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ABSTRACT 

Although optical fibers and specialty waveguides are the base of majority of today’s 

telecom and light delivery applications, fabrication deformation, nonlinearity and 

attenuation limit the bandwidth of the data being transmitted or the amount of power 

carried by these systems. One-way to overcome these limitations without changing the 

fibers design or fabrication is to engineer the input light in order to excite a certain mode 

or a group of modes with unique optical properties. Diffractive and micro optics are 

highly effective for selectively coupling light to specific modes. Using micro optics, 

mode selective coupling can be achieved through several matching schemes: phase only, 

phase and amplitude, or phase, amplitude and polarization. The main scope of this work 

is the design and fabrication of novel optical elements that overcome the limitations of 

these light delivery systems, as well as the characterization and analysis of their 

performance both experimentally and using numerical simulation.  
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CHAPTER ONE: INTRODUCTION 

In 1930 Heinrich Lamm was the first to report the transmission of light through a bundle 

of transparent rods. His work was followed by several experiments by Holger Moeller in 

1951 and Abraham van Heel in 1954. All early fibers were bare. Van Heel was the first to 

introduce the cladding region. By 1960, glass-clad fiber had an attenuation of 1 decibel 

per meter. Since the demonstration of the first low-loss optical fiber in 1972 by Corning 

Glass Works, there has been a continuous stream of technological improvements 

designed to reduce impairments due to propagation loss, nonlinearity and dispersion. This 

stream of fiber technology led the industry from multimode fibers to single mode fibers, 

and on to specialty fibers. 

 Specialty fibers are defined as optical fibers designed to have special functions 

that are different from standard telecommunication fibers. Unique materials and fiber 

structures along with new processing techniques allowed the refractive index to vary 

across the fiber, to have several cores combined within the same cladding, and air core 

fibers to be coated with thin layers of metal/dielectric. Examples of specialty fibers are: 

graded index fiber, polarization maintaining fiber, multi core fiber, hollow waveguides 

and photonic crystal fibers. 

When guiding light in these specialty fibers, the light propagates in different 

modes. Each mode is characterized by its amplitude, phase and polarization profile. Some 

of these modes have unique properties that can be useful for certain applications such as 
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telecommunication and light delivery systems. Therefore, it is important to develop 

modeling techniques to investigate the modal properties of these fibers. Accordingly, 

several studies have been carried out in modeling the light propagating inside different 

specialty fibers as well as their modal properties.  

 

Figure 1. 1: Cross sections of three specialty fibers hollow waveguide, photonic crystal 

fiber and  multimode fiber. 

 

Photonic Crystal Fibers (PCF’s) are examples of specialty fibers that attracted 

much interest in the recent years due to their unusual wave-guiding properties [1]. PCF is 

formed of periodical pattern of air rods in a dielectric medium. The light is guided or 

localized in a deformation produced intentionally in the pattern. Quite a few analytical 

techniques have been published in this field. Figotin et al. [2] used plane wave expansion 

to study the localization of light in a three dimensional photonic crystal structure when a 

defect is introduced inside this structure. E Centeno et al. [3] used a full vectorial 

scattering matrix method to study the localization of light inside a two dimensional 

photonic crystal. Knight et al. [4] reported the waveguiding properties of the PCF’s using 
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the effective index method. Ferrando et al. [5] presented a full-vectorial analysis of the 

guided higher-order modes in PCF’s. 

In comparison to PCF’s, multicore fiber (MCF) consists of a few cores placed 

close to each other to increase the coupling between them. This coupling between the 

cores modifies the modal property in each core correspondingly. Chang et al. [6] 

demonstrated a full vectorial modal solution of MCF structures using circular harmonic 

expansions. Wrage et al. [7] presented numerical and experimental determination of the 

coupling constant in a MCF when the cores are placed in a ring geometry for mode 

locked high power fiber laser applications.  However, nonlinearity of the cores material 

restricts the maximum transmitted power.  

Hollow waveguides present an attractive alternative to other solid-core infra-red 

(IR) fibers such as step index fiber and MCF. Key features of hollow guides are: their 

ability to transmit wavelengths well beyond 20 µm; their inherent advantage of having an 

air core for high-power laser delivery; and their relatively simple structure and potential 

low cost [8]. Initially these waveguides were developed for medical and industrial 

applications involving the delivery of CO2 laser radiation, but more recently they have 

been used to transmit incoherent light for broadband spectroscopic and radiometric 

applications. In general, hollow waveguides enjoy the advantages of high laser power 

thresholds, low insertion loss, no end reflection, ruggedness, and small beam divergence. 

Potential disadvantages, however, include an additional loss on bending and a small NA. 

Nevertheless, they are today one of the best alternatives for both chemical and 
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temperature sensing as well as for power delivery in IR laser surgery or in industrial laser 

delivery systems Researchers have done much work in the area of light and mode 

coupling in these specialty fibers [8]. 

In 1984 M. Miyagi et al. [9] presented a design of a dielectric coated metallic 

cylindrical hollow waveguide with the emphasis of low-loss transmission of the HE11 

mode. Modal structures and transmission properties were clarified for this hollow 

waveguide by using a normalized surface impedance and admittance.  M. Miyagi et al. 

[10] and S. Abe et al. [11] calculated the bending losses in hollow glass waveguides by 

relating the power attenuation coefficient to the bending curvature and the normalized 

impedance of the waveguide.  

 For the specialty fibers presented above, selective excitation of certain modes 

with proper optical properties can improve the performance of this system or add an extra 

functionality to it. This requires designing proper coupling techniques. Kyung Shick et al.
 

[12] presented analytically that the polarization mode coupling between any two linearly 

polarized (LP) core modes is possible by appropriately adjusting the grating parameters. 

The grating was created by pressing a two-mode fiber with a groove plate. In this 

scheme, the mode coupling is achieved by modifying the propagation constant of the 

light to match that of the desired mode. Derived from this concept, Laurent Vaissie et al
 

[13] presented another selective mode excitation technique through a non-axial 

evanescent coupling between two highly asymmetric side polished fibers: single mode 

fiber (SMF) and graded index fiber. Side polishing the fibers allows one to manipulate 
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the evanescent field near the core of the fiber. Selective excitation of high order 

azimuthal modes is achieved by appropriately tilting the SMF. Another application of 

mode excitation in side polished SMF was presented by Russel et al. [14]. The key 

element in their design is a photoresist grating placed on the surface of a side polished 

SMF. This grating fiber-coupler was used as a high resolution spectrometer.     

These coupling schemes require introducing changes in the existing fiber system 

such as side polishing and writing gratings in the core or the side of the fiber. 

Engineering the input light technique, in contrast, can be applied to the existing fiber 

systems without changing their structure. It only requires adding extra optical 

components in front of the input facet of the fiber. The purpose of these elements is to 

alter the phase distribution of the input light at one or more planes along the path of the 

input light. This phase modulation of the input light manipulates the properties of the 

field at the input facet of the fiber such as: phase, amplitude and polarization profiles. If 

one or more of these properties matches that of a certain mode or a set of modes, 

selective mode excitation is achieved. For this to occur, proper design of the optical 

components and selection of there locations are required.  

Micro elements play a great role in realizing these optical components required to 

achieve mode selective excitation. For instance, Ghafoori et al.
 
[15] and Fu Yong

 
[16] 

demonstrated the analysis and fabrication of micro lenses to couple light to single mode 

fiber. The aim of these micro lenses is to maximize the power coupled to the fundamental 

mode in a SMF. Conversely, Eric Johnson et al
 
[17] presented a novel diffractive vortex 
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lens to couple the light to higher order azimuthal modes to avoid the central deformation 

of the refractive index profile in graded index fibers. 
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CHAPTER TWO: VISION OF RESEARCH 

In the previous chapter we introduced the mode selective excitation by engineering the 

light at the input of the fiber system. This excitation is achieved through placing proper 

optical components in the path of the input light. The design of these optical components 

depends on the structure of the fiber in use as well as the desired mode or set of modes. 

Choosing this mode or set of modes is a key feature in improving the performance of any 

optical fiber system, that requires modal analysis and modeling of the light guided in this 

system. Accordingly, the process of achieving selective mode excitation can be divided 

into four main parts: modal analysis and modeling of the guided light in these fibers, 

designing the proper optical components, fabrication of these components, and 

characterization of their performance in the system. 

This work focuses on the selective excitation of certain modes in multimode fiber, 

few modes fibers, multicore fibers, and hollow cylindrical waveguides for different 

applications. For example, a multimode fiber, when attached to a single mode fiber, can 

be utilized as a condensing lens if only radially symmetric modes are excited and the 

fiber is cut to a proper length. In addition, it can be used as a displacement sensor by 

measuring the light coupled back to the single mode fiber. This coupling scheme does not 

require additional optical components. In comparison, coupling the light to a certain 

higher order linearly polarized mode in few modes fibers requires at least one phase 

element. Among the first higher order modes, LP11 and LP21 preserve a minimal intensity 
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in the central region of the fiber. If selectively excited, these modes can be used to 

improve the gain properties of the optical fiber amplifiers. Another area of interest where 

specialty fibers play a great role is light delivery systems. However, these fibers suffer 

major drawbacks that, in many cases, reduce their performance. The hollow cylindrical 

waveguide, for instance, suffers of high bending and transmission loss. One way to 

reduce these losses is to selectively couple the input light to the TE01 mode which 

sustains a TE polarization around the inner wall of the core. This requires a coupling 

scheme that alters amplitude, phase and polarization due to the degeneracy of the TE01 

with the TM01 mode.  Alternatively, multicore fibers suffer of core material nonlinearity 

that sets a limit on the maximum amount of power being transmitted. This effect can be 

reduced if the power is spread over a larger area across the fiber. The spreading of the 

power  is made possible by selective coupling to a certain high order mode with field 

profile which satisfies this power criterion. Finally, integration of micro-optical elements 

into actual devices presents numerous challenges to the optical engineer. Therefore, 

prototyping integrated micro-optics is somewhat prohibitive due to cost and complexity. 

A natural solution to this is the ability to write the optical element into the device without 

resorting to the prototyping of an optical element followed by an active alignment.  One 

such method of fabrication is through the use of a Focused Ion Beam (FIB). 

  The main strategy of this research is to first realize the proper modes in each of 

these fiber systems. The second step is to design optical components that maximize the 

excitation of these modes. Developing a fabrication procedure for the designed coupling 
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components comes next. The final phase is to characterize the fabricated components 

experimentally and confirm the results with numerical simulations.  
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CHAPTER THREE: MODELING OF SPECIALTY FIBERS 

In this chapter we develop several calculation methods with the aim of determining 

the guided modes in the different fiber systems mentioned in the previous chapters. For 

the multimode fiber (MMF), one can obtain an analytical modal solution using the 

linearly polarized modes approximation. On the other hand, multicore fiber and hollow 

waveguide require a full vectorial solution. In this section we briefly illustrate three 

different methods to calculate the modal properties of the multimode fiber, multicore 

fiber and hollow cylindrical waveguide. We will also explain the three dimensional finite 

difference beam propagation method. 

3.1. Multimode Fibers  

            The multimode fiber is a standard optical fiber structure that supports a large 

number of modes due to its large core size. Each mode is defined by its propagation 

constant, β, and field profile. These profiles and propagation constants can be calculated 

by solving a boundary condition problem at the core cladding interface taking into 

consideration the continuity of the tangential field components. Applying the separation 

of variables and solving for linearly polarized modes, the field distribution of the guided 

modes, ),,(, zrmv θψ , can be written in terms of the core radius, ra, and propagation 

constant, β, as follows [18]  
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In equation (3.1), uv,m and wv,m are the normalized transverse propagation constants inside 

the core, and in the cladding respectively. They are related to the fiber parameters and the 

propagation constant, β, through the following relation 

 

222
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2

,

22

, cladomammcoreoam nkrwandnkru −=−= νννν ββ ,    (3.2) 

 

where ncore and nclad are the core and cladding refractive indexes respectively. In addition, 

the suffixes ν and m are the indices for the guided radial and azimuthal components 

respectively. N and 2M+1 are the total number of radial and azimuthal modes 

respectively. The values of these normalized transverse propagation constants for each 

guided mode can be obtained by solving the following characteristic equation [18] 
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3.1.1. Numerical Example: Few Modes Step Index Fiber 

In these calculations, we considered a single mode Corning SMF 28 which is a 

single mode at 1550 nm, and supports four modes at a wavelength of 632.8 nm.  Using 

equations (3.1) and (3.3), the amplitude and phase distributions of the first three higher 

order linearly polarized modes are depicted in Figure (3.1).  

 

 

Figure 3. 1:  Intensity distributions of the first three higher order modes in few modes 

fiber at λ=633 nm. (a) LP11 (b) LP21 (c) LP02 and phase distributions of the first three 

higher order modes (d) LP11 (e) LP21 and (f) LP02.   
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For a larger core fiber, the number of guided modes increases. For a standard multimode 

fiber the number of modes is approximated by V
2
/2, where V is the, so called, v number 

of the fiber [18]. Modes are not excited equally. The strength of each mode is strongly 

dependant on the incident beam profile. This dependence is represented by the coupling 

efficiency, which is defined as the amount of power coupled to each mode relative to the 

input one. The square root of this quantity is the field excitation constant. Thus, for a 

specific input beam profile the field distribution at a specific plane across the fiber is a 

superposition of the guided modes profiles weighted with the excitation constants taking 

into consideration the phase gained due to propagation as depicted in Figure (3.2). This 

superposition is referred to as multimode interference. In Figure (3.2) the Intensity 

distribution at distance z1 differs from the one at L although the excitation coefficients of 

the guided modes do not change while propagating. This difference in the intensity 

profiles is due to the fact that each mode acquires a different phase while propagating a 

distance L-z1 as each travels with different propagation constant β as presented in 

equation (3.1).  
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Figure 3. 2:  Intensity distribution representation of the light propagating along the MMF 

due to multimode interference. 

3.1.2. Multimode Interference 

At any distance, z, along the MMF, the total field distribution is represented as a 

linear summation of the guided modes in this fashion 
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In equation (3.4), cν,m is the field excitation constant. The value of this constant is the 
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square root of the power coupling coefficient, ηv,m, which is defined as follows      
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In equation (3.5), Es(r,θ) is the field distribution at the input facet of the MMF. At the 

entrance of the MMF, z=0, the source field is mapped into the different guided modes, 

neglecting the cladding modes. Each mode is weighted with the excitation coefficient 

described above. If Es is radially symmetric then the value of the overlap integral in (3.5) 

goes to zero for the modes with a nonzero value of m. This is due to the cosine term in 

equation (3.4). Omitting these modes, only radial modes will be excited. This is the key 

feature of utilizing the MMF as a condensing lens as will be described later.   

3.2. Scattering Matrix method for modal calculations of Multi-core fiber 

Multicore fiber is a collection of step index cores sharing the same cladding 

region as shown in Figure (3.3). The separation between these cores is very small. Due to 

the strong coupling between the cores, the individual modes of each fiber split into 

several sub-modes called supermodes.  The number of these super modes depends on the 

number of cores, symmetry of the structure and the mode order.     
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Figure 3. 3: The construction of a standard seven cores multicore fiber. 

 

To utilize this specialty fiber structure a full vectorial wave propagation equation 

has to be solved in an inhomogeneous medium 

0),,(),(),,( 2 =−×∇×∇ zrrzr o φφεµωφ EE .    (3.6) 

The solution of equation (3.6) can be carried by solving two homogeneous wave 

equations inside and outside the individual cores as follows  
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In equation (3.7) εI and εII are the permittivity of the core and cladding regions. These 

two equations are coupled through the boundary conditions around each core-cladding 
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interface. One way to solve these equations is to expand the field using a set of 

orthogonal functions. The selection of these functions depends on the geometry of the 

structure. Besides, the number of these expansions depends on the required precision. For 

example, a Fourier expansion represents the field as a sum of plane waves with different 

direction of propagations and complex amplitudes. Typically, one requires a large 

number of expansion terms in order to achieve reasonable precision. However, selecting 

another set of expansion functions might reduce this number dramatically, thus the 

calculations time and complexity. For instance, the multicore fiber structure can be 

represented by a set of cylinders placed at certain locations. To accurately calculate the 

field distribution across this structure using a Fourier expansion, one requires a large 

number of plane waves. On the other hand, the scattering matrix method (SMM) uses 

cylindrically symmetric expansion functions. The selection of cylindrically symmetric 

functions reduces the number of expansions and the computation effort. Moreover, SMM 

simplifies the effect of the structure geometry to one matrix the so called scattering 

matrix. Thus, the field at any point of space can be calculated using this matrix. That 

eliminates sampling and resolution constraints while numerically computing the field 

distribution across the fiber.  

3.2.1. Scattering Matrix Method 

Scattering Matrix Method (SMM) is used to solve the set of coupled equations 
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(3.7) for the guided supermodes [19] to [21]. Using SMM, the structure is represented by 

cylinders of infinite length. Each cylinder is defined by its center coordinates, radius and 

refractive index as depicted in Figure (3.4).  

 

 

Figure 3. 4: Geometry representation of  a general multicore fiber structure.  

 

In this structure each core, of index j, is defined by its location vector rj measured 

from a reference point O, a refractive index nj and a radius Rj. Using this representation 

the total field around each core is the sum of two main components: the local incident 

field, E
loc

, and cladding field, E
s
. The local incident field is the sum of the evanescent 

field from the surrounding cores that couples back to that core. The cladding field is the 

evanescent field due to the guidance inside that core. Figure (3.5) depicts the field 

representation around two cores. 
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Figure 3. 5: Fields representation around the cores of the multicore fiber. 

 

Due to the geometry of the structure the fields are represented by cylindrical 

symmetric expansion functions as follows [22] 

 

)(),(),,( ztierFzrF βϖφφ −= .       (3.8) 

 

In equation (3.8), F represents  the z components of both the Electric and Magnetic 

Fields  
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The propagation constant, β, corresponds to the z component of the wave vector 
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according to the coordinates shown in Figure (3.5). The figure shows three field 

components around rod j, the cladding light, the local incident light, and the transmitted , 

or guided, light. The fields are represented by their respective Fourier-Hankel expansions 

[22] in equations (3.9) through (3.11)  
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The superscripts e and h represent the electric and magnetic fields respectively. The angle 

φj is measured from the reference point O to the center of rod j. χ1 and χ2 are the 

tangential components of the wave vector outside and inside the core respectively. They 

are related to β through the following equation 

 

2,1,222 =−= ink ioi βχ .     (3.12) 

 

However, we must apply the boundary conditions to each core. In order to calculate the 
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field components in equations (3.9) through (3.11), we need first to apply the boundary 

conditions at the core-cladding interface at each core, r=R, as shown in Figure (3.4). 

Applying the continuity of the z components of the fields we get the following set of 

equations 
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From the continuity of the φ components of the electric and magnetic fields, expressed as 

a function of the z components of the fields, we get the following equations 
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We can combine equations (3.12) and (3.13) in a matrix form taking into account all the 

expansion coefficients to get the following vector equations 
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is the number of expansion coefficients. These matrixes are defined as 
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Solving equations (3.14) and (3.15), a linear relation between the cladding light 

expansion coefficients vector, b, and the local incident one, a, can be obtained as follows  

 

aSb ⋅= ,         (3.18) 
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In equations (3.18) and (3.19), S is a square matrix of dimensions 

rodsmrodsm NNNN ⋅+⋅×⋅+⋅ )12()12( which represents the scattering matrix of the 

multicore fiber.  This matrix relates the guided field to the local incident one on each 

core. The geometry of the structure is implicitly included in the matrix S  as the fields in 

(3.9) through (3.11) are expanded around the centers of each core. The field inside the 

cores can be related to the local incident field through the following relation 

 

aSc ⋅= 2 ,         (3.20) 

where  
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Although the information regarding the geometry of the structure is hidden in S , 

we still need to calculate the cross talk between the cores. Recalling that the locally 

incident field on core j is defined as the summation of the cladding light around all the 

cores except j and the incident field, one can the following formula for the local field 
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In equation (3.22) the input field is set to zero in order to solve for the allowed 

propagating modes. Applying the expansion of around rjiq

kq erH
φχ )( 1

)2(
j, [22] 
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 to equation (3.22) we get the following relation between the local incident and the 

cladding field coefficients 
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This can be written in the following vector form 

 

bTa ⋅= .         (3.25) 

 

In equation (3.25), T  represents the cross talk between the cores. Recalling the linear 

relation between a and b in equation (3.18), we can write equation (3.25) as follows 
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where I is the identity matrix. Equation (3.26) represents an Eigen-value problem for 

which the Eigen-value is zero. Using the linear relation between the local incident field 

and the guided field in equation (3.20), equation (3.26) can be rewritten in terms of the 

guided field coefficient as follows 

 

0).( =cM MCF β ,        (3.27) 

where  
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The solution of the Eigen-value problem in (3.27) can be accomplished by first finding 

the zeros of the determinant of )(βMCFM . This requires applying an iterative technique to 

search for the complex roots of the determinant. To accelerate the convergence process, 

we first evaluate the determinant, )(βMCFM , over the range 
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For the values of β near the complex zero, the amplitude of the determinant drops 

dramatically as depicted in Figure (3.6). 
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Figure 3. 6: The evaluation of )(βMCFM  over the range of the effective refractive indices 

between 
IIε and 

Iε . 

 

The graph in Figure (3.6) is plotted as a function of the effective refractive index defined 

as 
λ
β

. The figure shows five locations where the amplitude of the determinant drops 

dramatically. At these locations, the value of β is the closest to the real part of the actual 

complex root. To find the complex value of the propagation constant, we used the false 

position method. First, we define two initial points around the real value of β that 
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minimizes the determinant )(βMCFM . Using these values, the complex value of β can be 

obtained through this recursive formula  
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In equation (3.30), the initial value of β and β1 are complex. The number of these zeros 

corresponds to the total number of non-degenerate modes. 

3.2.2. Numerical Example: Super Modes in Multicore fiber 

As a numerical example, we solved equation (3.27) for a seven-core multicore 

fiber with core to core spacing of 10.5 µm and core radii of 3.5 µm. The core material is 

considered to be doped fused silica and the cladding is pure fused silica. The operating 

wavelength is 1.33 µm.  This configuration gives a v number of 2.64 for each fiber. 

Figure (3.7) shows the intensity distributions of the guided supermodes.  
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Figure 3. 7: The fundamental supermodes for seven core fiber of fused silica cladding 

and doped fused silica cores at 1.33 µm operating wavelength. The spacing between the 

cores is 10.5 µm and core radii of 3.5 µm. 

3.3. Hollow waveguide 

There are two main structural differences between hollow and solid waveguides. The 

first is that in hollow waveguides, the solid core is replaced by air or gas. The second is 

that the cladding of the waveguide is frequently opaque at the operation wavelength. 

Most of the energy being guided by the hollow waveguide is confined in the core region. 

The reflectivity of the wall is the most significant parameter determining the performance 

of a waveguide. A hollow waveguide reflecting wall surface can be dielectric, metal or a 

more complex dielectric-coated metal structure used to maximize the reflection. The 
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losses in these structures are due to the less than perfect reflections of the propagating 

energy at the wall/core interface. Due to the large number of reflections from the wall, 

any small reflection loss will be greatly amplified [23] and [24].  

3.3.1. Modal calculations in cylindrical hollow-glass waveguide (HGW) 

 Here we are presenting an approximate modal solution of the hollow-glass 

waveguide structure depicted in Figure (3.8). In this solution we assume that the metallic 

layer is a perfect conductor and we neglect the thin dielectric layer.  Thus the problem is 

simplified to a metallic cylindrical waveguide as presented in Figure (3.9). 

 

Glass     (ng)   

Ag         (nAg)

AgI       (nAgI)     

Plastic   (np)

 

AgI Thickness                 (dAgI) 

Ag Thickness                  (dAg) 

Glass wall thickness         (dg) 

Plastic coating thinckness (dp) 

1.4533 

11 + i 61.4 

2.1 

1.54 

 

1.25 (µm) 

0.65 (µm) 

50 (µm)  

165 (µm) 
 

Figure 3. 8: Dielectric coated metallic waveguide structure and materials parameters at 

1.55 µm wavelength. 
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Figure 3. 9: Simplified representation of the HGW by a metallic cylindrical waveguide. 

 

The modes that can be supported in such structure are transverse electric (TE
z
) 

and transverse magnetic (TM
z 

) modes [25]. The TE
z
 modes can be derived using the 

following vector potential representations 

 

),,(

0

zrFa zz θ)=
=
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A
.          (3.31) 

 

However, the vector potential F must satisfy the wave propagation equation 
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The solution of equation (3.32) for the geometry in Figure (3.9), using the constraint that 

the field should be finite everywhere, is demonstrated in this form 

 

( ) ( ) ( )[ ] zi

rmmnz
zemDmCrJAzrF

βθθβθ −+= sincos),,( 22 .   (3.33) 

 

In equation (3.33), C2 and D2 are constants. However, m takes only discrete values under 

the boundary condition that the fields must repeat every 2π radians in θ as shown below 

 

..........,2,1,0=m         (3.34) 

 

In equation (3.33), βr and βz are the transverse and longitudinal propagation constants of 

the guided mode. They are related through the following equation 

 

222 βββ =+ rz .        (3.35) 

 

To obtain values of these propagation constants for the different guided modes, we need 

to apply the following boundary condition 

 

0),,( == zarE θθ .        (3.36) 
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In terms of the potential vector Fz, this boundary condition can be written as 

( ) ( ) ( ) 0]sincos[
1

),,( 22 =+′=
∂
∂

== − zi
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r
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zarE
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ε
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ε
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which is only satisfied provided that  

 

a
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=⇒=′ 0)( ,       (3.38) 

 

where mnχ ′ is the n
th 

zero of the derivative of the Bessel function Jm of the first kind of 

order m. Using equation (3.35), the longitudinal propagation constant βz is 
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Finally, the electric field components can be written as [25] 
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The TM
z
 modes can be derived in a similar manner by letting 

0

),,(

=
=

F

A zrAa zz θ)
.          (3.43) 

Again, the potential Az has to satisfy the wave propagation equation. Applying the 

boundary conditions that the tangential field components have to be zero at r=a, the field 

has to be finite everywhere, and the field has to repeat every 2π radian cahnge of θ, we 

obtain the following solutions of the propagation constants 
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where mnχ  is the n
th

 zero of the Bessel function Jm of the first kind of order m. The 

electric field components can be written as [25] 
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Using the above procedures and for the operating wavelength of 1.55 µm, the transverse 

field components of the electric field as well as the polarization distributions of the TE01 

and TE02 are depicted in Figure (3.10). 
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Figure 3. 10: The (a) Ex and (b) Ey field distribution for the TE01 mode. (c) The electric 

field polarization of TM01 and (d) TE01 respectively. 
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3.3.2. Loss mechanism in hollow waveguide 

This section derives a first order formulation of the hollow waveguide losses 

through Fresnel refection calculation at the core/wall interface. Figure (3.8) presents the 

structure and material properties of a dielectric-coated circular hollow waveguide 

structure. Using the ray optics approach, any guided mode can be represented by an 

angle, α, and a polarization status. As depicted in Figure (3.11) the angle θ  is the 

complement of α. The reflection loss at core/wall interface can be calculated using 

Fresnel reflection coefficient for the multi layer structure shown in Figure (3.12). 

 

 

Figure 3. 11: The optical path of a guided mode in the fiber. 

 

  For any guided mode the mode angle, α, can be calculated as follows  
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and the incident angle θmn is 

mnmn απθ −=
2

.       (3.48) 

 

The Fresnel reflection of the multilayer structure presented in Figure (3.12) can be 

calculated as follows 
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In equations (3.49) through (3.50) 
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θθ sin
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and for the TE case, 
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However, for the TM case 
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The total transmitted power is approximated by  

 

N

inout  *  PP Γ= .  
      (3.57) 

 

In equation (3.57), N is the number of reflections of the cladding for the specific mode. 

The number of reflections is defined as 
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Λ
=

L
N 2 ,         (3.58) 

where Λ is the spacing between two consecutive reflections as depicted in Figure (3.9). It 

is defined as 

 

r

za

β
β2

=Λ .         (3.59) 

 

 

Figure 3. 12: Fresnel reflection from the multilayer fiber cladding 

 

  Using equation (3.57), the transmitted power through a 300 µm bore diameter fiber with 

the parameters mentioned in Figure (3.10) above is depicted in Figure (3.13) as a function 
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of the mode angle for both TE and TM polarizations. The figure shows that TE 

polarization suffers from less power loss than the TM case.  Though, the difference in 

transmittance is very small, around 0.2 dB. Thus, a mode of electric field that keeps a TE 

polarization around the boundary will suffer the least amount of power loss.  

 In the previous analysis, we considered the transmission losses as for the TE and 

TM modes. However, when guiding the light inside the fiber, HE11 is the most dominant 

mode and hence the transmission loss is mainly related to this mode. The attenuation 

coefficient of the power, 2α, for this mode can be expressed as [27] 

{ TMTE

o

o

o yz
ak

U
k += Re

)(

8
2

3

2

α }.      (3.60) 

 

Figure 3. 13: Transmission of a 300 µm bore diameter hollow waveguide. 
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In equation (3.60), Uo is the first zero point (2.4024) of the Bessel function Jo(Uo). The 

normalized TE impedance and TM admittance are defined as [28] 
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where, the normalized impedance and admittance of the dielectric layer (zl and yl) and 

metal are defined as 
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( ) ( )           and      2
1

222
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and 

( ) AgIoAgI dknx ⋅−= 1
2

.        (3.65) 

 

Another loss mechanism in the hollow waveguide is the bending loss. Bending the fiber 

causes the excitation of higher-order modes with larger angles. Thus, the losses increase 

as depicted in Figure (3.13). In addition, bending the fiber causes coupling to TM modes 
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which suffer of high attenuation. While bent, the laser beam can travel in the fiber in two 

possible modes as depicted in figures (3.14,a and b). In the first one, the light reflects 

from both sides, while for the second case the light collides with one side only. The 

second case is referred to as whispering gallery mode [28].  Figure (3.14,c) shows the 

geometry of the bent fiber and the ray paths for both modes of propagation. Using this 

geometry, the complement mode angles, θ1 and θ2 can be calculated as follows [20] 

 

⎟
⎠
⎞

⎜
⎝
⎛

±
= − αθ cossin 1

2,1
aR

R
      (3.66) 

where R is the radius of curvature and a is the bore radius as can be seen in Figure 

(3.14,c).    

 

Figure 3. 14: The two modes of ray and angles corresponding to: (a) reflection from both 

walls of the fiber and (b) colliding with one side only. (c) The geometry used to calculate 

the angles for both modes. 
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The two modes of propagation are separated when θ2=90
o
. Thus, the first mode of 

propagation exists when 

 

R

aR −
<α .        (3.67) 

 

As can be seen in equation (3.67), the type of propagation depends on the mode angle and 

the radius of curvature. This is an important factor to be taken into consideration while 

calculating the bending loss for a particular mode in addition to the state of polarization 

of that mode. In this section, we will compare the bending loss calculations for the TE01 

and TM01 modes respectively. The polarization distributions of these two modes are 

shown in Figure (3.10). Considering a plane of symmetry along this fiber, the electric 

field of the TE01 is normal to this plane. However, for the TM01 mode the electric field 

lies in the plane of symmetry. In other words, the TE01 mode maintains a TE polarization 

around the inner wall of the fiber. Conversely, the TM01 can be considered to maintain a 

TM state of polarization around the walls of the fiber. Using these considerations, the 

bending losses of both modes can be calculated by calculating the Fresnel reflections 

from the inner wall for the TE and TM cases. The angles of incident are calculated from 

the mode angle α and the radius of curvature as represented in equation (3.67).  
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3.3.3. Numerical Example: calculations of the bending loss for the TE01 and TM01  

modes in a 300 µm core HGW at 980 nm 

To determine the mode angle for each mode, we first need to compute the transverse and 

longitudinal propagation constants, βr and βz, through equation (3.39), (3.40) and (3.43). 

For the TE01 mode 
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Thus, the mode angle is 
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Similarly,  for the TM01 mode  
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Thus, the mode angle is 

 

0012.0
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In a bent fiber, light can propagate in two different modes as can be seen in figures (3.14, 

a and b). Equation (3.67) presents a condition over the mode angle for the first mode of 

propagation to exist. This equation can be rewritten in the following form 

 

α−
>

1

a
R .         (3.72) 

 

As can be seen by equations (3.70) and (3.72), the mode angles are very small compared 

to unity. Thus, for the whispering gallery mode to exist the radius of curvature has to be 

as small as the bore radius of the fiber, which is an extreme case. So, the light propagates 

in the first mode as depicted in Figure (14.a). As both mode angles, αTE and αTM, are very 

small, the cosine of these angles can be set to unity. Therefore, equation (3.66) can be 

simplified to  
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Using equation (3.73) and equations (3.49) through (3.59), the normalized transmitted 

power versus the bending curvature is depicted in Figure (3.15) for both the TE01 and 

TM01 modes. As predicted, the TM01 suffers of a very high bending loss compared to the 

TE01 mode. 

 

 

Figure 3. 15: Transmittance of the TE01 and TM01 modes versus the curvature of the fiber 

(1/R) for a bore 
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CHAPTER FOUR: DESIGN OF OPTICAL COUPLING METHODS 

The previous section demonstrated different modeling techniques for multimode 

fiber, multicore fiber and hollow cylindrical waveguide. Using these techniques, we 

investigated the properties of the guided modes in these specialty fibers. Among those 

modes, certain higher order modes exhibit interesting complex field distributions which 

can be used to overcome the limitations of these light delivery systems as explained in 

chapters one and three. In order to benefit from such field properties we need to 

selectively couple to those modes. This section deals with the design of novel coupling 

schemes that maximize the power coupled to a certain mode or set of modes in these 

fibers for different applications.    

4.1. Single mode fiber to multimode fiber direct coupling  

Multimode interference and re-imaging conditions [29] provide the basis for the 

operation of the wavelength tunable lens.  In the past, multimode interference theory has 

been utilized in the design and fabrication of devices such as modulators [30] and Mach-

Zender switches [31].  For an input field centered symmetrically on the optical axis of a 

multimode fiber, multimode interference results in periodic longitudinal locations within 

the fiber where the source field is duplicated.  Characterizing the re-imaging effect in a 

multimode fiber, it is possible to design and fabricate a device that provides a mechanism 
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to overcome the natural tendency for the light to diverge when exiting the fiber.   

Traditionally, when fiber based devices are designed and fabricated, it is assumed that 

collimating optics have been incorporated to combat the natural divergence of the exiting 

beam [32].  In fact, some approaches actually involve fabricating lenses on the ends of 

the fiber [33].  The device we present essentially performs a lensing operation on the 

input field incident to the multimode fiber, condensing the light to wavelength dependent 

longitudinal locations outside the fiber. By analogy to the traditional lens, we will call 

these locations outside the multimode fiber (MMF) where the field condenses focal 

planes using our virtual lens model. These locations and associated spot sizes are a 

function of the core diameter of the multimode fiber, the material properties of the fiber, 

and the wavelength of the source.  We present a method to theoretically predict the shift 

of the focal plane as a function of wavelength in comparison to experimentally observed 

behavior and results obtained through FD-BPM simulations.  These FD-BPM simulations 

are also used to verify the validity of the model we present for the determination of the 

beam spot size observed at the wavelength dependent locations where the output beam is 

condensed.   

4.1.1. Multi mode interference  

The basis for this work lies in the concept of re-imaging based on the multimode 

interference effect associated with multimode waveguides as was done for the case of a 
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planar waveguide [29].  The re-imaging distance is where the input source is replicated in 

both amplitude and phase.  In contrast to the planar waveguide approach, a re-imaging 

condition is established for a circular multimode waveguide.  Moreover, fractional planes 

are defined where light appears to be concentrated (see Figures (4.1,a), (4.1,b)).  The 

specific planes where field concentration and re-imaging occur are determined through 

use of analytical approximations that are derived on the premise that the input light 

source is provided by a single mode fiber fusion spliced to a section of MMF.   

 

 

Figure 4. 1: Geometry of the device, SMF fusion spliced to a MMF. (b) Amplitude 

distribution of the light inside the MMF for the fibers parameters mentioned in table (1). 
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4.1.2. SMF to MMF Coupling 

In order to determine the longitudinal re-imaging locations inside a MMF, with an 

input field provided from a single mode fiber (SMF) fusion spliced directly to the MMF, 

it is necessary to first determine which modes are excited in the MMF based on the SMF 

source.  This may be derived by the coupling efficiency associated with the propagating 

modes within the MMF.  Using the linearly polarized mode approximation, the input 

field provided from the SMF, )(rE s  can be approximated by a Gaussian beam as follows 

 

xeerE
ziwr

s
og ˆ)(

2)/( β−−= ,           (4.1)  

 

where βo is the longitudinal propagation constant for the SMF guided mode, LP01. The 

half width half max (HWHM) spot size, wg, of the Gaussian beam can be determined 

empirically [36], based on the radius of the SMF, a, and the V-number, 

( ) 222
cladcore nnaV −= λ

π , where ncore and nclad are the core and cladding refractive indices 

respectively, as 

 

( 65.1 879.2619.165.0
2ln

−− ++= VV
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wg ) .         (4.2)  

 

This input field excites a specific number of guided modes inside the MMF. These 
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modes, together with the radiating modes, form an orthogonal set [39]. Neglecting the 

radiating modes effect, the field distribution at any location across the MMF can be 

written as a series expansion of the guided modes as depicted in equation (4.3) 

 

∑ ∑
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In equation (4.3) the suffixes ν and m are the indices for the guided radial and azimuthal 

components respectively. N and 2M+1 are the total number of radial and azimuthal 

guided modes respectively. The vector ),,(, zrmv θψ  represents the complex field 

amplitude of the guided mode. Applying the separation of variables and solving Maxwell 

equations inside the MMF for linearly polarized modes, ),,(, zrmv θψ can be written as 

follows [35] 
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where uv,m, and wv,m are the normalized transverse propagation constant inside the core, 

and in the cladding respectively. The symbol βv,m corresponds to the longitudinal 

propagation constant for this mode and a is the radius of the MMF. The symbols Jm and 
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Km are the m
th

 order Bessel and modified Bessel functions respectively. The normalized 

transverse wave number, uν and wν, are defined as  

222

,,

2

,

22

, cladommmcoreom nkawandnkau −=−= νννν ββ ,    (4.5) 

 

where, ncore and nclad are the core and cladding refractive indices respectively, and ko is 

the wave number in free space,
λ
π2

. The coefficients cv,m and dv,m are constants. A direct 

relation is obtained between these constants by applying the continuity of the tangential 

field components at the core cladding interface as follows 
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Thus equation (4.4) can be incorporated into equation (4.3) to represent the radial and 

azimuthal modes within the MMF. At z = 0, the left hand side of equation (4.3) should 

equal the input field, Es(r), as shown in the geometry of Figure (4.1,a). In other words, at 

this position, the input field is projected onto an orthogonal set of the transverse field 

components of the guided and leaky modes inside the MMF with different weights. These 

weights are referred to as the mode excitation coefficients of these modes. Here, we will 

neglect the influence of the leaky modes inside the MMF, and hence in equation (4.4) the 

constant cν,m is the field excitation coefficient of the LPν,m mode. Since of the input field 
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defined by equation (4.1) does not contain any azimuthal components, the field 

distribution inside the MMF should be radially symmetric. Thus, the excitation 

coefficient vanishes for values of m greater than 0. This constraint simplifies the 

representation for the field within the MMF into a sum of radial modes as follows     
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For simplicity we will omit the suffix for the azimuthal modes and write the excitation 

coefficients, the normalized traverse propagation constant and the longitudinal 

propagation constant as cv, dv, uv, and βv respectively. To calculate the field excitation 

coefficients, we will use the power coupling coefficient, ηv. The power coupling 

coefficient determines the amount of the input power that couples to each specific mode 

in the MMF. In terms of an overlap integral in cylindrical coordinates ην can be 

determined using the following equation 
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\The function ψν(r) represents the field distribution of the νth
 guided radial mode. Using 

the fact that the input field is much smaller than the actual core diameter of the MMF 

itself, we can neglect the extension of the mode field in the cladding region in the 

numerator of equation (4.6). Using this assumption, the field excitation coefficient, cν, 

can be related to the power coupling efficiency,ην, through νν η=c  since the 

integration in the numerator in equation (4.8) is the cross correlation between the input 

and the core fields. In this case the overlap integral can be written as 
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Using Hankel Transform properties, an analytical solution can be deduced as a function 

of the guided modes and the terms dependant on the physical parameters of the fibers 

used 
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From the asymptotic formulation for the roots of the 0
th

 order Bessel function [39], the 

normalized transverse wave numbers can be written as 

           
2

)2(
2
1
π

−= vuv ,                                                      (4.11)  

           

2

2
12

2
)2( ⎟

⎠
⎞

⎜
⎝
⎛ −−=

π
vVwv ,         (4.12) 

 

         

Figure 4. 2: Coupling efficiency as function of mode number for MMF core radii of 
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52.5µm and 92.5µm respectively 

 

In equation (4.12), V is the V number of the multimode fiber. Thus, equation (4.8) can be 

modified into the following form 
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(4.13) 

Using the equation above, the power coupling coefficient is calculated for all the allowed 

radial modes inside two MMF have the same material properties as in table (4.1) but two 

different radii: 52.5 µm and 92.5 µm as depicted in Figure (4.2).  The most pronounced 

feature in the graph is the presence of a peak coupling efficiency associated with a 

specific mode number. This feature is the key for predicting the re-imaging and the 

fractional planes where light is concentrated as will be presented in the next section. 
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Table 3. 1 

Optical Fiber Characteristics 

FIBER TYPE CORE RADIUS  CLADDING 

RADIUS 

CORE  REF. INDEX 

SMF-28 4.5µm 62.5µm 1.4505 

Step Index MMF 52.5µm 62.5µm 1.479 

4.1.3. Re-imaging Conditions 

In this section we present an analytical formulation of the location of the re-imaging and 

the fractional planes where light is concentrated using the fact that the power coupling 

efficiency is maximum for a specific mode number. In order to determine which radial 

guided mode has the highest coupling efficiency associated with it, it is necessary to look 

at the derivative of the coupling coefficient with respect to the mode number. Using the 

formulation for the coupling efficiency depicted in equation (4.13), the mode number 

associated with peak coupling efficiency is determined by taking the derivative with 

respect to the mode number and equating it to zero as follow 

 

 
0=

∂
∂

v

vη
.           (4.14) 

57 

 

  
 



We introduce a parameter Dν defined as 
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This expression can be simplified as 
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The derivative of Dν with respect toν, Dν′, is defined as 
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The derivative of the coupling efficiency with respect to the mode number can thus be 

expressed in terms of Dν, the mode number, spot size of the input field, and the radius of 

the MMF core as follows 
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The solution of the above equation result in the value of ν=νp that maximizes the 
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coupling coefficient. This mode is, in general, the most dominant radial mode in the 

MMF.  In order for light within the MMF to be concentrated to on axis location, it is 

necessary for the phase difference between the peak mode, νp, and the previous mode to 

equal an integer multiple of 2π. Moreover, we predict that the re-imaging condition 

should be a special case of this criteria, or more specifically, a specific integer multiple of 

the distance characteristic of a location where field condensation occurs. In the coming 

paragraphs we will evaluate the validity of the previous statements.  

 Under the asymptotic formulation given by reference [4.12], the difference in the 

longitudinal propagation constants between two radial modes, ν1 and ν2, can be expressed 

as follows  
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where uν1 and uν2 are provided in equation (4.11) for the asymptotic formulation for the 

roots of the 0
th

 order Bessel function. Considering the two modes νp and νp-1, the phase 

difference between these two modes can thus be expressed as in the following equation. 
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At the following longitudinal location inside the MMF along the optical axis, zm, 
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the phase difference becomes an integer multiple of 2π. Lp corresponds to the location 

where the phase difference between the two modes equals 2π. Recalling Figure (4.1,b), 

the upper part shows the Intensity distribution across the MMF calculated using equation 

(4.3) for the fiber properties mentioned in table (4.1). The lower part of the figure shows 

the average intensity distribution around the central region normalized to the input 

intensity. In this portion of this graph, we see pronounced maxima at m=0, 1, 3, 10, 12 

and 13. Beside these locations, there are several maxima approximately corresponding to 

the values of m=2, 5, 8 and 11. This serves to justify the statement made previously that 

there are several locations, zm, corresponding to local maxima along the axis of the 

multimode fiber where field condensation occurs. Although these locations might not be 

explicit re-imaging locations of the input field, they do correspond to positions where 

condensing of power along the optical axis occurs.  

The explicit re-imaging location where the source input field is duplicated is 

derived from the representation of the field given in equation (4.3).  Looking at the 

complex field vector contained in this formulation, the phase term can be manipulated by 
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factoring out the phase term characteristic of the radial mode that has a maximum 

coupling associated to it, .  By doing so, the re-imaging distance can be determined 

by looking at the resulting phase difference term, (β

zi
pe

υβ−

ν-βνp)z.   The re-imaging distance is 

defined  as the distance, zre-imaging,  that corresponds to when this phase difference 

between these two guided radial modes equaling an integer multiple of 2π. Therefore, 

under the asymptotic assumption for the lateral propagation constants, the re-imaging 

distance can be calculated by formulating an expression for the phase difference between 

the νth
 and νp modes as done in equation (4.19).  
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Thus, the distance that the two modes must propagate to satisfy the re-imaging conditions 

can be expressed as           

 

π

28 kan
z core

imagingre =− .          (4.23) 

 

In comparing equations (4.21), (4.22), and (4.23), we can see that zre-imaging is indeed an 

integer multiple of Lp when expressed in the following manner 
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 ppimagingre Lvz )34( −=− .         (4.24) 

 

Having determined the specific planes inside the MMF where field condensation and re-

imaging occurs, it is now necessary to present the use of this device to condense the light 

exiting the end facet of the MMF. In the next section, we will demonstrate a novel and 

simple technique that uses the phenomenon discussed above to create a fiber based 

wavelength tunable condensing lens.  

4.1.4. Fiber based wavelength tunable condensing lens 

To force light exiting the MMF to converge towards the optical axis, the actual 

length of the MMF, LMMF, has to be slightly less than the length specified by equation 

(4.21) for a chosen integer value of m.  By doing so, it is possible to determine the 

locations along the optical axis where field condensation will occur.  Phase difference 

relations can be used to determine these locations by taking into account the propagation 

within the MMF and the propagation in free space to the locations outside the MMF 

where the field condensation is observed.  The following equation is derived from this 

phase difference relation keeping in mind that the propagation constants are wavelength 

dependent 
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From continuity of the tangential component of the wave vector, the associated 

longitudinal propagation constant of a particular mode after exiting the MMF can be 

determined using the formula below in terms of the longitudinal propagation constant 

inside the MMF  

  

( ) 222

, 1 νν ββ +−= coreoout nk .                         (4.26) 

 

In formulating equation (4.22), the phase term associated with the mode that has a 

maximum coupling was factored out of the field representation in equation (4.3) resulting 

in a particular phase difference term.  In order to determine a 1
st
 order formulation for 

equation (4.25), the same phase term factoring approach can be adopted, only for 

approximation purposes the phase term associated with the fundamental mode is factored 

out.  In doing so, the same asymptotic approximations made previously can be applied to 

the (β1-βν) term contained within the phase difference expression for the field as done in 

equation (4.22).  βν can be isolated from this relationship and substituted back into 

equation (4.22).  Thus, the longitudinal propagation constant of a particular mode after 

exiting the MMF into free-space can be formulated as follows 
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Assuming that the fundamental longitudinal propagation constant can be approximated as 

(koncore) and that the last squared term in equation (4.27) is much smaller than the other 

terms under the square root, this equation can be simplified into the following equation 
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This approximate formulation for the longitudinal propagation constants outside the 

MMF can be used to form the expression for the vpoutvpout ,1, ββ −−  term included in 

equation (4.25).  Along with the expression for vpp ββν −−1  in equation (4.20), equation 

(4.25) can be manipulated into the following equation for the locations along the optical 

axis where field condensation of the light exiting the MMF occurs  
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Using the relation defined for Lp in equation (4.21), the above equation can be rewritten 

into a more compact form in terms of Lp, the actual length of the MMF used, and the core 

refractive index 
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In terms of the fiber parameters and the wavelength, equation (4.30) can be written as 

follows 
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Due to the finite wavelength range that the source can be tuned, we operate over a 

specific range of wavelengths around a central wavelength, λo.  Assuming that the value 

of νp doesn’t change within this range of wavelength, equation (4.31) is expanded around 

the central wavelength using a Taylor expansion as follows 
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It is important to look at how zout changes as certain system parameters are varied.  In 

particular, it is clear that this output distance exhibits inherent wavelength dependence.  .  

Using the formulation above, the derivative of zout relative to the wavelength 

demonstrates that it is approximately constant with respect to the varying wavelength as 

follows 
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Another influencing system parameter is the radius of the MMF, a, because the peak 

mode index νp, and LMMF depend strongly on the MMF radius.  For a specific 

wavelength, λo, zout changes considerably when the MMF radius is varied as demonstrated 

in the following equation  
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As the radius of the MMF changes, νp changes according to equation (4.14). That 

changes the location of the working maximum, and thus the proper MMF length, LMMF. 

Using the fiber material parameters in table (4.1), the change of LMMF as a function of the 

core radius is depicted in Figure (4.3). LMMF is assumed to be 0.95 of the length 

corresponding to the peak at (νp-1)Lp.  
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Figure 4. 3: Change of LMMF versus the MMF radius a. LMMF is considered to be 0.95 of 

the re-imaging distance inside the MMF. 

 

Now that the locations outside the MMF where field condensation will occur have 

been identified, in order to estimate the spot size at the focal plane, we need to calculate 

the intensity distribution outside the MMF. The series expansion in equation (4.3) can be 

used with a modification in the phase term to compensate for the free space propagation. 

In addition, we can neglect the field expansion in the cladding region as most of the 

power is concentrated in the central region. Thus, the output field can be written as  
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where βout,ν is the longitudinal propagation constant for the νth
 order mode in air as 

defined in equation (4.28). 

In this section, we have demonstrated a novel application of selective mode 

excitation without using any additional optical elements. By direct coupling of the light 

from a SMF to MMF, only radial modes are exited in the MMF. Properly selecting the 

length of the MMF, the device can be utilized as a wavelength tunable condensing lens. 

However, for other type of applications, we might need to add extra optical elements. For 

instance, selective excitation of certain higher order modes in few modes fiber requires at 

least one phase element to match the phase profile of the desired mode. In the next 

section, we will explain in details the design and analysis of single phase element for 

selective excitation of the LP11 and LP21 modes in few modes step index fiber.  

 4.2. Single Phase Elements 

Figure (3.1) shows the first three higher order modes in few modes fiber. The 

phase profiles of these modes are orthogonal to each other. Consider two functions with 

radial symmetric amplitudes, and their phase profiles match two different modes. 

Although the amplitudes might not be orthogonal to each other, the cross correlation 
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between these two functions vanishes. However, this integral is maximized when the two 

phases match. Thus, to selectively couple to a certain linearly polarized mode, LPν,m, the 

phase field at the input facet of the MMF has to match that mode. This can be achieved 

through placing a phase element with a phase profile equivalent to that of the desired 

mode in the path of the input light. In spite of the fact that one mode has been selectively 

excited inside the MMF its coupling efficiency might not necessary reach 100%. The 

coupling efficiency to any particular mode can be calculated through the overlap integral 

represented by equation (3.5) where, Es(r,θ) is the field profile at the input facet of the 

fiber.  

For a step index fiber of core radius a and a working wavelength λ the field 

distribution of the guided linearly polarized modes can be represented as in (4.4) and 

(4.6) [41] 
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In equation (4.36), the suffixes ν and m are the indices for the guided radial and 

azimuthal components respectively, and cv,m is the excitation coefficient of the LPv,m 

mode as mentioned in the previous section. It is defined as the square root of the power 

coupling coefficient, m,νη , represented by the following overlap integral  

70 

 

  
 



∫ ∫ ∫ ∫

∫ ∫
∞ ∞

∞
∗⋅

= π π

ν

π

ν

ν

θθψθθ

θθψθ
η

2

0 0

2

0 0

,

2

2
2

0 0

,

,

)0,,(),(

)0,,(),(

rdrdrrdrdrE

rdrdrrE

min

min

m ,    (4.37) 

 

where, Ein(r,θ) is the field profile at the input facet of the fiber. Figure (3.1) depicts the 

amplitude and phase profiles of the first few linearly polarized modes. Upon closer 

inspection of the phase profiles of these modes, one notices that they are orthogonal to 

each other. Thus, in order to selectively excite one particular mode, it is sufficient to 

match the phase profile of that specific mode. This can be achieved through phase 

modulation of the input field by placing a proper phase element in its path as shown in 

Figure (4.4). In this setup, the first lens collimates the light out of the single mode fiber 

(SMF), and the second lens focuses the phase modulated light to the input facet of a 

larger core fiber that sustains more than one mode. We will refer to this fiber as a large 

core fiber hence forth.  
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Figure 4. 4: The coupling scheme showing the phase element placed in the path of the 

input beam. 

 

Proper selection of the focal length of the focusing lens has a great impact on achieving 

high coupling efficiency to the desired mode as we will present later in this section. 

For the coupling scheme presented in Figure (4.4), the light out of the SMF is 

assumed to be Gaussian with a beam waist defined as [39] 

 

( )65.1
879.2619.165.0

−− ++= SSSS VVaw .     (4.38) 

 

In equation (4.38), aS and VS are the SMF radius and it’s V-number respectively. The 

field immediately after the collimating lens has a beam waist of 
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Assuming perfect collimation, the beam waist at the phase element will be wg as well.  

In this section we present two coupling elements with phase profiles match that of 

the LP11 and LP21 respectively. The phase coupling whose a phase profile identical to that 

of the LP11 mode has a transmittance, T(x,y), which can be represented by a sign function 

as follows 
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The field distribution at the input of the fiber can be calculated using Fresnel 

approximation as follows  
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Equation (4.38) can be simplified as 
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In equation (4.39), λ is the working wave length and ⊗ is the convolution operator. The 

convolution in equation (4.39) can be written as 
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This integration can be split in two parts as follows 
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Knowing that [42] 
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where Ei is the exponential integral defined as 
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equation (4.41) can be represented as 
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This is simplified to 
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where erfi(z) (referred to as imaginary error function) is defined as 
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Thus, the field in equation (4.39) can be written as 
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Substituting ηx and ηy in terms of x and y, equation (4.47) is written as  
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In equation (4.48), f represents the effective focal length of the second lens in Figure 

(4.4), and k is the wave number of the light, 
λ
π2

. Notice that we used the Cartesian 

coordinates to represent both the phase transmittance of the coupling element and the 

field at the input of the large core fiber. However, it is more convenient to use polar 

coordinates in this cylindrical symmetric structure. Defining the following normalized 

polar coordinates  
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equation (4.48) can be written as follows 
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The amplitude and phase distributions of Ein are depicted in Figure (4.5). Notice that the 

phase profile matches that of the LP11 mode presented in Figure (3,e). However, the 

amplitude differs from that presented in Figure (3.b). This amplitude mismatch reduces 

the coupling efficiency to the LP11 mode.  

 

Figure 4. 5: The calculated (a) Amplitude and (b) phase profiles of the field at the input 

facet of the larger core fiber. 
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The coupling efficiency is calculated through the overlap integration in equation (4.37). 

Equation (4.37) can be written as 
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In equations (4.51) through (4.54), b11 and c11 are defined as 
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Equation (4.52) can be simplified by expanding the error function in a polynomial series 

around zero as 
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Using this expansion, Equation (4.52) can be written as 
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where, )(11 ρψ  is the LP11 mode radial dependant term defined as 
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A closed form solution numerator, Nf,   is obtained by, first, carrying out the integration 

over θ  as shown in equation (4.57). It has the following closed form solution 
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In the second integration, a closed form solution is obtained by approximating  ( )ρψ 11  by 

a first order Hermite-Gaussian as follows [29]
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where p1 and p2 are constants. The values of these constants can be obtained by applying 

two constraints. First, the areas under both curves are equal, 
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Applying this constraint, we obtain the following linear relation between the two 

constants 
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The integration in the denominator has the following solution [42] 
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Thus 
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In the second constraint, the value of p2 is obtained by minimizing the profile amplitude 

error, Rδ , defined as 
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Several optimization techniques can be used to solve for the p2 coefficient. In this work 

we used the least square error method. In this method p2 is represented as a combination 

of two parts,  

 

222
~ ppp ∆+= .        (4.68) 

 

In equation (4.68), 2
~p  is assumed to result in zero error. Using this assumption and using 

the first order expansion of the Hermite-Gaussian function around 2
~p , equation (4.67) can 

be written as 
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By discretizingρ, equation (4.69) can be written in a vector form as follows 
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In equation (4.70), vectors ,R and M represent the error, the term between brackets on 

the right hand side in equation (4.69). The value of 2p∆  is obtained as follows 
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The initial value of p2 is then updated 
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These steps are then repeated till p2 converges. Using this representation, the integration 

over ρ can be written as 
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Using the following relation 
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equation (4.73) has the following solution 
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Substituting equations (4.59) and (4.75) in (4.75), we obtain  
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In the denominator, the first integral, D1, is very difficult to be solved analytically. 

However, neglecting the Fresnel losses from the phase element and the lens, we can 

apply Parseval’s theory since Ein is proportional to the Fourier transform of the input 

Gaussian beam phase modulated by the coupling element. Thus,  
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The Second integral in the denominator part of equation (4.51) has the following solution 
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Substituting equation (4.76), (4.77) and (4.78) into (4.51) and we obtain the following 

expression for the coupling efficiency  
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Figure 4. 6: The coupling efficiency to the LP11 mode as a function of the number of 

expansions. 
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Figure 4. 7: Coupling Efficiency vs. the effective focal length of the few modes fiber 

objective using exact numerical integration in equation (4.14) and the analytical solution 

in equation (4.48). 

This expression is represented in terms of an infinite series. However, a few expansion 

terms might only be needed to obtain a precise value of η11. Figure (4.6) depicts the 

coupling efficiency as a function of the number of expansion terms. In these calculations 

we consider an effective focal length, f, of 8 mm for the focusing lens. The figure shows 

that by including more than 16 expansion terms into the efficiency calculation, the 
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calculated value of η11 converges to a stable value.  Therefore, in the rest of this work we 

use 16 expansion terms to evaluate η11 when using the expression in (4.80). To predict 

the accuracy of this expression, we compare the exact numerical calculation of the 

overlap integral in (4.37) and equation (4.80) as a function of f. These results are depicted 

in Figure (4.7). 

In the numerical calculations, Ein is computed through the Fresnel propagation of 

the input Gaussian beam phase modulated by the coupling element through the second 

lens. The figure shows a good agreement between both cases. However, the slight 

difference in the graphs is mainly due to the first order Hermite-Gaussian approximation 

as presented in equation (4.60). Additionally, the graphs show that the coupling 

efficiency is maximized around f = 8 mm. This seems contradictory with equation (4.80) 

due to the presence of f 
2
 in the numerator.  The explanation for the maximization of η11 

at a specific effective focal length value can be traced to the formulation of p1 and p2.  

However, constants p1 and p2 implicitly depend on f through b11, c11, and wg as presented 

in equations (4.55), and (4.65). Figure (4.8) shows the values of p1 and p2 as a function of 

f. Notice that both p1 and p2 increases with f. Similarly, the transmittance of the phase 

element required to excite the LP21 is 
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and the resulting field distribution at the input facet of the fiber is 
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Figure 4. 8: Dependence on values of p1 and p2 on effective focal length showing 

increasing relationship for both parameters. 

 

Again, the phase profile of this field matches that of the LP21 while the amplitude differs.  

For the used focal length of 9 mm, the calculated coupling efficiencies using equation 

(4.81) is 81.47% while it is 83.41% using the numerical integration. Using equation 

(4.14) the coupling efficiency for the LP21 mode is about 60%.  
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4.3.   Dual elements 

Dual elements are two phase elements aligned on the front and back sides of a 

substrate material such as fused silica wafer as depicted in Figure (4.9).  The coupling 

scheme is depicted in Figure (4.10). In this scheme, the first element modulates the 

amplitude of the incident beam and the second one fixes the phase profile. However, 

designing the first phase is the main challenge. This section demonstrates two design 

techniques. The least square error method and Method of projection (MOP). In the first 

method, the phase surface of the first element is fitted to a two-dimensional polynomial 

expansion, while within the MOP method the phase of the first element is numerically 

calculated.  

 

Figure 4. 9: Dual element structure. 
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Figure 4. 10: Dual elements coupling scheme. 

4.3.1. Least Square Error method 

In this method, the phase surface of the first element is represented by a two 

dimensional polynomial expansion as depicted in equation (4.84). 
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Considering an input Gaussian beam, Eg(x,y), of specific beam width, wg, the goal is to 

minimize the difference between the intensity distributions of the output field at a certain 

observation plane, I(ah,k,x,y), and the target intensity, Io(x,y).  
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The second element corrects for the phase of the field at the observation plane. Figure 

(4.11) depicts a schematic diagram of the method. 

 

   Initial guess of the 

polynomial coefficient 
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Figure 4. 11: Schematic diagram of the diffractive element design method. 

 

The field distribution at the observation plane using the above scheme can be written as 
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where λ, k, and z are the working wavelength, the wave number and the propagation 

distance respectively. The intensity distribution at this plane is  

 

∗⋅= ),,(),,(),,( ,,, yxaEyxaEyxaI khkhkh .     (4.87) 
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Using equation (4.86) and representing the coefficient ah,k as a summation of the desired 

value, a , and a displacement of ∆akh h,k, equation (4.85) can be written as 
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Writing equation (4.88) in a matrix form, one obtains the following expression 

a∆MdI ⋅= .        (4.89) 

In equation (4.89), matrices dI, M, and ∆a are defined in appendix A. Multiplying both 

sides by the transpose of matrix M, equation (4.89) can be written as 

a∆MMdIM
TT ⋅⋅=⋅ )()( .       (4.90) 

∆a can be calculated by solving the set of linear equations represented in (4.90). Updating 

the value of a and substituting this new value in equation (4.89), one gets a new value of 

dI. Subsequently, this process repeats till the displacement coefficient reaches a very 

small value. However, the convergence of this scheme is critically dependant on the 

initial guess. 

  
 



4.3.1.1. Least Square Error for Designing a Dual Element for Selective Excitation of 

The LP21 Mode 

Using this technique the calculated coupling efficiency to LP21 reaches 94% of the 

total input power compared to 60% using phase matching only with a wavelength of 633 

nm and Gaussian beam of 150 µm waist. Figure (4.12) depicts the two phase elements 

and the amplitude profile of the field just behind the second phase element and at the 

input facet of the large core fiber.  

 

Figure 4. 12: (a) The first phase element, (b) the second phase element (c) phase (c) and 

intensity (d) distributions of the output field at the input facet of the fiber. 
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4.3.2. Method of Projection (MOP) 

MOP is an iterative technique, where the first phase element is initially set to have a 

random phase. Applying a two dimensional Fresnel propagator, the complex field 

distribution is computed at the second phase element, then its intensity is set to the target 

field intensity. The second phase element is updated by the phase difference between the 

computed field at the surface of this phase element and the desired phase. Figure (4.13) 

depicts a schematic diagram of the MOP.   

 

Initial guess of the   

phase 
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Figure 4. 13: Schematic diagram of MOP.  
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4.3.2.2. MOP for Designing a Dual Element for Selective Excitation of a High order 

super mode in seven core fiber 

Figures (4.14, (c)) and (4.14, (d)) depict two phase elements designed to match both 

amplitude and phase of the last fundamental supermode in the seven core as depicted in 

Figure (3.7).   

 

Figure 4. 14: (a) amplitude and (b) phase profiles of the field at the input facet of the 

seven core fiber when using the dual phase elements (c) and (d). 
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Using the coupling scheme depicted in Figure (4.10) and considering a 633 nm source, 

the calculated amplitude and phase profiles of the field at the input facet of the multicore 

fiber are depicted in figures (4.13, (a) and (b)). Using the overlap integral in (4.27), the 

estimated maximum coupling efficiency is about 98% when both L and f distances in 

Figure (4.10) are set to 1 mm. 

4.4 Sub-wavelength periodical structure for coupling to hollow waveguide. 

In chapter three, we presented first order calculations of the transmission and 

bending losses inside the cylindrical hollow waveguides based on Fresnel reflections. 

These calculations showed that the TE01 mode suffers the least amount of losses as 

depicted in figures (3.13) and (3.15). Coupling the input light to this mode, the 

performance of the light delivery system can be dramatically improved. To selectively 

excite this mode, matching the phase and amplitude profiles of the TE01 mode only will 

not be sufficient due to the degeneracy between this mode and the TM01 mode. Thus, it is 

desired to design an optical component that converts an incident linearly polarized light 

into a rotating one similar to that depicted in Figure (3.10, d). In order to design this 

optical component, we first need to review an important property of birefringent crystals.  

For a birefringent crystal, the transmittance of this crystal for an incident linearly 

polarized light of angle ψ relative to the crystal axis (fast axis) with a phase retardation of 

π can be written as [44]
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Thus, it is possible to obtain the desired output polarization distribution if the axis of the 

crystal varies in space. Realization of such component is almost impossible using 

traditional bierefringent crystals. However, artificial birefringent crystals can be 

fabricated using subwavelength gratings [45]. 

  

 

Figure 4. 15: Sub-wavelength grating structure that forms an artificial birefringent 

crystal. 

 

Figure (4.15) depicts the subwavelength grating structure. In this figure, ε||, and ε⊥ are the 

parallel and normal effective permittivities of the grating. εs and Λ are the substrate 

permittivity and the grating period. The birefringence of such structure can be calculated 
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using effective index method [46]. For the configurations shown in Figure (4.11), the 

calculated permittivities are   
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In equations (4.92) and (4.93) 
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where f is the in plane filling ratio. Using the effective refractive index calculations 

mentioned above, the required depth of the grating to have π retardation is  
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4.4.1. Polarization converter element for coupling to TE01 mode.   

For fused silica substrate, operation wavelength λ=0.98 µm, period of λ/2 and 

filling factor of 0.5, the calculated depth is about 6.84 µm. In a similar way, the 

calculated depth for the working wavelength of 1.55µm is 11.06 µm. Figure (4.16) 

depicts the proposed sub-wavelength structure.  

 

 

Figure 4. 16: The proposed design of polarization converter element to couple the light at 

the input of the hollow waveguide to the TE01 mode. 

 

In this design, the working space is divided into 12 sectors. Each section 

represents a sub-wavelength grating with grating vector rotated by π/6 relative to the next 

sector. Thus each sector rotates the incident linearly polarization by 2ψ, where ψ is the 
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angle of polarization of the incident light relative to the grating vector. For an incident y 

polarized light the output polarization status will result in the field distribution and 

polarization status depicted in Figure (4.17) below.  This field, to great extend, matches 

the desired TE01 mode. On the other hand, for an incident x polarized light the output 

field will be similar to that of TM01 mode.  

 

Ex 

 

 

 

Ey 

       (a)     (b) 
 

Figure 4. 17: Calculated (a) Field and (b) polarization distributions of the output of the 

polarization converter element. 

This section presented the design of novel optical elements that couple the light to 

the desired guided modes in different specialty waveguides. However, fabricating some 

of these elements is challenging. The next section summarizes several fabrication 

techniques and procedures to realize these elements.  
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CHAPTER FIVE: FABRICATION TECHNIQUES 

Lithography is a key process technology for fabricating micro-optical elements and is 

used to copy a master pattern into solid material such as silicon, glass or GaAs. This 

process has two major steps.  First, a pattern is written into a resist material by exposing 

it to light (photolithography) or an electron beam (e-beam lithography) and developing in 

order to remove resist in selected areas. Second, the pattern is transfer etched into a 

substrate material using an etching technique.  The substrate is etched where it is not 

protected by the resist material.  Photolithography is most widely used. 

In the next section, photolithography using a contact aligner and a stepper system is 

introduced.  Both require a mask to control which portions of the resist are exposed, and 

hence the pattern. The photomask is typically an optically flat and transparent glass or 

quartz with a metal absorber pattern (e.g. 80 nm of chromium). [47]  E-beam lithography 

(EBL) does not require a mask because the pattern is written by steering a narrow beam 

of electrons to write the pattern into the resist.  In section three, fabrication of the 

polarization converter element using EBL is discussed. Section four introduces the use of 

the focused ion beam (FIB) system for integration of micro optical elements into real 

devices. The main advantage of FIB over lithography is that devices can be made in a 

single process step without a mask. 
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5.1. Photolithography 

Figure (5.1) shows two major photolithography systems: contact aligners and steppers. In 

contact aligner systems, the photo-mask is usually in direct contact with the photoresist-

coated surface during exposure as depicted in Fig. 5.1.(a). Ultraviolet light passes through 

a mask where it is selectively blocked by the metalized patterns.  In this manner, the 

photoresist is exposed with the same pattern as the mask.  

 

Figure 5. 1: The two major photolithography systems: (a) Contact aligners and (b) 
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steppers. 

For the research described in this paper, the pattern on the photo-mask was generated 

using EBL because it could produce higher resolution patterns than photolithography 

alone. The transparent pattern on the mask was transferred to the photoresist coated on 

the wafer surface and then to the substrate using etching techniques. This procedure 

results in a 1:1 imaging of the entire mask onto the wafer. 

Contact masks degrade fast through wear.  Defects resulting from hard contact on 

both the photoresist and the wafer make this method unsuitable for very large scale 

integration manufacturing. However, this method is still commonly used in research and 

development as well as mask making [47]. A more robust method uses an optical stepper 

where the photo-mask does not contact the substrate, but is imaged onto the photoresist 

from some distance away. 

  Basically, the optical stepper is an imaging system where the photo-mask is in an 

object plane and the photo-resist layer on the wafer is in the image plane [48-49]. The 

scale of the pattern is often reduced by the imaging system.  A 5:1 reduction is common. 

The photo-mask is illuminated by a UV source through condenser optics during 

exposure. This light incident on the photo-mask is well collimated and the effective 

source of UV light is imaged onto the pupil plane inside the stepper. Figure 5.1(b) shows 

a conceptual diagram of a typical optical stepper system. With a deep UV light source, 

resolution of 1 µm can be achieved, depth of focus of ±6 µm is possible, and an overlay 

accuracy of ±0.25 µm has been realized [1].  
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5.1.2. Example of Photolithography: Fabrication of Single phase elements 

Figure (15) depicts Zygo profiles of the two phase elements presented in section 

4.1. These elements were fabricated in Shiply PR1805 photoresist using a stepper system. 

The refractive index of the photoresist is 1.6406 at the working wavelength of 633 nm. 

To achieve a π phase shift, the step height was set to 494 nm. 

 

 

Figure 5. 2: (a) and (b) Zygo images of the first and second phase elements for coupling 

to LP11 and LP21 modes respectively, fabricated in PR1805 photoresist 

5.2. Electron Beam Lithography 

EBL is a high resolution pattering technique in which high-energy electrons (10 to 

100 KeV) are focused into a narrow beam that exposes electron sensitive resist. Unlike 

photolithography, EBL does not limit feature resolution by diffraction because the 
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quantum mechanical wavelength of the high energy electron beam is exceedingly small 

[47]. On the other hand, resolution of the EBL system is affected by scattering of 

electrons from the resist and substrate.  Back scattering of electrons exposes the resist 

over an area slightly greater than the spot size.  This phenomena manifests itself in small 

variations in the geometry of exposed structures.  The effect is more pronounced fy small 

structures  

5.2.1. Introduction to E-Beam Lithography 

EBL is a high-resolution and maskless pattering technique. Electrons emitted 

from a source are focused onto a substrate through an imaging column. The focused 

beam is scanned over the substrate using deflectors as depicted in Fig. 5.3. A computer 

controls the beam blanker, the deflector,  and the moving stage according to received 

mask data. Total writing time depends on total exposed area and required dose to fully 

expose the e-beam resist.  At the end of the writing process, a pattern is written into the 

e-beam resist. E-beam resists are produced for direct writing applications. Bombardment 

of polymers by electrons causes bond breaking. A subsequent chemical developing 

process is required.  For positive resists, exposes areas are removed during developing.  

For negative resists, exposed resist remains after developing.  In either case, the 

remaining resist serves as a mask during a subsequent etching process.  Either wet or dry 

etching can be used to transfer etch into the substrate.  
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Figure 5. 3: Schematic diagram of e-beam system. 

5.2.2. Fabrication of Polarization Converter Element 

As presented in section 4.2, the polarization converter element is made of sub-wavelength 

gratings with a 0.775 µm period. Each grating is oriented such that the grating vector is 

rotated by π/6 relative the previous one. This structure has features as small as 375 nm 

with a depth of 11 µm in order to achieve π phase retardation when using fused silica as a 

substrate. In contrast, only 996 nm depth is required when using GaAs. 
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 In the next sections, different fabrication procedures are used to realize this 

structure in both fused silica and GaAs. First, e-beam resist (ZERP 520) was used as a 

mask for etching into a GaAs substrate where an etching selectivity more than 2:1 was 

achieved. This selectivity is sufficient for GaAs, but not for fused silica that requires up 

to 22:1.  For fused silica, a hard (metal) mask must be used.. The hard mask is fabricated 

using a lift off process and a bi-layer PMMA resist.   For both techniques, the pattern 

must be properly transferred to the resist. This requires selecting an accurate dose while 

writing the pattern. Quality of the hard mask, and eventually the etched pattern, is 

determined by the surface condition in the developed regions and the amount of resist left 

after developing. 

 The next section discusses pattern transfer writing in ZEP520 resist using EBL. 

5.2.2.1. Writing the pattern into the e-beam resist 

The desired pattern was the first generated using our GDS master software. The 

pattern was fractured using a Linux based commercial software, CATS, and written to the 

resist using the Lieca EBPG 5000+ E-Beam at 50 KeV. Different e-beam resists have 

different polarity, sensitivity, resolution, and etch resistance. PMMA and ZEP520 are 

examples of positive e-beam resists.  Although both resists have high resolution, ZEP520 

has higher sensitivity and higher dry etch resistance. This reduces the e-beam writing 

time when using ZEP520 compared to PMMA. In addition, ZEP520 holds for a longer 
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time when etching chrome. Finally, ZEP520 resist can produce an under-cut profile 

similar to PMMA as depicted in Fig. 5.5. This profile is favorable for the lift-off process. 

In this work, ZEP520 was used as a mask for etching in GaAs and to generate a hard 

mask in chrome.  

 

 

 

Figure 5. 4: ZEP520 resist profile. 

 

Using ZEP520, proper writing dose is required to generate a pattern with the 

required dimensions. High doses will result in washed out patterns, while low doses will 

create under exposed patterns.  In addition, the dose is a function of the feature size. To 
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determine the proper dose, variable period gratings were fabricated with a 50:50 duty 

cycle. The periods varied from 200 nm to 3.95 µm as shown in Fig. 5.5(a). 

 

Figure 5. 5: (a) the GDS pattern of gratings of varying periods (b) the pattern written in 

the e-beam resist. 

 

Using this pattern, a dose matrix was written in ZEP 520 e-beam resist with a 

dose varying from 50 µC/cm
2 

to 300 µC/cm
2
. The resist was spun at 1800 rpm on a four 

inch fused silica wafer coated with 300 nm of chrome. The spun resist layer was 500 nm 

thick. After writing the pattern, the wafer is developed for 90 seconds using ZEP-D 
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developer. The wafer was rinsed in isopropanol for 20 seconds immediately after 

developing. Figure 5.5(b) shows an optical microscope image of the pattern after 

developing. This pattern was written using a dose of 90 µC/cm
2
. Observing the quality of 

the written patterns under the optical microscope, the dose map in Fig. 5.6 was generated  

 

 

Figure 5. 6: Map of pattern quality in terms of dose values and feature size. 

 

Figure 5.6 shows a 90 µC/cm
2
 dose is optimum for features as small as 200 nm. 

Smaller features can be written with a dose between 70 µC/cm
2
 and 90 µC/cm

2
.  For the 
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patterns written at 90 µC/cm
2
, SEM images were taken after sputtering a 200 

angstrom thick film of gold-palladium on the developed resist.  

 

      

100 nm    350 nm 

      

450 nm     750 nm 

Figure 5. 7: SEM images of the varying period gratings using 90 µC/cm
2
 after developing 

and coating with 200 angstrom layer of AuPd. 
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Figure 5.7 depicts four SEM images of different grating periods, 100nm, 350 nm, 

450 nm and 750 nm. For the 100 nm period patterns, the irregularities of the lines are 

imaging artifacts due to charging of the substrate.   In this figure, resist residue remains in 

the developed areas and may degrade the quality of the hard mask and hence the final 

etched pattern. The residue can be removed by oxygen plasma etching. In this process we 

used 40 sccm of oxygen with an ICP power of 400 W and RIE power of 40 W. The 

measured etch rate of ZEP520 was 10 nm/sec. Thus, five seconds of oxygen plasma 

etching removed 50 nm of resist.   

 

 

Figure 5. 8: The polarization converter pattern transferred to the ZEP520 e-beam resist. 

 

As mentioned in chapter four, the polarization converter element consists of 12 
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sectors of subwavelength gratings; each rotated by π/6 relative to the next sector. The 

gratings were designed for an operation wavelength of 1.55 µm. Each grating has a 

period of λ/2 and filling factor of 0.5. Thus, the minimum feature of this structure is 

375 nm. From the e-beam resist analysis depicted in Fig. 5.6, the proper dose to write this 

structure was 90 µC/cm
2
. Using this dose, Fig. 5.8 shows an SEM image of the pattern 

generated in ZEP 520 after developing, plasma etching for 5 seconds, and coating with a 

thin layer of chrome to prevent the charging when using the SEM. This figure shows the 

pattern was properly transferred in the resist. The next step was to transfer etch this 

pattern into the substrate material.  

 5.2.2.5. Transfer Etching into Gallium Arsenide   

First, ZEP 520 was spin-coated directly onto a GaAs wafer.  Second, a pattern of 

gratings was written into the resist.  The gratings had a 50% duty cycle with periods 

varying from 400 nm to 1600 nm in 200 nm increments.  Third, the resist was developed 

using ZEP-RD for 90 seconds.  Using the resist as a mask, the pattern was transfer etched 

in the GaAs substrate using a BCl3/Ar plasma etch for two minutes. In this process, 20 

sccm of BCl3, 10 sccm of Ar, and 5 sccm of N2 was used at a pressure of 10 mT. The RIE 

power was 60 W and the ICP power was 500 W. The profiles of the etched pattern were 

imaged using a SEM and are depicted in Fig. 5.9. Smaller period gratings had smaller 

depth than the larger period gratings (279 nm for 600 nm period grating compared to 
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799 nm at 1400 nm period grating as shown in Fig. 5.9(a) and 5.9(d) respectively.) This 

was due to a micro loading effect. Resist at the smaller period gratings etched faster than 

the larger period gratings.  The eroded patterns in Fig. 5.9 were caused by resist being 

completely etched and no longer masking the GaAs.  It is therefore necessary to increase 

etching selectivity and reduce the resist etch rate. The first was achieved through 

reducing RIE power, increasing ICP power, and increasing pressure. The resist etching 

rate was decreased by reducing the flow rate of the BCl3 gas. Table 5.1 shows the 

different recipes used, the resulting etch rates, and etch selectivities. 
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Figure 5. 9: Cross section SEM images of gratings with different periods etched into 

GaAs using 500 nm of ZEP520 as a mask and BCl3/Ar/N2 plasma for two minutes.  

Grating periods are (a) 600 nm, (b) 800 nm, (c) 1000 nm, and (d) 1400 nm. 
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Table 5. 1 

GaAs dry etching process when using ZEP 520 as a mask. 

Process BCL3 

(sccm) 

Ar 

(sccm) 

Pressure 

(mT) 

RIE 

(W) 

ICP 

(W) 

Etch rate 

(nm/min) 

Selectivity

1 5 5 10 80 500 115 (1:1.15) 

2 5 5 10 50 500 122 (1:1) 

3 5 2 10 50 500 140 (1:1.4) 

4 5 2 10 40 800 140 (1:1.67) 

5 5 2 15 40 800 170 (1:2) 

 

 

Figure 5. 10: SEM image of the pattern transfer etched in GaAs using ZEP 520 as a 

mask. 
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Figure 5. 11: SEM cross sectional image of the polarization converter pattern transfer 

etched in the GaAs substrate using (a) process 1 for 4 minutes, (b) process 3 for 5 

minutes, (c) process 5 for 6 minutes, and (d) process 4 for 7 minutes. 
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Table 5.1 shows dry etching recipies using BCl3/Ar plasma.  It is clear from this Table,  

increasing the ICP from 500 W to 800 W improved the resist:GaAs etch selectivity from 

1:1 to 1:2. Increasing the pressure from 10 mT to 15 mT, however, increases etch rate 

from 140 nm/min to 170 nm/min. Figure 5.10 shows a top view image of the polarization 

converter element transfer etched into a GaAs substrate taken by SEM. As can be seen, 

the pattern was properly transferred into the substrate. The profile of this element can be 

inspected by cleaving through it.  Figure 5.11 shows profiles of some elements fabricated 

using different process from Table 5.1. The micro loading effect is apparent in 

Fig. 5.11(d), when using the process 5 for seven minutes.    

5.3.  Focused ion beam system for prototyping micro-optical elements 

A FIB is often used in sample preparation for characterization measurements 

using a Transmission Electron Microscope (TEM) or Scanning Transmission Electron 

Microscope (STEM). Others have demonstrated the use of a FIB for micro/nano 

fabrication on flat surfaces of optical components such as gratings, photonic crystals, and 

micro lenses [50-54]. The main limitation of prototyping and fabrication with FIB is cost 

for mass production when compared to the available lithography tools such as EBL and 

photolithography.  Moreover, FIB does not improve the resolution or surface quality over 

these techniques. Fabrication time and complexity become important issues as the device 

size increases. On the other hand, the FIB is a competent tool for rapid prototyping of 
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new devices, since it is a maskless fabrication technique and can be used on a single chip 

with small field sizes [50]. 

 

 

Figure 5. 12: (a) Representation of the FIB as an imaging system. (b) Schematic picture 

of a typical FIB system. 

 

A FIB workstation takes charged particles from a source, focuses them into a 

beam through electrostatic lenses, and scans across small areas of the sample using 

deflection plates or scan coils. The charged particles (ions) are composed of a liquid 
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metal ion source (LMIS), Ga
+
, where ions are produced through field evaporation by 

applying a high voltage on the emitter.  

 The emitter is a highly sharpened metallic needle. As liquid metal flows through 

the emitter, an electric field maintains the conical shape of the liquid.  The conical shape 

provides a small end radius, typically in the range of 5 nm [55].  

5.3.1. Focused Ion Beam as an imaging system 

Focused ion beam is a point to point imaging system, where the shape and the size of the 

ion source at the object plane is transferred to the image plane as illustrated in 

Fig. 5.12(a). To transfer the image of the source to the substrate, an electrostatic lens is 

used. In comparison to an optical lens that consists of a transparent material of refractive 

index greater than unity, the electrostatic lens consists of an electrostatic field generated 

by a set of electrodes and insulators separating them.  It is very difficult to calculate the 

refractive index of the electrostatic lens as the geometry of the electrostatic field depends 

on the potential distribution generated by the electrodes. Instead, equations of motion of 

ions passing through the lens can be written using the paraxial approximation as follows 

[56]. 

 

2

φ ′′
=

qr
rm &&          (5.1) 

120 

 

  
 



4

2φ
φ

′′
+′−=

qr
qzm && ,           (5.2) 

 

where q is ion charge, φ is potential, m is ion mass, φ′ and φ′′ are the first and second 

derivatives of the potential with respect to r. Equation (1) shows the second-order 

derivative of the radial position, r, is linearly proportional to r. This means ions located 

farther from the axis accelerate faster towards that axis. Thus the focal point is 

independent of r, which implies lens action. As in any imaging system, resolution is very 

important. In the next part we will briefly discuss spot size limitations of the FIB system. 

5.3.2. Spot size limitation 

The focused beam size of any FIB system depends on the presence of imaging 

aberrations and the Coulomb effects in the beam. Unfortunately, electrostatic lenses 

suffer from many aberrations known to optics plus more due to the anisotropic properties 

of the lens. As an LMIS is essentially a point source, the principal aberrations of interest 

are spherical and chromatic aberrations. It was assumed the current distribution was 

Gaussian at the source plane and that the source was well aligned on axis.  Aberrations 

that depend on r can then be neglected.  Given the source diameter dg, the spot diameter 

at the image plane is 
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In this equation ds and dc are the spherical and chromatic aberration disks diameters. 

Equation (5.3) can be written in terms of the ion energy U, half width full modulation of 

the ion energy distribution ∆U, aperture angle α, and spherical and chromatic aberration 

coefficients Cso and Cco, as follows [56]. 
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Equation (5.4) shows smaller spot size at the image plane can be achieved using smaller 

aperture angle, α. Reducing aperture angle, however, means reducing aperture size. This 

eventually reduces beam current at the sample/image plane. From the above arguments, a 

tradeoff is required to achieve the desired spot size and current value at the sample 

according to each specific application of the FIB system. Table 5.2 shows some typical 

values of dco and dso for a LMIS focusing column for different aperture angles with 

parameters Cso=10
3
 cm, Cco=10 cm, ∆U = 5 eV, U =10

4
 eV, and dg=50nm [56]. 

The above text discussed the FIB as a system that images the source to the substrate. 

Limitations of spot size (or magnification of the source) was also discussed. It is also 

important to highlight some theory on the interaction between the ion beam and the solid 
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substrate. The following section discusses the basics of ion-solid interaction and its 

importance for micro-fabrication.  

 

 

Table 5. 2 

Typical values for the spherical and chromatic aberrations disks diameters for a LMIS 

focusing column with the parameters mentioned in the above paragraph. 

 

α (mrad) ds (µm) dc (µm) 

0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

6.3x10
-4 

5.0x10
-3 

4.0x10
-2 

1.4x10
-1

0.32 

0.63 

2.5x10
-2 

5.0x10
-2 

0.1 

0.15 

0.2 

0.25 

 

4.3.3. Interaction of ions with the substrate 

Ion-solid interaction is substantially different than electron-solid interaction due to 
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intrinsically large difference in mass of the impinging particles. There are two basic 

classes of interaction between ions and solids.  These are elastic and inelastic 

interactions. Elastic interactions cause defects through sputtering from displaced atoms in 

the lattice. Inelastic interactions produce other forms of energy such as secondary emitted 

electrons or x-rays.  

 With elastic interactions, impinging ions with a specific energy can sputter the 

material atoms, on a very small scale, and permanently change the surface chemistry of 

the substrate. By controlling the locations and depth of material to be removed, extremely 

small patterns can be directly milled in the substrate. The number of target atoms 

sputtered per primary ion is a very important quantity called the sputtering yield. This 

quantity strongly depends on the substrate material and ion source.  The total sputtered 

volume of the material per unit time per unit incident beam current (in nA) is called 

milling rate.  For a structure of certain volume, the total milling time can be estimated as  

 

)()(

)(
113

3

nAcurrentBeamnAsmratemilling

mVolume
timetotal

×
= −−µ

µ
   (5.5) 

 

Table 5.3 shows typical values of milling (sputtering) rate and total time for three 

substrate types: Si, SiO2, and GaAs considering Ga
+
 LMIS with a potential of 30 KeV, 

beam current of 1000 pA, and a total milled volume of 1 µm
3
 [57]. 
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Table 5. 3 

Typical values of the sputtering rate and total milling time for different substrates with 

the ion beam parameters mentioned above.  

 

Substrate Sputtering rate Milling time (sec) 

Si 

SiO2

GaAs 

0.22 

0.23 

0.69 

4.5 

4.3 

1.45 

 

 

The inelastic process, specifically the production of secondary electrons, is very useful 

for constructing an image of the milled structure. This can be accomplished by collecting 

the secondary emitted electrons while scanning across the sample.  

The inelastic process, specifically the production of secondary electrons, is very 

useful for constructing an image of the milled structure. This can be accomplished by 

collecting the secondary emitted electrons while scanning across the sample.  

4.3.4. FIB as a tool for micro-fabrication 

Figure 5.12(b) shows a schematic diagram of a typical FIB system. The three main 

components of the system are the source (object), the imaging optics, and the substrate 
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chamber (image plane). High voltage is applied to the emitter – a voltage difference 

between the suppressor and extractor to extract ions out of the source (typically 30 kV). 

The beam acceptance aperture (BAA) controls beam current in the column, and therefore 

the amplitude of system aberrations in Eq. (5.4). The first lens collimates the beam and 

the second lens serves as the imaging lens. The automatic variable aperture (AVA) can be 

set for the desired current to the sample. The sample holder is placed on a moving stage 

that can be automated. 

With the appropriate background, FIB for micro-fabrication can now be 

discussed. First, feature size limits beam current because the imaged spot size is 

proportional to acceptance aperture size as in Equation (5.4). Reducing beam current will 

reduce system aberrations, but will require a longer milling time as quantified in 

Equation (5.5). Given beam current and total milling volume, total milling time can be 

estimated using Equation (5.5). Patterns can be defined in two formats: basic geometric 

elements or stream of points. For the first format, patterns are described as a combination 

of basic geometric elements. Each element is milled to a specific width such that the final 

pattern is achieved.  To mill one element, the beam deflector controls the trajectory of the 

ion beam to fill the whole area of this pattern 
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Figure 5. 13: FIB system as a tool for micro fabrication 

 

In the second format, the pattern is defined as a stream of points that must each be 

milled for a specific time. In this format, the ion beam is raster scanned over the allocated 

spots in the pattern. Once the pattern is generated, the location of the pattern to be milled 

is manually selected and aligned. This method is convenient for applications that do not 

require high precision. To automate the milling process, a script can be written that 

contains a flow of commands to be executed until the final pattern is milled. Figure 5.13 

shows a schematic diagram of the FIB as a tool for micro fabrication.   

 This section discussed the basics of micro-fabrication and imaging using a FIB 

system. The following section discusses a milling process that allows arbitrarily shaped 

refractive micro-optical elements to be sculpted.  
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4.3.4. Subtractive Milling Process 

Subtractive milling relies on quantization of the optical element surface into 

discrete heights. Each height can be represented by basic geometrical shapes or a more 

complicated stream file. In this work, we present the fabrication of radially symmetric 

diffractive optical elements. For these structures, the basic geometrical shapes are rings 

and circles. The technique may be applied to structures that are not radially symmetric. 

The depth profile of a spherical lens or mirror of radius R is  

 

22 )2/(WRRh −−= ,       (5.6) 

 

where W is the diameter of the micro-optic element. Figure 5.14(a) shows the 

quantization of a mirror surface into N levels of equal spacing δh = h/N .  The radius of 

each level is calculated from equation (5.2). 

 

22 ))(( ii iNRR δρ −−−= ,    i=0,1,…., N-1     (7) 
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Figure 5. 14: (a) Quantization of the spherical mirror (b) subtractive milling technique; N 

concentric circles are milled sequentially starting by the largest one results in a multi-

level spherical mirror 

 

To fabricate a spherical mirror, a script was written to calculate the radii of N concentric 

circles according to Eq. (5.7).  As shown in Fig. 5.14(b), each circle is milled to a depth 

of δh starting with the largest radius, ρo=W/2.  In the case of a positive focal length 
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micro-lens, the script generates N concentric rings of inner radii calculated from Eq. (5.7) 

and outer radii that are greater than or equal to W/2.  The inner radii must be less than 

W/2. The fabrication procedure starts by milling the ring of the smallest inner radius, 

2

1 2 hhRN δδρ −=−   to a depth of δh, followed by the next smaller ring, and so on until 

the mirror is completely milled into the substrate as shown in Fig. 5.14(b). 

5.3.5. Integrated Mirror Example 

As an example of the subtractive milling technique, a micro-optic element was integrated 

onto the surface of a silicon v-groove mirror.  One advantages of FIB milling is the 

ability to mill into tilted surfaces.  The v-groove was fabricated by wet etching and was 

designed to passively align an optical fiber as shown in Fig. 5.15(a). A silicon wafer was 

coated with a layer of SiN and patterned using a g-line stepper with 5X reduction. The 

patterned areas were dry etched in an RIE plasmatherm for 12-14 minutes to remove the 

SiN. The sample was chemically etched in a KOH chemical bath at 90
o
C for five hours. 

This resulted in 54.7
o
 tilted walls corresponding to the crystal lattice planes of the silicon 

wafer. Figure 5.15(b) shows the geometry of the optical element that was fabricated. As 

illustrated in the figure, the distance between the fiber and the mirror, r1, defines the 

location of the image point. Due to the finite size of the mirror aperture, the maximum 

distance that the fiber can be placed in front of the mirror is restricted to a few hundred 
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microns.  For a v-groove with wall angle θ , the location of the fiber center relative to the 

surface of the v-groove lt can be calculated from the geometry shown in Fig. 5.15(a) as 

follows 

 

)cos(
)tan(

θ
θ r

Dlt −=         (5.8) 

 

where D is the half width of the v-groove. For the v-groove to include the full cladding 

region of the fiber, lt must be greater than r, the radius of the cladding.  

 

)sin(

1)cos(

θ
θ +

≥ rD          (5.9) 
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Figure 5. 15: (a) Geometry of the fiber inside the v-groove. (b) The location of the fiber 

relative to the integrated micro lens. 

For a specific v-groove of width 2D and wall tilt angle θ, the lens must be fabricated so 

the center is located at a distance lt under the v-groove surface. For this work, 

W=340 µm, D=170 µm, and r=62.5 µm. Using Eq. (5.4), the height of the center of the 

mirror should be 127.65 µm.  The mirror diameter limited the maximum distance the 

fiber can be moved, r1, while the beam was still within the mirror as shown in Fig. 

5.15(b). The maximum distance, r1(max), was calculated using Gaussian beam 

propagation presented in Eq. (5.10). 

 

 

2
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1 max
1 cos( )                    

2 2

o
o o

o
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λ
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where wo was the mode field radius of the single mode fiber. The location of the 

minimum beam waist, r2, at the image location P2 is defined as 
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where, R is the radius of curvature of the mirror as shown in Fig. 5.15(b).  

 

 

 

Figure 5. 16: SEM image of the micro spherical mirror fabricated on the wall of the v-

groove. 
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CHAPTER SIX: EXPERIMENTAL VERIFICATION OF SELECTIVE 

COUPLING SCHEMES 

In this chapter we demonstrate the experimental analysis and characterization of the 

different coupling schemes presented in chapter five. First, we present, in detail, the 

experimental results and characterization of a MMF condensing lens. A SMF is fusion 

spliced to a MMF of a specific length, and then we recorded the intensity distributions of 

the back reflected light for different wavelengths incident on a planar mirror using a 

tunable laser diode and a CCD camera. The subsequent analysis showed good matching 

to the theoretical predictions made. In the second section, we show the experimental 

analysis of the fabricated phase element for coupling to the LP11 mode. The results 

exhibited a great agreement with the theoretical analysis. The third section deals with the 

hollow-glass-waveguide (HGW) characterization and analysis. We characterized the 

transmission and bending losses in a meter long  hollow glass waveguide and compared 

the measurements with the first order calculations presented in chapter five. Additionally, 

we measured the optical functionality of the fabricated polarization converter element as 

well as its influence on the bending loss in the hollow waveguide.  In the last section we 

analyze the micro lens fabricated on the side wall of a fiber v-groove using the FIB 

system.    
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6.1. MMF as a Condensing Lens 

The tunable fiber optic lens described here is unique with respect to the relative 

simplicity in fabrication and the ability to significantly change the focal length. It consists 

of a multimode fiber (Thor Labs AFS105/125) fusion spliced onto a single mode fiber 

(Corning SMF-28) attached to a tunable laser source via an 80/20 splitter, which allows 

for detection of any returning signal. Agilent 81635A InGaAs power sensor and 81640A 

tunable laser modules were used in conjunction with the 8164A Lightwave measurement 

system to make the measurements presented in this paper.   

 For the fiber parameters cited in table (3.1), the mode associated with maximum 

coupling is νp=4.  This can be observed looking at Figure (4.2) which shows the 

relationship between the coupling efficiency and the mode number for MMF core radii of 

52.5µm and 92.5µm respectively.  Using these parameters at a wavelength of 1.55µm 

results in Lp = 3.2369mm. From equation (4.22), the re-imaging location is found to be 

08.4213 ==− pimagingre Lz  mm.  Using these values, Figure (6.1) is constructed in order 

to represent the intensity distribution along the axis of the multimode fiber with the 

length in the z-direction normalized to Lp.  As mentioned in the theory section, the most 

significant feature is the presence of very distinguished maxima at locations such as 3Lp, 

and 10Lp.  The length of the MMF spliced onto the SMF can be chosen with respect to 

these distinguished maxima observed inside the MMF.   
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Figure 6. 1: Power, normalized to the input power, across an area equals to the SMF core 

along the MMF 

 

By cleaving the multimode fiber at a length slightly less than the length specified at any 

one of these locations, the light exiting the fiber converges to an on-axis location in the 

air outside the fiber as depicted in Figure (6.2).  In this case, the fiber end facet is located 

at a longitudinal location that corresponds to a length slightly less than that defined for 

the m=3 case in equation (4.19).  If a mirror is placed at this same plane, the coupling of 

the light reflected back through the fiber would be a maximum compared to any other 

location in the near vicinity which indicates the location of the focal plane. Thus, the shift 

in the focal plane can be experimentally measured by detecting the power reflected from 

a mirror placed in front of the end facet of the MMF while sweeping the wavelength. 
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Figure 6. 2:  Calculation of intensity inside multi-mode fiber (λ = 1.55 µm) using 

equations (5) and (25) for the field inside and outside the MMF. The MMF is polished 

slightly less than 10 mm (corresponds to 3Lp). [SMF of 4.5 µm core radius and MMF 

core radius of 52.5 µm.] 

 

  To verify the validity of choosing the a length of MMF less than the m=3 case, a scalar 

cylindrically symmetric FD-BPM simulation was performed for a single mode fiber and 

step index multimode fibers using the parameters depicted in table (6.1). Figure (5) 

shows specifically the field convergence at longitudinal on axis locations after exiting the 

end facet of the MMF. 

In order to accurately compare experimental and theoretical results, the length of 

the MMF fusion spliced onto the SMF must be accurately known.  The process used to 

fabricate this device inherently provides this information and a procedure to repeatedly 
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cleave the same length of MMF onto the SMF each time a device is fabricated.  Using the 

scale on the fiber cleaver, a MMF splice length of 21 mm was produced to be fusion 

spliced to the SMF.  Once this was done, a cleave is made 11 mm from the end facet of 

the MMF, leaving a length less than 10 mm long MMF spliced to the SMF.  This length 

is conveniently slightly less than the m=3 case using the formulation of equation (4.21).  

The actual length of the MMF can be more closely determined using a microscope 

equipped with a CCD camera.  Once the fusion splice interface is found, the calibrated 

camera software to observe microscope images can be used to provide the distance from 

this interface to the end facet of the MMF.  The bare fiber device was then appropriately 

connectorized into an FC ferrule with a stereo microscope used to verify that the MMF 

only barely protruded through the end facet of the FC ferrule.  A 0.5 µm polishing disk 

and colloidal slurry were then used to hand polish the end facet of the MMF until the 

surface was of optical quality as depicted in Figure (6.3).  

The single mode fiber and step index multimode fiber used have parameters 

defined in table (6.1).  As done in [6.1], sweeping the wavelength of the source into the 

SMF we observed the reflected power that results for mirror placement at specific 

longitudinal displacements from the end facet of the MMF. Figure (6.4) depicts the 

experimental setup used for these measurements.  
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Figure 6. 3: Device connectorized in FC connector and 20x microscope image of end 

facet of MMF quality 

 

   

Figure 6. 4: the system setup showing the SMF fused splice to MMF. 

 

The most notable feature for each waveform associated with a specific 

longitudinal displacement is the drop in output power (around 15 dBm) seen at a 

139 

 

  
 



particular wavelength over the 1.51-1.60 µm wavelength range. This drop corresponds to 

a plane located behind the focal plane at this wavelength as depicted in Figure (6.5). The 

shift over this wavelength range follows a linear relation that can be expressed as 

 

[ ] mmzout µµλ 4.6234 7.3909exp, +⋅−=          (6.1) 

This drop in power can be explained by carefully observing the intensity 

distribution in Figure (4.1, b) specifically at the locations z = 3Lp and 10Lp. Both 

locations correspond to local maxima along the MMF axis. For the first location, the light 

destructively interferes immediately after it condenses, while in the second location the 

destructive interference occurs before the light convergences. 
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  Figure 6. 5: The experimentally measured back-coupled power versus the wavelength. 
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As the MMF is cleaved to a length slightly shorter than 3Lp the drop in power is 

the most notable feature. Figure (6.2) shows the simulated field distribution in a region of 

1 mm behind the MMF end facet using the modes expansion expressions in (4.3) and 

(4.33).  

To compare these experimental results with the first order approximation the 

expression in equation (4.32) is used to calculate the location of the focal plane over this 

particular wavelength range.  

 

[ ] mmzout µµλ 6894 4208 +⋅−=           (6.2) 

 

Equations (6.1) and (6.2) demonstrate a correlation between the experimental 

measurements and the predicted linear relation in equation (4.30). On the other hand, 

there is an error of 7% in the slope calculated using our first order approximation. This 

error is predictable due to the approximations carried while driving the expression 

presented by equation (4.30). In addition, a cylindrical symmetric FD-BPM is used to 

simulate the experimental setup. 
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Figure 6. 6:  FD-BPM, experimental measurements, and first order results for focal point 

location as a function of wavelength 

 

The power that couples back to the SMF is calculated for four different wavelengths. 

Figure (6.6) depicts the results obtained using the FD-BPM in addition to the 

experimental and the first order approximation results. The figure shows almost a 

constant shift of 200µm between the first order approximation and both the experimental 

and the FD-BPM results. This shift is due to the presence of error of about 3% in 

calculating the longitudinal propagation constant using the asymptotic assumption in 
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comparison to the exact values. This results in inaccuracy of the value of Lp and thus the 

calculated zout.  In addition, by rounding of the value of νp to the nearest integer, an 

additional error in calculating Lp is introduced.  Thus, the first order approximations are 

seen to be able to predict the location where the light condenses outside the MMF as a 

function of wavelength with an acceptable error of 7%.  This error is not as significant 

when estimating the change of the spot size at these planes over the operating range of 

wavelength using 1
st
 order approximations in comparison to complete FD-BPM 

simulations.  

The mode series expansion expression presented in equation (4.35) is used to 

calculate the intensity distribution outside the MMF for four wavelengths: 1.44, 1.48, 

1.52 and 1.56 µm as depicted in Figure (6.7). 
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Figure 6. 7:  Simulated field distribution out of the MMF facet for four different 

wavelengths demonstrating wavelength dependence of focal position. 

 

The HWHM spot sizes at the focal planes are depicted in Figure (6.8) together with the 

experimentally measured data and the results from FD-BPM simulations. Looking at the 

curves in Figure (6.8), it is apparent that the spot size slightly decreases as the 

wavelength is increased. An interesting property of this device is the size of the beam at 

the focus location associated with a particular wavelength.  To enhance the idea of the 
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actual size of a beam at a focus location, the experimentally measured beam is depicted in 

Figure (6.9), overlaid on the actual size of the MMF end facet.   

 

 

 

Figure 6. 8: Spot size (HWHM) at focal location as a function of wavelength for BPM, 

first order solutions, and experimental results. 
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Figure 6. 9:  Depiction of exiting beam at focus location overlaid on actual size of MMF 

end facet. 

6.2. Excitation of LP11 and LP21 in Large Core Fiber Using Single Phase Element  

In our experimental setup, a HeNe laser source is coupled to a single mode fiber and the 

output is then collimated using a 20x objective lens. The phase modulated light is then 
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coupled into a larger core fiber which sustains a few modes using a 20x objective lens 

with effective focal length of 9 mm. The fiber used is Corning SMF 28 which is single 

mode at 1550 nm, and supports four modes at a wavelength of 632.8 nm. Without any 

phase elements, we maximized the light coupled to the LP01 to guarantee minimum tilt 

and shift in the input beam. The phase elements shown in Figure (5.2, a and b) were 

fabricated in Shiply PR1805 photo resist using a stepper system. The refractive index of 

the photoresist is 1.6406 at the working wavelength. To achieve a π phase shift the step 

height was set to 494 nm. For the element depicted in Figure (5.2, a), the resulting far 

field intensity distribution at the output of the fiber is depicted in Figure (6.9, a). The 

figure shows that the light is selectively coupled to the LP11 mode. Measuring the output 

power, 81.4% of the power at the input facet of the large core fiber is coupled to the LP11 

mode. This value is very close to the calculated coupling efficiency of 83.7% using 

equation (4.80). Nevertheless, only 60% coupling efficiency was achieved when using 

the second phase element to selectively excite the LP21 mode. The far field distribution 

after the large core fiber is presented in Figure (6.10, b). However, in both cases the cross 

talk is minimized when properly aligning the input light and the phase element to be on 

axis with the few modes fiber. 
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Figure 6. 10: Observed far field intensity distributions of the light at the out of the fiber 

using the (a) first phase element and (b) the second phase element. 
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6.3. Numerical analysis of the selective excitation of the highest order supermode in 

seven core fiber 

In this section, we calculate the effect of the tilt and shift of the input beam on the 

coupling efficiency to the highest order supermode. Figure (6.11) depicts the change of 

the coupling efficiency when tilting and shifting the input beam. One notices that the 

efficiency is more sensitive to tilting than shifting. Thus, a very precise alignment is 

required to achieve high coupling efficiency.   

 

Figure 6. 11: Coupling efficiency to the last supermode in seven core fiber against the tilt 
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and shift in the input beam. 

6.3. Selective Coupling to TE01 mode in HGW 

In chapters four and five, we have illustrated the design and fabrication of polarization 

converter element to selective couple to the TE01 mode in order to minimize the bending 

loss in hollow waveguide. Here, we first characterize the transmittance and bending 

losses in glass hollow waveguide, and then study the optical behavior of the fabricated 

polarization converter element and its effect on the transmission and bending losses in the 

fiber.  

6.3.1. Measurement of the Transmission and Bending Loss in HGW 

Figure (6.12) depicts an SEM image of the HGW we used in our experiment. In any 

HGW, the thickness and refractive index of the dielectric and metal layers essentially 

affect the bending and transmission losses of this waveguide. As can be seen in Figure 

(6.12), the dielectric layer (AgI) has is 1.21 µm thick, while the thickness of the metal 

(Silver) layer is about 625 nm. At a wavelength of 1.55 µm, the refractive indexes of the 

AgI and silver layers are 2.138 and 11.9+i61.9 respectively. To measure the transmittance 

and bending losses we used a 91.5 cm long piece of this HGW as depicted in Figure 

(6.13).  
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Figure 6. 12: SEM images of the HGW showing the dielectric (AgI) and the metal (Ag) 

layers.  
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Figure 6. 13: Experimental setup for measuring transmission and bending losses in HGW.  

 

In this setup, we used a tunable laser diode source with a wavelength range between 

1.540 and 1.565 µm. The source is pigtailed to a SMF at 1.55 µm with a collimating lens 

at the output of this fiber.  A linear polarizer is placed in front of the collimator in order 

to fix the polarization of the input light to be perpendicular to the plane of incidence. The 

moving mirror slides across the optical path and reflects the light towards an IR CCD 

camera where a far field image is formed. These mirror and camera are important for 

rough alignment as well as for capturing images of the far field intensity when using the 

optical element. When the mirror is not crossing the optical path, a focusing lens (10 cm 

focal length) is used to maximize the coupling to the HGW.  First, we aligned the light 

out of the collimator to the center of the HGW when it is straight (no bending) through 

152 

 

  
 



three dimensional stage in addition to tilt and rotation stages. Alignment is achieved by 

maximizing power read by the detector. The amount of power measured directly out of 

the collimator is about 2.6 mW. However, the measured transmitted power in the fiber, 

when it is straight, is 1.24 mW. Hence, the transmittance of this HGW is 0.4769 and the 

power attenuation coefficient is about 0.407 m
-1

.  

 

 

Figure 6. 14: The measured bending loss in HGW (circles represent three different 

measurement and the dashed line is the average) and the calculated bending loss using 

equation (3.57). 
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Using equation (3.60) and the HGW parameters defined in Figure (3.8), the calculated 

power attenuation coefficient is 0.398 m
-1

 which is close to the measured one. Bending 

the fiber with different radius of curvatures, we recorded the readings of the detector 

behind the fiber as shown in the setup depicted by Figure (6.13). Figure (6.14) shows the 

measured bending loss in the HGW at 1.55 µm as well as the calculated bending loss 

using equation (3.57). 

6.3.2. Characterization of the Fabricated Polarization Conversion Element 

 In chapters four and five, we demonstrated the design and fabrication of a 

subwavelength structure phase element that converts the linearly polarized input light 

into a rotating one for selectively excitation of the TE01 mode inside HGW. In this 

section, we are going to test the optical performance of the element fabricated in GaAs 

substrate. Additionally, we will show that by placing this element in the path of the input 

light, the transmittance of the HGW improves considerably.   

 As presented in chapter five, the polarization converter element is fabricated in a 

GaAs substrate which has a high refractive index (nGaAs = 3.3737 at λ=1.55 µm.)  Hence, 

the maximum transmittance through the substrate itself is calculated through Fresnel 

reflection as follows 
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Thus, the maximum transmittance is 0.4977. However, the multiple reflections from the 

two sides of the wafer (Fabry Perot) cause the change of the transmittance with the 

wavelength as depicted in Figure (6.15). As can be seen in the figure, the maximum 

transmittance is about 0.465 which is very close to the calculated one.   

 

Figure 6. 15: Transmittance through the GaAs wafer as a function of wavelength. 
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To characterize the performance of this element, we placed it in the setup depicted in 

Figure (6.16) below. 

 

 

Figure 6. 16: Experimental setup for testing the performance of the polarization converter 

element. 

 

In this setup, the Source is pigtailed to a SMF at 1.55 µm with a collimating lens at the 

end of this fiber. The first polarizer fixes the polarization of the light to be parallel to the 

table. However, the second polarizer is used to analyze the polarization distribution of the 

light out of the optical element. This can be done by rotating the polarizer and recording 

the intensity distributions for different rotation angles using the imaging lens and the IR 

CCD camera.  

 Using this setup, we first recorded the far field pattern without the second 

polarizer as depicted in Figure (6.17). As can be seen, the intensity distribution is a donut 

shape which matches the predicted one for the TE01mode.  
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Figure 6. 17: The far field intensity distribution of the light out of the polarization 

converter element. 
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Figure 6. 18: Far field intensity distributions for different polarization angles for the light 

out of the polarization converter element. 
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As can be seen in Figure (6.18), when rotating the second polarizer the recorded intensity 

pattern is, basically, a section of the field out of the polarization converter element. This 

section rotates correspondingly with the polarized. That indicates that the polarization 

distribution of the output field is similar to that in Figure (4.13, b). 

 

Figure 6. 19: Measured polarization distribution of the output field. 

 

The polarization distribution of the output field can be constructed from the recorder 

159 

 

  
 



intensity patterns by, first, multiplying each intensity distribution with a vector 

corresponding to the polarization state taking into consideration the flip of the sign across 

the center of the pattern. These vectors are then added together to form the desired 

polarization distribution as depicted in Figure (6.19). 

6.3.3. Characterization of the Transmission Loss on the HGW When Using the 

Polarization Converter Element 

In chapter four, we mentioned that the polarization distribution of the output field is 

strongly dependant on the input polarization state. For instance, if the polarization 

converter element is oriented as in Figure (4.12) the polarization profiles for both 

horizontal and vertical input polarizations are depicted in Figure (6.20). As can be 

noticed, the polarization profile of the output field for the case of a vertically polarized 

input field matches the TE01 mode, while for the horizontal polarization it matches the 

TM01 mode. Thus, one expects a strong dependence of the transmittance of the HGW on 

the input polarization when using this polarization converter element. For a vertically 

polarized input field, the light is mainly coupled to the TE01 mode and thus the 

transmission loss is expected to be minimized. In contrast, for the horizontally polarized 

input field, the light is mainly coupled to the TM01 mode and thus the transmission loss is 

maximized. 
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Figure 6. 20: The polarization profiles of the output field for two input polarization states: 

vertical (top) and horizontal (bottom).   

 

In general, for a linearly polarized light with an angleψ relative to the horizontal axis, the 

intensity absorption coefficient, with the support of equation (3.60), can be analytically 

written as 

 

ψαψαα cos2sin22 ⋅+⋅= TMTE ,      (6.5) 
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where zTE and yTM are the normalized impedance and admittance of the multilayer 

structure of the HGW inner wall as defined in [27]. 

 

Figure 6. 21: The Calculated (solid) and measured (dashed) transmittance as a function of 

the input polarization angle measured relative to the horizontal axis. 
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Experimentally, this dependence of the transmittance inside the HGW on the input 

polarization can be measured by recording the transmitted power for different 

orientations of the element relative to the polarizer in the setup depicted in Figure (6.13).  

Figure (6.21) shows both the measured transmittance and the calculated one as a function 

of the angle of the polarization relative to the horizontal axis. The figure shows a good 

agreement between the measurements and the theory. In addition, one can notice from the 

figure that the transmittance for the TM01 case is almost the same when there is no 

element present. Thus, the light was mainly coupled to the TM01 mode in that case.  

As a conclusion of this section, by placing the fabricated polarization converter 

element with a vertically polarized input field, the transmittance through a 0.915 m piece 

of the HGW increased from 46.3% to 93.2%. In other words, the transmission loss is 

decreased from 1.827 dB/m to 0.168 dB/m.  

5.4. Characterization of the micro lens integrated on a fiber v-groove using the FIB 

system 

For the substrate used herein, the calculated milling rate, from equation (5.5), was 

0.168 (µm
3
s

-1
nA

-1
) for silicon.  According to R.J. Young et al [51] those rates can be 

improved by almost a factor of 10, if gas assistant etching was used. Increasing the 

number of levels will improve the surface quality of the desired micro-optical surface; 

however, increasing the number of levels will increase the probability of the rings to be 
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shifted due to the machine error in allocating the center coordinates. Typical errors in 

centering the rings can be as high as 0.25 µm, which requires a balance between the 

number of rings and the error in their centers. We selected a radius of curvature of the 

spherical mirror to be 250 µm and a 78 µm diameter using the subtractive lithography 

resulting in 40 concentric circles. From equation (5.1), the mirror depth was 2.41 µm 

with a step thickness of 0.0603 µm. The calculated distance r1(max) and r2 are 1.165 mm 

and 1.0385 respectively. We used a Ga
+
 ion beam of 7nA current and an acceleration 

voltage of 30 kV to mill the mirror on the silicon v-groove. To mill on such tilted surface, 

the sample holder was tilted 54.7
o
 such that the ion beam in perpendicular to the v-groove 

wall. Figure (5.16) shows the SEM image of the fabricated spherical mirror. To measure 

the optical properties of the fabricated mirror, a 125 µm diameter optical fiber with a 9 

µm core operating at a wavelength of 632 nm was used to illuminate the mirror as shown 

in the geometry of Figure (5.15). A CCD camera was placed at a fixed distance of 2.5 

mm above v-groove. The Intensity of the reflected beam was recorded for different 

locations of the fiber facet relative to the micro lens. Figure (6.22) shows the measured x 

and y beam waists together with the designed beam waist and simulation results obtained 

using Zemax, which was modeled as a skew Gaussian beam incident at 36
o
 to the normal 

of the mirror axis. The results demonstrate good agreement between the measurements 

and the simulation. Astigmatism is a very pronounced feature in the curves as the light is 

incident off-axis to the mirror.  However, this can be compensated for in the optical 

design if need be the case. 
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Figure 6. 22: The measured and simulated x and y beam waists at a distance of 2.5 mm 

above the v-groove using a single mode fiber at 623 nm. 
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CHAPTER SEVEN: CONCLUSION 

The main scope of this research is the design, fabrication and analysis of optical 

components that selectively excite certain modes to improve the performance of selected 

optical fiber systems. Modeling the specialty fibers, we demonstrated different modeling 

techniques to predict the modal properties of step index fiber, multicore fiber, and 

cylindrical hollow waveguide. Based on these modal properties, we addressed the design 

of different coupling schemes. By directly coupling form a SMF to a MMF, only radially 

symmetric modes are excited inside the MMF. Using this coupling scheme, we 

demonstrated numerically and experimentally the use of this device as a wavelength 

tunable lens. In the second design we used a single phase element to selectively excite the 

LP11 and LP21 modes in a large core step index fiber that sustains few modes. A coupling 

efficiency of 81% was experimentally achieved for the LP11. The element was fabricated 

using photolithography techniques. However, only 60% of the light was coupled to the 

LP21 when using a single phase element. Hence, we proposed the dual elements to match 

the phase and amplitude of the LP21 mode. Using this scheme, we illustrated numerically 

that more than 92% of the light is coupled to this mode. In designing this element, we 

used the least square error method. Additionally, we used the same coupling scheme to 

demonstrate the selective excitation of the last supermode in a seven cores MCF. We 

showed numerically that more than 96% of the light couples to this mode when designing 

these dual elements using the MOP.   
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In the third application, we demonstrated for the first time, to our knowledge, the 

use of a subwavelength structure to improve the transmission loss in HGW by selectively 

exciting the TE01 mode. The structure converts the input linearly polarized light into a 

rotating polarized one similar to the TE01 mode. This novel device was fabricated using 

EBL and dry etching in GaAs substrate using ZEP resist as a mask material. Using this 

device and coupling to a 300 µm bore diameter HGW, the transmission loss is decreased 

from 1.827 dB/m to 0.168 dB/m. These results match the theoretical predictions.  

Finally, we introduced the subtractive milling technique to integrate micro 

elements into real devices using the FIB system. As an example, we demonstrated the 

fabrication of a micro lens on the tilted side of a fiber v-groove. By properly centering 

this lens in the side wall, the device worked as a passively aligned coupling element.   
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