser beam W/m2

b Penetration distance of the laser beam m

r Distance from the point to the center of the beam m

r0 Radius of the laser beam m

z Vertical position of the powder m

z0 Position of the top of pow m

P Laser power W

x, y Positions of every irradiated point m

α Thermal diffusivity m2/s

ε Emissivity of the powder -

σ Stefan–Boltzmann constant W/m2 · K4

T0 Ambient temperature K

Hev Latent heat of evaporation J/kg

m• Evaporation rate 1/s

h Mesh size m

pv(T) Vapor pressure N/m2

p0 Ambient pressure N/m2

M Molar mass kg/mol

R Ideal gas constant J/mol · K

Tev Evaporation temperature K

p Pressure N/m2

I Identity matrix -

µ Viscosity Pa · s

(·)T Transposed matrix -

g Gravity m/s2

F Volume force N/m3

β Coefficients of thermal expansion 1/K

Tm Melting temperature K

κ Curvature of interface -

γ Surface tension coefficient N/m

n Unit normal to the local surface -

∇s Surface gradient operator -

δT Melting interval K

A1 Constant -

A2 Constant -

fl Liquid fraction -

Tl Liquidus temperature K

Ts Solidus temperature K
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