
Title: Selective progressive response of soil microbial community to wild oat roots 

 

Running head: Dynamic rhizosphere microbial community composition 

 

Authors: Kristen M. DeAngelis
1,2

, Eoin L. Brodie
1
, Todd Z. DeSantis

1
, Gary L. Andersen

1
, 5 

Steven E. Lindow
2
, Mary K. Firestone

1, 3*
 

1
Ecology Department, Lawrence Berkeley National Lab, Berkeley CA 94720; 

2
Department of 

Plant and Microbial Biology, University of California, Berkeley, CA 94720; 
3
Department of 

Environmental Science, Policy and Management, University of California, Berkeley; CA 94720;  

*Corresponding author: 137 Mulford Hall, Department of Ecosystem Science, Policy and 10 

Management, University of California, Berkeley; CA 94720, Tel: (510) 643-2402, Fax: (510) 

642-6847, email, mkfstone@nature.berkeley.edu 

 

Running title: Rhizosphere soil microbial community dynamics 

Journal: ISME Journal 15 

Subject category: Microbial population and community ecology 

 

Keywords: Rhizosphere soil/16S rRNA/microarray/PhyloChip/TRFLP/bacterial and archaeal 

populations 

 20 



DeAngelis et al.       2 

 

 2

 

Abstract 

 

Roots moving through soil enact physical and chemical changes that differentiate rhizosphere 

from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of 5 

interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal 

community analysis has allowed definition of the populations that respond to the root within the 

complex grassland soil community; this research accompanies previously reported compositional 

changes, including increases in chitinase and protease specific activity, cell numbers and quorum 

sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere 10 

microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-

RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 

phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria 

and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers 

including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and 15 

Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in 

older root zones. Quantitative PCR revealed β-Proteobacteria and Actinobacteria present at about 

10
8
 copies of 16S rRNA genes g

-1
 soil, with Nitrospira having about 10

5
 copies g

-1
 soil. This 

report demonstrates that changes in a relatively small subset of the soil microbial community are 

sufficient to produce substantial changes in function in progressively more mature rhizosphere 20 

zones.  
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Introduction 

 

As roots move through soil they impact its physical, chemical and biotic characteristics, 

and these changes are accompanied by alterations in microbial community activity (Bringhurst et 

al., 2001; DeAngelis et al., 2008). Soil that is directly influenced by roots, the rhizosphere, can 5 

make up a substantial volume of temperate zone soils, with root influence extending to meters 

depth (Lynch and Whipps, 1990). Root movement through soil creates dynamic environmental 

gradients that are constantly reiterated with new root growth. A root moving through “bulk soil” 

introduces labile carbon and nutrients, creates water conduits, and deposits antimicrobial 

compounds and hormones (Brimecombe et al., 2001; Bringhurst et al., 2001; Hawes et al., 1998; 10 

Hawkes et al., 2007) across temporal scales of hours to days (Jaeger et al., 1999; Lubeck et al., 

2000). As many soil microbes are carbon limited (Paul and Clark, 1996), they may be expected 

to respond quickly to root-induced changes in soil chemistry and nutrient status by reproducing 

and increasing in activity (Heijnen et al., 1995; Herman et al., 2006; Jaeger et al., 1999). This 

enhanced microbial activity may accelerate nutrient cycling as well as other functions such as 15 

pathogenesis. 

Studies of microbial community profiles posit that there are substantial impacts of roots 

on bacterial and archaeal communities in soil (Lynch and Whipps, 1990), though there is little 

direct evidence for changes occurring in specific indigenous soil populations. Previous studies on 

rhizosphere microbial community dynamics have used fingerprinting methods such as DGGE 20 

and T-RFLP along with diversity indices such as Shannon-Simpson’s to describe these 

communities (Pett-Ridge and Firestone, 2005; Yang and Crowley, 2000). Some taxonomic 

resolution has been achieved by primer-specific DGGE targeting α-Proteobacteria, β-
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Proteobacteria and Actinomycetes, where the relative abundance of several Proteobacteria and 

some Actinobacteria were observed to increase in the rhizosphere (Costa et al., 2006). While 

such studies suggest that selective growth of specific groups of bacteria occurs in the 

rhizosphere, the sheer diversity of soil microbiota and the limited resolution of available methods 

have limited such assessments.  5 

Soil genomic DNA re-association kinetics predict that about 10
6
 different genomes per 

gram soil comprise temperate, uncontaminated soil microbial communities (Curtis and Sloan, 

2005; Torsvik et al., 2002), but most methods are only capable of resolving orders of magnitude 

fewer taxa. Terminal restriction fragment length polymorphism (TRFLP) of 16S rRNA can 

resolve about 10
2
 operational taxonomic units (OTUs); OTUs are usually assumed to be distinct 10 

phylotypes, or taxa, for methodological purposes. While this is a robust and reproducible 

method, it yields relatively low-resolution information about microbial community composition 

(Osborn et al., 2000). Clone library analysis has expanded our knowledge of rhizosphere 

community composition and allowed documentation of uncultivable taxa but is limited to 

describing only those taxa most common in the sample. In a recent meta-analysis of 19 clone 15 

libraries from 14 plant species, over 1200 distinguishable taxa from 35 different taxonomic 

orders were revealed (Hawkes et al., 2007). Proteobacteria dominated the rhizosphere in 16 of 19 

studies included, which is in keeping with other suppositions of proteobacterial dominance of 

rhizosphere communities, presumably due to their relatively rapid growth rates (Atlas and 

Bartha, 1993). However, this analysis also uncovered a large number of other phyla, suggesting 20 

that root stimulation of microbial communities may be more complex than that predicted by the 

model of “hungry heterotrophs” simply responding to rhizosphere carbon deposition.  
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This research employs a method capable of documenting community composition with 

resolution that more closely approaches the expected diversity in soil. High-density 16S rRNA 

PhyloChip has the resolution of almost 10
4
 taxa, and the ability to identify individual taxa 

varying by over five orders of magnitude in abundance (Brodie et al., 2006). This PhyloChip 

community analysis examines how microbial community composition changes in response to the 5 

environmental changes accompanying root movement through soil. The exploration of soil 

community dynamics in response to roots complements our previous reports indicating that roots 

moving through soil result in substantial changes in microbial function (DeAngelis et al., 2008; 

Herman et al., 2006). These data may provide the most comprehensive analysis to date of the 

succession of a rhizosphere microbial community, additionally articulating the magnitude and 10 

identity of changing component populations within the rhizosphere communities.  

 

Methods 

 

Preparation of soils, plants and microcosms  15 

Soils were collected from the growing zones of the annual graminoid Avena fatua at the 

University of California Hopland Research and Extension Center (Hopland, Ca.). This soil is a 

medium-texture loam derived from hard sandstone and shale, classified as an ultic haploxeralf 

(Waldrop et al., 2000). Soils were collected to a depth of 10 cm, and immediately transported to 

the lab, where they were sieved to 2 mm, homogenized and hydrated to 50% water holding 20 

capacity just prior to packing into microcosms.  

Microcosms (Figure 1) were employed as previously described (DeAngelis et al., 2008; 

Jaeger et al., 1999). Briefly, seeds of Avena fatua (Valley Seed Service, Fresno CA) were pre-
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germinated prior to planting under a slow drip of tap water for 4 days in darkness. Plants were 

watered until soil reached water holding capacity with tap water every second or third day, 

depending upon the weather to avoid saturation, and incubated in the greenhouse under ambient 

light conditions. After 8 weeks of growth, the experimental side chambers were filled with soil 

and the microcosms were inclined at a 45-degree angle so the roots would grow along one face 5 

of the microcosm. After 8 days of growth the front plate was carefully removed to expose the 

roots, and samples of 4 types of soil were harvested. Bulk soil was excised at least 4 mm away 

from any roots, and soils within 2mm of the root surface were considered rhizosphere soil and 

extracted with a scalpel from three rhizosphere zones: root tip rhizosphere soil was located 0-

4cm from the root tip, root hair rhizosphere soil was 4-8cm from the root tip, and mature root 10 

rhizosphere soil was 8-16cm from the root tip.  

 

Determination of live cell abundance by direct count 

The number of live bacteria were determined using the BacLight Bacterial Viability Kit 

(Molecular Probes Inc., Eugene OR) (Boulos et al., 1999). Serial dilutions of fresh soil were 15 

immediately made in phosphate buffered saline, sonicated, stained, and counted within 48 hours 

of harvest. Cells were stained with SYTO9 and propidium iodide nucleic acid stains; SYTO9 

stains only cells with intact membranes in the presence of propidium iodide, indicating living 

cells. Live cells were counted using epiflourescence microscopy on a Leica DMRX with a 630X 

fluorescence oil-immersion lens (Leica Microsystems, Bannockburn, IL). At least two slides 20 

were prepared per sample, for different dilutions, and ten fields of view were counted per slide. 

Numbers of live bacteria are presented as cells g
-1

 dry soil.  
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PCR amplification of 16S ribosomal RNA genes  

DNA was pooled from three separate extractions from about 250 mg (fresh weight) of 

soil using a modified bead beating method (Brodie et al., 2002; Griffiths et al., 2000). Soils were 

added to CTAB (hexadecyltrimethylammonium bromide) extraction buffer, consisting of equal 

volumes of 10% CTAB in 0.7M NaCl and 240mM potassium phosphate buffer pH 8.0, and then 5 

bead-beaten by adding 0.1 mm glass and 0.5mm zirconia/silica beads (Biospec Products Inc, 

Bartlesville OK), 0.5ml phenol:chloroform:isoamylalcohol (25:24:1) and shaken in a FastPrep 

Instrument (Qbiogene, Inc., Irvine CA) at 5.5m s
-1

 for 30s. Following bead-beating, soils were 

extracted with an equal volume of chloroform:isoamylalcohol (24:1), DNA was precipitated with 

PEG6000/NaCl solution and following ethanol washing, was resuspended in water. One-tenth 10 

dilutions of soil DNA extracts were used as a template for amplification of bacteria and archaea 

16S rRNA genes for TRFLP and PhyloChip analysis. The primers 8F and 1492R were used for 

TRFLP, while the primers 8F* and 1492R for bacteria and 4Fa and 1392R were used for archaea 

for PhyloChip analysis (Table 1). PCR reactions were performed in 50µl using Takara ExTaq 

with 3µM of each primer, 50µg BSA, and 2u of DNA polymerase (Takara Mirus Bio Inc., 15 

Madison WI). Eight replicate PCR amplifications were performed at a range of annealing 

temperatures from 52-62°C in a BioRad iCycler (BioRad, Hercules CA) with an initial 

denaturation (5min) followed by 30 cycles for TRFLP and 25 cycles for PhyloChip of 95°C 

(30sec), annealing (30sec), and 72°C (90sec), and a final extension of 72°C (8min). PCR 

reactions were run on 1% TAE agarose gel to check for products. Bacterial 16S rRNA PCR 20 

product was cleaned up using Qiagen PCR Miniprep Kit (Qiagen Sciences, Valencia, CA), while 

archaeal 16S rRNA PCR product was gel purified and cleaned up using the MoBio Gel 

Purification Kit (MoBio Laboratories, Inc., Solana Beach CA). 
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Microbial community analysis by 16S rRNA PhyloChip 

For application onto the PhyloChip, PCR products were concentrated to 1000 ng 

(bacterial) or 200 ng (archaeal), then fragmented, biotin labeled and hybridized to PhyloChips as 

previously described (Brodie et al., 2006). The microbial community analysis was resolved as a 5 

subset of 8743 taxa on the PhyloChip, where each taxon is represented by a set of an average of 

24 perfect match-mismatch probe pairs (minimum 11, maximum 30). For a taxon to be reported 

in this analysis, 90% of probe pairs in its set (probe fraction, or pf) must have (1) a perfect match 

intensity at least 1.3 times the mismatch, and (2) difference between perfect match and mismatch 

intensity that are 130 times the square of background intensity. Hybridization scores for a taxon 10 

are reported for all samples if at least one sample out of the twelve has pf>0.9; for definition of 

the dynamic subset, this was refined to three replicated samples out of twelve, which is 

analogous to TRF calling (Zak et al., 2006). Hybridization scores are an average of the 

difference between perfect match and mismatch fluorescent intensity of all probe pairs excluding 

the highest and lowest; they were normalized to an average of 2500 au based on internal 15 

standards and are reported as arbitrary units (au). In presenting relative abundances of reported 

taxa, hybridization scores were converted to 16S copy number based on the empirically 

determined log-linear relationship between copy number of applied 16S rRNA PCR product and 

hybridization score (Brodie et al., 2007). 

 20 

Microbial community analysis by 16S rRNA TRFLP 

Bacterial 16S rRNA gene products were amplified by PCR as above with the forward 

primer modified to contain a 6-carboxyfluorescein (6-FAM, Sigma-Genosys, The Woodlands 
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TX) for detection in capillary electrophoresis. About 0.5µg of PCR product was digested 

overnight with the restriction enzyme MspI in a reaction mixture containing 2u enzyme and 

appropriate buffers. Digested DNA was precipitated, resuspended in formamide and mixed with 

GeneScan 500-ROX size standards (Applied Biosystems, Foster City CA)(Brodie et al., 2002). 

Immediately before electrophoresis, amplicons were denatured and electrophoresis was 5 

performed on an ABI 3100 automated capillary sequencer (Applied Biosystems, Foster City 

CA). In culling terminal restriction fragments (TRFs) to use in the final data analysis, peaks were 

eliminated that were present in only one replicate, that had peak heights below 50 fluorescent 

units, or sizes outside of the range of the ROX size standard (Blackwood et al., 2003). TRF peak 

heights were normalized, and TRF sizes were expressed in base pairs to the nearest base. 10 

 

Quantitative PCR of dynamic taxa and groups  

Primers were chosen or designed to target specific groups and taxa identified on the 

PhyloChip (Table 1). Designed quantitative real-time PCR (qPCR) probes were based on 

PhyloChip probes using the Greengenes web application (DeSantis et al., 2006), checked for 15 

utility using Primer3 (Rozen and Saletsky, 2000), checked for specificity using RDP Probe 

Match (Cole et al., 2005) and manufactured by IDT DNA (Integrated DNA Technologies DNA, 

Skokie IL). All qPCR was performed on an iCycler iQ real-time detection system (Applied 

Biosystems, Foster City CA) and used the Qiagen SYBR green kit (Qiagen Sciences, Valencia 

CA). 20ul reactions contained SYBR green 2x master mix, 6pmol each of forward and reverse 20 

primer, 10nM fluorescein, and one-tenth dilutions of soil DNA extract in nuclease free water. 

Conditions began with hot-start activation at 95°C (7 min), followed by 40 cycles of 95°C (30 

sec), 55°C (30 sec), 72°C (75 sec), and a data acquisition step at 78°C (10 sec) empirically 
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determined and optimized using melt curve analysis. Standard curves were run in parallel 

corresponding to a range of 10
8
 to 10

1
 copies ul

-1
. Standard curve regression coefficients were 

consistently above 0.99, and melt curve analysis verified a single amplicon per reaction.  

 

Statistical analysis 5 

Descriptive statistics were performed using JMPIN (SAS Institute, Inc., Cary NC), and 

multivariate statistics were performed using PCOrd (MjM Software, Gleneden Beach, OR). The 

array intensities for all taxa were normally distributed based on a KSL Goodness-of-Fit test 

(p<0.01). Application of an adjusted p-value is too strong a restriction on the community data for 

these purposes (Yang and Speed, 2003), and because a stricter definition of the dynamic 10 

community does not substantially change the results or the variance explained, statistics were 

performed using a p-value of 0.05. To examine only the taxa that were major contributors to the 

change in community, we used two different methods due to the differences in size of the data 

sets. For TRFLP, 132 ANOVAs were performed in JMPIN; this method was not possible for the 

larger PhyloChip data set for which 3 two-tailed paired t-tests were executed between the bulk 15 

soil and each rhizosphere root zone (root tip, root hairs, or mature root). We defined the 

“dynamic subset” of the community as comprised of taxa having at least one significant paired t-

test when three paired t-tests were performed. For ordination of whole communities, principle 

components analysis was chosen because it is best suited for data with an approximate linear 

relationship (McCune and Grace, 2002); in this case, the gradient is that of root exudate 20 

deposition with root age (Jaeger et al., 1999). To estimate richness (S), we used a probe fraction 

value of 0.9 as a cutoff, below which the taxa was deemed absent. Previously probe fraction was 

found to correlate well with richness patterns displayed by clone library analysis (DeSantis et al., 
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2007). For each root zone, we calculated differences in hybridization scores for each rhizosphere 

root zone from bulk soil, and then converted the difference to rRNA gene copies. Numbers of 

individuals (N) are based on live cell counts.  

 

Results 5 

 

Cell density in the rhizosphere compared to bulk soil  

Significantly more live cells were detected in the rhizosphere compared to bulk soil 

(Figure 2). As many as tenfold more cells were detected in the root hairs and the root tip 

rhizosphere compared to bulk soil, with mature root rhizosphere soil having significantly higher 10 

cell density than bulk but less than root hairs or root tip (p<0.0001). The rate of Avena fatua root 

growth in experimental microcosms was approximately 2 cm day
-1

 (Herman et al., 2006), and 

roots up to 16cm were surveyed, assessing changes in the rhizosphere over about 8 days. 

 

16S rRNA PhyloChip community analysis  15 

Of the possible 8743 resolvable taxa on the PhyloChip, we detected 2595 that had a 

positive probe fraction (pf>0.9) in at least one of the twelve samples. For the whole community 

analysis, we examined only taxa that were present (had a positive probe fraction) in all three 

replicates in any one root zone, defined as replicated taxa; 1917 taxa fit this criteria (Table S1). 

That more than 600 taxa were eliminated due to non-replication suggests high biological 20 

variability, and more replicates would likely put the total richness of these soils well above the 

1917 taxa observed. 
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For each of the observed 1917 taxa, we examined the change in relative abundance 

compared to the background bulk soil. The fold difference in 16S rRNA gene copy number of 

each taxon in the root tip, root hairs, or mature root zone rhizosphere relative to the bulk soil 

background is displayed in a histogram in which the taxa are ranked by decreasing relative 

abundance (Figure 3A). Most populations responded positively to the presence of the root in all 5 

root zones compared to bulk soil. A small portion of the taxa exhibited more than a 2-fold 

increase compared to bulk soil, while a few taxa exhibited large (up to 10-fold) increases relative 

to bulk soil. The dynamic subset of the community contains all taxa that showed significant 

response to the presence of the root (p<0.05), and are summarized in Table 2. The dynamic 

subset is comprised of 147 significant taxa and represents 7% of the total community, falling into 10 

17 phyla of the 44 initially detected phyla. Seven of these phyla contain taxa that significantly 

decreased in the root tip rhizosphere zone compared to bulk soil (Figure 3B). Taxa in the 

dynamic subset all eventually become successful root colonizers, since in general, the longer the 

community was exposed to the root, the greater the increase in relative abundance of the taxa. 

Representative response patterns of individual taxa can be discerned by examining the ten 15 

individual taxa that changed the most within the dynamic subset (Figure 3C). The different 

response patterns of these taxa show discontinuous positive responses to the root tip as well as 

negative responses to the newly arrived root.  Only three taxa, TM7 AB100499, Acidobacteria 

AF498753, and Bacteroidetes AB023506 show a progressively positive response to the aging 

root zones.  20 

Principal components analysis performed for the dynamic subgroup of 147 taxa 

explained 78% of the dataset variance in two axes (Figure 4A). Differences in the root zone 

communities could be discerned, indicating that the dynamic subset is comprised of taxa that 
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responded strongly to the presence of the root. Multi-response permutation procedure determined 

that there is a greater than 90% chance that there are differences between the microbial 

communities in the four soil zones (p=0.099).  

Twenty of a possible 309 archaeal taxa were detected by PhyloChip analysis of these 

soils, and of these, 19 were not present with pf>0.90 in all replicates, thus excluding them from 5 

the replicated data set of 1917 taxa (Table S1). However, the archaea examined at all probe 

fractions revealed a strong positive response to the presence of the root (Figure 4B).  

To understand whether the changing relative abundances in taxa between different root 

zones were manifested in changes in richness, we enforced a cutoff probe fraction of 0.9, below 

which we assumed that the taxon was not present. This revealed differences in richness between 10 

root zones, as there were more taxa in the root hairs and mature root compared to bulk soil. The 

root tip actually shows a slight decrease in richness compared to bulk soil (Figure 5), these 

differences were not significant overall, but were manifested in a decrease in richness for the 

Bacteroidetes overall (p=0.083) and the Actinobacteria in the dynamic subset community 

(p=0.049). Additionally, it was the sum of many diverse phyla (“all others”, Figure 5) more than 15 

the major phyla that appeared to contribute most to the increased whole-community richness in 

the root hairs (p=0.065) (Figure 5, Table S1).  

 

TRFLP community analysis of rhizosphere diversity  

A total of 132 TRFs were resolved among all samples by 16S rRNA TRFLP. Of these 20 

TRFs, nine had a significantly different relative abundance as determined by ANOVA (p<0.05) 

in the presence of the root (data not shown). It is likely each TRF represents more than one 

bacterial species or taxa (Costa et al., 2006; Yang and Crowley, 2000), but we can assume that 
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all TRFs represent on-average the same number of taxa. About 7% of species present in this 

analysis (9 of 132 TRFs) had an abundance that was significantly affected by the root.  

 

Quantitative PCR of dynamic taxa groups  

Quantitative PCR was performed to assess the actual abundance of certain taxa that were 5 

observed by PhyloChip analysis to be most responsive to the root (Table S1, Table 2). We used 

specific primer sets to examine the β-Proteobacteria and Actinobacteria, which were commonly 

represented, and Nitrospira, having only one represented taxon (Table S1). While the variance in 

estimate of taxa abundance was too large to resolve differences of any of the groups between the 

different root zones, the absolute abundance of β-Proteobacteria and Actinobacteria were both 10 

about 10
8
 16S copies g

-1
 soil, while Nitrospira were about 10

5
 copies g

-1
 soil.  

 

Discussion 

 

PhyloChip analysis reveals that a diverse array (17 phyla) of bacterial and archaeal 15 

populations changed in relative abundance in the rhizosphere, which is somewhat at odds with 

the long-held assumption that the fast-growing, easily cultivable Proteobacteria are the dominant 

rhizosphere colonizers (Hawkes et al., 2007; Lynch and Whipps, 1990; Paul and Clark, 1996). 

We have previously detected increased acyl-homoserine lactone (AHL) abundance in the 

rhizosphere compared to bulk soil (DeAngelis et al., 2007; DeAngelis et al., 2008); AHL-20 

mediated quorum sensing occurs exclusively within the phylum Proteobacteria (Loh et al., 

2002). While this suggests that proteobacteria increase in numbers in the rhizosphere compared 

to bulk soil, the proteobacteria as a group were only one phylum among many represented in the 
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dynamic subset of 147 taxa. Our data suggest that there is a diverse dynamic subset of the soil 

bacterial and archaeal community that is specifically stimulated by the root; the richness of the 

responsive subset spans about 7% of the total community and encompasses up to 17 different 

phyla. 

Based on richness estimates from the PhyloChip, the Firmicutes, α-Proteobacteria and 5 

Actinobacteria comprised the greatest portion of taxa that changed significantly in relative 

abundance in response to the root (Table 2). A greater portion of the Actinomycetes (16.9%) and 

α-Proteobacteria (11.4%) changed in response to the root than the overall percentage of taxa in 

the dynamic subset (7.7%); the Firmicutes were about as responsive to the root as the dynamic 

taxa as a whole (6.9% compared to 7.7% overall) (Table 3). Well known decomposers (Paul and 10 

Clark, 1996), the Actinobacteria are considered prototypical microbial k-strategists (Atlas and 

Bartha, 1993); as such it is somewhat surprising that so many members of this group would 

increase in rhizosphere dominance. However, a strong actinobacterial response to the Avena root 

may explain some of the increase in exoenzyme activity that we have recently reported 

(DeAngelis et al., 2008). Our results suggest that the Actinomycetes and α-Proteobacteria 15 

include taxa that are exceptionally rhizosphere-competent.  

Many microorganisms remain known only by 16S rRNA since they resist culturing 

efforts (Macrae et al., 2000), and community analysis by PhyloChip yields insight into the 

lifestyle of such organisms. Verrucomicrobia generally resists culturing (Sangwan et al., 2005), 

but culture-independent analyses reveals that this group is present in many soils. This group has 20 

been occasionally observed in rhizosphere soils from aerated systems (Ulrich and Becker, 2006), 

and seems to have representatives that respond positively to the rhizosphere in this study (Table 

2). A recent study, using 
13

C-CO2 to pulse-label plant root exudates and thus identify rhizosphere 
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primary producers, found mostly Proteobacteria with many fewer Actinobacteria and 

Acidobacteria (Vandenkoornhuyse et al., 2007). Though the proteobacteria as a group are often 

considered prototypical fast-growers, only the β- and γ-Proteobacteria are well represented by 

culturing efforts and known fast-growers (Paul and Clark, 1996; Schmidt et al., 2007). The 

functionally diverse Acidobacteria phylum also seems to have a few members that are strongly 5 

rhizosphere competent (Vandenkoornhuyse et al., 2007), but whose role in rhizosphere processes 

remains to be demonstrated. A related study of cultivated strains from Avena rhizosphere soil 

uncovered many diverse and previously uncultured α-Proteobacteria (DeAngelis et al., 2008), 

further suggesting that the α-Proteobacteria may contain many rhizosphere-competent taxa. 

Vandenkoornhuyse and colleagues also found five potentially new phylotypes by stable isotope 10 

probing (Vandenkoornhuyse et al., 2007). Taken together, these observations suggest that roots 

stimulate a broad diversity of the soil microbial community, influencing taxa that are as yet 

unknown and undefined.  

While the older root zones exhibited a fairly typical rhizosphere effect, having increasing 

taxa abundance, the root tip was somewhat of an anomaly. The number of cells in soil near the 15 

root tip was significantly higher than in bulk soil (Figure 2), however the number of taxa present 

was not higher (Figure 5). Production of plant defense compounds by border cells in the root tip 

may be responsible for the somewhat decreased richness in this zone (Hawes et al., 1998). Phyla 

that include typical plant pathogens and symbionts, such as the Pseudomonadales, Rhizobiales, 

and Bradyrhizobiales, were among taxa that decreased in relative abundance in the root tip 20 

(Table 2), as well as many taxa in the Actinobacteria, Bacteroidetes, and α-Proteobacteria. 

However, as the root tip moved through soil, these populations all eventually recovered, since 

almost the entire community responded positively to the presence of the mature root (Figure 3); 
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the exceptions were all four Bacilli (phylum Firmicutes) whose population sizes remained low. 

The effect of root defense compounds produced in the root tip on selective microbial populations 

merits further investigation. 

A few taxa that showed a positive response to the root have not been previously f ound 

to be competent for rhizosphere growth because they are present only in low relative abundance; 5 

the ability to detect such taxa is one of the major advantages of community analysis by 

PhyloChip. Nitrospira accounted for about 10
5
 cells g

-1
 soil compared to the 10

9-10
 total bacteria, 

and one taxon of Nitrospira was identified as responding strongly positively to the presence of 

the root in this study. To our knowledge, all studies on Nitrospira are from water-saturated 

(wetland or rice) rhizosphere soil (Briones et al., 2003; Ikenaga et al., 2003; Kowalchuk et al., 10 

1998). Our results also suggest a Crenarchaeal population in soil that responds strongly to the 

root (Table 2, Figure 4). The Crenarchaeota include ammonia oxidizers that may be functional in 

mesophilic, aerobic soil environments (Treusch et al., 2005). More focused investigation is 

required before concluding that Nitrospira or Archaea contain taxa that are strong rhizosphere 

responders. PhyloChip detection of Nitrospira, verified by qPCR to be present at about 10
5
 per 15 

gram soil, confirms the capacity of this method to reliably detect taxa in low relative abundance, 

down to a detection limit of about 0.01% of the total community (Brodie et al., 2007).  

Changes in 16S rRNA gene copy numbers suggest that a large fraction of the rhizosphere 

community is two to ten times the relative abundance of the bulk soil (Figure 3), and community 

analysis reveals that the root affects a dynamic subset community in a coordinated way (Figure 20 

4). The dynamic subset is not only increasing in relative abundance, but taxa in a diverse, yet 

defined, subset are differentially responding to the characteristics of specific root zones as the 

root moves through soil.  Compositional differences in the rhizosphere community compared to 
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bulk soil and between different root zones point to a fraction of the soil microbial community 

that is especially rhizosphere competent (Folman et al., 2001; DeAngelis et al., 2006; Nunan et 

al., 2005). These compositional changes accompany large changes in soil function associated 

with rhizosphere N cycling (DeAngelis et al., 2006; DeAngelis et al., 2008). The linkage 

suggested between the changes in community composition reported here and the changes in N-5 

cycling previously reported clearly deserve further exploration. 
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Figure legends 15 

 

Figure 1. (A) Microcosms used in this study are constructed of plexiglass with dimensions 15cm 

x 5cm x 40cm. Sieved (2mm) homogenized soil is packed into the main chamber of the 

microcosms, and plants are grown from seedlings to maturity in the main compartment as shown. 

(B) After 6-8 weeks of growth, the microcosms are tipped to a 45 angle, and the solid divider 20 

separating the main chamber from the experimental chamber is replaced with a slotted divider, 

so that the roots will grow along the outside face of the microcosm. (C) A photograph of the 

microcosm shows the experimental chamber, with the roots visible; white lines circle the four 

soil types sampled: root tip, root hairs, mature root rhizosphere soil and bulk soil. 

 25 

Figure 2. Live bacterial cell density is higher in the rhizosphere than bulk soil. Log of live 

bacterial cell counts were tested for normal distribution using the Shapiro-Wilk W test. 

Differences between root zones (treatments) were calculated using one way analysis of variance 

(ANOVA). The Tukey-Kramer HSD test was applied to rank the differences in magnitudes of 



DeAngelis et al.       24 

 

 24

means; lowercase letters indicate means that are not significantly different using a p value cutoff 

of 0.05. For live cells, p<0.0001 indicating significant differences between root zones. 

 

Figure 3. In (A) and (B), ordered histograms display the relative fold differences in average 16S 

rRNA copy numbers for each taxa in the root tip, root hairs, or mature root compared to bulk 5 

soil. The whole community (1917 taxa, A) is shown along side the dynamic community only 

(147 taxa, B), which are comprised of taxa with a significant (p<0.05) p-value in at least one of 

three paired t-tests comparing each rhizosphere root zone to bulk soil. The y-axis value is the 

fold difference in 16S rRNA copy number for each taxon, calculated as the ratio of average 16S 

copy number in the rhizosphere divided by the average 16S copy number in the bulk soil 10 

background. In this display, a value of one indicates that there is no fold difference over the 

background, and a vertical line marks this point for each root zone; a value of 2 or 3 indicates a 

doubling or tripling of that taxa abundance over the bulk soil. For all taxa, n=3. (C) Average 

hybridization scores for the most dynamic taxa from the dynamic subgroup in (B) are shown. 

Error bars represent standard errors, and in many cases are too small to be seen on the graph. 15 

Taxa are labeled with phyla and reference identification number, with phyla abbreviations as 

“Acido.”, Acidobacteria; “Actino.”, Actinomycetes; “Bacte.”, Bacteroidetes; “Firmi.”, 

Firmicutes; “Planc.”, Planctomycetes; “Prote.”, Proteobacteria; “Verru.”, Verrucomicrobia. 

 

Figure 4. (A) Principle components analysis is shown for the dynamic subset of the microbial 20 

community, 147 taxa, which are the taxa that had a p<0.05 from one of three paired t-tests. In 

this analysis, principle components axes 1 and 2 explain most of the variance in the data 

cumulatively. Circles are drawn around the three samples that are replicates for each soil type. 
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(B) Principle components analysis of twenty Archaeal taxa out of the possible 309 on the 

PhyloChip that were detected in our soils. 

 

Figure 5. Relative contribution of major phyla to richness in (A) the entire community, and (B) 

the dynamic subset community. Richness is determined by presence or absence as defined by 5 

probe fraction; see Methods for details. Stacked bars with letters were significant by oneway 

ANOVA to the following p-values: (A) the entire community, Bacteroidetes p=0.0837 and All 

Others p=0.0650, and (B) dynamic subset, Actinobacteria p=0.049. 
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Table 1. Primers used in this study 

Primer name target group sequence 5'-3' 

16S 

location Reference 

8F* bacterial AGAGTTTGATCCTGGCTCAG 8 Brodie, pers com 

4Fa archaeal TCCGGTTGATCCTGCCRG 4 Hershberger et al., 1996 

1392R universal ACGGGCGGTGTGTACA 1392 Amann et al., 1995 

Bet680R ß-Proteobact TCACTGCTACACGYG 680 Fierer & Jackson 2005 

Eub338F bacterial ACTCCTACGGGAGGCAGCAG 338 Fierer & Jackson 2005 

Actino1175F Actinobacteria GGTACAGAGGGCTGCGATAC 1175 this study 

Nitrosp1225F Nitrospira GGCGACACACGTGCAAC 1225 this study 
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Table 2. Relative contribution of taxa
*
 to dynamic subset community by Phylum. 

Phylum 

Total taxa 

detected  

Number of 

significant taxa in 

the dynamic subset  

% Significant taxa in 

the dynamic subset 

of Total 

Crenarchaeota 8 2 25.0 

Nitrospira 5 1 20.0 

Cyanobacteria 21 4 19.0 

Planctomycetes 21 4 19.0 

Bacteroidetes 105 19 18.1 

Actinobacteria 225 38 16.9 

Verrucomicrobia 33 5 15.2 

Proteobacteria, δ- 35 5 14.3 

Proteobacteria, α- 246 28 11.4 

Proteobacteria, γ- 150 17 11.3 

Acidobacteria 65 7 10.8 

Proteobacteria, β- 128 12 9.4 

Unclassified 34 3 8.8 

Total (all Phyla) 1917 147 7.7 

Firmicutes 346 24 6.9 

Proteobacteria, ε- 42 2 4.8 

Spirochaetes 31 1 3.2 

Chloroflexi 41 1 2.4 

*
Only groups with more than 5 taxa are included in this table for clarity. 
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