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Selective-Tap Adaptive Filtering With Performance
Analysis for Identification of Time-Varying Systems
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Abstract—Selective-tap algorithms employing the MMax tap
selection criterion were originally proposed for low-complexity
adaptive filtering. The concept has recently been extended to mul-
tichannel adaptive filtering and applied to stereophonic acoustic
echo cancellation. This paper first briefly reviews least mean
square versions of MMax selective-tap adaptive filtering and
then introduces new recursive least squares and affine projection
MMax algorithms. We subsequently formulate an analysis of
the MMax algorithms for time-varying system identification by
modeling the unknown system using a modified Markov process.
Analytical results are derived for the tracking performance of
MMax selective tap algorithms for normalized least mean square,
recursive least squares, and affine projection algorithms. Simula-
tion results are shown to verify the analysis.

Index Terms—Acoustic echo cancellation, misalignment
analysis, partial-updating algorithms, time-varying system
identification.

I. INTRODUCTION

A
DAPTIVE filters with finite-impulse response (FIR)

are now widely used in many applications of signal

processing in general and telecommunications in particular.

The least-mean-square (LMS) algorithm and the normalized

version (NLMS) [1] are the most common in practice because

of their straightforward implementation and relatively low

complexity compared to the better performing but substantially

more complex least squares algorithms. The demands made

of adaptive filters by the deployment of new technologies call

for ever-increasing performance, modeling of longer impulse

responses, and lower computational complexity. Examples

include acoustic echo cancellation, where support for over

2000 taps can be required, and network gateways, where very

high density network echo cancellers are desirable with, say,

100 channels of 128-ms cancellers per processor core.

In the past, this rate of operation was considered high for typ-

ical telecommunications end-user equipment, and researchers

were therefore motivated to seek techniques that could reduce

the computational complexity of adaptation without signifi-

cantly degrading effectiveness in terms of its convergence rate

or steady-state misadjustment. More recently, the computa-

tional capability of low-cost processing hardware has increased

very rapidly so that a typical NLMS implementation would
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not be seen as a heavy computational demand. However, new

pressures on product design have emerged: the increase of user

mobility imposes a requirement of low power consumption in

portable battery-powered equipment; the growth of telecom-

munications usage imposes a requirement of high-density

implementation for infrastructure equipment so that the number

of simultaneous echo cancellers of given tap length that can be

run within a specified MIP-budget (millions of instructions per

second) is maximized. Both these requirements renew the mo-

tivation for low computational complexity, even with today’s

high-speed processors. As a consequence, a significant focus

for adaptive filter research in recent years has been to reduce the

computational complexity of tap updates per iteration for appli-

cations requiring such high density or low cost. A result of this

work is a class of partial-update adaptive filtering algorithms

that share the characteristic of executing tap update operations

on only a subset of the filter coefficients at each iteration. This

can be achieved by selecting the taps to update at each iteration

by one of several criteria. Examples include decimation in the

space of the tap-update vector such as in sequential-LMS [2],

temporal decimation such as in periodic-LMS [2], imposition

of a sparse approximation to the tap-update vector such as in

MMax normalized least-mean-square (MMax-NLMS) [3], [4],

and generalized block-based approaches known as selective

partial-update algorithms [5] that can be built around both

NLMS and the affine projection algorithm [6].

Recently, partial-update algorithms have found applications

in both network echo cancellation (NEC) and stereophonic

acoustic echo cancellation (SAEC). In NEC, the echo path

impulse response is dominated by regions where magnitudes

are close to zero making the impulse response sparse. Adaptive

algorithms such as the proportionate NLMS (PNLMS) [7] and

its improved version (IPNLMS) [8] are employed which exploit

the sparse nature of network impulse responses such that each

filter coefficient is updated independently using a variable

step-size proportional to the estimated filter coefficient. In such

cases where the system to be identified is sparse, the use of

sparse-tap adaptive algorithms can reduce complexity by mod-

eling only the active regions of the sparse system [9]. A partial

update scheme has also been incorporated into PNLMS [10] to

achieve fast convergence with low computational complexity

for sparse system identification. Although partial-update al-

gorithms were originally proposed to address computational

complexity issues as has been discussed, more recently a class

of selective-tap algorithms have been applied to stereophonic

acoustic echo cancellation (SAEC) [11], [12] giving improved

performance. The exclusive-maximum (XM) tap selection

criterion addresses the ill-conditioning of the SAEC problem

by selecting taps for updating so as to maximize jointly the
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Fig. 1. System identification structure.

-norm of the selected taps over both channels subject to the

exclusivity constraint that taps with the same index may not

be selected in both channels. In [13] and [14], partial updating

based on the XM tap selection criterion was shown to give

good convergence performance for SAEC applications and

has motivated the current analytical study of the convergence

behavior of selective-tap algorithms.

A class of single-channel partial update algorithms em-

ploying the MMax tap-selection has recently been proposed in

[12]. The main contribution of this paper is the analysis of these

algorithms for time-varying unknown system conditions. In

system identification applications including echo cancellation

and channel equalization, such as shown in Fig. 1, an FIR

adaptive filter is used to identify an unknown time-varying

system that is assumed to be linear. Important performance

measures for adaptive filters characterize the initial conver-

gence rate, the residual error after convergence, the ability to

track time-varying systems, and the computational complexity.

This paper focuses on formulating MMax versions of the

affine projection (AP) and the recursive least squares (RLS)

algorithms and subsequently analyzing their performance when

tracking time-varying systems. Consideration of algorithm

performance under such dynamic conditions is important since,

in the applications of interest, the unknown system is often

continuously time-varying. It is therefore necessary to include

a time-varying system model in the analysis of such adaptive

algorithms as indicated in several studies including [15]–[18].

We have adopted the time-varying channel model in [19]

which uses a modified first-order Markov model of the un-

known system. Whereas the work in [19] specifically addresses

LMS and RLS, our analysis framework extends [19] and [20]

to a more general form that can be applied to a wider range

of adaptive algorithms including NLMS, AP, RLS and, in

particular, the MMax selective-tap algorithms that are our main

focus. Through the use of this framework, this paper presents

new insights into the tracking performance of selective-tap

algorithms by highlighting and comparing the performances

for fully-updated and MMax-based algorithms under both

time-invariant and time-varying unknown system conditions.

It is shown, for each algorithm, how the tracking performance

is degraded by the MMax tap selection and the degradation in

steady-state misalignment performance is quantified analyti-

cally under common assumptions.

This paper is organized as follows: Section II of this paper

reviews the MMax-NLMS algorithm. We then extend the

MMax tap selection to the AP and RLS algorithms. Section III

develops a general analysis framework for the steady-state

misalignment for a time-varying case. Having established the

new analysis framework and applied it to standard adaptive fil-

tering examples, the principal contribution of Section IV is the

steady-state misalignment analysis of MMax selective-tap al-

gorithms. The analysis of MMax-NLMS includes Max-NLMS

[21] as a special case. We discuss the computational complexity

of the algorithms in Section V. Comparative results are shown

in Section VI to verify the analytically derived misalignment

performance against simulation learning curves for system

identification.

II. MMAX ADAPTIVE ALGORITHMS

The MMax-NLMS algorithm is now briefly reviewed and the

concept of MMax tap selection is then extended to the AP and

RLS algorithms. The main benefit reported to motivate the in-

troduction of AP and RLS selective-tap schemes is that they are

more robust to the conditioning of system identification prob-

lems with correlated inputs such as occur in SAEC [11].

A. MMax-NLMS Algorithm

Fig. 1 shows a system identification structure in which

the tap-input vector1

is convolved with the unknown system,

, to produce the signal sample

where the superscript represents transposition. An adap-

tive filter is used to

identify by adaptively minimizing the square of the error

signal

(1)

where and is measurement noise.

In the MMax-NLMS algorithm [22], for an adaptive filter of

length , only those taps corresponding to the largest mag-

nitude tap-inputs are selected for updating at each iteration. We

first define the subselected tap-input vector , where

is a tap selection matrix such that

and for

maxima of

otherwise
(2)

Defining as the squared -norm, the MMax-NLMS tap-

update equation is then given by

(3)

where and are the regularization parameter and step-size,

respectively.

It has been shown in [13] that the performance of MMax-

NLMS degrades only gracefully with reducing compared to

fully updated NLMS. For , the degradation in

performance can be insignificant.

1In this work, for brevity of notation, we denote to be .
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B. MMax-RLS Algorithm

The tap-update equation of the RLS algorithm is given as [1]

(4)

where is defined as the Kalman gain such that

is the time-averaged autocorrelation

matrix with forgetting factor , . We note that di-

rect extension of the MMax tap selection approach achieved

by sorting the magnitude of in (4) will not give the de-

sired convergence behavior especially for statistically nonsta-

tionary signals such as speech. This is because the Kalman gain

depends on previous values of the time-averaged autocorrela-

tion matrix [11]. Our approach will be instead to subsample the

tap-input vectors at each time iteration based on the MMax tap

selection criterion. This ensures that the subselected tap-input

vectors propagate consistently through the memory of the RLS

algorithm.

Using and as defined in (2), the MMax-RLS

algorithm solves

(5)

where , and

is the desired signal sample at the th iteration. The MMax-RLS

tap-update equation is then given by

(6)

where the modified Kalman gain is

(7)

Using the matrix inversion lemma [1], [23], the inversion of

may then be expressed iteratively as

(8)

Although the Kalman gain vector is a fully populated

column vector, savings in computation comes from the presence

of zero elements of and which reduces the multiplica-

tions needed to compute . The MMax-RLS algorithm

efficiently updates all taps at each iteration, and we choose to de-

scribe this as a selective-tap algorithm rather than a partial-up-

date algorithm.

C. MMax-AP Algorithm

The affine projection algorithm [1] incorporates multiple pro-

jections by concatenating past tap-input vectors from time it-

eration to time iteration where is defined

as the projection order. In a similar manner, our approach for

MMax-AP will be to concatenate the subselected tap-input vec-

tors such that data propagates consistently from each iteration to

TABLE I
MMAX TAP SELECTION

TABLE II
MMAX-NLMS

TABLE III
MMAX-RLS

the next. To formulate the MMax-AP algorithm, we first define

the subselected and full tap-input matrices, each of dimension

, respectively, as

(9)

(10)

The tap-update for the MMax-AP algorithm is then given by

(11)

where . Thus for ,

MMax-AP is equivalent to MMax-NLMS as expected. Savings

in computation are achieved due to the zeros in the

rectangular matrix . This reduces the number of multipli-

cations needed to compute the term . We also

note that, as with MMax-RLS, MMax-AP cannot be classified

as a partial-update algorithm since is fully

populated, and therefore every coefficient in will be updated

at each iteration. Consequently, we describe MMax-AP also as

a selective-tap algorithm.

The MMax-NLMS, MMax-RLS, and MMax-AP algorithms

are summarized in Tables I–IV, and we present simulation re-

sults to illustrate their operation in Section VI.
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TABLE IV
MMAX-AP

TABLE V
PROJECTION ORDER AND FOR VARIOUS ALGORITHMS

III. GENERAL MISALIGNMENT ANALYSIS

FOR TIME VARYING SYSTEMS

We consider adaptive algorithms of the form

(12)

where is the

tap-input vector, which is assumed to be real-valued and

represents the error signal. The adaptation control matrix

is defined in Table V for the respective algorithms.

Note that for the AP algorithm, we have assumed, sim-

ilar to [24], [25], that for ,

such that

. . .

...
. . .

. . .

(13)

A. Time-Varying System Model

The modified first-order Markov model [19] is employed to

represent a time-varying unknown system

(14)

where is the impulse response of the unknown system, and

is a noise process drawn

from the normal distribution . As shown in [19], this

model has the key features that 1) the single parameter

controls the relative contributions to the instantaneous

values of the coefficients of “system memory” (the term )

and “innovations” (the term ), 2) the average power

of the norm of the coefficients is independent of . It is subse-

quently shown in [19] that the system variation, which notion-

ally indicates the difficulty of tracking by an adaptive filter, is

a monotonic decreasing function of . Defining as the vari-

ance of , it has been found experimentally, that for

the Markov model with given in (14) is comparatively

equivalent to a source moving at 0.2 ms for acoustic impulse

responses generated using the method of images [26].

For the purpose of this analysis, defining as the expec-

tation operator, we first assume , and

that and are independent.2 We also assume that the di-

mension of has been chosen to match the dimension of .

We then define the misalignment vector

(15)

which results in the error signal given by

(16)

Using (12) and (14)–(16), we obtain

(17)

from which

(18)

2If , a bias will be induced in the variance of by an amount
proportional to the square values of .
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where is the identity matrix and we have made use of the fol-

lowing relations

otherwise

and, from the definition of the first-order Markov model as

shown in (14)

(19)

Following the approach adopted in [1], we assume that the

time variations of are sufficiently slow that the adaptive filter

is able to track the unknown system to within a time lag, and that

after convergence, is fluctuating around its mean so

that . We define as au-

tocorrelation matrix of the mean weight error vector which is ap-

proximately time-invariant under these assumptions. Defining

the normalized misalignment as

(20)

the steady-state misalignment can be expressed as

where is the trace operator.

B. Steady-State Misalignment for ,

We initially consider a fully updated algorithm such that

, , is time-invariant, and statistically stationary inputs

. Using the factorization property of independent Gaussian

variables [1] as shown in Appendix I and denoting as the

autocorrelation matrix of the input signal, the expectations in

(18) can be evaluated for using

(21)

Substituting (19) and (21) into (18) gives

(22)

We proceed by considering and Gaussian input with

variance giving , where is an algorithmic de-

pendent term. Assuming is fluctuating around its mean after

convergence giving , where is the autocorrela-

tion matrix of the mean weight error vector, the steady-state mis-

alignment is then given by . Hence

the trace of (22) can be simplified giving

from which we can then express

(23)

where

(24)

and is an algorithm dependent term. Adopting the terminology

of [18], the first term in (23) corresponds to the estimation vari-

ance and is dependent on measurement noise , and the second

term in (23) corresponds to the lag variance and is due to system

time variation . We note from (23) that these two terms are un-

coupled.

For the LMS case, and hence

(25)

The estimation variance term of this result is, as expected, pro-

portional to and consistent with that presented in [1] for which

it is assumed . However, the analysis presented here needs

no such assumption. The lag variance term is inversely pro-

portional to and linearly dependent on the system variation

parameter .

For NLMS, and

(26)

It is interesting, from a step-size control point of view, that we

proceed to evaluate the step-size which achieves the lowest

misalignment by letting

(27)

and differentiating (26) with respect to to obtain

(28)

Authorized licensed use limited to: Imperial College London. Downloaded on January 4, 2010 at 08:05 from IEEE Xplore.  Restrictions apply. 



1686 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

Fig. 2. Variation of with under various SNR conditions.

Setting , we obtain a quadratic equation in

terms of . Under the condition that , we may

solve for as

(29)

Fig. 2 illustrates the variation of with under various

signal-to-noise ratio (SNR) conditions. The SNR was computed

using and where the latter is obtained by convolving

with as shown in Fig. 1. The parameters for this sim-

ulation are , , and . We may

now see, for each case of SNR, the well-known result that as

, and hence a smaller step-size achieves a

lower steady-state misalignment, though at the expense of re-

duced convergence rate. Under time-varying unknown system

conditions , it can be seen as expected that increases

smoothly as reduces, since for higher time-varying unknown

system condition, must be sufficiently high for tracking. We

also note that for any given , increases with SNR. As will

be seen through simulation examples in Section VI-D, under

the condition , performance of NLMS in terms of conver-

gence rate and steady-state misalignment increases with for

.

For RLS, we can determine in

(30)

by considering the exponentially weighted recursive realization

of the autocorrelation matrix, from which we recall the defini-

tion from Section II-B, . In the limit

(31)

where is the true input signal autocorrelation matrix. Using

a quasi-deterministic approximation for large [1], we obtain

and hence

(32)

For the case when the input signal is drawn from an in-

dependent and identically distributed (i.i.d.) process such that

with variance , then and using

(23), the steady-state misalignment is given as

(33)

where the term is defined in (24). We may now see the well-

known result that for a time-invariant unknown system condi-

tion , we have

(34)

and hence the steady-state misalignment is a decreasing func-

tion of , although for smaller the rate of convergence is

increased.

We can analyze the effect of on by first differentiating

with respect to and finding the boundary condition of .

We first assume that

(35)

and noting that and , we obtain the condition

(36)

For a typical range [27],

and since , it can be seen that the conditions (36) and

consequently (35) are satisfied. Hence, reduces as .

C. Steady-State Misalignment for ,

This analysis can be applied to the AP algorithm for the con-

dition . With reference to Table V, we assume

that the input signal is drawn from an i.i.d process such that

, , hence giving . Exploiting

the linear property of the expectation operator, we may then

evaluate the terms in (18) using the following relations:

(37)

Following a similar approach to (21), where we have used

the factorization property of independent Gaussian variables as
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shown in Appendix I, the last term of (18) can be simplified as

follows:

(38)

Substituting (37) and (38) into (18), we obtain

(39)

Similar to (22), we assume that is fluctuating around its

mean, and . We can then simplify (39) and

using , we write the steady-state misalignment as

(40)

where

(41)

We note that (41) is similar to (24) except for a projection order

term . Furthermore, when , reduces to giving

as expected.

IV. MISALIGNMENT ANALYSIS OF ALGORITHMS

EMPLOYING MMAX TAP SELECTION

A. Misalignment Analysis of MMax-NLMS

Partial-update NLMS algorithms have been analyzed in, for

example, [2]–[4], [21], [28]. The MMax-NLMS [22] algorithm

is characterized by (12) for with in which

the elements of the diagonal matrix are deter-

mined from (2) and is the subselected tap-input

vector.

Employing a contraction mapping approach [29], conver-

gence in the mean can be shown when

(42)

which implies for i.i.d.

(43)

For convergence in the mean square, we start by considering

(18) and the evaluation of . We note that elements

, , are not independent of as they ensure

that only the largest are selected. The selected

samples are assumed to have zero mean and exploiting the mean

ergodic theorem [1], the variance of is

(44)

Assuming that is diagonal and using , a scalar

constant, we can evaluate

(45)

The condition implicit in (21) is not valid in this

case. However, we can proceed to evaluate using

(46)

Substituting (45), (46), and (19) into (18) and letting

(47)

Applying the contraction mapping concept we can show con-

vergence when

(48)

and the convergence speed is faster for smaller values of . It

can therefore be seen from (48) that, for typical values of ,

maximum convergence speed will be when . Therefore,

MMax-NLMS suffers a decrease in convergence speed propor-

tionate to as compared to NLMS. For the particular case

of MMax-NLMS, and we obtain the condition

(49)
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so that

(50)

We note that our analysis will not hold for an example case

of a ramped input signal, , , for which

tap-indices will never be selected for updating

by MMax-NLMS. However, such cases are unlikely to occur in

practice.

The misalignment for MMax-NLMS can be found from (47)

and using the approach of (23) as

resulting in

(51)

For MMax-NLMS where , the steady-state mis-

alignment is then

(52)

where the term is defined in (24).

We first note that the estimation variance term is identical

to that of NLMS. Thus, for a time-invariant system with

, . Comparing (52) with (26), we

next note that an additional factor arises in the lag variance of

for MMax-NLMS compared to NLMS. To quan-

tify the closeness of tap selection to that of a full tap-input vector

in an MMax sense, we employ the M-ratio [11]

(53)

As shown in [11], exhibits only a modest reduction for

and hence a graceful reduction in convergence

rate is expected over this range of as compared to fully

updated NLMS. We now analyze the steady-state misalignment

due to tap selection by first noting from (52) that, under a

time-varying unknown system condition , the lag variance

is proportional to the term

(54)

Fig. 3, shows the variation of with the number of selected

taps for using a zero mean, unit variance white

Gaussian noise (WGN) input sequence. We note that for

, since and . More importantly,

increases smoothly with reducing within the region

and hence, for this range of with reduced computa-

tional complexity, we would expect only a graceful degradation

in steady-state misalignment performance for the time-varying

case .

Fig. 3. Variation of with for MMax-NLMS with showing a modest
increment in for .

Similar to the NLMS algorithm discussed in Section III-B, it

is of interest that we evaluate the step-size which achieves the

lowest misalignment by first writing for clarity

(55)

Differentiating (52) with respect to and solving the quadratic

equation for , we obtain for MMax-NLMS,

(56)

As we shall see from simulations in Section VI-D, if

under the condition , the convergence

rate increases with but at the expense of poorer steady-state

misalignment. Consequently, for MMax-NLMS, the optimal

giving the highest rate of convergence while satisfying the

minimum misalignment under time-varying conditions is

given in (56).

B. Misalignment Analysis of MMax-RLS

Using (6) and (7), the tap update equation for the MMax-RLS

algorithm may be expressed as

(57)

In this case, we have in the general formulation of (12)

and

(58)

in (12) where

(59)
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Following the same approach as (31), for

(60)

and hence it follows from (58)

(61)

Using (61), we may express the following terms in (18) as

(62)

Using the same approach as (47), by substituting the set of equa-

tions in (62) into (18) for

(63)

As before, we assume that is fluctuating around its mean

such that is the approximately time-invariant autocorrela-

tion matrix of the mean weight error vector. Defining

we may then express (63) as

(64)

where

(65)

such that is defined in (54). Comparing (64) and (33), we note

that for and , as expected.

More importantly, the estimation variance for MMax-RLS is

dependent on . As can be seen from (64), is a decreasing

function of and hence for a time-invariant system with

, the steady-state misalignment is a decreasing

function of . This is contrary to the MMax-NLMS case as

shown in (52) where the normalized misalignment is indepen-

dent of for time-invariant systems. Simulation results illus-

trating the dependency of the steady-state misalignment on

for MMax-RLS under the condition can be found in [12].

C. Misalignment Analysis for MMax-AP

The tap-update equation for the MMax-AP algorithm can

be written in a similar form to (12) where we have for

(66)

such that . Assuming that the input

signal is drawn from an i.i.d process and statistically stationary,

we may then evaluate

(67)

We note again the condition is not valid here so we

evaluate using the same approach as (46) giving

(68)

Substituting (68) into (18), we obtain

(69)
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TABLE VI
STEADY-STATE MISALIGNMENT FOR i.i.d. INPUT

As before, we assume is fluctuating around its mean and

substituting , we can thus simplify (69) and write

the misalignment as

(70)

where is given in (41). For , the convergence perfor-

mance of MMax-AP is the same as MMax-NLMS as expected.

When , we have and MMax-AP is equivalent to

AP. We also note that, as for MMax-NLMS, the estimation vari-

ance is independent of and so, as shown in [12], for ,

the same steady-state misalignment can be achieved for various

. In addition, the lag variance is proportional to as defined

in (54) and hence, degradation in misalignment performance is

expected for reducing when .

The steady-state misalignment of various algorithms for time-

varying system conditions is summarized in Table VI.

V. COMPUTATIONAL COMPLEXITY

MMax tap selection requires a sorting operation to select the

largest tap-inputs at each iteration. This can be achieved effi-

ciently using, for example, the SORTLINE [30] or the short-sort

[31] routine. A full description and examples of the short-sort

approach are given in [31]. In summary, however, the short-sort

algorithm selects out of the first elements of the tap

input vector once every sample periods. The coefficients cor-

responding to the selected elements are updated and the al-

gorithm then tracks the selected tap inputs as they propagate

through the memory of the filter. The value of is chosen such

that in the SM-NLMS algorithm [31] for example, out of

taps are updated per iteration on average and typically.

Thus, the worst case comparison load using short-sort is

comparisons per iteration compared to

used in the SORTLINE procedure.

Although many factors contribute to the complexity of an al-

gorithm, in this paper we assess relative complexity in terms of

the total number of additions, multiplications, and comparisons

per sample period. The computational complexity for each al-

gorithm is summarized in Tables VII and VIII while Table IX

shows the computational complexity for an example case of

, , , , and .

TABLE VII
RELATIVE COMPLEXITY IN TERMS OF ADDITIONS AND MULTIPLICATIONS

TABLE VIII
RELATIVE COMPLEXITY IN TERMS OF COMPARISONS

TABLE IX
AN EXAMPLE OF RELATIVE COMPLEXITY FOR

The complexity of the MMax-AP algorithm is computed

using the generalized Levinson algorithm [32]. As an illus-

trative example, an acoustic impulse response of 128 ms at

8-kHz sampling frequency corresponds to for which

the number of multiplications required by MMax-NLMS,

MMax-AP, and MMax-RLS employing the SORTLINE al-

gorithm with is approximately 75.0%, 80.1%, and

69.9% of the number for NLMS, AP, and RLS, respectively.

VI. SIMULATIONS AND RESULTS

A. Effect of Time Variation for NLMS and MMax-NLMS

We first present NLMS and MMax-NLMS simulations

to support the analysis of normalized misalignment for

time-varying system identification such as shown in Fig. 1. We

employ the normalized misalignment defined in (20). Fig. 4

shows NLMS results for a time-invariant system and

three time-varying systems

where smaller values of indicate higher degrees of time-vari-

ation. The adaptive filter is of length while the adaptive

step-size is in these examples. This allows the NLMS

algorithm to track the unknown system. The learning curves are

averaged over five independent trials, and the theoretical values

of given by (26) are superimposed as straight horizontal

lines. Fig. 5 shows the results of an equivalent experiment for
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Fig. 4. NLMS normalized misalignment for varying with , ,
, SNR dB.

Fig. 5. MMax-NLMS normalized misalignment for varying with ,
, , , SNR dB. Dashed lines indicate

corresponding performance for NLMS.

MMax-NLMS with and . For comparison

purposes, the corresponding theoretical values of from

the previous experiment are also included in Fig. 5 as dashed

lines. For both experiments, white Gaussian measurement noise

is added such that the SNR of 40 dB is achieved.

The results show that both NLMS and MMax-NLMS are sen-

sitive to time variation of the unknown system in that the mis-

alignment performance degrades with increasing deviation of

from unity. The MMax-NLMS algorithm for example can be

seen to perform around 3 to 4 dB worse, in terms of steady-state

normalized misalignment, than NLMS under these time-varying

conditions. For a time-invariant system, , both MMax-

NLMS and NLMS achieve the same steady-state misalignment

since their estimation variance are equivalent as can be seen

by (26) and (52). The MMax-NLMS algorithm, however, has

a lower rate of convergence compared to that of NLMS as ex-

pected irrespective of time-variation.

Fig. 6. AP normalized misalignment for varying with ,
, , , SNR dB.

Fig. 7. MMax-AP normalized misalignment for varying with ,
, , , , SNR dB. Dashed lines indicate

corresponding performance for AP.

B. Effect of Time-Variation for AP and MMax-AP

Figs. 6 and 7 show the normalized misalignment for the AP

and MMax-AP algorithms, respectively, where the straight lines

indicate theoretical misalignment for various time-varying con-

ditions . The dashed lines in Fig. 7 represent the normalized

misalignment for the fully updated AP algorithm. In these sim-

ulations, the adaptive filter is of length with .

We have used projection order as an illustration while

is added to achieve an SNR of 40 dB. For the MMax-AP

algorithm, was used. In both simulations, the learning

curves are averaged over five independent trials.

The results indicate that the normalized misalignment perfor-

mance degrades for both AP and MMax-AP by approximately 2

to 3 dB with increasing deviation of from unity. For a time-in-

variant system, , the normalized steady-state misalign-

ment of the MMax-AP is insensitive to the tap selection as can

be seen in the estimation variance term in (70).
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Fig. 8. RLS normalized misalignment for varying with ,
, , SNR dB.

Fig. 9. MMax-RLS normalized misalignment for varying with ,
, , , SNR dB. Dashed lines indicate

corresponding performance for RLS.

C. Effect of Time Variation for RLS and MMax-RLS

Figs. 8 and 9 show RLS and MMax-RLS normalized mis-

alignment results for various as before. In these simulations,

the adaptive filter is of length and a forgetting factor

of is used [33]. With reference to

Fig. 1 and (14), while is added to achieve an

SNR of 40 dB for each of the five independent trials. For the

MMax-RLS algorithm, taps were selected for adapta-

tion at each iteration.

The results show that both RLS and MMax-RLS are sensi-

tive to time-variation of the unknown system with misalignment

performance degrading by approximately 7 and 3 dB for

and , respectively. Unlike the MMax-NLMS and

MMax-AP algorithms, MMax-RLS is sensitive to tap selection

even for an unknown system with as can be seen by the

term in the estimation variance of (64).

D. Effect of Step-Size for NLMS and MMax-NLMS

Fig. 10 shows the effect of different values of on the

steady-state misalignment for NLMS under stationary

and time-varying cases. In this experiment, the

Fig. 10. NLMS: variation of average normalized misalignment with for
, , SNR dB.

Fig. 11. MMax-NLMS: variation of average normalized misalignment with
for , , , SNR dB.

filter length was , and was added at an SNR of

40 dB. The average steady-state normalized misalignment was

obtained from five independent trials.

We observe that for the stationary case , the steady-state

normalized misalignment increases with as expected. In this

simulation example, the mean difference between the experi-

mental and theoretical steady-state normalized misalignment is

0.11 dB. For the case of , we note that there ex-

ists a such that the lowest misalignment can be achieved.

The theoretical value of , computed using (29), is

shown by the vertical dotted line. The mean difference between

the experimental and the theoretical normalized misalignment

is 0.62 dB.

Fig. 11 shows the effect of step-size on MMax-NLMS under

the conditions and with and .

As before, we have simulated this experiment using 40-dB SNR.

Similar to the case of NLMS, we observe that for , the

steady-state normalized misalignment is approximately linear

in . For the case of , there exists a

governed by (56) which is plotted as a vertical line. The mean

difference between the experimental and theoretical steady-state

normalized misalignment for the case of and
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Fig. 12. Variation of average normalized misalignment with for ,
, , , SNR dB.

are 0.15 and 0.58 dB, respectively. Comparing Figs. 10 and 11,

we note that the normalized misalignment for MMax-NLMS is

degraded for the time-varying unknown system condition com-

pared to NLMS.

E. Effect of Tap Selection on Normalized Misalignment

We now compare the effect of tap selection on the normal-

ized misalignment with a time-varying unknown system for the

MMax-based algorithms. Fig. 12 shows the variation of average

normalized misalignment with for the case of MMax-NLMS,

MMax-AP, and MMax-RLS. The length of the adaptive filter

was while and . For

the MMax-NLMS and MMax-AP algorithms while

for MMax-RLS are used. The

steady-state normalized misalignment for each algorithm is av-

eraged over five independent trials and, for each trial, SNR

dB.

Although the performance for each algorithm is plotted

on the same axis, our intention here is not to compare each

algorithm’s relative normalized misalignment in this sim-

ulation example. We see instead that, for each algorithm,

the normalized misalignment reduces with increasing

under the same time-varying condition and more importantly,

for each algorithm, there is only a modest degradation in

steady-state misalignment performance with reducing for

. When is reduced further, the degradation in

steady-state misalignment performance is more pronounced for

the MMax-NLMS and MMax-AP algorithms since, as shown

and discussed in Fig. 3, is increased significantly. The degra-

dation in steady-state normalized misalignment performance

for MMax-RLS is less pronounced, suffering approximately

0.36-dB degradation from to . The mean error

between theoretical and experimental results in this simulation

for MMax-NLMS, MMax-AP, and MMax-RLS are 0.08, 0.15,

and 0.06 dB, respectively.

Fig. 13. MMax-NLMS and MMax-AP: variation of average normalized mis-
alignment with SNR for , , , ,

.

Fig. 14. MMax-RLS: variation of average normalized misalignment with SNR
for , , , , .

F. Effect of SNR on Normalized Misalignment

We now investigate the effect of SNR on normalized mis-

alignment for the various MMax selective-tap algorithms under

time-varying unknown system conditions. The experimental pa-

rameters for this simulation setup were , ,

, , =3, and .

The normalized misalignment for each algorithm was averaged

over five independent trials.

Fig. 13 shows the variation of MMax-NLMS and MMax-AP

normalized misalignment with SNR. For each of the algorithms,

we note that the normalized misalignment improves with in-

creasing SNR as expected. The MMax-AP algorithm degrades

more severely at low SNR and achieves an improvement of ap-

proximately 12-dB normalized misalignment when SNR is in-

creased from 10 to 40 dB. On the contrary, the MMax-NLMS

shows smoother degradation in misalignment for low SNR com-

pared to that of MMax-AP.

Fig. 14 shows the corresponding normalized misalignment

for MMax-RLS under various SNR conditions. As the SNR is
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Fig. 15. Theoretical normalized misalignment for NLMS (dashed) and MMax-
NLMS (solid) SNR dB .

increased from 10 to 40 dB, we note that there is an improve-

ment, though not linearly, of approximately 12.5 dB in nor-

malized misalignment. The mean errors between our theoret-

ical and experimental results are 0.01, 0.46, and 0.182 dB for

MMax-NLMS, MMax-AP, and MMax-RLS, respectively.

G. Illustrative Case With Large

We present an example to illustrate the validity of the re-

sults obtained for the case when is large, as for acoustic echo

cancellation where an adaptive filter length of taps

may be required. Fig. 15 shows results for the MMax-NLMS

with and and SNR dB. As be-

fore, the theoretical steady-state normalized misalignment for

the MMax-NLMS algorithm is plotted as straight horizontal

solid lines. The learning curves for the MMax-NLMS are av-

eraged over five independent trials. The results show that the

steady-state misalignment for the MMax-NLMS is coincidental

to NLMS for time-varying system conditions. As before, for

, .

VII. DISCUSSION AND CONCLUSION

We have presented a class of MMax selective-tap adaptive fil-

ters for system identification. A misalignment analysis for these

algorithms was presented which describes the performance of

adaptive filters when tracking a time-varying unknown system

that varies according to a modified first-order Markov model

[19]. This analysis can be applied to all algorithms that can be

written using the update equation given in (12). When the time-

variation is removed by setting , the analysis yields the

known results [1] for the various fully updated algorithms. The

results for the standard algorithms are consistent with previous

work [1], [18] in terms of estimation variance but offer new in-

sights for the lag variance. Under time-invariant system con-

ditions, the steady-state normalized misalignment for MMax-

NLMS and MMax-AP is independent of while the same is

not true for MMax-RLS. For time-varying systems, the perfor-

mance of MMax-based algorithms in terms of steady-state mis-

alignment degrades with increasing time-variation. This degra-

dation is proportional to , and as can be seen from Fig. 3,

for , increases smoothly and consequently

the degradation in steady-state performance is negligible. This

property has been exploited in the exclusive-maximum (XM)

tap selection, which has been deployed in SAEC algorithms to

give good convergence performance such as presented in [13]

and [14]. In addition, we have shown that under time-varying

unknown system conditions, there exists for NLMS and MMax-

NLMS, an optimal step-size given by (29) and (56), respec-

tively, which jointly maximizes the performances in terms of

low misalignment and high convergence rate. Simulations verify

that the analysis accurately describes the performance of the

algorithms. This analysis enables a judicious tradeoff between

the computational savings of selective-tap algorithms and their

tracking performance.

APPENDIX I

FOURTH-ORDER FACTORIZATION FOR ZERO

MEAN GAUSSIAN VARIABLES

For an i.i.d. Gaussian distributed signal , the matrix

has elements

where . The factor-

ization property of real zero-mean Gaussian variables is that

from which

From the above it can be seen that, for the complete matrix,

. Now for i.i.d Gaussian variables

so that .
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