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Abstract This paper addresses the problem of generating

possible object locations for use in object recognition. We

introduce selective search which combines the strength of

both an exhaustive search and segmentation. Like segmen-

tation, we use the image structure to guide our sampling

process. Like exhaustive search, we aim to capture all possi-

ble object locations. Instead of a single technique to generate

possible object locations, we diversify our search and use a

variety of complementary image partitionings to deal with

as many image conditions as possible. Our selective search

results in a small set of data-driven, class-independent, high

quality locations, yielding 99 % recall and a Mean Average

Best Overlap of 0.879 at 10,097 locations. The reduced num-

ber of locations compared to an exhaustive search enables

the use of stronger machine learning techniques and stronger

appearance models for object recognition. In this paper we

show that our selective search enables the use of the powerful

Bag-of-Words model for recognition. The selective search

software is made publicly available (Software: http://disi.

unitn.it/~uijlings/SelectiveSearch.html).

1 Introduction

For a long time, objects were sought to be delineated before

their identification. This gave rise to segmentation, which

aims for a unique partitioning of the image through a generic

algorithm, where there is one part for all object silhouettesin

the image. Research on this topic has yielded tremendous
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progress over the past years ( Arbeláez et al. 2011; Comaniciu

and Meer 2002; Felzenszwalb and Huttenlocher 2004; Shi

and Malik 2000). But images are intrinsically hierarchical: In

Fig. 1a the salad and spoons are inside the salad bowl, which

in turn stands on the table. Furthermore, depending on the

context the term table in this picture can refer to only the wood

or include everything on the table. Therefore both the nature

of images and the different uses of an object category are

hierarchical. This prohibits the unique partitioning of objects

for all but the most specific purposes. Hence for most tasks

multiple scales in a segmentation are a necessity. This is most

naturally addressed by using a hierarchical partitioning, as

done for example by Arbeláez et al. (2011).

Besides that a segmentation should be hierarchical, a

generic solution for segmentation using a single strategy may

not exist at all. There are many conflicting reasons why a

region should be grouped together: In Fig. 1b the cats can

be separated using colour, but their texture is the same. Con-

versely, in Fig. 1c the chameleon is similar to its surrounding

leaves in terms of colour, yet its texture differs. Finally, in

Fig. 1d, the wheels are wildly different from the car in terms

of both colour and texture, yet are enclosed by the car. Indi-

vidual visual features therefore cannot resolve the ambiguity

of segmentation.

And, finally, there is a more fundamental problem.

Regions with very different characteristics, such as a face

over a sweater, can only be combined into one object after

it has been established that the object at hand is a human.

Hence without prior recognition it is hard to decide that a

face and a sweater are part of one object ( Tu et al. 2005).

This has led to the opposite of the traditional approach:

to do localisation through the identification of an object.

This recent approach in object recognition has made enor-

mous progress in less than a decade ( Dalal and Triggs 2005;

Felzenszwalb et al. 2010; Harzallah et al. 2009; Viola and
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Fig. 1 There is a high variety of reasons that an image region forms

an object. In (b) the cats can be distinguished by colour, not texture. In

(c) the chameleon can be distinguished from the surrounding leaves by

texture, not colour. In (d) the wheels can be part of the car because they

are enclosed, not because they are similar in texture or colour. There-

fore, to find objects in a structured way it is necessary to use a variety

of diverse strategies. Furthermore, an image is intrinsically hierarchical

as there is no single scale for which the complete table, salad bowl, and

salad spoon can be found in (a)

Jones 2001). With an appearance model learned from exam-

ples, an exhaustive search is performed where every location

within the image is examined as to not miss any potential

object location ( Dalal and Triggs 2005; Felzenszwalb et al.

2010; Harzallah et al. 2009; Viola and Jones 2001).

However, the exhaustive search itself has several draw-

backs. Searching every possible location is computationally

infeasible. The search space has to be reduced by using a reg-

ular grid, fixed scales, and fixed aspect ratios. In most cases

the number of locations to visit remains huge, so much that

alternative restrictions need to be imposed. The classifier is

simplified and the appearance model needs to be fast. Fur-

thermore, a uniform sampling yields many boxes for which it

is immediately clear that they are not supportive of an object.

Rather then sampling locations blindly using an exhaustive

search, a key question is: Can we steer the sampling by a

data-driven analysis?

In this paper, we aim to combine the best of the intu-

itions of segmentation and exhaustive search and propose a

data-driven selective search. Inspired by bottom-up segmen-

tation, we aim to exploit the structure of the image to gener-

ate object locations. Inspired by exhaustive search, we aim

to capture all possible object locations. Therefore, instead of

using a single sampling technique, we aim to diversify the

sampling techniques to account for as many image condi-

tions as possible. Specifically, we use a data-driven grouping-

based strategy where we increase diversity by using a variety

of complementary grouping criteria and a variety of comple-

mentary colour spaces with different invariance properties.

The set of locations is obtained by combining the locations of

these complementary partitionings. Our goal is to generate a

class-independent, data-driven, selective search strategy that

generates a small set of high-quality object locations.

Our application domain of selective search is object recog-

nition. We therefore evaluate on the most commonly used

dataset for this purpose, the Pascal VOC detection challenge

which consists of 20 object classes. The size of this dataset

yields computational constraints for our selective search. Fur-

thermore, the use of this dataset means that the quality of

locations is mainly evaluated in terms of bounding boxes.

However, our selective search applies to regions as well and

is also applicable to concepts such as “grass”.

In this paper we propose selective search for object

recognition. Our main research questions are: (1) What are

good diversification strategies for adapting segmentation as

a selective search strategy? (2) How effective is selective

search in creating a small set of high-quality locations within

an image? (3) Can we use selective search to employ more

powerful classifiers and appearance models for object recog-

nition?

2 Related Work

We confine the related work to the domain of object recog-

nition and divide it into three categories: Exhaustive search,

segmentation, and other sampling strategies that do not fall

in either category.

2.1 Exhaustive Search

As an object can be located at any position and scale in the

image, it is natural to search everywhere ( Dalal and Triggs

2005; Harzallah et al. 2009; Viola and Jones 2004). How-

ever, the visual search space is huge, making an exhaustive

search computationally expensive. This imposes constraints

on the evaluation cost per location and/or the number of loca-

tions considered. Hence most of these sliding window tech-

niques use a coarse search grid and fixed aspect ratios, using

weak classifiers and economic image features such as HOG

( Dalal and Triggs 2005; Harzallah et al. 2009; Viola and

Jones 2004). This method is often used as a preselection step

in a cascade of classifiers ( Harzallah et al. 2009; Viola and

Jones 2004).

Related to the sliding window technique is the highly

successful part-based object localisation method of Felzen-

szwalb et al. (2010). Their method also performs an exhaus-

tive search using a linear SVM and HOG features. However,

they search for objects and object parts, whose combination

results in an impressive object detection performance.
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Lampert et al. (2009) proposed using the appearance

model to guide the search. This both alleviates the constraints

of using a regular grid, fixed scales, and fixed aspect ratio,

while at the same time reduces the number of locations vis-

ited. This is done by directly searching for the optimal win-

dow within the image using a branch and bound technique.

While they obtain impressive results for linear classifiers,

Alexe et al. (2010) found that for non-linear classifiers the

method in practice still visits over a 100,000 windows per

image.

Instead of a blind exhaustive search or a branch and bound

search, we propose selective search. We use the underly-

ing image structure to generate object locations. In contrast

to the discussed methods, this yields a completely class-

independent set of locations. Furthermore, because we do not

use a fixed aspect ratio, our method is not limited to objects

but should be able to find stuff like “grass” and “sand” as well

(this also holds for Lampert et al. (2009)). Finally, we hope

to generate fewer locations, which should make the prob-

lem easier as the variability of samples becomes lower. And

more importantly, it frees up computational power which can

be used for stronger machine learning techniques and more

powerful appearance models.

2.2 Segmentation

Both Carreira and Sminchisescu (2010) and Endres and

Hoiem (2010) propose to generate a set of class independent

object hypotheses using segmentation. Both methods gen-

erate multiple foreground/background segmentations, learn

to predict the likelihood that a foreground segment is a

complete object, and use this to rank the segments. Both

algorithms show a promising ability to accurately delineate

objects within images, confirmed by Li et al. (2010) who

achieve state-of-the-art results on pixel-wise image classi-

fication using Carreira and Sminchisescu (2010). As com-

mon in segmentation, both methods rely on a single strong

algorithm for identifying good regions. They obtain a vari-

ety of locations by using many randomly initialised fore-

ground and background seeds. In contrast, we explicitly deal

with a variety of image conditions by using different group-

ing criteria and different representations. This means a lower

computational investment as we do not have to invest in the

single best segmentation strategy, such as using the excel-

lent yet expensive contour detector of Arbeláez et al. (2011).

Furthermore, as we deal with different image conditions sep-

arately, we expect our locations to have a more consistent

quality. Finally, our selective search paradigm dictates that

the most interesting question is not how our regions com-

pare to Carreira and Sminchisescu (2010), Endres and Hoiem

(2010), but rather how they can complement each other.

Gu et al. (2009) address the problem of carefully segment-

ing and recognizing objects based on their parts. They first

generate a set of part hypotheses using a grouping method

based on Arbeláez et al. (2011). Each part hypothesis is

described by both appearance and shape features. Then, an

object is recognized and carefully delineated by using its

parts, achieving good results for shape recognition. In their

work, the segmentation is hierarchical and yields segments

at all scales. However, they use a single grouping strategy

whose power of discovering parts or objects is left unevalu-

ated. In this work, we use multiple complementary strategies

to deal with as many image conditions as possible. We include

the locations generated using Arbeláez et al. (2011) in our

evaluation.

2.3 Other Sampling Strategies

Alexe et al. (2012) address the problem of the large sam-

pling space of an exhaustive search by proposing to search

for any object, independent of its class. In their method they

train a classifier on the object windows of those objects

which have a well-defined shape (as opposed to stuff like

“grass” and “sand”). Then instead of a full exhaustive search

they randomly sample boxes to which they apply their

classifier. The boxes with the highest “objectness” mea-

sure serve as a set of object hypotheses. This set is then

used to greatly reduce the number of windows evaluated by

class-specific object detectors. We compare our method with

their work.

Another strategy is to use visual words of the Bag-

of-Words model to predict the object location. Vedaldi (2009)

use jumping windows (Chum and ZissermanZ 2007), in

which the relation between individual visual words and the

object location is learned to predict the object location in

new images. Maji and Malik (2009) combine multiple of

these relations to predict the object location using a Hough-

transform, after which they randomly sample windows close

to the Hough maximum. In contrast to learning, we use the

image structure to sample a set of class-independent object

hypotheses.

To summarize, our novelty is as follows. Instead of an

exhaustive search ( Dalal and Triggs 2005; Felzenszwalb

et al. 2010; Harzallah et al. 2009; Viola and Jones 2004)

we use segmentation as selective search yielding a small

set of class independent object locations. In contrast to the

segmentation of Carreira and Sminchisescu (2010), Endres

and Hoiem (2010) instead of focusing on the best segmen-

tation algorithm ( Arbeláez et al. 2011), we use a variety of

strategies to deal with as many image conditions as possible,

thereby severely reducing computational costs while poten-

tially capturing more objects accurately. Instead of learning

an objectness measure on randomly sampled boxes ( Alexe

et al. 2012), we use a bottom-up grouping procedure to gen-

erate good object locations.
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Fig. 2 Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different scales. On the

right we necessarily find the objects at different scales as the girl is contained by the tv

3 Selective Search

In this section we detail our selective search algorithm for

object recognition and present a variety of diversification

strategies to deal with as many image conditions as possible.

A selective search algorithm is subject to the following design

considerations:

Capture All Scales. Objects can occur at any scale within

the image. Furthermore, some objects have less clear

boundaries then other objects. Therefore, in selective

search all object scales have to be taken into account,

as illustrated in Fig. 2. This is most naturally achieved by

using an hierarchical algorithm.

Diversification. There is no single optimal strategy to

group regions together. As observed earlier in Fig. 1,

regions may form an object because of only colour, only

texture, or because parts are enclosed. Furthermore, light-

ing conditions such as shading and the colour of the light

may influence how regions form an object. Therefore

instead of a single strategy which works well in most

cases, we want to have a diverse set of strategies to deal

with all cases.

Fast to Compute. The goal of selective search is to yield

a set of possible object locations for use in a practical

object recognition framework. The creation of this set

should not become a computational bottleneck, hence

our algorithm should be reasonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis

of our selective search. Bottom-up grouping is a popu-

lar approach to segmentation (Comaniciu and Meer 2002;

Felzenszwalb and Huttenlocher 2004), hence we adapt it for

selective search. Because the process of grouping itself is

hierarchical, we can naturally generate locations at all scales

by continuing the grouping process until the whole image

becomes a single region. This satisfies the condition of cap-

turing all scales.

As regions can yield richer information than pixels, we

want to use region-based features whenever possible. To get

a set of small starting regions which ideally do not span

multiple objects, we use the fast method of Felzenszwalb

and Huttenlocher (2004), which Arbeláez et al. (2011) found

well-suited for such purpose.

Our grouping procedure now works as follows. We first

use (Felzenszwalb and Huttenlocher 2004) to create initial

regions. Then we use a greedy algorithm to iteratively group

regions together: First the similarities between all neighbour-

ing regions are calculated. The two most similar regions are

grouped together, and new similarities are calculated between

the resulting region and its neighbours. The process of group-

ing the most similar regions is repeated until the whole image

becomes a single region. The general method is detailed in

Algorithm 1.

For the similarity s(ri , r j ) between region ri and r j we

want a variety of complementary measures under the con-

straint that they are fast to compute. In effect, this means that

the similarities should be based on features that can be prop-

agated through the hierarchy, i.e. when merging region ri and

r j into rt , the features of region rt need to be calculated from

the features of ri and r j without accessing the image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diver-

sify the sampling and create a set of complementary strategies

whose locations are combined afterwards. We diversify our

selective search (1) by using a variety of colour spaces with
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Algorithm 1: Hierarchical Grouping Algorithm

DontPrintSemicolon Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · , rn} using Felzenszwalb and

Huttenlocher (2004) Initialise similarity set S = ∅;

foreach Neighbouring region pair (ri , r j ) do
Calculate similarity s(ri , r j );

S = S ∪ s(ri , r j );

while S �= ∅ do
Get highest similarity s(ri , r j ) = max(S);

Merge corresponding regions rt = ri ∪ r j ;

Remove similarities regarding ri : S = S \ s(ri , r∗);

Remove similarities regarding r j : S = S \ s(r∗, r j );

Calculate similarity set St between rt and its neighbours;

S = S ∪ St ;

R = R ∪ rt ;

Extract object location boxes L from all regions in R;

different invariance properties, (2) by using different simi-

larity measures si j , and (3) by varying our starting regions.

Complementary Colour Spaces. We want to account for

different scene and lighting conditions. Therefore we per-

form our hierarchical grouping algorithm in a variety of

colour spaces with a range of invariance properties. Specif-

ically, we the following colour spaces with an increasing

degree of invariance: (1) RG B, (2) the intensity (grey-scale

image) I , (3) Lab, (4) the rg channels of normalized RG B

plus intensity denoted as rgI , (5) H SV , (6) normalized RG B

denoted as rgb, (7) C Geusebroek et al. (2001) which is an

opponent colour space where intensity is divided out, and

finally (8) the Hue channel H from H SV . The specific invari-

ance properties are listed in Table 1.

Of course, for images that are black and white a change

of colour space has little impact on the final outcome of the

algorithm. For these images we rely on the other diversifica-

tion methods for ensuring good object locations.

In this paper we always use a single colour space through-

out the algorithm, meaning that both the initial grouping

algorithm of Felzenszwalb and Huttenlocher (2004) and our

subsequent grouping algorithm are performed in this colour

space.

Complementary Similarity Measures. We define four com-

plementary, fast-to-compute similarity measures. These mea-

sures are all in range [0, 1] which facilitates combinations of

these measures.

scolour (ri , r j ) measures colour similarity. Specifically,

for each region we obtain one-dimensional colour his-

tograms for each colour channel using 25 bins, which

we found to work well. This leads to a colour histogram

Ci = {c1
i , · · · , cn

i } for each region ri with dimensionality

n = 75 when three colour channels are used. The colour

histograms are normalised using the L1 norm. Similarity

is measured using the histogram intersection:

scolour (ri , r j ) =

n∑

k=1

min(ck
i , ck

j ). (1)

The colour histograms can be efficiently propagated

through the hierarchy by

Ct =
size(ri ) × Ci + size(r j ) × C j

size(ri ) + size(rj)
. (2)

The size of a resulting region is simply the sum of its

constituents: size(rt ) = size(ri ) + size(r j ).

stexture(ri , r j ) measures texture similarity. We represent

texture using fast SIFT-like measurements as SIFT itself

works well for material recognition ( Liu et al. 2010). We

take Gaussian derivatives in eight orientations using σ =

1 for each colour channel. For each orientation for each

colour channel we extract a histogram using a bin size of

10. This leads to a texture histogram Ti = {t1
i , · · · , tn

i }

for each region ri with dimensionality n = 240 when

three colour channels are used. Texture histograms are

normalised using the L1 norm. Similarity is measured

using histogram intersection:

stexture(ri , r j ) =

n∑

k=1

min(tk
i , tk

j ). (3)

Texture histograms are efficiently propagated through the

hierarchy in the same way as the colour histograms.

ssi ze(ri , r j ) encourages small regions to merge early. This

forces regions in S, i.e. regions which have not yet been

merged, to be of similar sizes throughout the algorithm.

This is desirable because it ensures that object locations

at all scales are created at all parts of the image. For

example, it prevents a single region from gobbling up

all other regions one by one, yielding all scales only at

the location of this growing region and nowhere else.

ssi ze(ri , r j ) is defined as the fraction of the image that ri

and r j jointly occupy:

ssi ze(ri , r j ) = 1 −
size(ri ) + size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

s f ill(ri , r j ) measures how well region ri and r j fit into

each other. The idea is to fill gaps: if ri is contained in r j it

is logical to merge these first in order to avoid any holes.

On the other hand, if ri and r j are hardly touching each

other they will likely form a strange region and should not

be merged. To keep the measure fast, we use only the size

of the regions and of the containing boxes. Specifically,

we define B Bi j to be the tight bounding box around ri and

r j . Now s f ill(ri , r j ) is the fraction of the image contained

in B Bi j which is not covered by the regions of ri and r j :
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Table 1 The invariance properties of both the individual colour channels and the colour spaces used in this paper, sorted by degree of invariance

Colour channels R G B I V L a b S r g C H

Light intensity − − − − − − +/− +/− + + + + +

Shadows/shading − − − − − − +/− +/− + + + + +

Highlights − − − − − − − − − − − +/− +

Colour spaces RGB I Lab rgI HSV rgb C H

Light intensity − − +/− 2/3 2/3 + + +

Shadows/shading − − +/− 2/3 2/3 + + +

Highlights − − − − 1/3 − +/− +

“A +/−” means partial invariance. A fraction 1/3 means that one of the three colour channels is invariant to said property

f ill(ri , r j ) = 1 −
size(B Bi j ) − size(ri ) − size(ri )

size(im)
(5)

We divide by size(im) for consistency with Eq. 4. Note
that this measure can be efficiently calculated by keeping

track of the bounding boxes around each region, as the

bounding box around two regions can be easily derived

from these.

In this paper, our final similarity measure is a combination

of the above four:

s(ri , r j ) = a1scolour (ri , r j ) + a2stexture(ri , r j )

+a3ssi ze(ri , r j ) + a4s f ill(ri , r j ), (6)

where ai ∈ {0, 1} denotes if the similarity measure is

used or not. As we aim to diversify our strategies, we do not

consider any weighted similarities.

Complementary Starting Regions. A third diversification

strategy is varying the complementary starting regions. To

the best of our knowledge, the method of Felzenszwalb and

Huttenlocher (2004) is the fastest, publicly available algo-

rithm that yields high quality starting locations. We could

not find any other algorithm with similar computational effi-

ciency so we use only this oversegmentation in this paper.

But note that different starting regions are (already) obtained

by varying the colour spaces, each which has different invari-

ance properties. Additionally, we vary the threshold parame-

ter k in Felzenszwalb and Huttenlocher (2004).

3.3 Combining Locations

In this paper, we combine the object hypotheses of several

variations of our hierarchical grouping algorithm. Ideally,

we want to order the object hypotheses in such a way that

the locations which are most likely to be an object come

first. This enables one to find a good trade-off between the

quality and quantity of the resulting object hypothesis set,

depending on the computational efficiency of the subsequent

feature extraction and classification method.

We choose to order the combined object hypotheses set

based on the order in which the hypotheses were generated

in each individual grouping strategy. However, as we com-

bine results from up to 80 different strategies, such order

would too heavily emphasize large regions. To prevent this,

we include some randomness as follows. Given a grouping

strategy j , let r
j

i be the region which is created at position

i in the hierarchy, where i = 1 represents the top of the

hierarchy (whose corresponding region covers the complete

image). We now calculate the position value v
j
i as RND × i ,

where RND is a random number in range [0, 1]. The final

ranking is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we

first rank all the locations as detailed above. Only afterwards

we filter out lower ranked duplicates. This ensures that dupli-

cate boxes have a better chance of obtaining a high rank. This

is desirable because if multiple grouping strategies suggest

the same box location, it is likely to come from a visually

coherent part of the image.

4 Object Recognition Using Selective Search

This paper uses the locations generated by our selective

search for object recognition. This section details our frame-

work for object recognition.

Two types of features are dominant in object recognition:

histograms of oriented gradients (HOG) (Dalal and Triggs

2005) and bag-of-words ( Csurka et al. 2004; Sivic and

Zisserman 2003). HOG has been shown to be successful in

combination with the part-based model by Felzenszwalb et

al. (2010). However, as they use an exhaustive search, HOG

features in combination with a linear classifier is the only fea-

sible choice from a computational perspective. In contrast,

our selective search enables the use of more expensive and

potentially more powerful features. Therefore we use bag-of-

words for object recognition ( Harzallah et al. 2009; Lampert

et al. 2009; Vedaldi 2009). However, we use a more powerful

(and expensive) implementation than (Harzallah et al. 2009;

Lampert et al. 2009; Vedaldi 2009) by employing a variety
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Fig. 3 The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives we use

examples that have a 20–50 % overlap with the positive examples. We iteratively add hard negatives using a retraining phase

of colour-SIFT descriptors ( van de Sande et al. 2010) and a

finer spatial pyramid division ( Lazebnik et al. 2006).

Specifically we sample descriptors at each pixel on a sin-

gle scale (σ = 1.2). Using software from van de Sande et al.

(2010), we extract SIFT ( Lowe 2004) and two colour SIFTs

which were found to be the most sensitive for detecting image

structures, Extended OpponentSIFT ( van de Sande et al.

2012) and RGB-SIFT ( van de Sande et al. 2010). We use a

visual codebook of size 4,000 and a spatial pyramid with 4

levels using a 1×1, 2×2, 3×3 and 4×4 division. This gives

a total feature vector length of 360,000. In image classifica-

tion, features of this size are already used ( Perronnin et al.

2010; Zhou et al. 2010). Because a spatial pyramid results in

a coarser spatial subdivision than the cells which make up a

HOG descriptor, our features contain less information about

the specific spatial layout of the object. Therefore, HOG is

better suited for rigid objects and our features are better suited

for deformable object types.

As classifier we employ a Support Vector Machine with

a histogram intersection kernel using the Shogun Toolbox

( Sonnenburg et al. 2010). To apply the trained classi-

fier, we use the fast, approximate classification strategy of

Maji et al. (2008), which was shown to work well for Bag-

of-Words in Uijlings et al. (2010).

Our training procedure is illustrated in Fig. 3. The initial

positive examples consist of all ground truth object windows.

As initial negative examples we select from all object loca-

tions generated by our selective search that have an overlap

of 20–50 % with a positive example. To avoid near-duplicate

negative examples, a negative example is excluded if it has

more than 70 % overlap with another negative. To keep the

number of initial negatives per class below 20,000, we ran-

domly drop half of the negatives for the classes car, cat, dog

and person. Intuitively, this set of examples can be seen as

difficult negatives which are close to the positive examples.

This means they are close to the decision boundary and are

therefore likely to become support vectors even when the

complete set of negatives would be considered. Indeed, we

found that this selection of training examples gives reason-

ably good initial classification models.

Then we enter a retraining phase to iteratively add hard

negative examples (e.g. Felzenszwalb et al. (2010)): We apply

the learned models to the training set using the locations

generated by our selective search. For each negative image

we add the highest scoring location. As our initial training

set already yields good models, our models converge in only

two iterations.

For the test set, the final model is applied to all locations

generated by our selective search. The windows are sorted by

classifier score while windows which have more than 30 %

overlap with a higher scoring window are considered near-

duplicates and are removed.

5 Evaluation

In this section we evaluate the quality of our selective search.

We divide our experiments in four parts, each spanning a

separate subsection:

Diversification Strategies. We experiment with a variety

of colour spaces, similarity measures, and thresholds of

the initial regions, all which were detailed in Sect. 3.2.

We seek a trade-off between the number of generated

object hypotheses, computation time, and the quality of

object locations. We do this in terms of bounding boxes.

This results in a selection of complementary techniques

which together serve as our final selective search method.

Quality of Locations. We test the quality of the object

location hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective

search in the Object Recognition framework detailed in

Sect. 4. We evaluate performance on the Pascal VOC

detection challenge.

An upper bound of location quality. We investigate how

well our object recognition framework performs when

using an object hypothesis set of “perfect” quality. How

does this compare to the locations that our selective

search generates?
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To evaluate the quality of our object hypotheses we define

the Average Best Overlap (ABO) and Mean Average Best

Overlap (MABO) scores, which slightly generalises the mea-

sure used in Endres and Hoiem (2010). To calculate the

Average Best Overlap for a specific class c, we calculate the

best overlap between each ground truth annotation gc
i ∈ Gc

and the object hypotheses L generated for the corresponding

image, and average:

ABO =
1

|Gc|

∑

gc
i ∈Gc

max
l j ∈L

Overlap(gc
i , l j ). (7)

The Overlap score is taken from Everingham et al. (2010) and

measures the area of the intersection of two regions divided

by its union:

Overlap(gc
i , l j ) =

area(gc
i ) ∩ area(lj)

area(gc
i ) ∪ area(lj)

. (8)

Analogously to Average Precision and Mean Average Preci-

sion, Mean Average Best Overlap is now defined as the mean

ABO over all classes.

Other work often uses the recall derived from the Pascal

Overlap Criterion to measure the quality of the boxes ( Alexe

et al. 2010; Harzallah et al. 2009; Vedaldi 2009). This cri-

terion considers an object to be found when the Overlap of

Eq. 8 is larger than 0.5. However, in many of our experiments

we obtain a recall between 95 and 100 % for most classes,

making this measure too insensitive for this paper. However,

we do report this measure when comparing with other work.

To avoid overfitting, we perform the diversification strate-

gies experiments on the Pascal VOC 2007 train+val set.

Other experiments are done on the Pascal VOC 2007 test

set. Additionally, our object recognition system is bench-

marked on the Pascal VOC 2010 detection challenge, using

the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain

good quality object location hypotheses using a reasonable

number of boxes computed within a reasonable amount of

time.

5.1.1 Flat Versus Hierarchy

In the description of our method we claim that using a full

hierarchy is more natural than using multiple flat partition-

ings by changing a threshold. In this section we test whether

the use of a hierarchy also leads to better results. We therefore

compare the use of Felzenszwalb and Huttenlocher (2004)

with multiple thresholds against our proposed algorithm.

Specifically, we perform both strategies in RG B colour

space. For Felzenszwalb and Huttenlocher (2004), we vary

the threshold from k = 50 to k = 1, 000 in steps of 50. This

range captures both small and large regions. Additionally, as

a special type of threshold, we include the whole image as an

object location because quite a few images contain a single

large object only. Furthermore, we also take a coarser range

from k = 50 to k = 950 in steps of 100. For our algorithm, to

create initial regions we use a threshold of k = 50, ensuring

that both strategies have an identical smallest scale. Addi-

tionally, as we generate fewer regions, we combine results

using k = 50 and k = 100. As similarity measure S we use

the addition of all four similarities as defined in Eq. 6. Results

are in Table 2.

As can be seen, the quality of object hypotheses is better

for our hierarchical strategy than for multiple flat partition-

ings: At a similar number of regions, our MABO score is con-

sistently higher. Moreover, the increase in MABO achieved

by combining the locations of two variants of our hierarchical

grouping algorithm is much higher than the increase achieved

by adding extra thresholds for the flat partitionings. We con-

clude that using all locations from a hierarchical grouping

algorithm is not only more natural but also more effective

than using multiple flat partitionings.

5.1.2 Individual Diversification Strategies

In this paper we propose three diversification strategies to

obtain good quality object hypotheses: varying the colour

space, varying the similarity measures, and varying the

thresholds to obtain the starting regions. This section investi-

gates the influence of each strategy. As basic settings we use

the RG B colour space, the combination of all four similarity

Table 2 A comparison of multiple flat partitionings against hierarchical partitionings for generating box locations shows that for the hierarchical

strategy the Mean Average Best Overlap (MABO) score is consistently higher at a similar number of locations

Threshold k in Felzenszwalb and Huttenlocher (2004) MABO No. of Windows

Flat Felzenszwalb and Huttenlocher (2004) k = 50, 150, · · · , 950 0.659 387

Hierarchical (this paper) k = 50 0.676 395

Flat Felzenszwalb and Huttenlocher (2004) k = 50, 100, · · · , 1000 0.673 597

Hierarchical (this paper) k = 50, 100 0.719 625
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Table 3 Mean Average Best Overlap for box-based object hypotheses

using a variety of segmentation strategies

Similarities MABO No. of Box

C 0.635 356

T 0.581 303

S 0.640 466

F 0.634 449

C+T 0.635 346

C+S 0.660 383

C+F 0.660 389

T+S 0.650 406

T+F 0.638 400

S+F 0.638 449

C+T+S 0.662 377

C+T+F 0.659 381

C+S+F 0.674 401

T+S+F 0.655 427

C+T+S+F 0.676 395

Colours MABO No. of Box

HSV 0.693 463

I 0.670 399

RGB 0.676 395

rgI 0.693 362

Lab 0.690 328

H 0.644 322

rgb 0.647 207

C 0.615 125

Thresholds MABO No. of Box

50 0.676 395

100 0.671 239

150 0.668 168

250 0.647 102

500 0.585 46

1,000 0.477 19

(C)olour, (S)ize, and (F)ill perform similar. (T)exture by itself is weak.

The best combination is as many diverse sources as possible

measures, and threshold k = 50. Each time we vary a single

parameter. Results are given in Table 3.

We start examining the combination of similarity mea-

sures on the left part of Table 3. Looking first at colour,

texture, size, and fill individually, we see that the texture

similarity performs worst with a MABO of 0.581, while the

other measures range between 0.63 and 0.64. To test if the rel-

atively low score of texture is due to our choice of feature, we

also tried to represent texture by Local Binary Patterns Ojala

et al. (2002). We experimented with 4 and 8 neighbours on

different scales using different uniformity/consistency of the

patterns (see Ojala et al. (2002)), where we concatenate LBP

histograms of the individual colour channels. However, we

obtained similar results (MABO of 0.577). We believe that

one reason of the weakness of texture is because of object

boundaries: When two segments are separated by an object

boundary, both sides of this boundary will yield similar edge-

responses, which inadvertently increases similarity.

While the texture similarity yields relatively few object

locations, at 300 locations the other similarity measures still

yield a MABO higher than 0.628. This suggests that when

comparing individual strategies the final MABO scores in

Table 3 are good indicators of trade-off between quality and

quantity of the object hypotheses. Another observation is that

combinations of similarity measures generally outperform

the single measures. In fact, using all four similarity measures

perform best yielding a MABO of 0.676.

Looking at variations in the colour space in the top-right

of Table 3, we observe large differences in results, ranging

from a MABO of 0.615 with 125 locations for the C colour

space to a MABO of 0.693 with 463 locations for the HSV

colour space. We note that Lab-space has a particularly good

MABO score of 0.690 using only 328 boxes. Furthermore,

the order of each hierarchy is effective: using the first 328

boxes of HSV colour space yields 0.690 MABO, while using

the first 100 boxes yields 0.647 MABO. This shows that

when comparing single strategies we can use only the MABO

scores to represent the trade-off between quality and quantity

of the object hypotheses set. We will use this in the next

section when finding good combinations.

Experiments on the thresholds of Felzenszwalb and

Huttenlocher (2004) to generate the starting regions show,

in the bottom-right of Table 3, that a lower initial threshold

results in a higher MABO using more object locations.

5.1.3 Combinations of Diversification Strategies

We combine object location hypotheses using a variety of

complementary grouping strategies in order to get a good

quality set of object locations. As a full search for the best

combination is computationally expensive, we perform a

greedy search using the MABO score only as optimization

criterion. We have earlier observed that this score is repre-

sentative for the trade-off between the number of locations

and their quality.

From the resulting ordering we create three configura-

tions: a single best strategy, a fast selective search, and a

quality selective search using all combinations of individ-

ual components, i.e. colour space, similarities, thresholds, as

detailed in Table 4. The greedy search emphasizes varia-

tion in the combination of similarity measures. This con-

firms our diversification hypothesis: In the quality version,

next to the combination of all similarities, Fill and Size are

taken separately. The remainder of this paper uses the three

strategies in Table 4.
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Table 4 Our selective search methods resulting from a greedy search

Version Diversification strategies MABO No. of Win No. of Strategies Time (s)

Single strategy HSV C+T+S+F k = 100 0.693 362 1 0.71

Selective search fast HSV, Lab C+T+S+F, T+S+F k = 50, 100 0.799 2,147 8 3.79

Selective search quality HSV, Lab, rgI, H, I C+T+S+F, T+S+F, F, S k = 50, 100, 150, 300 0.878 10,108 80 17.15

We take all combinations of the individual diversification strategies selected, resulting in 1, 8, and 80 variants of our hierarchical grouping algorithm.

The Mean Average Best Overlap (MABO) score keeps steadily rising as the number of windows increase

Table 5 Comparison of recall, Mean Average Best Overlap (MABO) and number of window locations for a variety of methods on the Pascal 2007

test set

Method Recall MABO No. of Windows

Arbeláez et al. (2011) 0.752 0.649 ± 0.193 418

Alexe et al. (2012) 0.944 0.694 ± 0.111 1,853

Harzallah et al. (2009) 0.830 – 200 per class

Carreira and Sminchisescu (2010) 0.879 0.770 ± 0.084 517

Endres and Hoiem (2010) 0.912 0.791 ± 0.082 790

Felzenszwalb et al. (2010) 0.933 0.829 ± 0.052 100,352 per class

Vedaldi (2009) 0.940 – 10,000 per class

Single strategy 0.840 0.690 ± 0.171 289

Selective search “Fast” 0.980 0.804 ± 0.046 2,134

Selective search “Quality” 0.991 0.879 ± 0.039 10,097

5.2 Quality of Locations

In this section we evaluate our selective search algorithms

in terms of both Average Best Overlap and the number of

locations on the Pascal VOC 2007 test set. We first evaluate

box-based locations and afterwards briefly evaluate region-

based locations.

5.2.1 Box-Based Locations

We compare with the sliding window search of Harzallah

et al. (2009), the sliding window search of Felzenszwalb et al.

(2010) using the window ratio’s of their models, the jumping

windows of Vedaldi (2009), the “objectness” boxes of Alexe

et al. (2012), the boxes around the hierarchical segmentation

algorithm of Arbeláez et al. (2011), the boxes around the

regions of Endres and Hoiem (2010), and the boxes around

the regions of Carreira and Sminchisescu (2010). From these

algorithms, only Arbeláez et al. (2011) is not designed for

finding object locations. Yet Arbeláez et al. (2011) is one of

the best contour detectors publicly available, and results in

a natural hierarchy of regions. We include it in our evalua-

tion to see if this algorithm designed for segmentation also

performs well on finding good object locations. Furthermore,

Carreira and Sminchisescu (2010); Endres and Hoiem (2010)

are designed to find good object regions rather then boxes.

Results are shown in Table 5 and Fig. 4.

As shown in Table 5, our “Fast” and “Quality” selective

search methods yield a close to optimal recall of 98 and 99 %

respectively. In terms of MABO, we achieve 0.804 and 0.879

respectively. To appreciate what a Best Overlap of 0.879

means, Figure 5 shows for bike, cow, and person an exam-

ple location which has an overlap score between 0.874 and

0.884. This illustrates that our selective search yields high

quality object locations.

Furthermore, note that the standard deviation of our

MABO scores is relatively low: 0.046 for the fast selective

search, and 0.039 for the quality selective search. This shows

that selective search is robust to difference in object proper-

ties, and also to image condition often related with specific

objects (one example is indoor/outdoor lighting).

If we compare with other algorithms, the second high-

est recall is at 0.940 and is achieved by the jumping win-

dows (Vedaldi 2009) using 10,000 boxes per class. As we do

not have the exact boxes, we were unable to obtain the MABO

score. This is followed by the exhaustive search of Felzen-

szwalb et al. (2010) which achieves a recall of 0.933 and a

MABO of 0.829 at 100,352 boxes per class (this number is

the average over all classes). This is significantly lower then

our method while using at least a factor of 10 more object

locations.

Note furthermore that the segmentation methods of

Carreira and Sminchisescu (2010), Endres and Hoiem (2010)

have a relatively high standard deviation. This illustrates that
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(a) (b)

Fig. 4 Trade-off between quality and quantity of the object hypotheses

in terms of bounding boxes on the Pascal 2007 test set. The dashed

lines are for those methods whose quantity is expressed is the num-

ber of boxes per class. In terms of recall “Fast” selective search has

the best trade-off. In terms of Mean Average Best Overlap the “Qual-

ity” selective search is comparable with Carreira and Sminchisescu

(2010), Endres and Hoiem (2010) yet is much faster to compute and

goes on longer resulting in a higher final MABO of 0.879

(a) (b) (c) (d) (e)

Fig. 5 Examples of locations for objects whose Best Overlap score is around our Mean Average Best Overlap of 0.879. The green boxes are the

ground truth. The red boxes are created using the “Quality” selective search (Color figure online)

a single strategy can not work equally well for all classes.

Instead, using multiple complementary strategies leads to

more stable and reliable results.

If we compare the segmentation of Arbelaez Arbeláez

et al. (2011) with a the single best strategy of our method,

they achieve a recall of 0.752 and a MABO of 0.649 at 418

boxes, while we achieve 0.875 recall and 0.698 MABO using

286 boxes. This suggests that a good segmentation algorithm

does not automatically result in good object locations in terms

of bounding boxes.

Figure 4 explores the trade-off between the quality and

quantity of the object hypotheses. In terms of recall, our

“Fast” method outperforms all other methods. The method of

Harzallah et al. (2009) seems competitive for the 200 loca-

tions they use, but in their method the number of boxes is

per class while for our method the same boxes are used for

all classes. In terms of MABO, both the object hypotheses

generation method of Carreira and Sminchisescu (2010) and

Endres and Hoiem (2010) have a good quantity/quality trade-

off for the up to 790 object-box locations per image they

generate. However, these algorithms are computationally 114

and 59 times more expensive than our “Fast” method.

Interestingly, the “objectness” method of Alexe et al.

(2012) performs quite well in terms of recall, but much worse

in terms of MABO. This is most likely caused by their non-

maximum suppression, which suppresses windows which

have more than an 0.5 overlap score with an existing, higher

ranked window. And while this significantly improved results

when a 0.5 overlap score is the definition of finding an object,

for the general problem of finding the highest quality loca-

tions this strategy is less effective and can even be harmful

by eliminating better locations.

Figure 6 shows for several methods the Average Best

Overlap per class. It is derived that the exhaustive search of

Felzenszwalb et al. (2010) which uses 10 times more loca-

tions which are class specific, performs similar to our method

for the classes bike, table, chair, and sofa, for the other classes

our method yields the best score. In general, the classes with

the highest scores are cat, dog, horse, and sofa, which are

easy largely because the instances in the dataset tend to be
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Fig. 6 The Average Best

Overlap scores per class for

several method for generating

box-based object locations on

Pascal VOC 2007 test. For all

classes but table our “Quality”

selective search yields the best

locations. For 12 out of 20

classes our “Fast” selective

search outperforms the

expensive Carreira and

Sminchisescu (2010); Endres

and Hoiem (2010). We always

outperform Alexe et al. (2012)
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big. The classes with the lowest scores are bottle, person, and

plant, which are difficult because instances tend to be small.

Nevertheless, cow, sheep, and tv are not bigger than person

and yet can be found quite well by our algorithm.

To summarize, selective search is very effective in find-

ing a high quality set of object hypotheses using a limited

number of boxes, where the quality is reasonable consistent

over the object classes. The methods of Carreira and Smin-

chisescu (2010) and Endres and Hoiem (2010) have a simi-

lar quality/quantity trade-off for up to 790 object locations.

However, they have more variation over the object classes.

Furthermore, they are at least 59 and 13 times more expen-

sive to compute for our “Fast” and “Quality” selective search

methods respectively, which is a problem for current dataset

sizes for object recognition. In general, we conclude that

selective search yields the best quality locations at 0.879

MABO while using a reasonable number of 10,097 class-

independent object locations.

5.2.2 Region-Based Locations

In this section we examine how well the regions that our

selective search generates captures object locations. We do

this on the segmentation part of the Pascal VOC 2007

test set. We compare with the segmentation of Arbeláez

et al. (2011) and with the object hypothesis regions of both

Carreira and Sminchisescu (2010); Endres and Hoiem

(2010). Table 6 shows the results. Note that the number of

regions is larger than the number of boxes as there are almost

no exact duplicates.

The object regions of both Carreira and Sminchisescu

(2010); Endres and Hoiem (2010) are of similar quality as

our “Fast” selective search, 0.665 MABO and 0.679 MABO

respectively where our “Fast” search yields 0.666 MABO.

While Carreira and Sminchisescu (2010); Endres and Hoiem

(2010) use fewer regions these algorithms are respectively

114 and 59 times computationally more expensive. Our

“Quality” selective search generates 22,491 regions and is

respectively 25 and 13 times faster than Carreira and Smin-

chisescu (2010); Endres and Hoiem (2010), and has by far

the highest score of 0.730 MABO.

Figure 7 shows the Average Best Overlap of the regions per

class. For all classes except bike, our selective search consis-

tently has relatively high ABO scores. The performance for

bike is disproportionally lower for region-locations instead

of object-locations, because bike is a wire-frame object and

hence very difficult to accurately delineate.

If we compare our method to others, the method of Endres

and Hoiem (2010) is better for train, for the other classes our

“Quality” method yields similar or better scores. For bird,

boat, bus, chair, person, plant, and tv scores are 0.05 ABO

better. For car we obtain 0.12 higher ABO and for bottle even

0.17 higher ABO. Looking at the variation in ABO scores in

Table 6, we see that selective search has a slightly lower

variation than the other methods: 0.093 MABO for “qual-

ity” and 0.108 for Endres and Hoiem (2010). However, this

score is biased because of the wire-framed bicycle: without

bicycle the difference becomes more apparent. The standard

deviation for the “quality” selective search becomes 0.058,

and 0.100 for Endres and Hoiem (2010). Again, this shows
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Table 6 Comparison of algorithms to find a good set of potential object locations in terms of regions on the segmentation part of Pascal 2007 test

Method Recall MABO No. of Regions Time(s)

Arbeláez et al. (2011) 0.539 0.540 ± 0.117 1122 64

Endres and Hoiem (2010) 0.813 0.679 ± 0.108 2167 226

Carreira and Sminchisescu (2010) 0.782 0.665 ± 0.118 697 432

Single Strategy 0.576 0.548 ± 0.078 678 0.7

“Fast” 0.829 0.666 ± 0.089 3574 3.8

“Quality” 0.904 0.730 ± 0.093 22,491 17

Carreira and Sminchisescu (2010); Endres and Hoiem (2010) + “Fast” 0.896 0.737 ± 0.098 6,438 662

Carreira and Sminchisescu (2010); Endres and Hoiem (2010) + “Quality” 0.920 0.758 ± 0.096 25,355 675

Fig. 7 Comparison of the

Average Best Overlap Scores

per class between our method

and others on the Pascal 2007

test set. Except for train, our

“Quality” method consistently

yields better Average Best

Overlap scores
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that by relying on multiple complementary strategies instead

of a single strategy yields more stable results.

Figure 8 shows several example segmentations from our

method and Carreira and Sminchisescu (2010), Endres and

Hoiem (2010). In the first image, the other methods have

problems keeping the white label of the bottle and the book

apart. In our case, one of our strategies ignores colour while

the “fill” similarity (Eq. 5) helps grouping the bottle and label

together. The missing bottle part, which is dusty, is already

merged with the table before this bottle segment is formed,

hence “fill” will not help here. The second image is an exam-

ple of a dark image on which our algorithm has generally

strong results due to using a variety of colour spaces. In this

particular image, the partially intensity invariant Lab colour

space helps to isolate the car. As we do not use the contour

detection method of Arbeláez et al. (2011), our method some-

times generates segments with an irregular border, which is

illustrated by the third image of a cat. The final image shows

a very difficult example, for which only Carreira and Smin-

chisescu (2010) provides an accurate segment.

Now because of the nature of selective search, rather than

pitting methods against each other, it is more interesting to see

how they can complement each other. As both Carreira and

Sminchisescu (2010); Endres and Hoiem (2010) have a very

different algorithm, the combination should prove effective

according to our diversification hypothesis. Indeed, as can

be seen in the lower part of Table 6, combination with our

“Fast” selective search leads to 0.737 MABO at 6,438 loca-

tions. This is a higher MABO using less locations than our

“quality” selective search. A combination of Carreira and

Sminchisescu (2010); Endres and Hoiem (2010) with our

“quality” sampling leads to 0.758 MABO at 25,355 loca-

tions. This is a good increase at only a modest extra number

of locations.

To conclude, selective search is highly effective for gen-

erating object locations in terms of regions. The use of a

variety of strategies makes it robust against various image

conditions as well as the object class. The combination

of Carreira and Sminchisescu (2010), Endres and Hoiem

(2010) and our grouping algorithms into a single selective
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Fig. 8 A qualitative

comparison of selective search,

Carreira and Sminchisescu

(2010), and Endres and Hoiem

(2010). For our method we

observe: ignoring colour allows

finding the bottle, multiple

colour spaces help in dark

images (car), and not

using Arbeláez et al. (2011)

sometimes result in irregular

borders such as the cat
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search showed promising improvements. Given these improve-

ments, and given that there are many more different par-

titioning algorithms out there to use in a selective search,

it will be interesting to see how far our selective search

paradigm can still go in terms of computational efficiency,

number of object locations, and the quality of object

locations.

5.3 Object Recognition

In this section we will evaluate our selective search strategy

for object recognition using the Pascal VOC 2010 detection

task.

Our selective search strategy enables the use of expensive

and powerful image representations and machine learning

techniques. In this section we use selective search inside the

Bag-of-Words based object recognition framework described

in Sect. 4. The reduced number of object locations compared

to an exhaustive search make it feasible to use such a strong

Bag-of-Words implementation.

To give an indication of computational requirements: The

pixel-wise extraction of three SIFT variants plus visual word

assignment takes around 10 seconds and is done once per

image. The final round of SVM learning takes around 8

hours per class on a GPU for approximately 30,000 train-

ing examples ( van de Sande et al. 2011) resulting from two

rounds of mining negatives on Pascal VOC 2010. Mining

hard negatives is done in parallel and takes around 11 h on 10

machines for a single round, which is around 40 s per image.

This is divided into 30 s for counting visual word frequen-

cies and 0.5 s per class for classification. Testing takes 40 s

for extracting features, visual word assignment, and count-

ing visual word frequencies, after which 0.5 s is needed per

class for classification. For comparison, the code of Felzen-

szwalb et al. (2010) (without cascade, just like our version)

needs for testing slightly less than 4 s per image per class. For

the 20 Pascal classes this makes our framework faster during

testing.

We evaluate results using the official evaluation server.

This evaluation is independent as the test data has not been

released. We compare with the top-4 of the competition. Note

that while all methods in the top-4 are based on an exhaustive

search using variations on part-based model of Felzenszwalb

et al. (2010) with HOG-features, our method differs substan-

tially by using selective search and Bag-of-Words features.

Results are shown in Table 7.
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Table 8 Results for ImageNet Large Scale Visual Recognition

Challenge 2011 (ILSVRC2011)

Participant Flat error Hierarchical error

University of Amsterdam (ours) 0.425 0.285

ISI lab., University of Tokyo 0.565 0.410

Hierarchical error penalises mistakes less if the predicted class is seman-

tically similar to the real class according to the WordNet hierarchy

It is shown that our method yields the best results for the

classes plane, cat, cow, table, dog, plant, sheep, sofa, and tv.

Except table, sofa, and tv, these classes are all non-rigid. This

is expected, as Bag-of-Words is theoretically better suited

for these classes than the HOG-features. Indeed, for the rigid

classes bike, bottle, bus, car, person, and train the HOG-based

methods perform better. The exception is the rigid class tv.

This is presumably because our selective search performs

well in locating tv’s, see Fig. 6.

In the Pascal 2011 challenge there are several entries wich

achieve significantly higher scores than our entry. These

methods use Bag-of-Words as additional information on

the locations found by their part-based model, yielding bet-

ter detection accuracy. Interestingly, however, by using Bag

-of-Words to detect locations our method achieves a higher

total recall for many classes ( Everingham et al. 2011).

Finally, our selective search enabled participation to the

detection task of the ImageNet Large Scale Visual Recog-

nition Challenge 2011 (ILSVRC2011) as shown in Table 8.

This dataset contains 1,229,413 training images and 100,000

test images with 1,000 different object categories. Test-

ing can be accelerated as features extracted from the loca-

tions of selective search can be reused for all classes. For

example, using the fast Bag-of-Words framework of Uijlings

et al. (2010), the time to extract SIFT-descriptors plus two

colour variants takes 6.7 s and assignment to visual words

takes 1.7 s 1. Using a 1 × 1, 2 × 2, and, 3 × 3 spatial pyra-

mid division it takes 14 s to get all 172,032 dimensional

features. Classification in a cascade on the pyramid lev-

els then takes 0.3 s per class. For 1,000 classes, the total

process then takes 323 s per image for testing. In con-

trast, using the part-based framework of Felzenszwalb et

al. (2010) it takes 3.9 s per class per image, resulting in

3,900 s per image for testing. This clearly shows that the

reduced number of locations helps scaling towards more

classes.

We conclude that compared to an exhaustive search, selec-

tive search enables the use of more expensive features and

classifiers and scales better as the number of classes increase.

1 We found no difference in recognition accuracy when using the Ran-

dom Forest assignment of Uijlings et al. (2010) or kmeans nearest neigh-

bour assignment in van de Sande et al. (2010) on the Pascal dataset.

Table 9 Quality of locations on Pascal VOC 2012 train+val

Boxes train+val 2012 MABO No. of Locations

“Fast” 0.814 2,006

“Quality” 0.886 10,681

Segments train+val 2012 MABO No. of Locations

“Fast” 0.512 3,482

“Quality” 0.559 22,073

5.4 Pascal VOC 2012

Because the Pacal VOC 2012 is the latest and perhaps

final VOC dataset, we briefly present results on this dataset

to facilitate comparison with our work in the future. We

present quality of boxes using the train+val set, the qual-

ity of segments on the segmentation part of train+val,

and our localisation framework using a Spatial Pyramid of

1×1, 2×2, 3×3, and, 4×4 on the test set using the official

evaluation server.

Results for the location quality are presented in Table 9.

We see that for the box-locations the results are slightly

higher than in Pascal VOC 2007. For the segments, however,

results are worse. This is mainly because the 2012 segmen-

tation set is considerably more difficult.

For the 2012 detection challenge, the Mean Average Pre-

cision is 0.350. This is similar to the 0.351 MAP obtained on

Pascal VOC 2010.

5.5 An Upper Bound of Location Quality

In this experiment we investigate how close our selective

search locations are to the optimal locations in terms of recog-

nition accuracy for Bag-of-Words features. We do this on the

Pascal VOC 2007 test set.

The red line in Fig. 9 shows the MAP score of our object

recognition system when the top n boxes of our “quality”

selective search method are used. The performance starts at

0.283 MAP using the first 500 object locations with a MABO

of 0.758. It rapidly increases to 0.356 MAP using the first

3,000 object locations with a MABO of 0.855, and then ends

at 0.360 MAP using all 10,097 object locations with a MABO

of 0.883.

The magenta line shows the performance of our object

recognition system if we include the ground truth object loca-

tions to our hypotheses set, representing an object hypothesis

set of “perfect” quality with a MABO score of 1. When only

the ground truth boxes are used a MAP of 0.592 is achieved,

which is an upper bound of our object recognition system.

However, this score rapidly declines to 0.437 MAP using as

few as 500 locations per image. Remarkably, when all 10,079

boxes are used the performance drops to 0.377 MAP, only
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Fig. 9 Theoretical upper limit for the box selection within our object

recognition framework. The red curve denotes the performance using

the top n locations of our “quality” selective search method, which has a

MABO of 0.758 at 500 locations, 0.855 at 3,000 locations, and 0.883 at

10,000 locations. The magenta curve denotes the performance using the

same top n locations but now combined with the ground truth, which is

the upper limit of location quality (MABO = 1). At 10,000 locations, our

object hypothesis set is close to optimal in terms of object recognition

accuracy (Color figure online)

0.017 MAP more than when not including the ground truth.

This shows that at 10,000 object locations our hypotheses

set is close to what can be optimally achieved for our recog-

nition framework. The most likely explanation is our use of

SIFT, which is designed to be shift invariant Lowe (2004).

This causes approximate boxes, of a quality visualised in

Figure 5, to be still good enough. However, the small gap

between the “perfect” object hypotheses set of 10,000 boxes

and ours suggests that we arrived at the point where the degree

of invariance for Bag-of-Words may have an adverse effect

rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the num-

ber of boxes becomes larger is due to the increased diffi-

culty of the problem: more boxes means a higher variability,

which makes the object recognition problem harder. Earlier

we hypothesized that an exhaustive search examines all pos-

sible locations in the image, which makes the object recog-

nition problem hard. To test if selective search alleviates the

problem, we also applied our Bag-of-Words object recogni-

tion system on an exhaustive search, using the locations of

Felzenszwalb et al. (2010). This results in a MAP of 0.336,

while the MABO was 0.829 and the number of object loca-

tions 100,000 per class. The same MABO is obtained using

2,000 locations with selective search. At 2,000 locations,

the object recognition accuracy is 0.347. This shows that

selective search indeed makes the problem easier compared

to exhaustive search by reducing the possible variation in

locations.

To conclude, there is a trade-off between quality and quan-

tity of object hypothesis and the object recognition accuracy.

High quality object locations are necessary to recognise an

object in the first place. Being able to sample fewer object

hypotheses without sacrificing quality makes the classifica-

tion problem easier and helps to improves results. Remark-

ably, at a reasonable 10,000 locations, our object hypothesis

set is close to optimal for our Bag-of-Words recognition sys-

tem. This suggests that our locations are of such quality that

features with higher discriminative power than is normally

found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective

search. We observed that an image is inherently hierarchi-

cal and that there are a large variety of reasons for a region

to form an object. Therefore a single bottom-up grouping

algorithm can never capture all possible object locations. To

solve this we introduced selective search, where the main

insight is to use a diverse set of complementary and hierar-

chical grouping strategies. This makes selective search sta-

ble, robust, and independent of the object-class, where object

types range from rigid (e.g. car) to non-rigid (e.g. cat), and

theoretically also to amorphous (e.g. water).

In terms of object windows, results show that our algo-

rithm is superior to the “objectness” of Alexe et al. (2012)

where our fast selective search reaches a quality of 0.804

Mean Average Best Overlap at 2,134 locations. Compared

to Carreira and Sminchisescu (2010); Endres and Hoiem

(2010), our algorithm has a similar trade-off between qual-

ity and quantity of generated windows with around 0.790

MABO for up to 790 locations, the maximum that they gen-

erate. Yet our algorithm is 13-59 times faster. Additionally,

it creates up to 10,097 locations per image yielding a MABO

as high as 0.879.

In terms of object regions, a combination of our algo-

rithm with Carreira and Sminchisescu (2010); Endres and

Hoiem (2010) yields a considerable jump in quality (MABO

increases from 0.730 to 0.758), which shows that by fol-

lowing our diversification paradigm there is still room for

improvement.

Finally, we showed that selective search can be success-

fully used to create a good Bag-of-Words based localisation

and recognition system. In fact, we showed that the quality

of our selective search locations are close to optimal for our

version of Bag-of-Words based object recognition.
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