
Northumbria Research Link

Citation:  Terradas,  Jaume,  Goossens,  Marcel  and  Verth,  Gary  (2010)  Selective  spatial
damping of propagating kink wavesto resonant absorption. Astronomy & Astrophysics,
524. p. 23. ISSN 0004-6361 

Published by: EDP Sciences

URL:  http://dx.doi.org/10.1051/0004-6361/201014845  <http://dx.doi.org/10.1051/0004-
6361/201014845>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/8788/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


A&A 524, A23 (2010)
DOI: 10.1051/0004-6361/201014845
c© ESO 2010

Astronomy
&

Astrophysics

Selective spatial damping of propagating kink waves
due to resonant absorption

J. Terradas1, M. Goossens2, and G. Verth2

1 Departament de Física, Universitat de les Illes Balears, Spain
e-mail: jaume.terradas@uib.es

2 Centre Plasma Astrophysics and Leuven Mathematical Modeling and Computational Science Centre,
Katholieke Universiteit Leuven, Leuven, 3001, Belgium
e-mail: [Marcel.Goossens;Gary.Verth]@wis.kuleuven.be

Received 22 April 2010 / Accepted 11 August 2010

ABSTRACT

Context. There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted
as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona.
Aims. We show that resonant absorption provides a simple explanation to the spatial damping of these waves.
Methods. Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes, which includes a non-uniform layer at
the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping
per wavelength produced by resonant absorption are analytically calculated in the thin tube (TT) approximation, valid for coronal
waves. This assumption is relaxed in the case of chromospheric tube waves and filament thread waves.
Results. The damping length of propagating kink waves due to resonant absorption is a monotonically decreasing function of fre-
quency. For kink waves with low frequencies, the damping length is exactly inversely proportional to frequency, and we denote this
as the TGV relation. When moving to high frequencies, the TGV relation continues to be an exceptionally good approximation of the
actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low-
frequency waves and can efficiently remove high-frequency waves from a broad band spectrum of kink waves. The efficiency of the
damping due to resonant absorption depends on the properties of the equilibrium model, in particular on the width of the non-uniform
layer and the steepness of the variation in the local Alfvén speed.
Conclusions. Resonant absorption is an effective mechanism for the spatial damping of propagating kink waves. It is selective because
the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This
means that radial inhomogeneity can cause solar waveguides to be a natural low-pass filter for broadband disturbances. Kink wave
trains travelling along, e.g., coronal loops, will therefore have a greater proportion of the high-frequency components dissipated lower
down in the atmosphere. This could have important consequences for the spatial distribution of wave heating in the solar atmosphere.
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1. Introduction

The first observations of post-flare transversal coronal loop
oscillations by the transition region and coronal explorer
(TRACE) (e.g., Aschwanden et al. 1999; Nakariakov et al. 1999;
Aschwanden et al. 2002), have inspired much development in
magnetohydrodynamic (MHD) wave theory. This observational
breakthrough was important since estimated wave parameters,
such as frequency and amplitude have allowed us to implement
magnetoseismological techniques to probe the plasma fine struc-
ture of the Sun’s atmosphere, an idea initially proposed by, e.g.,
Uchida (1970) and Roberts et al. (1984). It is now commonly ac-
cepted that these transversal waves are the kink mode from MHD
wave theory (see e.g., Edwin & Roberts 1983), a highly mag-
netically dominated Alfvénic wave (see Goossens et al. 2009,
for a discussion on the nature of kink waves). The observed
post-flare kink waves in coronal loops have two main defin-
ing characteristics; firstly, they are standing modes, and sec-
ondly, they are strongly damped oscillations (in about 1−4 pe-
riods, see e.g., Aschwanden et al. 2003). Initially there were
several physical mechanisms proposed to explain the observed
damping, e.g., footpoint leakage (Berghmans & de Bruyne 1995;

De Pontieu et al. 2001), lateral wave leakage (Smith et al. 1997;
Brady & Arber 2005; Verwichte et al. 2006; Selwa et al. 2005,
2007; McLaughlin & Ofman 2008), phase mixing (Heyvaerts &
Priest 1983; Roberts 2002; Ofman & Aschwanden 2002), res-
onant absorption (Ruderman & Roberts 2002; Goossens et al.
2002), and more recently loop cooling (Morton & Erdélyi 2009).
Thus far, resonant absorption, caused by plasma inhomogene-
ity in the direction transverse to the magnetic field (see Ionson
1978; Hollweg & Yang 1988; Steinolfson & Davila 1993; Ofman
& Davila 1995), has proved the most likely candidate for ex-
plaining the observed short damping times in coronal loops (see
Goossens 2008, for review).

Consistent seismological studies based on resonant absorp-
tion using the observed values of periods and damping times of
standing kink waves were carried out by Arregui et al. (2007)
and Goossens et al. (2008). These two studies show that, at least
for a collection of 11 loops, resonant absorption provides an
explanation of the observed damping times. The observational
signatures of the alternative cooling loop damping mechanism
proposed by Morton & Erdélyi (2009) differ from resonant ab-
sorption by the fact that the frequency changes as a function of
time. The resonant damping theory developed so far is restricted
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to static and stationary equilibria, and therefore frequency is ex-
pected to be constant in time. Extensive MHD modelling has
also shown that resonant absorption is the most likely explana-
tion for the damping of transverse oscillations in fine structures
of prominences (see Arregui et al. 2008; Soler et al. 2009a,b;
Arregui & Ballester 2010).

If indeed, coronal loop kink oscillations are being attenu-
ated by the process of resonant absorption, one can exploit this
to estimate the transverse plasma inhomogeneity length scales
using observed frequencies and damping times (Goossens et al.
2006). The original equilibrium models by, e.g., Ruderman &
Roberts (2002), for studying resonant absorption consisted of
monolithic loop structures. However, there has been some ob-
servational evidence by, e.g., Aschwanden (2005) that coronal
loops are composed of many different strands, possibly at differ-
ent temperatures and densities. To model this loop multi-thread
structure, Terradas et al. (2008) has numerically solved the initial
value problem and found that the process of resonant absorption
was still an efficient damping mechanism in more complex and
realistically structured loop models (see also the work of Ofman
2005). Further study into the properties of standing kink waves
has also been undertaken relating plasma inhomogeneity in the
direction of the magnetic field caused by, e.g., density (Díaz
et al. 2004; Andries et al. 2005b; Arregui et al. 2005; Dymova
& Ruderman 2006; Erdélyi & Verth 2007; Verth et al. 2007) or
magnetic (Verth & Erdélyi 2008; Ruderman et al. 2008) strati-
fication. It was shown that eigenfrequencies and eigenfunctions
of coronal loops with longitudinal stratification were altered in
such a way that one could determine, e.g., the coronal density
scale height by estimating the ratio of the fundamental mode to
that of higher overtones, a technique first proposed by Andries
et al. (2005a) and later developed by Verth et al. (2008) to correct
for magnetic stratification.

All these theoretical developments to describe kink waves
in coronal loops with realistic plasma stratification in the trans-
verse and longitudinal direction were restricted to studying
standing waves, since this was what was detected in TRACE
data. However, recently it has come to light that there are
also ubiquitous small-amplitude, propagating transversal MHD
waves in the solar atmosphere. These were first observed by
the novel Coronal Multi-channel Polarimeter (CoMP) instru-
ment (Tomczyk et al. 2007). Moreover, Tomczyk & McIntosh
(2009) have been able to separate outward and inward propa-
gating wave power. It was found that the outward power was
greater than the inward power by about a factor of two, and this
can only be explained if the waves are damped in situ (see also
Pascoe et al. 2010). The reason we could not detect these prop-
agating waves previously with TRACE is that the amplitudes
are of the order of 50 km, while the TRACE resolution is only
about 800 km. Tomczyk et al. (2007) originally interpreted these
wave as Alfvén waves, but Van Doorsselaere et al. (2008) subse-
quently argued that the observed waves were actually more con-
sistent with the propagating kink mode. Although both modes
are dominated by the restoring force of magnetic tension, in the
geometry of a solar flux tube, e.g., a magnetic cylinder, a pure
Alfvén wave is strictly torsional with no transverse component
and therefore completely incompressible. On the other hand, a
kink wave propagating in a flux tube has a transverse perturba-
tion component and is weakly compressible, at least in the linear
regime (see e.g., Goossens et al. 2009).

In the present paper, we restrict the study to investigating the
effect of transverse plasma inhomogeneity on the propagating
kink mode. Although the two problems of standing and propa-
gating kink waves are closely related, since a standing wave is

a superposition of two propagating waves, there are some dif-
ferences that need to be considered. The standing transverse os-
cillation is the result of an initial value problem, i.e., an initial
disturbance in the solar corona such as a CME or a flare, induces
the oscillations of the loops at their natural frequencies or eigen-
modes. Alternately, the transverse travelling waves have a forced
nature since the photosphere acts as a driver. The frequencies of
the kink waves observed by CoMP show a peak around 5 min, in-
dicating a p-mode-driven photospheric origin. The spatial scale
of the driver at the base of the tube is also important in exciting
kink oscillations. From the properties of MHD waves in a flux
tube, we know that a purely incompressible excitation excites
purely incompressible Alfvén waves if the driver is strictly lo-
calised inside or outside the tube (assuming a homogeneous loop
model). On the other hand, an excitation located both inside and
outside the tube invariably excites transverse oscillations since
an almost incompressible surface wave between the two media
will be established, i.e., the kink mode.

2. Waveguide model

To understand the effect of radial inhomogeneity on propagating
kink waves we consider the relatively simple equilibrium model
of a cylindrical axi-symmetric flux tube of radius R with a con-
stant axial magnetic field Bz and with a density contrast of ρi/ρe.
The subindexes “i” and “e” refer to the internal and external part
of the tube, respectively. It is also assumed that the tube has a
smooth variation in density across the waveguide boundary (lo-
cated at r = R) on a characteristic spatial scale l. For simplicity,
a sinusoidal density profile connecting the internal and external
part of the tube is implemented (see e.g., Ruderman & Roberts
2002; Goossens et al. 2002; Terradas et al. 2006). The role of the
inhomogeneity at the loop boundary is crucial since this is where
the process of resonant absorption invariably takes place. This
basically means that the transverse displacement of the whole
tube is converted into azimuthal motions localised at the tube
boundary. The transverse motion is attenuated by this energy
conversion, while at the same time small scales are created in
the nonuniform layer from phase mixing. Phase mixing causes
a cascade of energy to smaller length scales, where the dissipa-
tion becomes more efficient. The reader is referred to Goossens
(2008), Ruderman & Erdélyi (2009), Terradas (2009), and refer-
ences therein for further details about this robust damping mech-
anism. Recent studies by Soler et al. (2009a) in the context of
modelling kink oscillations observed in solar prominences (com-
plex coronal magnetic structures with relatively cool and dense
plasma) show that the process of resonant absorption still sur-
vives even when the plasma is partially ionised.

3. Spatial damping in the TT approximation

Before we embark on analysing MHD waves in the thin tube
(TT) approximation, let us explain what this approximation actu-
ally is. In what follows we consider both standing and propagat-
ing waves. A standing wave is the superposition of two propagat-
ing waves travelling with the same frequency and wavenumber
but in opposite directions. For the standing wave problem the ax-
ial wavelength (or the axial wavenumber kz) is specified and the
corresponding frequency is determined. A TT in this case means
that the axial wavelength is much longer than the radius of the
tube so that kzR � 1, so the TT approximation for standing
waves is the long wavelength approximation. The frequency ω
is specified for propagating waves and the corresponding wave-
length determined. In this situation, a TT means that during one
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period, defined by the frequency ω, a signal travelling at the
Alfvén speed can cross the waveguide in the radial direction
many times or ω/(vA/R)� 1. As a result the TT approximation
is the low-frequency approximation for propagating waves. The
benefit of the TT approximation is that it enables us to obtain
simple mathematical expressions that are very accurate, allow-
ing us to gain a physical insight into the problem.

3.1. Homogeneous magnetic cylinder

For a homogeneous magnetic cylinder (i.e., no inhomogeneous
layer, l = 0), the dispersion relation for the kink mode (m = 1)
and the fluting modes (m > 1) in the TT approximation is (see
Goossens et al. 2009)

ρi

(
ω2 − ω2

Ai

)
+ ρe

(
ω2 − ω2

Ae

)
= 0, (1)

where

ω2
A = k2

z v
2
A, v2

A = B2
z/ (μ ρ) . (2)

The dispersion relation Eq. (1) specifies a functional dependence
on frequency ω and wavenumber kz. This can be studied for the
cases of either standing or propagating waves. For the propagat-
ing wave study, the wavenumber kz is specified and the disper-
sion relation is solved for frequencyω, leading to the well known
result

ω2 =
ρiω

2
Ai + ρeω

2
Ae

ρi + ρe
≡ ω2

∗ , (3)

where ω∗ is real. For equal magnetic field strength inside and
outside the cylinder this expression can be further simplified to

ω2 =
2B2

z

μ (ρi + ρe)
k2

z =
2ρi

ρi + ρe
v2

Aik
2
z ≡ ω2

∗ . (4)

For propagating waves we consider waves generated at a given
location with a real frequency ω∗ and solve the dispersion rela-
tion for kz, resulting in

k2
z =

μ (ρi + ρe)
2B2

z
ω2
∗ =

ρi + ρe

2ρi

ω2∗
v2

Ai

≡ k2
∗ , (5)

where k∗ is also real. The solution given by Eq. (5) corresponds
to the well known undamped kink wave (and the fluting modes).
To derive Eq. (1) it is implicitly assumed that ωR/vA � 1,
but since not all frequencies will satisfy these conditions later,
we present results for any frequency of driver without this
restriction.

3.2. Inhomogeneous magnetic cylinder

The thin boundary (TB) approximation means that the non-
uniformity is confined to [R − l/2,R + l/2], with l/R � 1, so
that the non-uniform layer coincides with the dissipative layer.
This approximation results in the mathematical simplification
that MHD waves can be described by solutions for uniform plas-
mas that are connected over the dissipative layer by jump condi-
tions (see e.g., Sakurai et al. 1991; Goossens et al. 1995; Tirry &
Goossens 1996). The use of the TB approximation has been ap-
plied in e.g., Goossens et al. (2006, 2009) and Goossens (2008).
Including the effect of an inhomogeneous layer is reasonably

simple in the case of the thin boundary approximation and re-
sults in the following dispersion relation,

ρi

(
ω2 − ω2

Ai

)
+ ρe

(
ω2 − ω2

Ae

)
=

iπ
m/rA

ρ (rA) |ΔA|ρi

(
ω2 − ω2

Ai

)
ρe

(
ω2 − ω2

Ae

)
. (6)

Here rA denotes the position of the Alfvén resonance. In the TB
approximation it is natural to adopt rA = R since l/R � 1 and
rA ∈ ]R− l/2,R+ l/2[. Using the jump condition is not restricted
to the thin non-uniform layer as can be seen from, e.g., Tirry &
Goossens (1996); Tirry et al. (1997, 1998); however, this con-
dition requires numerical integration of the ideal MHD equa-
tions in a non-uniform plasma up to the dissipative layer. In the
present paper we do not intend to use numerical integration of
the ideal MHD equations relating to thick boundaries. However,
we do use the results obtained with the TB approximation for
thick boundaries for a comparison with the results of a full nu-
merical calculation in Sect. 5.

The effect of resonance is contained on the right hand side
of Eq. (6). Again we can view the dispersion relation Eq. (6) as
a relation for either standing or propagating waves. In the case
of standing waves, the wavenumber is real (kz = k∗) and the fre-
quency is complex. This case has been considered previously by
e.g., Goossens et al. (1992, 2009). Let us now focus on propa-
gating waves with a given real frequency (ω = ω∗) and complex
wavenumber. The imaginary part of the wavenumber indicates
that the wave, as it propagates, is damped by resonant absorp-
tion. Now we assume that

kz = kR + i kI. (7)

The purely imaginary term in Eq. (7) reflects the damping im-
posed on the wave, and since the damping is in the spatial do-
main, the wavenumber is now complex. If we approximate k2

z by
k2

R + 2ikRkI (we assume weak damping, i.e., kI � kR), we have
that kR ≈ k∗ (given by Eq. (5)), and after some algebra we find

kI

k∗
=
π

8
m
R

1
ρ (rA) |ΔA|

(ρi − ρe)2

(ρi + ρe)
ω2
∗ . (8)

Because

ρ (rA) |ΔA | = ω2
∣∣∣∣∣dρdr

∣∣∣∣∣
rA

, (9)

we finally obtain the following expression

kI

k∗
=
π

8
m
R

(ρi − ρe)2

ρi + ρe

1
|dρ/dr|rA

· (10)

Because kz is complex, we define the damping length as LD =
1/kI, while the wavelength is simply λ = 2π/k∗. A useful quan-
tity is the the damping per wavelength, which is

LD

λ
=

4
π2

R
m

ρi + ρe

(ρi − ρe)2

∣∣∣∣∣dρdr

∣∣∣∣∣
rA

· (11)

For a sinusoidal density profile it can be shown that∣∣∣∣∣dρdr

∣∣∣∣∣
rA

=
π

2
ρi − ρe

l
, (12)

and Eq. (11) reduces to

LD

λ
=

2
π

1
m

R
l
ρi + ρe

ρi − ρe
· (13)
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Equation (13) clearly shows the dependence of the damping per
wavelength on the thickness of the layer. The wider the layer,
the stronger the spatial attenuation of the wave. This is not sur-
prising, since we can relate this result to the expression for the
temporal damping, i.e., wavenumber assumed real (kz = k∗) and
frequency complex. The well known formula in the case of the
temporal damping for a standing wave is

τD

P
=

2
π

1
m

R
l
ρi + ρe

ρi − ρe
· (14)

If we compare this expression with Eq. (13), we note that the
damping per wavelength for propagating waves and the damp-
ing per period for standing waves are exactly the same so spatial
and temporal damping are completely equivalent in the TT ap-
proximation. From Eqs. (13) and (14) we obtain the simple result

LD

λ
=
τD

P
· (15)

Propagating kink waves have been recently studied by
Vasheghani Farahani et al. (2009) in the long-wavelength limit
in X-ray jets in the solar atmosphere. These authors computed
the ratio of the damping time to the period for standing waves
and use this quantity to discuss the spatial damping of propagat-
ing waves. The TT approximation result presented in Eq. (15)
therefore validates the use of the damping expression derived
for kink standing waves by Vasheghani Farahani et al. (2009)
to interpret the attenuation of propagating kink waves. The TT
damping relations given by Eqs. (13) and (14) have other signif-
icant consequences. For standing waves, we rewrite Eq. (14) as

τD

P
=
ξE

m
, (16)

where

ξE =
2
π

R
l
ρi + ρe

ρi − ρe
, (17)

which only depends on the parameters of the equilibrium model,
not on the particular type of MHD wave mode defined by the
value of m. For the kink mode m = 1. The period is defined by

P =
2π
ω
, (18)

and for standing waves ω is related to the wavenumber kz by the
dispersion relation given by Eq. (4); i.e.,

ω = n vAi
π

L

√
2ρi

ρi + ρe
, (19)

where vAi is the internal Alfvén speed, n = 1, 2, 3, . . . is the
longitudinal mode number, and L is the total length of the
waveguide, e.g., a coronal loop (we have used that kz = nπ/L).
Equation (16) can then be written as

τD

τAi
=

2ξE

m

√
ρi + ρe

2ρi

1
n
, (20)

where τAi = L/vAi is the Alfvén transit time in the longitudinal
direction. Equation (20) has interesting consequences. Firstly,
it indicates that fluting modes (m > 1) have shorter damp-
ing times than the kink mode (m = 1). Secondly, it shows
that the damping time for a standing wave is inversely pro-
portional to the longitudinal mode number n; i.e., the damping

time is inversely proportional to the wavelength of the stand-
ing wave, so that higher overtones (with shorter periods) are
damped faster than low-order overtones, e.g, the fundamental
mode. Fortunately, there have been some signatures of overtones
in coronal loop standing kink waves detected in TRACE data
(see e.g. Verwichte et al. 2004; De Moortel & Brady 2007; Verth
et al. 2008; Van Doorsselaere et al. 2009). For a particularly clear
example of the first overtone damping before the fundamental
mode, that could be explained by resonant absorption attenuat-
ing the higher harmonic faster, see the Morlet wavelet transform
in Fig. 5 of Verwichte et al. (2004).

Now considering the spatial damping of propagating waves,
we can also write Eq. (13) as
LD

λ
=
ξE

m
· (21)

The wavelength is defined as λ = 2π/kz and is related to the
frequency by the dispersion relation in Eq. (5). Equation (21)
can then be rewritten in terms of the flux tube radius as

LD

R
= 2π

vAi

ωR
ξE

m

√
2ρi

ρi + ρe
, (22)

where ωR/vAi is a dimensionless frequency. The TT approxima-
tion means ωR/vAi � 1. Denoting this frequency as

f =
ωR
vAi

, (23)

then (note the different definition of f in Verth et al. 2010)

LD

R
= 2π

ξE

m

√
2ρi

ρi + ρe

1
f
· (24)

We refer to the relation between the damping length and fre-
quency defined in Eq. (24) as the TGV relation for propagating
kink waves. In what follows, it will become clear that the TGV
relation is actually a very good approximation of the dependency
of damping length on frequency for all relevant frequencies as
illustrated in Fig. 2. The expression given in Eq. (24) has im-
portant consequences, as it shows that LD/R is inversely pro-
portional to f for propagating waves; i.e., the damping length
is inversely proportional to frequency, so that high frequency
waves are damped on shorter spatial scales than their lower fre-
quency counterparts. This means that for driven waves propagat-
ing upwards from the photosphere, each frequency has a differ-
ent penetration height into the solar corona. Therefore, resonant
absorption provides a natural filtering mechanism for broadband
disturbances, e.g., like those observed by Tomczyk & McIntosh
(2009), with lower frequency waves being least affected by the
damping process and propagating to higher heights in the solar
corona.

4. Spatial damping beyond the TT approximation

The TT approximation is useful because it makes the dispersion
relation analytically solvable. In Table 1 we list observed esti-
mates of kzR for various MHD wave modes, and it can be seen
that for many solar atmospheric waves, e.g., standing kink waves
in coronal loops observed by Aschwanden et al. (2002), the TT
approximation is reasonably valid. We have used the averaged
values of loop radius and length. However, for kink waves in
filament threads (Lin et al. 2009) or torsional Alfvén waves in
chromospheric magnetic bright points (Jess et al. 2009) many
have values of kzR ≈ 1. It is relatively straightforward to relax
the TT approximation and to consider the effect of the finite tube
radius on damping.
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Table 1. Estimated range of kzR in observed propagating (P) and standing (S) MHD wave modes.

Reference MHD wave mode Width of Wavelength kzR
interpretation of authors waveguide (Mm)

(Mm)
1 Kink (S) 5.9−11.5 328−552 0.03−0.11
2 Alfvén (P) 0.2 >4.0 <0.16
3 Kink or sausage waves (S) 0.4 2.5−3.1 0.41−0.5
4 Kink or Alfvén waves (P) 0.2 2.2−7.2 0.17−0.58
5 Torsional Alfvén (P) 2.0 4.5−6.0 1.04−1.39
6 Kink (P) 0.2−1.0 3.4−12.9 0.03−0.9
7 Kink (P) 0.43−0.66 >250 <0.12
8 Alfvén (P) 9.0 >393 <0.07
9 Kink or Alfvén waves (P) 9.0 >180 <0.16

References. (1) Aschwanden et al. (2002); (2) De Pontieu et al. (2007); (3) Fujimura & Tsuneta (2009); (4) He et al. (2009); (5) Jess et al. (2009);
(6) Lin et al. (2009); (7) Okamoto et al. (2007); (8) Tomczyk et al. (2007); (9) Tomczyk & McIntosh (2009).

4.1. Homogeneous magnetic cylinder

The dispersion relation for a homogeneous magnetic cylinder is

ρi

(
ω2 − ω2

Ai

)
+ ρe

(
ω2 − ω2

Ae

)
F (ω, kz) = 0, (25)

taking into account a finite radius, where

F (ω, kz) = − ki

ke

J′m (kiR) Km (keR)

Jm (kiR) K′m (keR)
, (26)

k2
i =

ω2 − ω2
Ai

v2
Ai

, k2
e = −

ω2 − ω2
Ae

v2
Ae

· (27)

The function F depends both on frequency ω and wave num-
ber kz, taking that the tube has a finite width into account. Note
that F ≡ 1 in the limit of a TT (the Bessel functions are approxi-
mated by their small arguments expressions), and we recover the
dispersion relation given by Eq. (1). For a standing wave, kz is
fixed and Eq. (25) is solved for ω, while for a propagating wave,
ω is fixed and Eq. (25) is solved for kz. The solution to Eq. (25)
corresponds again to the undamped kink wave. For a finite width
tube the analytical solution to this equation would imply to use
of additional terms in the asymptotic expansions of the Bessel
functions, complicating matters. We simply solve Eq. (25) nu-
merically in order to avoid these cumbersome calculations.

4.2. Inhomogeneous magnetic cylinder

When we add a thin non-uniform layer we obtain the complex
dispersion relation

ρi

(
ω2 − ω2

Ai

)
+ ρe

(
ω2 − ω2

Ae

)
F (ω, kz) =

iπ
m/R

ρ (rA) |ΔA |ρi

(
ω2−ω2

Ai

)
ρe

(
ω2−ω2

Ae

)
G (ω, kz) , (28)

where

G (ω, kz) = −m
R

1
ke

Km (keR)
K′m (keR)

· (29)

For the TT we can again use the asymptotic expansions of the
Bessel function so that G ≡ 1, hence in the TT limit, Eq. (28)
is simplified to Eq. (6). Equation (28) can be solved for a com-
plex frequency ω with a specified real wavenumber k∗ or for a
complex wavenumber kz for a specified real frequency ω∗. By
solving Eq. (28) in the case of a propagating wave with real fre-
quency ω∗ we find that the real part of complex kz is k∗ (we get

again Eq. (25), k∗ is now different from Eq. (6)), while the imag-
inary part is given by

kI

k∗
=

T
N
, (30)

where

T =
π

2
m
R

(ρi − ρe)2[
ρi + ρeF (ω∗, k∗)

]
[1 + F (ω∗, k∗)]2

×F (ω∗, k∗) G (ω∗, k∗)
|dρ/dr|rA

, (31)

and

N = 1 +
k∗
2

ρi − ρe[
ρi + ρeF (ω∗, k∗)

]
[1 + F (ω∗, k∗)]

∂F
∂k

∣∣∣∣∣
(ω∗,k∗)

· (32)

The expressions are slightly more complicated than in the TT
approximation (see Eq. (10)), but once k∗ is known the different
terms can be easily calculated. The corresponding damping per
wavelength is

LD

λ
=

1
2π

N
T
· (33)

In the TT limit, i.e., when F(ω∗, k∗) and G(ω∗, k∗) → 1 and
∂F/∂k → 0, we recover Eq. (11). For a sinusoidal density pro-
file we simply have to make use of Eq. (12) in (31). Now let us
define

Ñ = 1 − ω∗
2

ρi − ρe[
ρi + ρeF (ω∗, k∗)

]
[1 + F (ω∗, k∗)]

∂F
∂ω

∣∣∣∣∣
(ω∗ ,k∗)

· (34)

As in the previous section, we compared, the damping per
wavelength for propagating waves with the damping per period,
which in the non-TT approximation is given by

τD

P
=

1
2π

Ñ
T
· (35)

By Eqs. (33) and (35), there is a clear correspondence between
the temporal and the spatial damping beyond the TT approxima-
tion. Furthermore, a general expression that relates the temporal
damping of standing waves and the spatial damping of propagat-
ing waves can be derived following the analysis of Appendix A
in Tagger et al. (1995). We can write the complex dispersion re-
lation given by Eq. (28) as

DR(ω, k) + iDI(ω, k) = 0. (36)
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To make it clear, in Eq. (36), DR is equal to the LHS of Eq. (28)
and DI equal to minus the RHS of the equation. In the case of
spatial damping, if ω∗ and k∗ are the solutions of DR(ω, k) = 0
then it is easy to see by making a Taylor expansion around the
solution that

kI = − DI

∂DR/∂k

∣∣∣∣∣
(ω∗ ,k∗)

, (37)

while for temporal damping

ωI = − DI

∂DR/∂ω

∣∣∣∣∣
(ω∗ ,k∗)

· (38)

Combining these two expressions we find that

LD

λ
=

k∗
ω∗

∂DR/∂k
∂DR/∂ω

τD

P
, (39)

which is simply (see also Pascoe et al. 2010)

LD

λ
=
vgr

vph

τD

P
· (40)

This result is valid when the damping is not too strong (see e.g.,
Tagger et al. 1995), an assumption that we have already made in
deriving the damping per wavelength (kI � kR). In the TT ap-
proximation, kink waves are weakly dispersive so that vgr ≈ vph
in agreement with the results found in Sect. 3, the damping per
wavelength is thus exactly the same as the damping per period,
but in the regime when the TT approximation is not applicable,
the group speed can differ from the phase speed.

From the previous results, we can also derive alternative for-
mulae for the damping per wavelength and damping per period
in terms of the imaginary part of the dispersion relation,

LD

λ
=

k∗
2π

1
DI (ω∗, k∗)

{
− 2k∗

[
ρiv

2
Ai + ρev

2
AeF (ω∗, k∗)

]
+ρe

(
ω2
∗−k2

∗v
2
Ae

) ∂F
∂k

∣∣∣∣∣
(ω∗ ,k∗)

}
,

(41)
τD

P
=

ω∗
2π

1
DI (ω∗, k∗)

×
{

2ω∗
[
ρi + ρeF (ω∗, k∗)

]
+ ρe

(
ω2
∗−k2

∗v
2
Ae

) ∂F
∂ω

∣∣∣∣∣
(ω∗ ,k∗)

}
·

(42)

Using Eq. (40) we can identify in these expressions the terms
related to the phase and group speed.

Next using the analytical results given in this section, we
study how the damping per wavelength depends on the dimen-
sionless frequency of the driver f , defined by Eq. (23), for partic-
ular cases (see Fig. 1). We see that the wider the layer, the more
efficient the attenuation (smaller damping per wavelengths), in
agreement with the analytical results in the TT approximation.
For small f the damping per wavelength tends to the TT value.
The value of LD/λ increases monotonically with ω. The devi-
ation with respect to the TT results is smaller for thick lay-
ers. In the TT approximation, which for propagating waves, is
the low-frequency approximation, LD/λ is independent of fre-
quency, since this approximation does not take into account the
variation of frequency; i.e., the frequency is only presumed to be
low. The analytical results for LD/λ beyond the TT approxima-
tion, take the dependence on frequency into account. The value
of LD/λ now undergoes a moderate increase when we move from

Fig. 1. Damping per wavelength as a function of the dimensionless
frequency ( f = ωR/vAi) for three different widths of the inhomoge-
neous layers. The solid line corresponds to the analytical results, and
the dashed line represents the full numerical solution of the resistive
eigenvalue problem. The dotted line corresponds to the TT approxima-
tion, valid when f → 0. In this plot ρi/ρe = 3.

low to high frequencies. However, the really interesting quantity
to calculate is the damping length itself. To make the depen-
dence of LD on frequency more explicit, we follow the same line
of reasoning in Sect. 3.2 and rewrite Eq. (13) as

LD

λ
= ξEW, (43)

where the quantity ξEW now depends on the parameters of the
equilibrium model and the characteristics of the wave itself.
Again λ = 2π/kz and kz is related to the frequency by the dis-
persion relation Eq. (25). Since we have abandoned the TT ap-
proximation, a simple analytical formula that relates kz to ω is
not readily available, but we can always write

kzR = f ψ( f ), (44)

where f is the dimensionless frequency defined in Eq. (23), and
ψ( f ) is a function that we can determine numerically. As a result
by implementing the function ψ( f ), we find that

LD

R
= 2π

ξEW

ψ( f )
1
f
, (45)

which in the low-frequency limit is equivalent to the TGV rela-
tion given by Eq. (24) for m = 1; i.e.,

ξEW → ξE and ψ→
√
ρi + ρe

2ρi
, (46)

as f → 0, where ξE is defined by Eq. (17). In Eq. (45) since ψ( f )
and ξEW are slowly varying functions of f , the main dependence
of LD on f is contained in the factor 1/ f , as in the low-frequency
limit shown by Eq. (24). This is illustrated in Fig. 2, where LD/R
is plotted as a function of f for several values of l/R. The depen-
dence of the curves on 1/ f is very clear, and the non-TT and TT
solutions tend to overlap in the limit of f → 0, where both cases
are accurately described by the TGV relation. Even for f → 1
the TGV relation still describes the behaviour of the damping
length with frequency quite well. Again, the potential of reso-
nant absorption as a frequency filter is clearly demonstrated in
Fig. 2, with high-frequency waves being damped on shorter spa-
tial scales than low-frequency waves (for fixed l/R).
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Fig. 2. Damping length normalised to the loop radius as a function of
the dimensionless frequency ( f = ωR/vAi) for three different widths of
the inhomogeneous layers. The solid line corresponds to the analytical
results, the dashed line represents the full numerical solution of the re-
sistive eigenvalue problem, and the dotted line corresponds to the TT
approximation calculated using Eq. (24), valid when f → 0. In this plot
ρi/ρe = 3.

5. Resistive calculations

The results based on TB approximation described in the pre-
vious sections are compared with the full resistive calculations
using the same cylindrical tube model. The same approach as
in Terradas et al. (2006) is used: i.e., the linearised MHD equa-
tions including magnetic diffusion are numerically solved using
finite elements. This method allows us to calculate the complex
eigenfrequencies of the quasimodes, which are independent of
the value of the resistivity in the limit of large resistivity (see
Poedts & Kerner 1991).

The comparison with the analytical results is useful since
there are no implicit assumptions about the TT or TB approxi-
mation in the resistive eigenvalue problem; i.e., the TT and TB
approximations are not used. The resistive calculation applies to
any frequency, whether it is small compared to vAi/R or not, and
also to equilibrium models that have a thin non-uniform layer or
are fully non-uniform. We have solved the eigenvalue problem
(for ω) and have used Eq. (40) to translate from temporal damp-
ing to spatial damping. By including resistivity, the eigenvalue
problem for the wavenumber is more difficult to solve than the
eigenvalue problem for the frequency. The results of the resistive
calculations are shown in Figs. 1 and 2 where the damping per
wavelength and the damping length are plotted as a function of
the frequency of the driver. The agreement between the resistive
computations and the analytical or semi-analytical methods is
very good. The small differences are the result of assuming that
the resonance is always located at r = R in the analytical approx-
imations, and we have calculated the derivative of the density at
this position. This explains the small deviations from the resis-
tive estimations. A more precise determination could be done by
calculating the exact location of the resonance and then using a
slightly modified version of Eq. (28), but since the analytical ap-
proximations that we have already derived are quite satisfactory,
there is no pressing need to explore this further.

6. Conclusions and discussion

The spatial damping due to resonant absorption of driven kink
waves has been investigated. The main conclusion of the work

is that the damping length of propagating kink waves due to res-
onant absorption is a monotonically decreasing function of fre-
quency. The TGV relation for kink waves was derived, demon-
strating that for low frequencies the damping length is exactly
inversely proportional to frequency. In the high-frequency range
the TGV relation continues to be an excellent approximation
of the actual dependency of the damping length on frequency.
Certainly, for all physically relevant frequencies the dependency
of damping length on frequency is accurately described by the
TGV relation. This dependency means that resonant absorption
is selective as it favours low-frequency waves and can efficiently
remove high-frequency waves from a broad band spectrum of
kink waves. This has high significance for solar atmospheric
kink waves, since high-frequency waves will tend to lose more
power than their low-frequency counterparts before reaching
high altitudes in the solar corona, with the exact percentage
power loss depending on the properties of the equilibrium, in
particular the width of the non-uniform layer and steepness of
the variation in the local Alfvén speed. With respect to mode
conversion, the process of resonant absorption will cause the
higher frequency waves to be attenuated more because the global
kink mode will be converted into localised Alfvénic modes at
lower heights. If the energy of these Alfvénic motions is eventu-
ally dissipated, then resonant absorption should produce a char-
acteristic distribution of the energy as a function of height in
the solar atmosphere. This could have important consequences
with for the spatial distribution of wave heating in the solar
atmosphere.

It has also been shown that spatial and temporal damping are
basically equivalent. In the TT approximation, the damping per
period and the damping per wavelength are exactly the same.
The differences in these two quantities arise in the regime where
the TT is not valid, but even in this situation it is easy to relate
the spatial and the temporal damping rates through the group and
phase speeds of the kink MHD waves. This allows us to trans-
late the results from the temporally damped waves (ω complex,
k real) to spatially attenuated waves (ω real, k complex) due to
resonant absorption. This mechanism requires the frequency of
the driver to be between the internal and the external Alfvén fre-
quency of the tube. This might seem a very restrictive condition,
but in fact it is just the opposite. In the driven problem, the fre-
quency is fixed but the system chooses the proper wavelength
(along the waveguide) to accommodate the kink mode in the
tube. This kink mode generated at the base of the loop propa-
gates upwards along the tube and at the same time is attenuated
by the inhomogeneity at the tube boundary.

An interesting result is that both the damping length in the
spatial problem and the damping time in the temporal problem
are always smaller than in the TT approximation (when f → 0),
meaning that waves with short wavelengths or high frequencies
are always more efficiently damped. The observations of stand-
ing kink waves observed with TRACE and for the propagating
kink waves detected with the CoMP instrument are precisely in
the regime where the TT is applicable, i.e., where the waves are
less affected by resonant absorption. That overtones of standing
kink waves and high-frequency propagating waves have proved
difficult to detect may be a direct consequence of the filtering by
resonant absorption. From a different perspective, we have also
shown that the damping per wavelength (and the damping per
period) has a weak dependence on the frequency.

It is necessary to point out that our results are based on a
simple magnetic flux tube model, i.e., a straight cylinder, with
no gravity and pressure. Curvature might produce some damping
due to wave leakage and external resonances, while stratification

Page 7 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014845&pdf_id=2


A&A 524, A23 (2010)

might be important if the wavelength of the propagating kink
modes is less than the typical density scale height of the so-
lar corona. The effect of gas pressure should be small since the
corona is expected to have very small beta. These issues need
to be investigated in the future. The only inhomogeneity in our
model is plasma density in the radial direction; however, this is a
characteristic property of solar waveguides that is observed at all
atmospheric heights, e.g., chromospheric magnetic bright points
or coronal loops. Thus the theory of resonant damping of prop-
agating kink waves due to radial plasma density inhomogeneity
offers a natural explanation for the dissipation observed by, e.g.,
Tomczyk & McIntosh (2009). However, a detailed comparison
between the observations and the expected frequency-dependent
response by resonant absorption is needed to quantify the pre-
cise spatial distribution of wave heating because this mechanism
in the solar plasma, e.g., kink wave dissipation as a function of
both frequency and height. This problem is addressed in Verth
et al. (2010).
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