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Abstract

In the passive, traditional, approach to learning, the
information available to the learner is a set of classified
examples, which are randomly drawn from the instance
space. In many applications, however, the initial clas-
sification of the training set is a costly process, and an
intelligently selection of training examples from unla-
beled data is done by an active learner.

This paper proposes a lookahead algorithm for example
selection and addresses the problem of active learning
in the context of nearest neighbor classifiers. The pro-
posed approach relies on using a random field model for
the example labeling, which implies a dynamic change
of the label estimates during the sampling process.

The proposed selective sampling algorithm was evalu-
ated empirically on artificial and real data sets. The
experiments show that the proposed method outper-
forms other methods in most cases.

Introduction

In many real-world domains it is expensive to label a
large number of examples for training, and the prob-
lem of reducing training set size, while maintaining the
quality of the resulting classifier, arises. A possible so-
lution to this problem is to give the learning algorithm
some control over the inputs on which it trains.

This paradigm is called active learning, and is
roughly divided into two major subfields: learning with
membership queries and selective sampling. In learning
with membership queries (Angluin 1988) the learner is
allowed to construct artificial examples, while selective
sampling deals with selection of informative examples
from a large set of unclassified data.

Selective sampling methods have been developed for
various classification learning algorithms: for neural
networks (Davis & Hwang 1992; Cohn, Atlas, & Lander
1994), for the C4.5 rule-induction algorithm (Lewis &
Catlett 1994) and for HMM (Dagan & Engelson 1995).

The goal of the research described in this paper is
to develop a selective sampling methodology for near-
est neighbor classification learning algorithms. The
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nearest neighbor (Cover & Hart 1967; Aha, Kibler, &
Albert 1991) algorithm is a non-parametric classifica-
tion method, useful especially when little information is
known about the structure of the distribution, implying
that parametric classifiers are harder to construct. The
problem of active learning for nearest neighbor classi-
fiers was considered by Hasenjager and Ritter (1998).
They proposed querying in points which are the farthest
from previously sampled examples, i.e. in the vertices
of Voronoi diagram of the points labeled so far. This
method, however, falls under the membership queries
paradigm and is not suitable for selective sampling.

Most existing selective sampling algorithms focus on
choosing examples from regions of uncertainty. One
approach to define uncertainty is to specify a commit-
tee (Seung, Opper, & Sompolinsky 1992) or an ensem-
ble (Krogh & Vedelsby 1994) of hypotheses consistent
with the sampled data and then to choose an exam-
ple on which the committee members most disagree.
Query By Committee is an active research topic, and
strong theoretical results (Freund et al. 1997) along
with practical justifications (Dagan & Engelson 1995;
Hasenjager & Ritter 1996; RayChaudhuri & Hamey
1995) were achieved. It is not clear, however, how to
apply this method to nearest-neighbor classification.

This paper introduces a lookahead approach to se-
lective sampling that is suitable for nearest neighbor
classification. We start by formalizing the problem of
selective sampling and continue with a lookahead based
framework which chooses the next example (or sequence
of examples) in order to maximize the expected utility
(goodness) of the resulting classifier. The major com-
ponents needed to apply this framework are an utility
function for appraising classifiers and a posteriori class
probability estimates for points in the instance space.
We propose a random field model for the feature space
classification structure. This model serves as the ba-
sis for a class probability estimation. The merit of our
approach is empirically demonstrated on artificial and
real problems.

The Selective Sampling Process

We consider here the following selective sampling
paradigm. Let X be a set of objects. Let f be



a teacher (also called an oracle or an expert) which
labels instances by 0 or 1, f : X → {0, 1}. A
learning algorithm takes a set of classified examples,
{〈x1, f(x1)〉, . . . , 〈xn, f(xn)〉}, and returns a hypothesis
h, h : X → {0, 1}. Throughout this paper we assume
that X = R

d.
Let X be an instance space - a set of objects drawn

randomly from X according to distribution p. Let
D ⊂ X be a finite set of classified examples. A se-
lective sampling algorithm SL with respect to learning
algorithm L takes X and D, and returns an unclassi-
fied element of X . An active learning process can be
described as follows:

1. D ← ∅

2. h ← L(∅)

3. While stop-criterion is not satisfied do:

(a) Apply SL and get the next example,
x ← SL(X, D).

(b) Ask the teacher to label x, ω ← f(x)

(c) Update the labeled examples set,
D ← D

⋃

{〈x, ω〉}

(d) Update the classifier, h ← L(D)

4. Return classifier h

The stop criterion may be a limit M on the number of
examples that the teacher is willing to classify or a lower
bound on the classifier accuracy. We will assume here
the first case. The goal of the selective sampling algo-
rithm is to produce a sequence of length M which leads
to a best classifier according to some given criterion.

Lookahead Algorithms for Selective

Sampling

Knowing that we are allowed to ask for exactly M labels
allows, in principle, to consider all object sequences of
length M . Not knowing the labeling of these objects,
however, prevents us from evaluating the resulting clas-
sifiers directly. One way to overcome this difficulty is
to consider the selective sampling process as an inter-
action between the learner and the teacher. At each
stage the learner must select an object from the set of
unclassified instances and the teacher assigns one of the
possible labels to the selected object. This interaction
can be represented by a “game tree” of 2M levels such
as the one illustrated Figure 1.

We can use such a tree representation to develop a
lookahead algorithm for selective sampling. Let UL(D)
be a utility evaluation function that is capable of ap-
praising a set D as examples for a learning algorithm
L. Let us define a k-deep lookahead algorithm for se-
lective sampling with respect to learning algorithm L
as illustrated on Figure 2.

Note that this algorithm is a specific case of a deci-
sion theoretic agent, and that, while it is specified for
maximizing the expected utility, one can be, for exam-
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Figure 1: Selective sampling as a game.

Sk

L
(X,D) :

Select x′ ∈ X with maximal expected utility:

x′ = arg maxx∈X

Eω[U∗
L(X, D ∪ {〈x, ω〉}, k − 1)]

where U∗
L(X, D, k) is a recursive utility prop-

agation function:

U∗
L(X, D, k) =

{

UL(D) k = 0
maxx Eω[U∗

L(X, D′, k − 1)] k > 0

where D′ = D ∪ {〈x, ω〉} and the expected
value Eω[·] is taken according to conditional
probabilities for classification of x given D,
P (f(x) = ω|D).

Figure 2: Lookahead algorithm for selective sampling.

ple, pessimistic and consider a minimax approach. In
our implementation we use a simplified one-step looka-
head algorithm:

S∗
L
(X,D) :

Select x ∈ X with maximal expected utility,
Eω∈{0,1}[UL(D ∪ {〈x, ω〉})], which is equal
to:

P (f(x) = 0|D) · UL(D ∪ {〈x, 0〉})+
P (f(x) = 1|D) · UL(D ∪ {〈x, 1〉})

The actual use of the lookahead example selection
scheme relies on two choices:

• The utility function UL(D).

• The method for estimating P (f(x) = 0|D) (and
P (f(x) = 1|D)).

Two particular choices are considered in the next sec-
tions.

The Classifier Accuracy Utility Function

Taking a Bayesian approach, we specify the utility of
the classifier as its expected accuracy relative to the



distribution of consistent target functions. First, con-
sider a specific target f . Let If,h be a binary indicator
function, where If,h(x) = 1 iff f(x) = h(x), and let
αf (h) denote the accuracy of hypothesis h relative to
f : αf (h) = f ∩ h =

∫

x∈Rd If,h(x)p(x)dx. Recall that

p(x) is the probability density function specifying the
instance distribution over R

d. Let AL(D) denote the
expected accuracy of a hypothesis produced by learning
algorithm L:

AL(D) = Ef |D[αf (h = L(D))] =
Ef |D[

∫

x∈Rd If,h(x)p(x)dx] =
∫

x∈Rd P (f(x) = h(x)|D)p(x)dx
(1)

where P (f(x) = h(x)|D) is the probability that a ran-
dom target function f consistent with D will be equal to
h in the point x, i.e P (f(x) = h(x)|D) = Ef |D[f(x) =
h(x)].

Note that P (f(x) = h(x)|D) is the probability that a
particular point x gets the correct classification. There-
fore, for every given hypothesis h, estimating the class
probabilities P (f(x) = 0|D), P (f(x) = 1|D), gives also
the accuracy estimate (from Equation 1):

AL(D) ≈
∑

x∈X

P (f(x) = h(x)|D)/|X |. (2)

(The number of examples in X is assumed to be finite).
Thus the problem of evaluating the utility measure as
the classifier accuracy is translated into the problem of
estimating the class probabilities. Assuming that the
probability computation model is correct, the optimal
selective sampling strategy is one that uses U∗

L(D) �

AL(D) as the utility function.

Random Field Model for Feature Space

Classification

Feature vectors from the same class tend to cluster in
the feature space (though sometimes the clusters are
quite complex). Therefore close feature vectors share
the same label more often than not. This intuitive ob-
servation, which is the rationale for the nearest neigh-
bor classification approach, is used here to estimate the
classes of unlabeled feature points and their uncertain-
ties.

Mathematically, this observation is described by as-
suming that the label of every point is a random vari-
able, and that these random variables are mutually de-
pendent. Such dependencies are usually described (in a
higher than 1-dimensional space) by random field mod-
els. In the probabilistic setting, estimating the classi-
fication of unlabeled vectors and their uncertainties is
equivalent to calculating the conditional class probabil-
ities from the labeled data, relying on the random field
model. In the full version of the paper (Lindenbaum,
Markovich, & Rusakov 1999), we consider several op-
tions for such estimates. This shorter version focuses
on one particular model.

Thus, we assume that the classification of an instance
space is a sample function of a binary valued homo-
geneous isotropic random field (Wong & Hajek 1985)
characterized by a covariance function decreasing with
a distance. (see (Eldar et al. 1997) where a similar
method was used for progressive image sampling.) That
is: let x0, x1 be points in X and let θ0, θ1 be their clas-
sifications, i.e. random variables that can have values
of 0 or 1. The homogeneity and isotropy properties im-
ply that the expected values of θ0 and θ1 are equal, i.e.
E[θ0] = E[θ1] = θ̄, and the covariance between θ0 and
θ1 is specified only by the distance between x0 and x1:

C[θ0, θ1] = E[(θ0 − θ̄)(θ1 − θ̄)] � γ(d(x0, x1)) (3)

where γ : R
+ → (−1, 1) is a covariance function with

γ(0) = V ar[θ] = E[(θ − θ̄)2] = P0P1, where P0, P1 =
1−P0 are the a priori class probabilities. Usually we will
assume that γ is decreasing with the distance and that
limr→∞ γ(r) = 0. Note that the random field model
specifies (indirectly) a distribution of target functions.

In estimation, one tries to find the value of some
unobserved random variable, from observed values of
other, related, random variables, and prior knowledge
about their joint statistics.

The class probabilities associated with some feature
vector are uniquely specified by the conditional mean of
its associated random variable (r.v.) This conditional
mean is also the best estimator for the r.v. value in
the least squares sense (Papoulis 1991). Therefore, the
widely available methods for mean square error (MSE)
estimation can be used for estimating the class proba-
bilities.

We choose a linear estimator, for which a closed form
solution, described below, is available. Let θ be the bi-
nary r.v. associated with some unlabeled feature vector,
x0, and let θ1, . . . , θn be the known labels r.v. asso-
ciated with the feature vectors, x1, . . . , xn, that were
already sampled. Now let

θ̂ = α0 +

n
∑

i=1

αiθi (4)

be the estimate of the unknown label. The estimate
uses the known labels and relies on unknown coefficients
which should be set so that the MSE, ǫmse = E[(θ̂ −
θ0)

2] is minimized.
The optimal linear approximation in the MS sense

(Papoulis 1991) is described by:

θ̂ = E[θ0] + �a · (�θ − E[�θ]])t (5)

where �a is an n-dimensional vector specified by the co-
variance values:

�a = R−1 ·�r,
Rij = E [(θi − E[θ])(θj − E[θ])] ,
ri = E [(θ0 − E[θ])(θj − E[θ])] .

(6)

(R is an n×n matrix, and �a,�r are n−dimensional vec-
tors). The values of R and�r are specified by the random
field model:

Rij = γ(d(xi, xj)),
ri = γ(d(x0, xi)).

(7)



See the experimental part for an evaluation of some co-
variance function and for their use in estimating the
parameters. With this method, every sampled point
influences the estimated probability. In practice, such
long range influence is non-intuitive and is also compu-
tationally expensive. Therefore, in practice, we neglect
the influence of all except the two closest neighbors.
This choice gives a higher probability to the nearest
neighbor class and is therefore consistent with 1-NN
classification. One deficiency of this estimation process
is that the estimated probabilities are not guaranteed
to lie in the required [0, 1] range. When such over-
flows indeed happen (very rarely), we correct them by
clipping the estimate. This deficiency is corrected in
more complex estimation procedures, described in the
full version (Lindenbaum, Markovich, & Rusakov 1999).
(The framework we use is similar to Bayesian Classi-
fication via Gaussian Process Modeling (MacKay 1998;
Williams & Barber 1998)

Experimental Evaluation
We have implemented our random-field based looka-
head algorithm and tested it on several problems, com-
paring its performance with several other selective sam-
pling methods.

Experimental Methodology

The algorithm described in the previous sections allows
us to heuristically choose the covariance function, γ(d).
In the experiments described here, every class contained
a nearly equal number of examples and therefore we as-
sume that the a priori class probabilities are equal. This
implies that γ(0) = 0.25. We choose an exponentially
decreasing covariance function (common in image pro-
cessing) γ(d) = 0.25e−d/σ. We tested the effect of a
range of σ values on the performance of the algorithm
and found that changing σ had almost no effect (these
results are included in the full version (Lindenbaum,
Markovich, & Rusakov 1999)

The lookahead algorithm was compared with the fol-
lowing three selective sampling algorithms, which rep-
resent the most common choices (see introduction):

• Random sampling: The algorithm randomly selects
the next example. While this method looks unso-
phisticated, it has the advantage of yielding a uni-
form exploration of the instance space. This method
actually corresponds to a passive learning model.

• Uncertainty sampling: The method selects the ex-
ample which the current classifier is most uncertain
about. The uncertainty for each example depends on
the ratio between the distances to the closest labeled
neighbors of different classes This method tends to
sample on the existing border, and while for some
decision boundaries that may be beneficial, for oth-
ers it may be a source for serious failure (as will be
shown in the following subsections).

• Maximal distance: An adaptation of the method
described by Hasenjager and Ritter (1998). This

method selects the example from the set of all un-
labeled points that have different labels among their
three nearest classified neighbors. The example se-
lected is the one which is most distant from its closest
labeled neighbor.

The basic measurement used for the experiments is
the expected error rate. For each selective sampling
method and for each dataset the following procedure
was applied:

1. 1000 examples from the dataset were drawn randomly
- this is a set used for selective sampling and learning
,X , the rest 19000 examples (all datasets included
20000 examples) were used only for the evaluation of
error rates of the resulting classifiers.

2. The selective sampling algorithm was applied to the
chosen set, X . After selection of each example, the
error rate of the current hypothesis, h (which is the
nearest neighbor classifier), was calculated using the
test set of 19000 examples put aside.

3. Steps 1, 2 were performed 100 times and the average
error rate was calculated.
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Figure 3: The feature space of the “two spirals” data.

The ’Two Spirals’ Problem

The two spirals problem was studied by a number of re-
searchers (Lang & Witbrock 1988; Hasenjager & Ritter
1998). This is an artificial problem where the task is
to distinguish between two spirals of uniform density in
XY -plane, as shown in Figure 3. (The code for generat-
ing these spirals was based on (Lang & Witbrock 1988))
The Bayes error of such classification is zero since the
classes are perfectly separable. The learning rate of the
various selective sampling methods is shown in Figure 4.
All three non-random methods demonstrated compara-
ble performance, better than random sampling. In the
next experiment we will show that other methods lack
one of the basic properties required from selective sam-
pling algorithms - exploration - and fail in the datasets
consisting of separated regions of the same classifica-
tion.
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Figure 4: Learning rate graphs for various selective sam-
pling methods applied to the “two spirals” data.
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Figure 5: A feature space with bayes decision boundaries
(only 400 points are shown) for “two gaussians” data.

’Two Gaussians’ Data

The test set of “two gaussians” consists of two dimen-
sional vectors belonging to two classes with equal a
priori probability (0.5). The distribution of class 1 is
uniform over the region [0, 20] × [0, 20] and the distri-
bution of class 0 consists of two symmetric gaussians,
with means in points (5, 5) and (15, 15) and covariance
matrix Σ = 22I, illustrated in Figure 5. The bayes error
is 0.18207.

The learning rate of the various selective sampling
methods is shown in Figure 6. We can see that appar-
ently the uncertainty and maximal distance selective
sampling methods fail to detect one of the gaussians,
resulting in higher error rates. This is due to fact that
these methods consider sampling only at the existing
boundary.

Letters Data

The letter recognition database (contributed to UCI Ma-
chine learning repository (Blake, Keogh, & Merz 1998)
by Frey and Slate (1991) consists of 20000 feature vec-
tors belonging to 26 classes that represent capital letters
of Latin alphabet. Since our current implementation
works only with binary classification, we converted the
database to such by changing all letters from ’a’ to ’m’
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Figure 6: Learning rate graphs for various selective sam-
pling methods applied to the “two gaussians” data.

to 0 and all the letters from ’n’ to ’z’ to 1. The learn-
ing rate of the various selective sampling methods is
shown in Figure 7. The lookahead selective sampling
algorithm outperforms other selective sampling meth-
ods in this particularly hard domain, where every class
consists of many different (associated with the different
letters).
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Figure 7: Learning rate graphs for various selective sam-
pling methods applied to the letters dataset.

Discussion

Nearest neighbor classifiers are often used when little
or no information is available about the instance space
structure. There, the loose, minimalistic specification
of the instance space labeling structure, which is im-
plied by the distance based random field model, seems
to be adequate. We also observe that large changes in
the covariance function had no significant effect on the
classification performance.

The experiments show that lookahead sampling
method performs better or comparatively to other se-
lective sampling algorithms on both artificial and real
domains. It is especially strong when the instance space
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Figure 8: Number of examples needed for average error to
reach 0.3. From left to right: random, uncertainty, maximal
distance and lookahead sampling methods.

contains more than one region of some class. Then,
the selective sampling algorithm must consider not only
the examples from the hypothesis boundary, but must
also explore large unsampled regions. The lack of ’ex-
ploration’ element in ’uncertainty’ and ’maximal dis-
tance’ sampling methods often results in a failure in
such cases. The benefit of a lookahead selective sam-
pling method can be seen by comparing the number of
examples needed to reach some pre-defined accuracy,
Figure 8.

Counting the classification of one point (including
finding 1 or 2 labeled neighbors) as a basic operation,
the uncertainty and maximal distance methods have
time complexity of O(|X |) while the straightforward
implementation of lookahead selective sampling has a
time complexity of O(|X |2) (we need to compute class
probabilities for all points in the instance space after
each lookahead hypothesis). This higher complexity,
however, is well justified for a natural setup, where we
are ready to invest computational resources to save time
for a human expert whose role is to label an examples.
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