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Abstract: Utilizing pre-trained models involves fully or partially using pre-trained parameters as
initialization. In general, configuring a pre-trained model demands practitioners’ knowledge about
problems or an exhaustive trial–error experiment according to a given task. In this paper, we
propose tuning trainable layers using a genetic algorithm on a pre-trained model that is fine-tuned
on single-channel image datasets for a classification task. The single-channel dataset comprises
images from grayscale and preprocessed audio signals transformed into a log-Mel spectrogram. Four
deep-learning models used in the experimental evaluation employed the pre-trained model with
the ImageNet dataset. The proposed genetic algorithm was applied to find the highest fitness for
every generation to determine the selective layer tuning of the pre-trained models. Compared to the
conventional fine-tuning method and random layer search, our proposed selective layer search with
a genetic algorithm achieves higher accuracy, on average, by 9.7% and 1.88% (MNIST-Fashion), 1.31%
and 1.14% (UrbanSound8k), and 2.2% and 0.29% (HospitalAlarmSound), respectively. In addition,
our searching method can naturally be applied to various datasets of the same task without prior
knowledge about the dataset of interest.

Keywords: deep learning; selective layer tuning; genetic algorithm; pre-trained model

1. Introduction

Recent deep-learning-based projects have employed pre-trained models according to
the data domain and project environment. A pre-trained model attains high performance
through a long training time and high computing power using various training techniques
with big datasets. In particular, in computer vision, deep-learning models trained on the Im-
ageNet dataset [1] demonstrated good results in classification and detection. Moreover, in
natural language processing, models such as transformer [2], generative pre-trained trans-
former (GPT) [3], and Bidirectional Encoder Representations from Transformers (BERT) [4]
trained using the Wikipedia dataset [5] showed good performance in the field of translation.
By using a pre-trained model trained with big data in this manner, the time for designing,
learning, and verifying deep-learning models can be saved when solving similar problems.
However, as actual projects have problems and datasets from various fields, the pre-trained
model should be fine-tuned. Generally, in fine-tuning a pre-trained model, there is a consid-
erable difference in the performance and learning time of the pre-trained model according
to the user’s knowledge and experience.

The urge to use pre-trained models has increased as deep-learning models have proved
their effectiveness in many industrial applications. However, the way to effectively apply
a pre-trained model has rarely been studied directly, and there has been less previous
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evidence for employing a pre-trained model across different fields. Instead, other studies
focus on proposing a task-specific module [6–8] that only benefits a few domains or devel-
oping a search algorithm to find decent deep neural architectures from scratch [9], which
is non-practical. To fill in the literature gap, this study proposes a search procedure that
assists pre-trained models when fine-tuning to solve a new problem. Our method deploys
a genetic algorithm to mutually seek effective layers that perform well on a specific dataset
for the classification task. The experimental results on various datasets and state-of-the-art
deep neural architectures show the robustness of our proposed method both in accuracy
and complexity measured by the number of model parameters.

The contributions of this work are summarized as follows:

- We present a search procedure with the genetic algorithm to search for selective layers
of a pre-trained deep-learning model. It yielded significant speed advantages when
starting with a pre-trained model rather than other search-from-scratch approaches.

- We introduce HospitalAlarmSound, a dataset about alarm sounds recorded from
medical appliances at the Hospital of Chonnam National University. The dataset is
carefully designed for the classification task with 8 classes and 569 records in total.

We conducted experiments on two public datasets (MNIST-Fashion, UrbanSound8k)
and our alarm sound dataset, in which a sample was later converted into a Mel-spectrogram
image. Additionally, to show that our method is not limited by model type, we have
run experiments with four well-known models whose pre-trained versions have been
extensively used by deep-learning practitioners.

This paper is structured as follows: The introduction and research trend of the pre-
trained model and genetic algorithm are presented in Section 2. The overview of the
research is presented in Section 3. Further, the experiments and results of the single-
channel-dataset-based pre-trained model are described in Section 4. Finally, Section 5
presents the conclusion. All codes used in the experiments have been shared at https:
//github.com/GWANGHYUNYU/Audio/tree/main/GA, accessed on 20 June 2022.

2. Related Works
2.1. Fine-Tuning of Pre-Trained Models

In general, training a deep-learning model requires a large amount of data; however,
obtaining big data is difficult in reality. In addition, when deep-learning models are trained
from scratch, various trial-and-error processes are required to determine hyperparameters.
To overcome this drawback, a pre-trained model based on large-scale training data can be
utilized.

The methods of using the pre-trained model can be broadly categorized into three
types, as shown in Figure 1: using only the structure of the model, learning only some
layers and fixing the remaining layers, and using the model as a feature extractor. Based
on this categorization, there are four ways to use a pre-trained model according to the
characteristics of the researcher’s dataset:

1. The size of a user’s data is small, while the similarity to the pre-trained model data
is high: Because the data similarity is very high, there is no need to retrain the pre-
trained model or modify the classifier to fit the task (modify the dense layer and
softmax layer). This is a method of using a pre-trained model as a feature extractor.

2. The size of the user’s data is small, and the similarity to the pre-trained model data
is low: Freeze the initial layers of the pre-trained model, retrain only the remaining
layers, and modify the classifier to fit the task. The advantages of the pre-trained
model can be maximized by using the low-level features of the pre-trained model as
they are and changing only the high-level features to fit its data.

3. The user’s data are large but less similar to the pre-trained model data: Because of
the large size of the user’s data, the pre-trained model structure is imported, the
classifier is modified to fit the task, and then it is trained from scratch. Because the
data similarity is very low, the weights and biases of the pre-trained model adversely
affect its performance.

https://github.com/GWANGHYUNYU/Audio/tree/main/GA
https://github.com/GWANGHYUNYU/Audio/tree/main/GA
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4. The user’s data are large and highly similar to the pre-trained model data: The
structure, weight, and bias of the pre-trained model are used as they are, the classifier
is modified to fit the task, and it is trained again with its data. In an ideal situation,
the pre-trained model can be used most effectively.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 14 
 

 

Freeze the initial layers of the pre-trained model, retrain only the remaining layers, 

and modify the classifier to fit the task. The advantages of the pre-trained model can 

be maximized by using the low-level features of the pre-trained model as they are 

and changing only the high-level features to fit its data. 

3. The user’s data are large but less similar to the pre-trained model data: 

Because of the large size of the user’s data, the pre-trained model structure is im-

ported, the classifier is modified to fit the task, and then it is trained from scratch. 

Because the data similarity is very low, the weights and biases of the pre-trained 

model adversely affect its performance. 

4. The user’s data are large and highly similar to the pre-trained model data: 

The structure, weight, and bias of the pre-trained model are used as they are, the 

classifier is modified to fit the task, and it is trained again with its data. In an ideal 

situation, the pre-trained model can be used most effectively. 

 

Figure 1. Methods of fine-tuning a pre-trained model: (a) using only the structure; (b) training only 

some layers and freezing the rest; (c) using the pre-trained model as a feature extractor. 

2.2. Research Related to Fine-Tuning 

Fine-tuning research using a pre-trained model is applied to various tasks in several 

datasets. There have been several reports in this research field. For example, in a garbage 

separation and collection classification study, Inception-V4, DenseNet, and MobileNetV1 

were fine-tuned based on the TrashNet dataset [10]. In an art classification study, the fully 

connected layer and classifier part of CaffeNet were fine-tuned based on WikiArt, WGA, 

and TICC datasets [11]. Next, in a study on plant disease identification, Inception-V4, 

VGG, ResNet, and DenseNet were fine-tuned based on the Plant Village Dataset [12]. Fur-

thermore, BERT was fine-tuned in a medical relation extraction study based on corpus 

datasets such as VCDR, TCM, and i2b2 temporary relation [13]. In a breast cancer classi-

fication study, ResNet, DenseNet, MobileNetV2, and ShuffleNetV2 were fine-tuned based 

on the breast thermal image dataset [14]. Further, in a study on American Sign Language 

translation, AlexNet and GoogleNet were fine-tuned based on the ASL dataset [15]. In a 

heart sound classification study, pre-trained audio neural networks were fine-tuned based 

on a heart sound database [16]. Moreover, in a pedestrian detection study, using a mobile 

phone with a 4-MP camera, Faster R-CNN + InceptionV2, SSD + InceptionV2, and SSD + 

MobileNetV2 were fine-tuned based on street video data [17]. In addition, cutterhead 

torque prediction [18] and atrial fibrillation detection [19] automatically extract informa-

tive deep features from the source and target domains and then feed them into the feature 

predictor for final results. 

Thus, the fine-tuning of a pre-trained model has been applied to diverse datasets, 

from trash and plant datasets similar to ImageNet datasets to completely different art, 
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some layers and freezing the rest; (c) using the pre-trained model as a feature extractor.

2.2. Research Related to Fine-Tuning

Fine-tuning research using a pre-trained model is applied to various tasks in several
datasets. There have been several reports in this research field. For example, in a garbage
separation and collection classification study, Inception-V4, DenseNet, and MobileNetV1
were fine-tuned based on the TrashNet dataset [10]. In an art classification study, the fully
connected layer and classifier part of CaffeNet were fine-tuned based on WikiArt, WGA,
and TICC datasets [11]. Next, in a study on plant disease identification, Inception-V4, VGG,
ResNet, and DenseNet were fine-tuned based on the Plant Village Dataset [12]. Furthermore,
BERT was fine-tuned in a medical relation extraction study based on corpus datasets
such as VCDR, TCM, and i2b2 temporary relation [13]. In a breast cancer classification
study, ResNet, DenseNet, MobileNetV2, and ShuffleNetV2 were fine-tuned based on
the breast thermal image dataset [14]. Further, in a study on American Sign Language
translation, AlexNet and GoogleNet were fine-tuned based on the ASL dataset [15]. In a
heart sound classification study, pre-trained audio neural networks were fine-tuned based
on a heart sound database [16]. Moreover, in a pedestrian detection study, using a mobile
phone with a 4-MP camera, Faster R-CNN + InceptionV2, SSD + InceptionV2, and SSD
+ MobileNetV2 were fine-tuned based on street video data [17]. In addition, cutterhead
torque prediction [18] and atrial fibrillation detection [19] automatically extract informative
deep features from the source and target domains and then feed them into the feature
predictor for final results.

Thus, the fine-tuning of a pre-trained model has been applied to diverse datasets,
from trash and plant datasets similar to ImageNet datasets to completely different art, sign
language, and thermal images. In addition, there are datasets with different characteristics
from images such as corpus, sound, and video, where the task has been solved by fine-
tuning the pre-trained model suitable for the dataset. Finally, deep features were extracted
from datasets in the source and target domains and used in the predictor.

2.3. Genetic Algorithms

A genetic algorithm represents a probabilistic search method that imitates natural
selection and the genetic rule, which are the evolutionary processes in living things. The
genetic algorithm begins with a population of individuals representing the latent solution
of a problem. The population maintains a certain number of objects in each generation.
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Further, each generation evaluates the fitness of each individual and probabilistically selects
the objects to survive in the next generation accordingly. Some of the selected individuals
randomly mate to produce offspring. In this case, the genes of the parents are inherited by
the offspring through crossover, and mutations may occur. Assuming that the offspring
inherit good genetic traits from their parents, the potential solutions of the next generation
are, on average, better than those of the previous generation. This evolutionary process is
repeated until the termination condition is satisfied.

2.4. Genetic Algorithm-Based Fine-Tuning Research

The research on fine-tuning a pre-trained deep-learning model based on genetic al-
gorithms has been applied to limited datasets as a study to enhance performance. In an
effective deep neural network (DNN) structure discovery study, the best structure was
selected by applying a genetic algorithm to the DNN model based on the AURORA2
dataset [20]. In a DNN study for forecasting in an outpatient department, the best struc-
ture was selected by applying a genetic algorithm to the DNN model based on the OPD
dataset [21]. Further, in a deep-learning model study for image classification, the best layer
was selected by applying a genetic algorithm using InceptionV3 and ResNet models based
on the Disaster, Network Camera 10K, CIFAR10, and MNIST-Fashion datasets [22]. In
addition, an ensemble convolutional neural network (CNN) model study for crop pest
classification determined the weighted average ensemble by applying genetic algorithms
to VGG, ResNet, InceptionV3, Xception, MobileNet, and SqeezeNet based on the Insect
dataset [23]. Moreover, in a study on transfer learning layer selection, the best layer was se-
lected by applying the genetic algorithm to the InceptionV3 model based on the CIFAR100
dataset [24]. Next, in a study on an appropriate dataset-based fine-tuning method, the best
fine-tuning was obtained by applying the genetic algorithms in the multilayer perceptron
and long short-term memory models based on the CIFAR10, CIFAR100, IMDB, and SST
datasets [25]. As described above, genetic algorithms are applied to improve fine-tuning
performance, model structure, and ensemble optimization of pre-trained models based on
each dataset.

3. Method

Even though a pre-trained model is a quick response to solve machine learning
problems, the model is often limited to a single data type or task. For example, the pre-
trained ResNet on the ImageNet dataset for classification is unlikely to be transferable
to solve NLP tasks such as language modeling or machine translation, but it probably
performs well on other image-related tasks such as object detection or segmentation. For
this reason, we limit this study’s domain to the one-channel image classification task, in
which we focus on dealing with one-channel image type and using pre-trained models
over the ImageNet.

3.1. Dataset

The single-channel dataset used in the proposed selective layer tuning of pre-trained
deep-learning models by a genetic algorithm comprised the MNIST-Fashion dataset [26],
UrbanSound8K dataset [27], and the HospitalAlarmSound dataset that we collected our-
selves. The MNIST-Fashion dataset contains grayscale images of size 28 × 28 × 1 that are
resized to 32 × 32 × 1. Because the UrbanSound8K and HospitalAlarmSound datasets
contain audio signals, we changed them to a one-channel image format through feature
extraction, as shown in Figure 2.

dB = 20log10|Xk|, (1)

Mel( f ) = 2595log
(

1 +
f

700

)
. (2)
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Audio signal preprocessing involves cutting a meaningful section of an audio file in
advance and adjusting the entire audio file to the same length as that of the cut section.
A spectrum is obtained by applying Fourier transform to the preprocessed audio file and
sliding by as much as a window. As shown in Equation (1), the log-spectrum is obtained by
applying the decibel (dB) unit of the log scale to the spectral value. If this log-spectrum is
stacked side by side as much as sliding the window, a spectrogram having the log-spectrum
value as much as the window on the time axis can be obtained. If the Mel-scale, which
reflects human auditory characteristics, is applied to this spectrogram as in Equation (2), a
Mel spectrogram is obtained. As shown in Figure 2c, the x-axis denotes time, the y-axis
denotes frequency, and the decibel (color bar) representing the intensity of the frequency is
plotted on the z-axis.

The self-collected HospitalAlarmSound dataset records the alarm sound from patient-
monitoring devices installed in hospital rooms, as shown in Figure 3. This is a recording of
eight alarm sounds from five patient-monitoring devices. During data collection, each piece
of patient-monitoring equipment was manually operated in a quiet space, and recording
was performed for a time when the pattern of the alarm could be checked. We record the
sound signal with a default frequency of 44 kHz, 25 min and 46 s long. The average length
of samples is 2.72 s; the longest recording lasts 3.6 s, and the shortest lasts 0.4 s. Table 1
gives details of the classes of the entire dataset and the number of data values per class.

The purpose of introducing the HospitalAlarmSound is twofold. Firstly, a sample was
recorded in a near-laboratory environment with static settings such as a tranquil room, a
single recorder, and common sources of the speaker, meaning the number of noise samples
is near zero. Additionally, a speaker was independently recorded, so there was no mix of
multiple speakers. Secondly, the source was domain-specific when only the alarm sound
from medical appliances was considered, which is both a pro and con of the dataset. While
the dataset is easy to interpret and the inner class variance is small, it is insufficient for
learning a general model.
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Table 1. Summary of datasets.

Dataset Class Number Dataset Class Number Dataset Class Number

MNIST-
fashion

T-
shirt/top 7000

Urban
Sound8K

air_conditioner 1000

Hospital
Alarm
Sound

Dager evita
V300 70

Trouser 7000 car_horn 429 GE_B40-high 72

Pullover 7000 children_playing 1000 GE_B40-
medium 69

Dress 7000 dog_bark 1000 GE_transport-
advisory 71

Coat 7000 drilling 1000 GE_transport-
crisis 71

Sandal 7000 engine_idling 1000 GE_transport-
warning 75

Shirt 7000 gun_shot 374 PB980 65

Sneaker 7000 jackhammer 1000 TE-171 76

Bag 7000 siren 929
-Ankle

boot 7000 street_music 1000

Total 70,000 Total 8732 Total 569

3.2. Pre-Trained Deep-Learning Models

The pre-trained deep-learning model used for selective layer tuning based on a genetic
algorithm is a CNN structure that is in the spotlight as a deep-learning-based image-
classification model. CNNs have been continuously studied since 1998 with LeNet [28],
achieving high accuracy in a number-recognition dataset based on the convolutional layer,
max pooling, and fully connected layer. In 2012, AlexNet [29] produced innovative results
in the 1000 classification competition released by ImageNet and demonstrated that con-
volutional neural networks performed well in image classification. In 2014, VGGNet [30]
and GoogleNet [31], which are close to the 5% error of the human image classification
test, appeared. They overcame the limit of eight layers that could be stacked uniquely,
demonstrating high recognition rates with 19 and 22 deep networks. In 2015, ResNet [32]
implemented 152 deep networks through its own identity short connection idea, exceed-
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ing the recognition rate of human classification. Subsequently, various models such as
Inception-ResNetV4 and DenseNet have been reducing errors every year based on ResNet’s
short connection idea. Since then, NASNet [33], which proposed a CNN with a new struc-
ture by applying Auto-ML to input data based on reinforcement learning, was researched.
Further, the MobileNet-series [34] and ShuffleNet-series [35] models reduced the number
of parameters and improved the processing speed required for training. EfficientNet [36],
which proposes an optimal model structure for data by improving the input image size and
hyperparameters, has recently been widely used. In the present work, VGGNet, ResNet,
MobileNetV1, and EfficientNet were selected as pre-trained models, and weights and biases
were trained from 1000 class ImageNet datasets.

3.3. Selective Layer Tuning by Genetic Algorithm

Figure 4 presents an overview of the selective layer tuning by the genetic algorithm
proposed in this paper. All layers of the pre-trained model trained with the ImageNet
dataset were selected as the optimal trainable and freezing layers based on the genetic
algorithm for the given dataset. The detailed algorithm for selective layer tuning by a
genetic algorithm is presented in Table 2.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

demonstrating high recognition rates with 19 and 22 deep networks. In 2015, ResNet [32] 

implemented 152 deep networks through its own identity short connection idea, exceed-

ing the recognition rate of human classification. Subsequently, various models such as 

Inception-ResNetV4 and DenseNet have been reducing errors every year based on Res-

Net’s short connection idea. Since then, NASNet [33], which proposed a CNN with a new 

structure by applying Auto-ML to input data based on reinforcement learning, was re-

searched. Further, the MobileNet-series [34] and ShuffleNet-series [35] models reduced 

the number of parameters and improved the processing speed required for training. Effi-

cientNet [36], which proposes an optimal model structure for data by improving the input 

image size and hyperparameters, has recently been widely used. In the present work, 

VGGNet, ResNet, MobileNetV1, and EfficientNet were selected as pre-trained models, 

and weights and biases were trained from 1000 class ImageNet datasets. 

3.3. Selective Layer Tuning by Genetic Algorithm 

Figure 4 presents an overview of the selective layer tuning by the genetic algorithm 

proposed in this paper. All layers of the pre-trained model trained with the ImageNet 

dataset were selected as the optimal trainable and freezing layers based on the genetic 

algorithm for the given dataset. The detailed algorithm for selective layer tuning by a ge-

netic algorithm is presented in Table 2. 

 

Figure 4. Overview of selective layer tuning based on genetic algorithm in a pre-trained deep-learn-

ing model. 

Table 2. Layer selection for transfer learning using genetic algorithms. 

1: Generate: 𝑛 initial genomes 

2: while Generation < Final Generation: 

3: Train: 𝑛 models corresponding to 𝑛 genomes 

4: Select: 𝑛/2 genomes based on top 𝑛/2 fitness score 

5: Crossover1: 𝑛/4 child genomes based on a regular crossover 

Figure 4. Overview of selective layer tuning based on genetic algorithm in a pre-trained deep-learning
model.



Electronics 2022, 11, 2985 8 of 15

Table 2. Layer selection for transfer learning using genetic algorithms.

1: Generate: n initial genomes
2: while Generation < Final Generation:
3: Train: n models corresponding to n genomes
4: Select: n/2 genomes based on top n/2 fitness score
5: Crossover1: n/4 child genomes based on a regular crossover
6: Crossover2: n/4 child genomes based on a random crossover
7: Mutation: n/2 genomes and n/2 child genomes
8: Align: n/2 genomes and n/2 child genomes to the next generation
9: Generation + = 1

10: end While:
11: Return: Array of the selected layers

1. Genome: The gene is a pre-trained model trained with the ImageNet dataset that
allows all layers to be selected as a trainable layer and a freezing layer.

2. Initial generation: In the first generation, the entire layer for each genome is randomly
selected as the trainable layer and freezing layer.

3. Fitness evaluation: Short training is performed on a given dataset based on randomly
selected trainable and freezing layers, and validation accuracy is obtained for each
epoch. The highest fitness score is ranked by setting a validation accuracy as a fitness
indicator.

4. Selection: Choose from the top dominant genomes selected through fitness evaluation.
5. Crossover: Select and cross over the selected dominant genomes. Two main crossover

methods are used, as shown in Figure 5. The crossover of the half-mixing method
according to the high fitness score is shown in Figure 5a. The selected dominant
genomes are crossed over randomly to make the crossover more effective, as shown
in Figure 5b.
Crossover is a genetic operator that combines the genetic information of two parents to
generate new offspring. This study uses regular and random crossover simultaneously
to enhance the variety of the solution space through exploration, which could help
avoid being corrupted early at local optima. Both regular crossover and random
crossover are designed based on the one-point crossover, while the difference between
them is the portion the offspring inherit from the parent generation. In the regular
crossover, we generate the offspring by taking half of the genome code from two
selected genomes. On the other hand, the offspring is constructed by an arbitrary
crossover point in the random crossover when the random range is dependent on the
size of the dominant genomes.

6. Mutation: In all genomes of the current generation, a layer is randomly selected with
a 4% probability and reversed.

7. Next generation: Half of all genomes are selected as dominant genomes, and the
dominant genomes are converted into child genomes using two crossover methods.
All selected genomes undergo mutation. Finally, the total number of dominant and
child genomes will be the same as the initial number of populations in the next
generation.

8. Iteration: Selection, crossover, mutation, and next generation are repeated until the
target is achieved.
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4. Experiments and Results

In the proposed selective layer tuning by the genetic algorithm, we investigated
whether the selection of layers to be trained or frozen in fine-tuning the layers of pre-
trained models was ideal for a given dataset. Accordingly, experiments were performed
with four pre-trained models on three single-channel datasets using a genetic algorithm.

4.1. Experimental Environment

The hardware specification of the deep-learning server on which the experiment was
performed was as follows: Intel(R) Xeon(R) W-2123 CPU, NVIDIA RXT 3060 VRAM 12 GB,
and 32 GB RAM. The pre-trained model and genetic algorithm were configured using
the Python-based TensorFlow 2.7 Framework. The UrbanSound8K dataset was used by
resampling 44.1 kHz to 22.05 kHz, and it converted the length of all data items to 4 s,
zero-padding the data under 4 s. After preprocessing, feature extraction was performed
to obtain the Mel spectrogram and finally generate a 128 × 173 × 1 image. It was divided
into 7859 training data and 873 test data. Finally, the HospitalAlarmSound dataset used
the same 44.1 kHz sampling rate as the collection environment and converted the length
of all data items to 3.6 s, zero-padding the data under 3.6 s. After preprocessing, feature
extraction was performed for obtaining the Mel spectrogram and generating an image of
size 128 × 311 × 1. It was divided into 456 training data and 113 test data. Additionally,
the data were augmented by adding noise and shift to the zero-padding dataset, and the
Mel spectrogram was applied. The augmented dataset is divided into 3756 training data
and 2503 testing data.

4.2. Experimental Results

VGG16, ResNet50, MobileNetV1, and EfficientNetB0 were applied to each dataset
using the selective layer tuning of the pre-trained model by the genetic algorithm described
in Section 3.3. The genome generated in the corresponding generation was a randomly
selected layer-tuned model. Upon comparing the fitness scores of the genomes, we found
an excellent selective-layer-tuning model. The fitness score is the validation accuracy of
the model for the experiment. Therefore, the hyperparameters of genetic algorithms are
divided into two types: epoch, batch size, and learning rate needed to train deep-learning
models, and the number of populations and number of iterations for the generation of the
genetic algorithm. The default setting of a hyperparameter was as follows: epoch = 5, batch
size = 256, learning rate = 0.0001, number of populations = 30, and number of iterations = 20.
In the case of insufficient memory when experimenting with a large pre-trained model, the
batch size and number of populations were reduced by half.

If the genetic algorithm was executed using the set hyperparameter, each generation’s
array of selective layers for the dominant genomes was returned. For the performance test,
the pre-trained model was fine-tuned by selecting the genome with the highest validation
accuracy among the returned genomes. Fine-tuning settings—epoch = 50, batch size = 512,
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learning rate = 0.0001—were the same as the hyperparameter settings of the genetic algo-
rithm.

For the performance comparison experiment, among the fine-tuning methods, training
only the classifier without learning all the layers of the pre-trained model, and training
both the pre-trained model and some layers and classifiers of the pre-trained model were
implemented. In addition, a method of randomly training pre-trained models and classifiers
was employed. In particular, we group the cases, including fine-tuning with fully freezing,
half freezing, and zero freezing, as the heuristic method. In the fully freezing case, all
model’s weights except for the classifier are set as non-trainable, while in the half freezing
case, half of the shallow layers are set as non-trainable, and in the case of zero freezing, all
model’s weights are set as trainable. On the other hand, the random method occurs when
the freezing layers are randomly picked regarding the model architecture. We suggest
the heuristic and random methods according to the common habit of practitioners when
deploying a pre-trained model. Notably, the random method can be interpreted as the
initial generation of the genetic algorithm. For each dataset and pre-trained model, we
compare the classification performance of the above-mentioned methods with our best
architecture sought by the genetic algorithm.

As presented in Tables 3 and 4, in the case of the MNIST-Fashion and UrbanSound8K
datasets, experimental results show that tuning the selective layer using the genetic algo-
rithm is more effective than fine-tuning the pre-trained model or random selection layer
tuning. In addition, all genetic algorithm-based selective layer tuning methods can reduce
the number of trainable parameters required for fine-tuning an existing pre-trained model
by up to one-sixth. In the case of HospitalAlarmSound dataset, the difference according
to data class is clearly distinguished and the number of data is small. Therefore, experi-
menting only with the classifier while leaving the pre-trained model layer achieved 100%
accuracy. Additionally, the experimental results of the augmented HospitalAlarmSound
dataset are shown in Table 5. The selective layer tuning based on the genetic algorithm is
better than fine-tuning the pre-trained model or random selection layer tuning. It can be
seen that the number of learnable parameters was less than that of the general fine-tuning
methods.

For each dataset, we calculate the average performance gap over models according to
the following formula:

acc =
∑m

j

(
∑n

i
rgj−rji

n

)
m

(3)

where rg is the test accuracy of the genetic algorithm and r is the test accuracy of method
i ∈ {zero− f reezing, f ully− f reezing, hal f − f reezing} ∪ { random } from the model
j ∈ {E f f icientNetB0, ResNet50, MobileNetV1, VGG16}. Using Equation (3), the aver-
age performance gaps between the heuristic and random methods and our method are
9.7% and 1.88% (MNIST-Fashion), 1.31% and 1.14% (UrbanSound8k), 2.2% and 0.29%
(HospitalAlarmSound), respectively.
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Table 3. Experiment results of MNIST-Fashion dataset-based selective layer tuning by genetic
algorithm.

Model Attributes Heuristic Method Random
Method

Genetic
Algorithm

EfficientNetB0
number of trainable layers 0 237 137 121 128

test accuracy 0.4940 0.8495 0.7895 0.8181 0.8738
number of parameters 12,816 4,020,364 3,490,948 2,051,830 1,767,472

ResNet50
number of trainable layers 0 175 100 89 81

test accuracy 0.7850 0.9022 0.9032 0.9030 0.9144
number of parameters 20,496 23,555,088 19,473,424 12,627,728 10,876,944

MobileNetV1
number of trainable layers 0 86 46 39 43

test accuracy 0.5033 0.9297 0.9035 0.9300 0.9319
number of parameters 10,256 3,217,232 2,942,480 1,037,200 1,476,624

VGG16
number of trainable layers 0 19 9 11 6

test accuracy 0.8512 0.9401 0.9324 0.9348 0.9441
number of parameters 5136 14,719,824 12,984,336 9,668,112 6,091,216

Table 4. Experiment results of UrbanSound8K dataset-based selective layer tuning by genetic
algorithm.

Model Attributes Heuristic Method Random
Method

Genetic
Algorithm

EfficientNetB0
number of trainable layers 0 237 137 122 129

test accuracy 0.9599 0.9920 0.9908 0.9840 0.9931
number of parameters 307,216 4,314,764 3,785,348 2,082,326 2,509,558

ResNet50
number of trainable layers 0 175 100 91 96

test accuracy 0.9851 0.9851 0.9782 0.9828 0.9920
number of parameters 491,536 24,026,128 19,944,464 10,552,400 13,297,104

MobileNetV1
number of trainable layers 0 86 46 53 40

test accuracy 0.9737 0.9840 0.9828 0.9759 0.9931
number of parameters 204,816 3,411,792 3,137,040 3,049,264 522,192

VGG16
number of trainable layers 0 19 9 8 5

test accuracy 0.9817 0.9588 0.9748 0.9794 0.9897
number of parameters 102,416 14,817,104 13,081,616 5,119,504 5,008,336

Table 5. Experiment results of HospitalAlarmSound dataset-based selective layer tuning by genetic
algorithm.

Model Attributes Heuristic Method Random
Method

Genetic
Algorithm

EfficientNetB0
number of trainable layers 0 237 137 125 114

test accuracy 0.9872 0.9952 0.9880 0.9940 0.9956
number of parameters 512,016 4,519,564 3,990,148 2,583,768 2,182,418

ResNet50
number of trainable layers 0 175 100 90 80

test accuracy 0.9400 0.9736 0.9952 0.9956 0.9980
number of parameters 819,216 24,353,808 20,272,144 9,197,456 4,526,544

MobileNetV1
number of trainable layers 0 86 46 41 46

test accuracy 0.9053 0.9968 0.9924 0.9936 0.9996
number of parameters 368,656 3,575,632 3,300,880 2,351,024 2,864,560

VGG16
number of trainable layers 0 19 9 9 6

test accuracy 0.9568 0.9840 0.9824 0.9928 0.9944
number of parameters 184,336 14,899,024 13,163,536 7,302,480 5,606,608
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Table 6 presents the results of an experiment comparing the MNIST-Fashion Dataset
with other genetic algorithm-based model-selection methods. The proposed method ob-
tained better results in precision and recall than a method of creating a new model through
complex mixing of the best layers from N models based on a genetic algorithm. For the
best result of fine-tuning the classifier while leaving the pre-trained model layer as it is,
none of the other fine-tuning, random selective layer-tuning, and genetic algorithm-based
selective layer-tuning methods gave good results.

Table 6. Comparison of experiment results of MNIST-Fashion dataset.

Method Precision Recall

Tian, H. [16] 0.9289 0.9292
Proposed Method

(MobileNetV1) 0.9331 0.9310

Proposed Method (VGG16) 0.9451 0.9401

Figure 6a,b illustrate the highest validation accuracy among the selective layer tuning
results from generation 1 to generation 20 using a genetic algorithm. An analysis of the 1st–
20th generations of the genetic algorithm reveals that it evolves to find the best performance
with each generation. The experiment confirmed that the evolution proceeds rapidly
from the 1st to the 15th generation and gradually converges from the 15th generation
onwards. Following the experiment’s result, rather than infinitely training the genetic
algorithm, configuring up to 20 generations as the maximum number of iterations is more
effective. Finally, even for the same pre-trained model, selective layer tuning can be adopted
differently for a given dataset, as shown in Figures 7 and 8. Figures 7 and 8 show the
results of the performance of the genetic algorithm-based selective layer tuning on the
MNIST-Fashion and UrbanSound8K datasets using VGG16 as a pre-trained model.
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The best results for the same pre-trained model are obtained by selecting and training
different layers for the given dataset. Figures 7–9 indicate that each dataset selects the most
effective convolutional layer instead of the general VGG16 block unit.
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5. Conclusions

Recent deep-learning-based projects have frequently fine-tuned pre-trained models
to solve their own problems. Instead of fatigue trial-and-error episodes, we argue that
strategically searching for an appropriate pre-trained architecture is feasible. In this work,
a CNN-based pre-trained model showing good performance in image classification was
trained by selective layer tuning based on a genetic algorithm.

In the experiment on grayscale and Mel-spectrogram images, selective layer tuning
based on a genetic algorithm showed better performance than the heuristic tuning or
fine-tuning of the pre-trained model, or tuning the selective layer at random. In addition,
selective layer tuning based on a genetic algorithm can obtain high performance while
minimizing the number of trainable parameters required for fine-tuning a pre-trained
model. Thus, given a pre-trained model suitable for various tasks, a high-performance
tuned pre-trained model can be easily and conveniently obtained according to the data.
Compared to the heuristic and random methods, our proposed selective layer search
achieves higher accuracy by, on average, 9.7% and 1.88% (Fashion-Mnist), 1.31% and 1.14%
(UrbanSound8k), 2.2% and 0.29% (HospitalAlarmSound), respectively.

This research has several limitations. We narrow our study to a single task as image
classification with only one-channel image datatype. In addition, our neural architecture
search is based on the genetic algorithm, so the proposed algorithm naturally inherits
its drawbacks, such as exponential complexity and local optima. We are certain that the
presented method can be generalized to other tasks and data in future research.
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