
Citation: Zhang, X.; Chen, Z.; Wan,

Z.; Liu, C.; He, R.; Xie, X.; Huang, Z.

Selective Recovery of Palladium (II)

from Metallurgical Wastewater Using

Thiadiazole-Based Chloromethyl

Polystyrene-Modified Adsorbent. Int.

J. Mol. Sci. 2022, 23, 12158. https://

doi.org/10.3390/ijms232012158

Academic Editor: Po-Hsiang Chang

Received: 16 September 2022

Accepted: 9 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Selective Recovery of Palladium (II) from Metallurgical
Wastewater Using Thiadiazole-Based Chloromethyl
Polystyrene-Modified Adsorbent
Xiaoguo Zhang †, Zhihong Chen †, Zhaoneng Wan, Chali Liu, Renze He, Xiaoguang Xie * and Zhangjie Huang *

School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
* Correspondence: xgxie@ynu.edu.cn (X.X.); zhjhuang2010@163.com (Z.H.)
† These authors contributed equally to this work.

Abstract: Selective adsorption of palladium from metallurgical wastewater containing Pt (IV), Rh (III),
Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+ has tremendous economic and environmental benefits.
In this paper, a novel thiadiazole-based chloromethyl polystyrene-modified adsorbent, viz. 2, 5-
bis-polystyrene-1,3,4-thiadiazole (PS-DMTD), was synthesized using chloromethyl polystyrene as
the backbone. The experimental results show that PS-DMTD can selectively separate Pd (II) from
metallurgical wastewater in a one-step adsorption process. The calculated saturation adsorption
capacity of PS-DMTD for Pd (II) was 176.3 mg/g at 25 ◦C. The separation factors of βPd (II)/M

n+ (Mn+:
Pt (IV), Rh (III), Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+) were all higher than 1 × 104. FT-IR, XPS,
and single-crystal X-ray diffraction showed that the adsorption of Pd (II) to PS-DMTD was primarily
through a coordination mechanism. Density functional theory (DFT) calculations revealed that the
other base metal ions could not coordinate with the PS-DMTD. Pt (IV) could not be adsorbed to
PS-DMTD due to its strong chlorophilicity. Furthermore, Rh (III) existed as a polyhydrate, which
inhibited Rh (III) diffusion toward the positively charged absorption sites on the PS-DMTD. These
results highlight that PS-DMTD has broad application prospects in the recovery of Pd (II) from
metallurgical wastewater.

Keywords: adsorption; chloromethyl polystyrene; DFT calculations; palladium; separation

1. Introduction

Palladium (Pd) is widely used in electronics, pharmaceuticals, the automotive industry,
fuel cells, and other industries. It has excellent physical and chemical properties; for
instance, a high melting point, good electrical conductivity, and high catalytic activity [1–3].
However, natural Pd reserves are inadequate to meet industrial needs [4,5]. In contrast,
some metallurgical wastewaters contain large amounts of Pd [6,7], but Pd-containing
wastewater has serious potential biological and environmental hazards that can cause
kidney failure, asthma, etc. [8]. Therefore, more and more researchers are turning their
attention to extracting Pd from metallurgical wastewater to obtain more economic and
environmental benefits. However, other platinum group metals chemically similar to Pd
(e.g., platinum, rhodium) are also widely present in metallurgical wastewater. Therefore, it
is difficult to separate and recover Pd from metallurgical wastewater [9].

In recent decades, solvent extraction [10], chemical precipitation [11], membrane sepa-
ration [12], ion exchange [13], and adsorption [14,15] have been widely applied to recover
Pd from wastewater. Among these methods, adsorption offers the advantages of lower
solvent consumption, no third-phase formation, and the ability to adsorb low-concentration
solutions [16]. Therefore, it is regarded as one of the most promising approaches for the
separation and recovery of Pd [17]. The selection of a suitable adsorbent is the most im-
portant aspect of Pd recovery through adsorption methods. So far, adsorbent materials
such as activated carbon [18], impregnating resins [19], and metal–organic frameworks
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(MOFs) [20] have been used to adsorb and separate Pd. However, activated carbon shows
poor selectivity and a low adsorption capacity for Pd. Hence, activated carbon is not
suitable for separating Pd from metallurgical wastewater containing other metal ions.
While impregnated resins often show high selectivity and high adsorption capacities for Pd,
the bond strength between the extractant and the solid carrier typically is not a chemical
bond, resulting in poor regeneration and reusability of the absorbent [21]. MOF-based
adsorbents are considered next-generation materials based on their high surface area and
multi-functionality. Yet, MOF-based adsorbents are unstable in acidic and basic media,
and this low chemical stability limits the application of MOF-based adsorbents [22]. In
summary, the current state of the absorbent materials is not ideal for the selective recovery
of Pd from metallurgical wastewater.

Chloromethyl polystyrene (PS-Cl) is an ideal polymer for the creation of absorbents
that are resistant to both strong acids and bases and are mechanically stable. Stable adsor-
bents are easily formed by replacing the reactive chlorine groups on the PS-Cl with active
groups through a simple grafting reaction [23]. Due to their high stability, the chloromethyl
polystyrene-modified adsorbents are ideal candidates for the adsorption and recovery of
Pd [24–26]. However, the chloromethyl polystyrene-modified adsorbents also can adsorb
other platinum group metal ions [27]. For instance, Kou et al. [28] prepared a series of
chloromethyl polystyrene-modified adsorbents containing imidazole groups and studied the
influence of different alkyl chains on the adsorption performance. In addition to Pd (II), the
adsorbents also showed excellent adsorption performance for Pt (II)/(IV) and Rh (III). Until
now, there are few studies on the relationship between the intrinsic structure and selectivity of
chloromethyl polystyrene resin-modified adsorbents, which hinders their further practical
applications. Moreover, highly selective adsorption and separation of Pd (II) from metallur-
gical wastewater through a one-step adsorption process with a chloromethyl polystyrene
resin-modified adsorbent has not been reported in the literature.

In this paper, a novel chloromethyl polystyrene-modified resin adsorbent, 2,5-bis-
polystyrene-1,3,4-thiadiazole (PS-DMTD), was prepared. PS-DMTD was used to selectively
separate Pd (II) from metallurgical wastewater through a one-step adsorption process. The
key adsorption parameters, including the optimum acidity, adsorption time, and initial
concentration of PdCl42−, were investigated. In addition, the adsorption behavior of PS-
DMTD was analyzed using isotherms and kinetic models. The thermodynamic parameters
of Pd (II) absorption with PS-DMTD were also systematically investigated. FT-IR, XPS, and
single-crystal X-ray diffraction measurements were performed to explore the adsorption
mechanism. Density functional theory (DFT) calculations of PS-DMTD further revealed the
underlying mechanisms for the highly selective absorption of Pd (II).

2. Experiments
2.1. Reagents

Chloromethylated polystyrene (PS-Cl, 100-200 mesh) was purchased from Tianjin
Nankai Hecheng Sci. & Tech. Co., Ltd. (Tianjin, China). Additionally, 2,5-dimercapto-1,3,4-
thiadiazole (DMTD), hydrochloric acid, benzyl chloride, potassium iodide, dichloromethane,
triethylamine, and methanol were purchased from Sigma-Aldrich Co., Ltd. (Saint Louis,
MO, USA). PdCl42− (30 g/L) and metallurgical wastewater was provided by the Yunnan
Mining Group Company (Kunming, China).

2.2. Synthesis of 2,5-bis-polystyrene-1,3,4-thiadiazole (PS-DMTD) and
2,5-bis(benzylthio)-1,3,4-thiadiazole (DTTD)

The novel chloromethyl polystyrene-modified resin adsorbent, PS-DMTD, was pre-
pared as follows: To a 100 mL round bottom flask, 0.62 g PS-Cl, 1.05 g DMTD, 8 mL
triethylamine, 16 mL methanol, and 0.7 g potassium iodide were added and stirred at 95 ◦C
for 24 h. Then, ultrapure water, hydrochloric acid (HCl, 2.0 M) and methanol were used to
wash the product. Finally, PS-DMTD was dried at 40 ◦C for 5 h.
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The synthesis of 2,5-bis(benzylthio)-1,3,4-thiadiazole (DTTD) followed procedures in
the literature [29]. The synthesis scheme for PS-DMTD and DTTD is shown in Table S1.
NMR and MS characterization results for DTTD are shown in Figures S1–S3.

2.3. Adsorption Experiments

Unless otherwise stated, batch adsorption experiments were performed under the
condition of pH 1.0. The effect of HCl concentration was studied as follows: 30 mg of
PS-DMTD was added to 20 mL of Pd (II) solutions (500 mg/L) with an HCl concentration
range of 0.01–2.0 M. After reaching adsorption equilibrium, the Pd (II) concentrations of the
filtrates were determined via ICP-AES (Optima 8300, Perkin Elmer, Waltham, MA, USA).

To measure the adsorption kinetics, 30 mg of PS-DMTD was placed in 20 mL of Pd (II)
solution (500 mg/L). After being oscillated (25 ◦C, 230 rpm) for different time intervals, the
concentration of Pd (II) was measured.

To measure the adsorption isotherms, 30 mg of PS-DMTD was placed in a series
of solutions containing different concentrations of Pd (II) (40–1300 mg/L, 20 mL total
volume). After being shaken (25 ◦C, 230 rpm) for 240 min, the adsorption capacity (qe) of
the PS-DMTD for Pd (II) was calculated according to Equation (1).

qe =
V(C0 − Ce)

m
(1)

where m (g) is the mass of PS-DMTD, C0 (mg/L) and Ce (mg/L) are the concentrations of Pd
(II) before and after adsorption, respectively, and V (L) is the volume of the PdCl42− solution.

To determine the thermodynamic parameters of the absorption, 30 mg of PS-DMTD
was placed in 20 mL of a solution containing 500 mg/L Pd (II). The sample vials were shaken
(230 rpm) at different temperatures. After being shaken for 240 min, the concentration
of Pd (II) in the filtrate was measured using ICP-AES. Each adsorption experiment was
repeated three times, and the final error was ≤3%.

2.4. Physical and Chemical Analysis

The elemental contents of C, H, and N in PS-DMTD were measured through elemental
analysis (Vario EL III, Germany). Infrared spectroscopy (FT-IR, NICOLET 8700, Thermo
Fisher Scientific, Waltham, MA, USA) was used to determine the functional groups present
in the samples. An X-ray photoelectron spectrometer (XPS, K-Alpha+, Thermo Fisher
Scientific, Waltham, MA, USA) was used to determine the chemical states of the different
elements in the PS-DMTD. The morphology of the PS-DMTD absorbent was observed
using scanning electron microscopy (SEM-EDS, Nova NanoSEM 450, FEI Co., Ltd. Portland,
OR, USA). A thermogravimetric analysis instrument (TGA, TA SDT-Q600, TA Instruments,
New Castle, DE, USA) was used to examine the thermal stability of the materials, and
1H NMR spectra (Avance500, Bruker, Germany) were measured to analyze the molecular
structure of the synthesized DTTD product. The crystal structure of the Pd (II)-DTTD
adduct was determined via single-crystal X-ray diffraction (SMART APEX II CCD, Bruker
Corporation, Karlsruhe, Germany).

3. Results and Discussion
3.1. Characterization of PS-DMTD

Table S2 shows the elemental contents of C, H, and N in PS-Cl and PS-DMTD. Notably,
the N content in PS-DMTD was significantly higher than that of PS-Cl, and the C and H
contents were lower than those of PS-Cl due to the replacement of Cl with DMTD in the
PS-DMTD [30]. The elemental analysis results confirmed that DMTD was successfully
introduced onto the PS-Cl.

The FTIR spectra of PS-Cl, DMTD, PS-DMTD, and PS-DMTD-Pd (II) are shown in
Figure 1. The characteristic bands located at 677 cm−1 and 1264 cm−1 in the spectrum of PS-
Cl (Figure 1a) corresponded to the stretching vibrations of C-Cl and the bending vibrations
of CH2-Cl, respectively [24]. The characteristic peak at 2478 cm−1 found in the spectrum of
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DMTD (Figure 1b) corresponded to the stretching vibrations of -SH [31]. Comparing the
spectra for DMTD and PS-DMTD showed that the peak at 2478 cm−1 disappeared in the
spectrum of PS-DMTD (Figure 1c), and new peaks appeared at 1055 cm−1 and 1605 cm−1,
which were assigned to the stretching vibrations of C-S [32] and the stretching vibrations of
C=N [33], respectively. The appearance of these new peaks supported that the Cl groups in
PS-Cl were replaced by DMTD. After the adsorption of Pd (II), the peaks of both C=N and
C-S shifted to high frequencies (4 cm−1 and 7 cm−1, respectively) (Figure 1d), suggesting
that the N and S atoms were involved in the adsorption of Pd (II) [25].
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Figure 1. FTIR spectra of (a) PS-Cl, (b) DMTD, (c) PS-DMTD, and (d) PS-DMTD-Pd (II). 
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Figure 1. FTIR spectra of (a) PS-Cl, (b) DMTD, (c) PS-DMTD, and (d) PS-DMTD-Pd (II).

The XPS spectra were analyzed to better understand the Pd (II) adsorption mechanism,
and the results are shown in Figure 2a. Bands corresponding to N 1s, S 2s, and S 2p were
seen in the XPS spectrum measured for PS-DMTD. In addition, the Cl 2p band in the
spectrum of PS-DMTD was significantly weaker than that of PS-Cl, indicating that most of
the Cl groups in PS-Cl were replaced by DMTD. Furthermore, the Pd 3d peak was present
in the PS-DMTD-Pd (II) spectrum, which showed that Pd (II) was successfully adsorbed
onto PS-DMTD. The high-resolution N 1s XPS spectra before and after adsorption, are
shown in Figure 2b. Before the adsorption of Pd (II), two peaks were found at 399.84 eV
and 400.96 eV, belonging to N-N [29] and C=N [32], respectively. After Pd (II) adsorption,
the N-N peak shifted to a binding energy (BE) of 399.94 eV, and a new peak appeared at
a BE of 402.51 eV which was ascribed to the formation of N-Pd bonds [34]. As shown
in Figure 2c, the S 2p spectra could be deconvoluted into two components attributed to
C-S-C (thioether, 163.54 eV) and C-S-C (thiophene, 164.94 eV) [35]. After the adsorption,
the BE of the C-S-C (thioether) and C-S-C (thiophene) shifted to 163.84 eV and 165.22 eV,
respectively. In addition, a new peak assigned to S-Pd bonds appeared at 162.44 eV [36].
The peaks at 337.43 eV and 342.67 eV were ascribed to the Pd-Cl bonds in PdCl42−, and
the doublet peaks (BE = 338.21 eV, 343.36 eV) likely corresponded to the binding energies
of Pd-N or Pd-S bonds (Figure 2d) [37–39]. The XPS results further confirmed that DMTD
was successfully grafted onto the PS-Cl and also indicated that Pd (II) coordinated with the
N and S atoms in the PS-DMTD absorbent.



Int. J. Mol. Sci. 2022, 23, 12158 5 of 16

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 17 
 

 

doublet peaks (BE = 338.21 eV, 343.36 eV) likely corresponded to the binding energies of 

Pd-N or Pd-S bonds (Figure 2d) [37–39]. The XPS results further confirmed that DMTD 

was successfully grafted onto the PS-Cl and also indicated that Pd (II) coordinated with 

the N and S atoms in the PS-DMTD absorbent. 

1200 1000 800 600 400 200 0

N1s

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

O1s

O1s

O1s

N1s

Pd3d

C1s

S2s

S2s

Cl2p

Cl2p

Cl2p
S2p

S2p

PS-Cl

PS-DMTD

PS-DMTD-Pd(II)

(a)

 

415 410 405 400 395 390 385

Before

After

(b) N 1s

C=N

N-Pd

C=N

N-N

N-N

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)  

180 175 170 165 160 155 150

(c)

C-S-C (thiophene)

C-S-C (thioether)

S-Pd

C-S-C (thioether)

C-S-C (thiophene)

Before

After

S 2p

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)  

350 345 340 335 330

Pd 3d5/2Pd 3d

Pd 3d3/2

(d)

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)  

Figure 2. XPS spectra analysis: (a) full spectra of PS-Cl, PS-DMTD and PS-DMTD-Pd (II), (b) N 1s, 

(c) S 2p, and (d) Pd 3d. 

The N2 adsorption–desorption isotherms of PS-Cl and PS-DMTD are shown in Figure 

3a, and the isotherm was similar to the typical IV adsorption isotherms. Figure 3b shows 

that the corresponding pore size distributions were indicative of a mesoporous structure 

and were advantageous for adsorption. PS-DMTD had a specific surface area and total 

pore volume of 364.03 m2/g and 1.54 cm3/g, respectively, which were smaller than that of 

PS-Cl (Table 1) due to the DMTD covering the surface of the synthesized PS-DMTD [40]. 

Figure 2. XPS spectra analysis: (a) full spectra of PS-Cl, PS-DMTD and PS-DMTD-Pd (II), (b) N 1s,
(c) S 2p, and (d) Pd 3d.

The N2 adsorption–desorption isotherms of PS-Cl and PS-DMTD are shown in Figure 3a,
and the isotherm was similar to the typical IV adsorption isotherms. Figure 3b shows that the
corresponding pore size distributions were indicative of a mesoporous structure and were
advantageous for adsorption. PS-DMTD had a specific surface area and total pore volume of
364.03 m2/g and 1.54 cm3/g, respectively, which were smaller than that of PS-Cl (Table 1) due
to the DMTD covering the surface of the synthesized PS-DMTD [40].
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Table 1. BET data of PS-Cl and PS-DMTD.

Specific Surface Area
m2/g

Total Pore Volume
cm3/g

PS-Cl 417.65 1.65
PS-DMTD 364.03 1.54

SEM images showed that the PS-DMTD were spherical in shape with diameters
ranging from 80–150 µm (Figure 4a,b). Figure 4c shows the corresponding maps for PS-
DMTD-Pd (II). The images show that N and S were uniformly distributed on the surface
of PS-DMTD, which can be attributed to the dense and thin thiazole layer grafted on
the surface of the particles after the reaction [41]. Notably, Pd (II) was also uniformly
distributed on the surface of PS-DMTD-Pd (II), which further highlights that PS-DMTD
effectively adsorbed Pd (II).
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Figure S4 shows the TGA curves of PS-Cl and PS-DMTD. During thermal degradation,
PS-Cl showed two weight loss peaks. The first weight loss peak occurred near 146 ◦C,
and the second decomposition heat signal appeared at approximately 442 ◦C. In contrast,
the TGA curve for PS-DMTD only showed one thermal degradation process at 437 ◦C. At
900 ◦C, the residues of PS-Cl and PS-DMTD were about 13.3% and 21.0%, respectively. The
TGA results revealed that the PS-DMTD was more thermally stable than PS-Cl due to the
formation of stable covalent bonds between PS-Cl and DMTD during the synthesis [42].

3.2. The Effect of HCl Concentration

According to Figure S5, the Pd (II) adsorption capacity remained almost constant
for HCl concentrations between 0.01–0.1 M. However, the degree of protonation on the
PS-DMTD absorbent increased significantly as the HCl concentration increased from 0.1 to
2.0 M, resulting in a decrease in the number of active sites involved in coordination with
Pd (II) and a decrease in the absorption capacity [1]. When the concentration of HCl is
lower than 0.01 M, Pd (II) is readily hydrolyzed [25]. Therefore, the optimal pH range
of PS-DMTD adsorption of Pd (II) is 1.0 to 2.0. Unless otherwise stated, the following
experiments were performed under the condition of pH 1.0.

3.3. Adsorption Kinetics Studies

Figure S6 shows the relationship between contact time and adsorption capacity. The
adsorption capacity of PS-DMTD for Pd (II) increased rapidly for 80 min and reached
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equilibrium at 240 min. The experimental data were fitted with pseudo-first-order and
pseudo-second-order kinetic models, as shown in Equations (2) and (3) [43].

log(qe − qt) = logqe −
k1t

2.303
(2)

t
qt

=
1

k2·q2
e
+

t
qe

(3)

where qe (mg/g) is the adsorption capacity of PS-DMTD for Pd (II) at equilibrium, and
qt (mg/g) is the adsorption capacity of PS-DMTD for Pd (II) at t time. k1 (min−1) and k2
(g·mmol−1·min−1) are the rate constants.

Table 2 shows the parameters fitted by the kinetic models, and fit curves are shown in
Figure S7. Table 2 and Figure S7 show that the process of Pd (II) adsorption onto PS-DMTD
was mainly through chemical adsorption.

Table 2. Kinetic data of adsorbed Pd (II).

Pseudo-First-Order Kinetic
Model

Pseudo-Second-Order Kinetic
Model

k1 (min−1) R2 k2 (g·mmol−1·min−1) R2

PS-DMTD 0.0205 0.8737 0.00143 0.9987

3.4. Adsorption Isotherm Studies

The experimental data were non-linearly fitted with the Langmuir and Freundlich
models, as shown in Equations (4) and (5) [25].

qe =
KLCeqm

1 + KLCe
(4)

qe = KFC
1
n
e (5)

where qm (mg/L) is the maximum adsorption capacity, KL is the Langmuir adsorption
constant, and KF and n are the Freundlich adsorption constants. Figure 5 shows the fitted
curves for the two models, and Table 3 shows the corresponding fitted parameters. The
computing method of the adjusted determination coefficient (R2

adj), the residual sum
of squares (RSS), and the Bayesian information criterion (BIC) are shown in Equations
(S1)–(S3) [44,45].
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Table 3. Non-linear adsorption parameters of PS-DMTD for Pd (II).

Isotherm Models Parameters

Non-linear Langmuir model qm, cal (mg/g) 176.3
qm, exp (mg/g) 155.2

KL (L/mg) 0.0061
R2

adj 0.9962
RSS 105.10
BIC 16.93

Non-linear Freundlich model KF (mg L1/n g−1 mg−1/n) 9.724
n−1 0.4060

R2
adj 0.9648

RSS 985.95
BIC 21.36

Table 3 shows that the R2
adj value of the Langmuir isotherm model is higher than

that of the Freundlich model. On the contrary, the RSS and BIC values of the Langmuir
isotherm model are lower than those of the Freundlich model. Hence, the Langmuir model
is better fitted for Pd (II) adsorption onto PS-DMTD [46–48]. In addition, the calculated
Langmuir adsorption capacity of PS-DMTD for Pd (II) was 176.3 mg/g at 25 ◦C.

3.5. Adsorption Thermodynamics for Pd (II)

The adsorption performance of PS-DMTD for Pd (II) at different temperatures was
investigated. The thermodynamic equilibrium constant Kd, the entropy changes ∆S, the
standard enthalpy changes ∆H, and the free energy change ∆G, were calculated using
Equations (6)–(8):

Kd =
(C0 − Ce)V

mCe
(6)

LnKd = −∆H
RT

+
∆S
R

(7)

∆G = ∆H − T∆S (8)

Figure S8 shows the relationship between ln Kd and 1/T, and Table 4 shows the
values of ∆H and ∆S. Here, ∆H > 0 and ∆G < 0, which indicated that the adsorption was
an endothermic reaction and spontaneous, respectively [49]. ∆S > 0 suggested that the
randomness of the interface between the PS-DMTD and PdCl42− increases and the high
temperature is beneficial to adsorption. The absolute value of T∆S > ∆H indicated that the
entropy change was the main factor influencing the adsorption process [50].

Table 4. The values of ∆H, ∆S, and ∆G.

T ∆G ∆H ∆S

(K) (kJ·mol−1) (kJ·mol−1) (J·mol−1·K−1)

PS-DMTD

293.15 −14.84

36.53 175.22
298.15 −15.71
303.15 −16.59
308.15 −17.47
313.15 −18.34

3.6. Application in Metallurgical Wastewater

To investigate the practicality of PS-DMTD, it was used to adsorb Pd (II) from metal-
lurgical wastewater. The composition of the metallurgical wastewater is shown in Table S3.
The distribution ratio (D), adsorption efficiency (E), and separation factor (β) were obtained
using Equations (9)–(11). Figure 6 shows the adsorption efficiency (E) and the distribution
ratio (D) of PS-DMTD for the different metal ions in the metallurgical wastewater. The
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result indicated that the separation factors (β) of Pd (II) and Pt (IV), Rh (III), Ca2+, Cu2+,
Fe3+, Ni2+, Pb2+, V3+, and Ti4+ were 1.3 × 104, 2.3 × 104, 2.3 × 104, 2.6 × 104, 1.7 × 105,
3.3 × 104, 1.9 × 104, 6.7 × 104, and 1.0 × 105, respectively. Thus, PS-DMTD was highly
selective towards separating Pd (II) from the metallurgical wastewater.

D =
V(C0 − Ce)

mCe
(9)

β =
DPd (I I)

DMn+
(10)

E =
C0 − Ce

C0
× 100% (11)

where DPd (II) is the distribution ratio of Pd (II) and DMn+ is the distribution ratio of Pt (IV),
Rh (III), Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+.
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Figure 6. Separation of Pd (II) from the metallurgical wastewater. mPS-DMTD = 0.1 g,
CPd (II) = 109 mg/L, pH = 1.0, T = 298.15 K, t = 240 min, and V = 0.02 L.

3.7. Regeneration and Recovery

The circulation performance of an adsorbent is an important indicator. The PS-DMTD
loaded with Pd (II) was treated with 20 mL of the acidified thiourea solution to desorb
the Pd (II). Then, the PS-DMTD was washed successively with anhydrous ethanol and
ultrapure water, and finally dried under vacuum at 40 ◦C for 12 h. The recovery efficiency
of Pd (II) was still over 92.0% after five cycles (Figure 7), implying that PS-DMTD has an
excellent regeneration and reuse performance.
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4. Adsorption Mechanism
4.1. DFT Results

To analyze and reveal the selectivity and mechanism of anion metal chlorides adsorbed
by the PS-DMTD, one structural unit of the PS-DMTD was chosen as a model molecule.
The model molecule is denoted by L, viz. DTTD. Its optimized structure and Mulliken
atomic charges are shown in Figure 8. Protonation of PS-DMTD, the chlorophilic property
of metal ions, the coordination strength of the model molecule L with the anionic metal
chloride, and the average charge density of anionic metal chlorides were investigated using
density functional theory (DFT) calculations.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 17 
 

 

efficiency of Pd (II) was still over 92.0% after five cycles (Figure 7), implying that PS-

DMTD has an excellent regeneration and reuse performance. 

1 2 3 4 5

0

20

40

60

80

100

E
 (

%
)

Cycles

 Extraction efficiency

 Recovery efficiency

 

Figure 7. Adsorption of Pd (II) by PS-DMTD in the adsorption–desorption cycle. mPS-DMTD = 0.040 g, 

CPd (II) = 100 mg/L, pH = 1.0, T = 298.15 K, t = 240 min, and V = 0.02 L. 

4. Adsorption Mechanism 

4.1. DFT Results 

To analyze and reveal the selectivity and mechanism of anion metal chlorides ad-

sorbed by the PS-DMTD, one structural unit of the PS-DMTD was chosen as a model mol-

ecule. The model molecule is denoted by L, viz. DTTD. Its optimized structure and Mul-

liken atomic charges are shown in Figure 8. Protonation of PS-DMTD, the chlorophilic 

property of metal ions, the coordination strength of the model molecule L with the anionic 

metal chloride, and the average charge density of anionic metal chlorides were investi-

gated using density functional theory (DFT) calculations. 

 

Figure 8. The optimized structure and Mulliken atomic charge of the model molecule L (at B3LYP/6-

31G**/SDD level). 

4.1.1. Protonation of PS-DMTD 

Under acidic conditions, the N atom of the PS-DMTD may be protonated and PS-

DMTD may adsorb metal chloride anions as an anion-exchange resin. Thermodynamic 

parameters of the following protonation reactions of L were calculated at the B3LYP/6-

311++G**/SDD//B3LYP/6-31G**/SDD level. Table 5 shows the calculation results; Figure 9 

gives the optimized structure of L protonated at the N atom and its Mulliken atomic 

charges. 

𝐻3𝑂+ + 𝑁(𝐿) ⇌ 𝐻𝑁(𝐿)+ + 𝐻2𝑂 (12) 

H3O+ + NH(L)→N2H2(L) + H2O (13) 

Figure 8. The optimized structure and Mulliken atomic charge of the model molecule L (at B3LYP/6-
31G**/SDD level).

4.1.1. Protonation of PS-DMTD

Under acidic conditions, the N atom of the PS-DMTD may be protonated and PS-
DMTD may adsorb metal chloride anions as an anion-exchange resin. Thermodynamic
parameters of the following protonation reactions of L were calculated at the B3LYP/6-
311++G**/SDD//B3LYP/6-31G**/SDD level. Table 5 shows the calculation results; Figure 9
gives the optimized structure of L protonated at the N atom and its Mulliken atomic charges.

H3O+ + N(L) 
 HN(L)+ + H2O (12)

H3O++NH(L)→ N2H2(L)+H2O (13)

Table 5. Thermodynamic parameters of protonation of L (at standard atmosphere, 298.15 K, in gas phase).

Parameters ∆G (kcal/mol) ∆H (kcal/mol) ∆S (Cal/T·mol)

Reaction (1) −59.59 −59.81 −0.37
Reaction (2) 40.35 43.43 5.17
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From the values of the thermodynamic parameters for protonation reactions on the N
atom (Table 5), it is expected that the PS-DMTD would be highly protonated in an acidic
solution. The protonation of the first N atom is a highly exothermic process. In contrast,
the protonation of the second N atom is endothermic (43.43 kcal/mol), and one of the two
N atoms is easier protonated. Furthermore, protonation of the S atom should not occur
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because the S atom of L has a positive charge of 0.059 (Figure 8). The protonated adsorption
active site suggests that PS-DMTD may act as an anion-exchange resin. Therefore, the
adsorption of metal ions by PS-DMTD in acidic solutions may involve two adsorption
mechanisms: one is the coordination mechanism of N and S atoms (as ligand atoms of L) to
metal ions, and the other is the ionic association mechanism in which the metal chloride
anions are absorbed by PS-DMTD (as an anion-exchange resin).

It is well-known that base metal ions (Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+) exist
mainly in their cationic forms in an aqueous solution. Thus, Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+,
and Ti4+ were not adsorbed by PS-DMTD as an anion-exchange resin via an ionic association
mechanism. On the other hand, the highly protonated adsorption active site is positively
charged and repels base metal cation diffusion and prevents base metal cations from getting
close to the active adsorption site. Furthermore, the S atom (as a possible coordination atom) is
also positively charged at 0.145 and 0.128 (Figure 9) after the protonation of PS-DMTD. Hence,
positively charged base metal ions cannot coordinate with the PS-DMTD via a coordination
mechanism. This is in full agreement with the experimental results that showed PS-DMTD
had no adsorption capacity for base metal cations.

4.1.2. Chlorophilic Property of Metal Cations

In hydrochloric acid media, Pd (II) and Pt (IV) mainly exist in the forms of metal chlo-
ride anions PdCl42− and PtCl62−, respectively. Whereas for Rh (III), RhCl63− is unstable,
easily hydrated, and mainly exists as polyhydrate ions in acidic solution [51,52]. The insta-
bility of RhCl63- and the formation of polyhydrates inhibits the diffusion of Rh (III) towards
the absorption sites, which is why Rh (III) was hardly absorbed by PS-DMTD. To verify
this observation, we calculated the reaction energies of water molecules substituting the
chlorine anion of RhCl63− at the B3LYP/def2-QZVP level. The calculation results show that
the substitution process of the first chlorine anion by a water molecule is highly exothermic
(137.75 kcal/mol), and the second chlorine anion substituted by a water molecule is even
more exothermic (191.92 kcal/mol). This indicates that RhCl63− is easily hydrated and
forms polyhydrate species in an aqueous solution.

In theory, the adsorption processes Pd (II) and Pt (IV) may involve two mechanisms,
i.e., the coordination mechanism and the anion-exchange mechanism. In terms of the
coordinating procedure, the metal chloride anion first diffuses from the bulk solution to
near the protonated adsorption active site. After the deprotonation of the N atom, the
N and S coordinating atoms in PS-DMTD then substitute one or two chloride ions (Cl−)
and coordinate with the metal ion. Thus, coordinating interactions should overcome
both the energy barrier of the deprotonation of the N atom and the energy barrier for
substituting one or two chloride ion (Cl−) ligands in the metal chloride anion. Thus, the
coordination strength of Cl− with a metal ion in the metal chloride anion (in other words,
the chlorophilic property of metal ions) is an important aspect that impacts the adsorption of
metal chloride anions via the coordination mechanism. The average coordination bonding
energy (ACE) of the metal chloride anions, PdCl42−, RhCl63−, and PtCl62−, were calculated
at the B3LYP/def2-QZVP level according to the dissociation reaction (Equation (14)), as
shown in Table 6.

[MClx]
z− → M(x−z)+ + xCl− (14)

Table 6. The average coordination energy (in kcal/mol) of metal cation with chloridion in complex
[MClx]-z (at B3LYP/def2-QZVP level).

Anion PdCl42− RhCl63− PtCl62−

ACE 172.24 211.29 405.24

As seen in Table 6, the ACE value of PtCl62− is 405.24 kcal/mol and is much larger
than that of the other two metal chloride anions, and this indicates that the Pt (IV) has
the strongest chlorophilic property and the ACE value of PdCl42− is the smallest and has
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the weakest chlorophilic property. The calculation results show that PdCl42− is the most
likely to be adsorbed via the coordination mechanism and PtCl62− is the most unlikely to
be adsorbed via the coordination mechanism.

4.1.3. Coordination Strength of PS-DMTD with Metal Ions

Another important factor that impacts the adsorption of metal chloride anions via
the coordination mechanism is the coordination strength of PS-DMTD with metal ions.
Thus, we calculated the reaction energy changes (DE) in the N and/or S atoms of L by
substituting one or two chloride ion (Cl−) ligands of [MClx]z− to coordinate with the
metal ion (Equations (15) and (16)). The energy value (CE) was calculated according to
Equation (17), which represents the coordination strength of PS-DMTD with metal ions.
The calculation results of some typical coordination models (Figure 10) are listed in Table 7,
and the ACE values of metal chloride anions are also listed for convenient comparison.

L +
[

MClx]
z− → [ LMClx−y]

(z−y)− + yCl− (15)

DE = EL + E[MClx ]
z− − E

[LMCly ]
(z−y)− − yECl− (16)

CE = DE + yACE[MClx ]
z− (17)
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Table 7. The energy change (DE) in some coordination reactions of L with [MClx]z− and coordination
strength (CE) of L with metal chloride anion (at B3LYP/def2-QZVP level).

Coordination
Complex

DE CE ACE

(kcal·mol−1) (kcal·mol−1) (kcal·mol−1)

[PdCl2]-L 6.51 350.99 344.48
[Pd2Cl4]−-L 13.33 351.14 344.48
[RhCl4]−-L 0.41 422.99 422.58

[RhCl4]−·H2O-L 52.14 263.42 211.29
[PtCl4]−-L −10.51 799.97 810.48
[Pt2Cl8]-L −51.20 784.88 810.48

Both the N and S atoms of L can simultaneously coordinate with metal ions (Figure 10),
and the PS-DMTD can coordinate with the metal ions. One adsorption site of L can
coordinate with one or two metal chloride anions. In terms of the coordination strength
values (CE) in Table 7, the coordination interaction of Pt (IV) with L is the strongest, and
that of Pd (II) and Rh (III) are comparable. However, regarding the coordination of L
with the N and S atoms, substituting one or two Cl- of Pd (II) and Rh (III)-based chloride
anions is energetically favored, whereas the coordination of L substituting a chloride ion
of PtCl62− is endothermic (the DE values are shown in Table 7). This suggests that the
coordination of L with Pd (II) and Rh (III) is stronger than that of the chloridion ligand
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and suggests that PS-DMTD is in favor of absorbing the Pd (II) ion with the coordination
mechanism. On the other hand, Pt (IV) cannot be efficiently absorbed by the PS-DMTD
resin via the coordination mechanism due to its strong chlorophilicity. Although the
coordination strength of L with Rh (III) is strong enough, it hardly shows an absorption
capacity, indicating that Rh (III) mainly exists as a polyhydrate, as a neutral complex
(RhCl3(H2O)3) and/or as positive ions in 0.1M HCl media [52], which inhibits its diffusion
toward the positively charged absorption site of PS-DMTD.

As mentioned above, the DE values of Pd (II) are positive (Table 7), suggesting that
substitution coordination reactions of PdCl42− with L are exothermic. However, Pd (II)
adsorption is endothermic, with an experimental value of 36.53 kJ/mol. This is because
the deprotonation process of the protonated PS-DMTD occurs before the substitution
coordination reaction of PS-DMTD with PdCl42−, and the deprotonation of the protonated
PS-DMTD is a highly endothermic process (Table 5). This also provides evidence that the
adsorption of Pd (II) is via the coordination mechanism instead of via the anion-exchange
mechanism since the deprotonation of the protonated PS-DMTD occurs. The crystallization
of the Pd (II)-DTTD adduct (CCDC: 2165849) was also obtained by mixing DTTD with the
PdCl42− solution. Figure 11 shows the crystal structure and the projection of the crystal
along the a-axis, and the crystal data are shown in Table S4. The result indicates that
the single crystal formed by Pd (II), two Cl atoms, and two DTTDs is a zero-dimensional
structure and demonstrates a strong coordination ability between N and Pd (II).
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4.1.4. Low Absorption via an Anion-Exchange Mechanism

The absorption site of PS-DMTD is partly positively charged and may absorb metal
chloride anions as an anion-exchange resin in theory; the ionic association mechanism
may also contribute to the absorption capacity of Pd (II). Herein, we will discuss these
hypotheses based on the experimental and theoretical calculation results.

Adsorption via the anion exchange is expected to follow trends with the “smallest
charge density” [1,53], i.e., adsorption through the anion-exchange mechanism favors metal
chloride anions with a smaller charge density because of the loose water solvation. We
calculated the volumes of the metal chloride anions and their average charge densities, i.e.,
the anion’s charge divided by its volume. The results are listed in Table 8.

Table 8. The data of metal chloride anion (at B3LYP/6-31G**/SDD level).

Species Molecular Volume (Å−3)
Average Charge Density

(10−3e. Å−3)

PtCl62− 225.440 8.87
PdCl42− 178.460 11.21

Based on expected trends with charge densities, it can be concluded that PtCl62− would
be more easily adsorbed than PdCl42− via an anion-exchange mechanism because PtCl62−



Int. J. Mol. Sci. 2022, 23, 12158 14 of 16

has a smaller charge density. However, the experimental separation factor (βPd (II)/Pt (IV))
is 1.3 × 104, which means that PS-DMTD is highly selective towards the absorption of Pd
(II). In contrast, Pt (IV) is hardly absorbed via the anion-exchange mechanism. Hence, the
adsorption of Pd (II) is via a coordination mechanism and the anion-exchange mechanism
hardly contributes to the absorption capacity of Pd (II). This is because the degree of
protonation of the PS-DMTD resin is not enough to be used as an anion-exchange resin,
and Pd (II) is absorbed via the coordination mechanism.

5. Conclusions

In this study, a new modified chloromethyl polystyrene resin adsorbent, PS-DMTD,
was successfully synthesized by grafting 2,5-dimercapto-1,3,4-thiadiazole onto PS-Cl. PS-
DMTD could adsorb and separate Pd (II) from the metallurgical wastewater through a
one-step adsorption process. The adsorption process is in accordance with the pseudo-
second-order kinetic and Langmuir model. The highly selective absorption of Pd (II) was
discussed in detail based on the spectral characterization and experimental results. DFT
calculations were used to further reveal the adsorption mechanism at the molecular level.
After protonation, the PS-DMTD resin showed a positively charge, which prevented the
base metal cations from approaching the active adsorption site. Therefore, the base metal
cations were not absorbed by the PS-DMTD in the metallurgical wastewater. Pd (II) was
most likely to be adsorbed via a coordination mechanism, and the degree of protonation of
PS-DMTD was not sufficient to absorb Pt (IV) in 0.1 M HCl media. Furthermore, Rh (III)
mainly exists as polyhydrate ions in this acidity, which inhibited its diffusion toward the
positively charged absorption site of PS-DMTD. Hence, PS-DMTD was highly selective
in the separation and recovery of Pd (II) from metallurgical wastewater in a one-step
adsorption process.
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