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Selective time‑dependent changes 
in activity and cell‑specific gene 
expression in human postmortem 
brain
Fabien Dachet1*, James B. Brown2, Tibor Valyi‑Nagy1, Kunwar D. Narayan1, Anna Serafini1, 
Nathan Boley3, Thomas R. Gingeras4, Susan E. Celniker2, Gayatry Mohapatra1 & 
Jeffrey A. Loeb1* 

As a means to understand human neuropsychiatric disorders from human brain samples, we compared 
the transcription patterns and histological features of postmortem brain to fresh human neocortex 
isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease‑
associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique 
transcriptional pattern. To understand this difference, we measured genome‑wide transcription as a 
function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a 
selective reduction in the number of neuronal activity‑dependent transcripts occurred with relative 
preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene 
clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time‑dependent 
increase in astroglial and microglial gene expression that continued to increase for at least 24 h 
after tissue resection. Predicted transcriptional changes were confirmed histologically on the same 
tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of 
their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights 
highly dynamic transcriptional and cellular changes that occur during the postmortem interval. 
Understanding these time‑dependent changes in gene expression in post mortem brain samples is 
critical for the interpretation of research studies on human brain disorders.

Research in animal models that aim to understand fundamental disease processes and develop new treatments 
for human disorders o�en fail to translate back to humans in clinical  trials1–3. Human tissue studies are there-
fore o�en used to try to improve this poor translational track record and to validate future therapeutic tar-
gets. Nowhere is this approach more desperately needed than for the human brain where post-mortem tissue 
repositories for a large number of neurological and psychiatric disorders already exist. In some brain disorders, 
including epilepsy, freshly isolated tissues can be obtained as part of a patient’s surgical treatment and used for 
research. Co-registration of these tissues with their corresponding activity measured by long-term intracranial 
EEG allows the separation of high versus low epileptic activity brain regions. �is provides a unique opportunity 
to ask what is di�erent between high and low electrical activity brain regions and to identify genes, proteins, and 
small molecules that are di�erentially expressed between  them4. For a majority of neuropsychiatric disorders 
including Alzheimer’s disease, Autism, and Schizophrenia, only postmortem tissues are  available5. Given the 
importance of these studies we examined the �delity of overall gene expression between fresh and postmortem 
human brain tissues for a number of brain disorders with a central focus on activity-dependent genes that are 
likely involved in higher cognitive human brain function. In order to understand the dynamics of these tran-
scriptional di�erences, we also simulated the post-mortem interval (PMI) on surgically isolated fresh human 
brain tissue maintained at room temperature from 0 to 24 h using high throughput RNA sequencing (RNA-seq) 
paired with histological  examination6.
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Results
Transcriptional integrity of fresh human brain tissue. As a means to assess the �delity of RNA tran-
scription from fresh human brain tissue, we performed RNAseq on four human neocortical gray matter tissues 
with high and low brain activity regions from each of two patients who underwent epilepsy surgery. �is was 
achieved by localizing each block of tissue precisely to electrode locations from intracranial in vivo recordings 
to identify areas of high and low epileptic brain activity as  described7–9. Histopathological examination of these 
four tissues showed no abnormalities. �e exact pattern of di�erential gene expression between these areas for 
these four samples by RNAseq matched what we have seen both from these same samples and from many others 
using cDNA  microarrays9.

As a �rst step to see the e�ect of the postmortem interval on human brain gene expression, we compared the 
transcriptional diversity of RNAseq gene expression between fresh human brain samples to 4 postmortem brain 
samples from healthy individuals with an average PMI of 29 h (± 2.6 h)10. Fresh human brain showed marked 
transcriptional diversity with a collection of 167 genes each capable of producing more than 1000 transcript 
isoforms (Supplemental_Table_S1.xlsx). �is type of ultra-complex splicing appears to be highly conserved 
evolutionary and has been previously reported in the nervous system of the fruit �y Drosophila melanogaster11. 
An example of this transcriptional diversity is illustrated in Fig. 1A,B that shows the remarkable conservation 
of the ultra-complex structure of the RBFOX1 gene and of its orthologue a2bp1 in the �y brain. We next com-
pared RBFOX1 splicing and editing complexity between the fresh tissue and postmortem human brain samples. 
While qualitatively similar to the fresh human tissue, the expression of RBFOX1 in postmortem samples showed 
a wide reduction in �delity from well preserved to almost completely absent from sample to sample. 5′UTR 
transcripts of RBFOX1 showed a complex pattern of potential RNA editing in the fresh tissue that was not seen 
in postmortem samples (Fig. 1C). A total of 17 departures from the reference genome were present in all fresh 
tissues but not present (or at a very low frequency) in the postmortem samples. �ese di�erences can be due in 
part by RNA deamination by the ADAR enzyme from adenosine to inosine as 8 of these misalignments were a 
change from A-to-G, with the presence nearby of four editing motifs A, B or  C12. �e remaining 9 other misalign-
ments consistent across the fresh samples (6 U-to-G, 2 U-to-C and 1 A-to-C) could be due to non-canonical 
post-transcriptional RNA  editing13. �ese mismapped alignments could also be caused by reads from a similar 
genomic duplicated region expressed in fresh samples but not in postmortem  samples14. Taken, together this 
focused example shows a remarkable di�erence in the transcriptional complexity of an important brain gene in 
fresh versus post-mortem human brain.

Selective loss of specific gene populations in neuropsychiatric disorders. In addition to detailed 
splicing information on the RBFOX1 gene, we examined the overall genomic coverage of fresh versus post-
mortem human brain. We examined 18,064 genes expressed in at least one replicate in both sample types and 
performed a two-group di�erential expression analysis between fresh and postmortem tissues. �e goal was to 
determine whether there are speci�c populations of genes downregulated in postmortem tissues or whether 
transcripts are simply, randomly reduced from non-speci�c RNA degradation during the postmortem interval.

Figure 2A–D shows the expression and splicing patterns of some of the most widely used ‘housekeeping’ 
genes (GAPDH, HMBS, SDHA, and UBC)15,16 that have little to no degradation with exon expression patterns are 
virtually identical between fresh and postmortem brain. However, other genes, similar to what we observed for 
RBFOX1, were signi�cantly degraded. As our group has a major interest in brain activity-dependent gene expres-
sion, we compared human brain regions recorded in vivo with high versus low epileptic activities. We speci�cally 
looked at a well-described subgroup of di�erentially expressed activity-dependent  genes9. Figure 2E–H shows 
examples of exon stability for these activity-dependent genes. �ere is a disproportionate loss of exon expression 
in postmortem tissues compared to the fresh tissues of RGS1, SOCS3, THBS1 and ZFP36. Furthermore, fresh 
human brain appeared to have more RNAseq reads overlapping introns than postmortem samples (e.g. SPP1 
and SOCS3). �e increase in the number of introns in the fresh tissues also suggests an abundance of pre-mRNA 
transcripts that could be related to RNA editing.

Hypergeometric analysis of the 2000 most reduced genes in postmortem samples (p-value < 0.05, ratio of 
expression in fresh tissue / expression in postmortem tissue > 2.6) showed that a large portion of these genes 
overlap with activity-dependent genes, suggesting that activity-dependent genes are more susceptible to post-
mortem RNA degradation than housekeeping genes (Fig. 2I)8,9,17. �is reduction was non-random and the 
genes that showed the greatest decrease in expression in postmortem samples were also the most enriched in 
electrically active brain regions (Fig. 2I). In fact 500 of the most reduced genes in postmortem samples showed 
an enrichment in activity-dependent genes that was more than 4 times greater than would be expected by chance 
(enrichment of 4.25 with an hypergeometric p-value < 1E−11).

As brain activity-dependent human genes are of great importance in human neuropsychiatric disorders we 
also examined the expression of these genes to postmortem RNAseq databases from patients su�ering from 
various neurological and psychiatric disorders (Table 1). Datasets were chosen based on similarities in tissue pro-
cessing and RNAseq methodology to our own protocol. We performed a PCA (Principal Component Analysis) 
of our fresh brain compared to postmortem brain from healthy, Parkinson’s, Schizophrenia, Huntington’s, and 
Autism brains for the top 500 brain activity-dependent genes that showed the greatest reduction in the healthy 
postmortem samples. �e PCA revealed a signi�cant separation between the 4 fresh samples and the postmortem 
samples, independent of whether or not the fresh tissue was from epileptic (high activity, H) or non-epileptic 
(low activity, L) brain regions (Fig. 2J). �is further demonstrates a selective reduction of activity-dependent 
genes in postmortem brain independent of whether the underlying tissue is electrically active or not.
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Simulating the postmortem interval as a means to understand selective gene loss. �e sud-
den removal of brain tissue from a living person in many ways mimics a catastrophic event that occurs with 
a hypoxic brain injury or a traumatic death with exsanguination. �e human brain has high energy needs, 
estimated to be 10 times that of other  tissues21. As a means to understand how the postmortem interval selec-
tively a�ects some genes and not others in human neocortex, we performed RNAseq and histological analyses 
in cortical brain tissue as a function of time from 0–24 h at 24 °C in order to simulate a postmortem interval. 
Neuropathological examination of the tissue used for this study showed a normal-appearing cortical pattern 
with no histopathologic abnormalities. RNAseq analysis showed a loss of brain activity-dependent genes that 
were 3-times more prone to be degraded than expected by chance compared to more stable housekeeping genes 

Figure 1.  Ultra-complex structure of the RBFOX1 gene. (A,B) Human/Fly splicing complexity analysis: 
for each RNA detected in the RNAseq results of patients EP158 and EP168, the lower and upper bounds of 
divergence between human and �y Drosophila is computed using our GRIT algorithm. �e RBFOX1 gene was 
selected for illustration of this due to its complexity, evolutionary conservation, and relevance to human brain 
disease. (C) RNAseq alignment of RBFOX1 RNAs from 4 fresh samples (EP158: electrodes FP2 & FP4, EP168: 
electrodes SF10 & FP57) and 4 postmortem samples (SRR1747164, SRR1747173, SRR1747186, SRR1747190) 
show a signi�cant departure from the reference genome (vertical bars) that reveals extensive gene editing in 
fresh samples that were not seen in the postmortem samples (PMI = 29 h ± 2.6 h).
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Figure 2.  Selective loss of activity-dependent genes in postmortem human brain. (A–H) �e RNAseq-derived gene expression 
coverage from four fresh human cortex tissues (EP158FP2, EP158FP4, EP168SF10 and EP168FP57) are shown in blue and compared 
to healthy postmortem cortex samples (SRR1747164, SRR1747173, SRR1747186 and SRR1747190) shown in red. While housekeeping 
genes including GAPDH, HMBS, SDHA and UBC appear relatively una�ected, the activity-dependent genes SOCS3, SPP1, ZFP36 and 
THBS1 showed a signi�cant reduction in exon-speci�c transcript levels in postmortem samples (p < 0.05). For each gene, the y-axis 
is the same for each sample with the scale in the upper le� corner. (I) We cross-referenced 2000 of the most downregulated genes in 
postmortem samples compared to fresh samples and ordered them based on their fold change (expression of the gene in fresh tissue/
expression of the gene in postmortem sample) into four groups of 500 genes each. For each group, we computed the enrichment 
in activity-dependent genes. �e hypergeometric analysis of the distribution of activity-dependent genes shows their expression is 
signi�cantly reduced, more than four times what is expected by chance in the 500 most downregulated genes of the postmortem 
samples, E Enrichment, hP hypergeometric p-value. (J) A PCA of the 500 activity-dependent genes with the greatest decrease in 
expression in the postmortem samples highly separated all the fresh tissues samples from the postmortem samples, independent of the 
degree of epileptic activity. Each dot corresponds to a given sample, the barycenters are represented by triangles and the ellipses show 
the 80% con�dence interval for the position of the barycenter. L158, L168, H158, H168 correspond to the four fresh samples from 
patient EP158 and EP168, ‘L’ corresponds to low activity brain regions and ‘H’ corresponds to the high activity brain regions.
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(Table 2). �e threshold to detect activity-dependent genes was related to the probability of being a�ected by 
the PMI. �e higher the relative expression of the brain activity gene, the more it was enriched in the popula-
tion of genes a�ected by the PMI. �ese �ndings con�rm that genes involved in brain activity are more prone to 
degradation during the PMI.

One possible explanation for the selective loss of activity-dependent genes could relate to the stability of 
various cell populations during the simulated PMI. As a means to implicate speci�c cell populations that could 
be responsible for the reduction of genes during the simulated PMI we used a clustering algorithm as we have 
previously  described9. We found that 1427 genes (71% known brain activity-dependent genes) could be clustered 
across the seven time points of the simulated PMI. For these clusters, we used AllegroMcode to identify two 
main clusters. One cluster of 317 rapidly declining genes was predicted to be neuronal and strongly overlapped 
with the activity-dependent genes. A second cluster of 474 genes was predicted to be glial, including astrocytes 
and microglia (Fig. 3A). Remarkably, as the neuronal cell cluster rapidly fell, there was a reciprocal and dra-
matic increase in the expression of the glial cell cluster (Fig. 3B). PCA on all 7 time points of the simulated PMI 
using the 500 most downregulated activity-dependent genes in postmortem samples revealed the same type of 
separation from the time point 0H to the latest time point 24H (Fig. 3C). Gene ontology analysis of the genes 
composing the two main clusters using the whole human genome as reference indicate mostly phagosome based 
pathways for glia cells while synapses appear to be the most signi�cant pathway in the neuronal cell (Table 3).

Most studies assess RNA stability using a combination of RNA electrophoresis and housekeeping gene stabil-
ity. Surprisingly, RNA stability at each time point showed no degradation except for a slight decrease of RNA 
quality at time point 1H and 4H using the commonly used RIN numbers and total RNA electrophoresis (Fig. 3D). 
�e slight decrease of RNA integrity at time points 1H and 4H could explain the non-linearity of results observed 
at these two time points specially visible in the glia pro�le.

We further examined the expression of 64 reference genes (‘housekeeping’ genes) commonly used in human 
genomic experiments for normalization across the simulated PMI (Supplemental_Table_S2.xlsx). From these 
64 reference genes, only four were not stable, 48 (75%) were part of 6754 genes that were highly stable from 0 to 
24 H, and 57 (89%) were stable until 12H. �is corresponds to a ~ tenfold enrichment of housekeeping reference 
genes among the genes that were stable across the simulated PMI.

In addition to performing RNAseq, at each time point a portion of each tissue sample was immediately 
placed in 4% paraformaldehyde for histological examination. We stained each block of tissue with H&E as well 
as speci�c markers for neurons (NeuN), microglia (CD68) and astrocytes (GFAP) and reviewed these with our 
neuropathologist (TVN) (Fig. 4). At 2 h, we observed a decrease of nuclear staining for NeuN and neuronal swell-
ing. Between 4–8 h a majority of the neurons were swollen with a marked reduction in nuclear NeuN staining 
and by 12 h the neurons demonstrated loss of nuclear detail on H&E and NeuN staining was markedly reduced. 
At 24 h staining by NeuN showed that a majority of neurons were degraded. In contrast, between 2–4 h microglia 
became activated with increased process outgrowth peaking at 12 h. In parallel, astrocytes stained with GFAP 

Table 1.  Samples and RNAseq data used in this study.

Sample types Number of samples Age (years) Sex (% male) PMI (hours) Brain tissue References

Epilepsy 4 4 ± 3 50% 0 Grey matter Present study

Autism 4 5 ± 1 50% Unknown Grey matter enriched 18

Healthy controls 4 56 ± 13 100% 29 ± 2.6 Grey matter 10

Huntington’s disease 6 59 ± 10 100% 16 ± 9 Grey matter 10

Parkinson’s disease 7 76 ± 9 100% 20 ± 13 Prefrontal cortex 19

Schizophrenia 6 55 ± 5 67% 30.3 ± 5.3 Prefrontal cortex 20

Epilepsy 7 – – 0 to 24 Grey matter
Used to simulate the 
PMI

Table 2.  Brain activity-dependent genes are enriched in the population of genes a�ected by the simulated 
PMI. We tested three groups of genes using fold change (FC) cuto�s of 1.3, 1.4 and 1.5 (corresponding to the 
absolute values of the ratio of expression of high brain activity genes divided by the expression of low activity 
brain genes). �e signi�cance used was FDR ≤ 1%. A total of 6754 genes (43%) were detected as stable, 5947 
(38%) were identi�ed as not stable from 0 to 24H simulated PMI. We then calculated the enrichment in brain 
activity-dependent genes inside each group and labeled these as ‘PMI not-stable’. Enrichment was calculated as 
the ratio between the quantity of brain activity-dependent genes that were not stable as a function of simulated 
PMI divided by the quantity of brain activity-dependent genes that were stable. E Enrichment.

FC (FDR 1%) Total Regulation PMI-stable PMI-not-stable

|1.5| 524 Up or down 99 356 (E = 4.1)

|1.4| 863 Up or down 182 543 (E = 3.4)

|1.3| 1998 Up or down 580 1065 (E = 2.1)

Average enrichment E = 3.2
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Figure 3.  Gene clustering of brain activity-dependent genes reveals a reciprocal loss of neuronal genes inversely 
proportional to a rise in glial genes. (A) Analysis of the expression of 1998 activity-dependent genes (|FC|≥ 1.3, 
FDR ≤ 1%) as a function of the simulated PMI revealed two signi�cant clusters of 1427 of the genes (p < 0.001, 
r > 0.95, n = 7). AlegroMcode so�ware predicted the presence of two kernels, one containing 474 genes expressed 
by glia represented in red and another of 317 genes predicted to be expressed by neurons. No di�erentiation 
between astroglia and microglia could be made in the glial gene cluster. Each node (circle) represents a gene 
and the links between nodes represents a signi�cant correlation. �e thickness and length of each link is 
proportional to the correlation value. (B) While neuronal gene expression decreased as function of time, glial 
gene expression increased. Stable genes are composed of 6754 genes that did not show any signi�cant increase 
or decrease of expression during the simulated PMI. �e majority (between 75 and 89%) of commonly used 
housekeeping genes are stable until 12 H then showed an increase of variability at the 24 H time point. Error 
bars on glial and neuronal cells correspond to the weighted standard error of the mean. �e error bar for the 
stable and housekeeping genes corresponds to the standard deviation. Gene expression values are normalized 
to expression at time 0. (C) �e 500 activity-dependent genes that were most downregulated in healthy post-
mortem brain were used to separate the 7 time points of the simulated PMI by PCA. �e �rst component 
projection of the PCA has a value of 55%, its projection on the x-axis show a separation of the time points in 
order of 0H, 2H, 1H, 8H, 4H, 12H and 24H. No other meaningful separation was found on other components. 
(D) �e quality of the RNA, assessed by the commonly used RIN number and gel electrophoresis, showed no 
clear signs of degradation (Supplementary_Material_S1). 
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remained small and non-reactive until 4 h with non-overlapping processes a�er which GFAP showed a highly 
heterogeneous staining pattern suggesting that some astrocytes were undergoing an outgrowth of processes that 
continued through 12 h. At 24 H, small GFAP-positive nodules measuring roughly 5 µm in diameter were seen 
and astrocyte cell bodies were no longer identi�able compatible with protein degradation observed in previous 
 studies22.

Discussion
Experiments on the human brain are critical for understanding and developing treatments for neurological and 
psychiatric disorders, especially because of the relatively poor translatability from animal models. Most studies 
on the human brain are performed a�er death with an average postmortem interval of more than 12  h23. Fresh 
human cortex, while relatively rare, can be obtained from human brain disorders requiring brain surgery, such 
as epilepsy and brain tumors. �ese fresh human brain tissues o�er a unique opportunity to study transcription 
without worrying about RNA degradation in the postmortem interval. Here, we compared fresh versus postmor-
tem measures of RNA transcription and found remarkable di�erences in transcriptional patterns between fresh 
and postmortem brain. �ere were striking and selective changes in the expression of brain activity-dependent 
transcripts out of proportion to other genes. �is did not appear to be epilepsy disease-speci�c and was seen 
in both normal individuals and patients with Schizophrenia, Autism, Parkinson’s, and Huntington’s disorders. 
�ey were not age-speci�c since we have seen these genes present from age 1 to 56  years9. Activity-dependent 

Table 3.  Gene ontology. Using the Pathway tool DAVID V6.7 (Medium stringency, whole human genome 
as reference), the most represented pathways in the glia cells appear related to Phagocytose while the most 
represented pathways in Neuron cell are related to synapses. ***p < 1E−3. **p < 1E−2, *p < 5E−2.

Glia Neuron

Lysosome***
Phagosome***
Antigen processing and presentation***
MHC II*** & α/ß chain, N-terminal*
Gra�-versus-host disease**
T-Cell activation*

Cell junction***
Synapse**
Postsynaptic*
Plasma membrane*

Figure 4.  Loss of neuronal staining progressed while micro- and astro-glial processes greatly expanded during 
the simulated PMI. From 0 to 2H, glia in the gray matter were mainly non-reactive and neurons (NeuN) were 
degrading, starting at 4H and peaking at 12H the activation of microglia (CD68) and astrocytes (GFAP) was 
seen with overlapping cellular processes. Small GFAP positive nodules appeared on astrocytic processes at 8H 
and increased so that by 12H they became the most prominent form of GFAP staining. At 24H, tissues appeared 
physically degraded with astrocyte cell bodies no longer identi�able, neurons (NeuN) mostly degraded, and 
rounded microglia. (HE = hematoxylin & eosin staining).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6078  | https://doi.org/10.1038/s41598-021-85801-6

www.nature.com/scientificreports/

neuronal genes are likely of critical importance in the pathophysiology of many of these brain disorders, thus 
their selective loss in the postmortem period could have a signi�cant impact on the interpretation of genomic 
studies on postmortem human brain for many neuropsychiatric disorders.

Measurements of splicing complexity were also vastly reduced in postmortem brain tissues for some key 
genes notably the RBFOX1 gene. �e complete gene expression of freshly isolated human brain samples allows 
an unprecedented view of the genomic complexity of the human brain because of the preservation of so many 
di�erent transcripts no longer present in postmortem tissues. Among brain genes evolutionary conserved, we 
found ultracomplex genes that showed thousands of di�erent transcripts, widely shared through the evolution-
ary process, even with fruit �ies. In the human brain, previous bioinformatic studies comparing alternatively 
spliced transcripts found that this startling complexity of alternative  splicing24 is potentially linked to a highly 
conserved maintenance of neuronal function, critical for survival.

To have a more accurate understanding of the di�erence between fresh brain tissues and time-dependent post-
mortem tissues, we examined human brain gene expression and histology as a function of time a�er surgical removal 
to mimic the e�ect of the PMI. In human brain banks, while many strive for reducing the postmortem interval, tissues 
used for genomic analysis have had an average PMI of 18 ± 10  h23. It is well known that removal of brain tissues from 
their normal environment can lead to rapid death of neurons once blood circulation is no longer available to oxygen-
ate the  tissue25. �us it is not surprising that many of the changes we have seen in our ‘simulated death’ experiment can 
be seen a�er hypoxic brain injury with reduced neuronal gene expression and increased astrocytic gene  expression26.

During the PMI, the time to get the body down to 4 °C is an important measure for RNA stability and a major 
factor in the degradation of the  proteome27. To date, no accurate model of postmortem human brain temperature 
has been validated, but some have assumed a reduction in 1 °C per hour for the �rst 12 h immediately a�er death 
followed by 0.5 °C per hour  therea�er28. It can take up to 30 h for the human brain to cool even when the body is 
 refrigerated29. �erefore, while we studied the e�ect of simulated PMI at room temperature, in most cases follow-
ing death the brain will be at a much higher temperature for a longer period than we used in our study here and 
therefore would likely have more rapid changes. While some studies have suggested that the RNA transcriptome 
is stable up to 30 h a�er  death23,30, dynamic changes in RNA levels for speci�c cell types described here as a result 
of the PMI have been reported by others showing RNA  degradation31, chromatin  modi�cation6, activation of gene 
 expression32–34, and protein  degradation22. While we did not directly look at protein expression, the predicted 
cell di�erences implicating speci�c cell populations would likely create corresponding proteomic changes in glia 
and neuronal cell populations. Here we used histological measures to con�rm that selective changes in RNA 
expression come from glial and neuronal cell population changes. Previous studies have demonstrated neurode-
generation starting at a PMI of 4.5 h and have shown decreased NeuN on Western blots with relative preservation 
of housekeeping  genes35. In rodents, a PMI of 6 h was associated with signi�cant changes in gene expression that 
could strongly in�uence the interpretation of  studies33,36,37. In addition, pig brain neurons, that have a striking 
similarity with human  neurons38, show atrophy and disintegration somewhere between 1 and 10 h a�er  death39.

We used transcriptional clustering to predict and histology to con�rm cell-speci�c changes as a function 
of time of the simulated PMI. �ere was a remarkable increase in glial speci�c genes and glial processes that 
paralleled reductions in neuronal genes and neuronal cell integrity. �e rapid loss of activity-dependent genes is 
likely related to their known biological functions. Many genes involved in brain activity, particularly pathways of 
learning and memory, are short-lived and purposefully transient in their expression as a part of their important 
functions in di�erentiation acute versus long-term brain changes needed for memory  consolidation40. Similarly, 
the pronounced, time-dependent activation of microglia and astrocytes is likely due to their normal roles in brain 
homeostasis and reactions to low oxygen levels as seen a�er stroke or hypoxic brain injury.

Other studies have also shown that the RIN (RNA Integrity Number) and gel electrophoresis, commonly used 
measures of RNA stability based on the integrity of rRNA, can be relatively stable for up to 24H indicating that 
random RNA degradation by RNases occurs at a rate too low to have any signi�cant e�ect during commonly 
used  PMI30,41. Similarly, our RIN values did not change over 24H indicating that the RNAs with decreased or 
increased expression were due to ongoing biological  processes42. Using RNA stability by electrophoresis is thus 
not a reliable measure of tissue stability. A more targeted measure of transcriptional stability could be made that 
focuses on cell-type speci�c changes of genes with relatively short half-lives in the PMI.

Similar to the RIN, many genes were surprisingly stable in our analyses. Some of the most stable of these are 
‘housekeeping’ genes that have been historically used as references for RNA stability and normalization of RNA 
expression levels from a large number of di�erent cell types and  conditions43. In fact, the total amount of RNA 
per mg of tissue was not reduced in our studies. �is may in part be due to our observation that the reduction 
of neuronal genes was mostly compensated by a parallel increase of glia gene expression. �erefore, the use of 
housekeeping genes or the total amount of RNA used as references for normalization of gene in tissues with a 
simulated PMI greater than 4 h will not be able to detect the bias favoring glia gene expression over neuronal 
genes and will produce signi�cant bias in genomic quantitative studies when comparing brain tissues from 
patients with di�erent PMIs. Along these same lines, any postmortem studies focused on neuronal or glial mecha-
nisms, especially in brain disorders where cognition and behavior are important, will be signi�cantly impacted 
by the PMI. False positive and negative results related to immune gene expression will similarly be present in 
postmortem studies due to postmortem activation of microglia and astrocytes when the PMI is 4 h or more.

In summary, our �ndings raise awareness of the exceptional value of fresh human brain tissues for genomic 
studies as well as a need to apply additional scrutiny to interpret results from human postmortem brain studies. 
Genome-wide measures of RNA stability as a function of the PMI from studies such as the one here could in 
fact be used to determine and perhaps correct for the stability of individual genes and exons as a function of 
time and temperature during the  PMI27. �is correction would need to be combined with knowledge about the 
cause and timing of death, since ongoing changes such as hypoxia prior to death could also play a signi�cant 
role in the speci�c  RNAs28,35.
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Methods
Brain activity‑dependent genes derived from human epilepsy patient surgical resections. We 
de�ne ‘brain activity-dependent’ genes as a list of genes related to high versus low epileptic brain activity meas-
ured by intracranial recordings. �e brain samples used to build this list were taken from epileptic patients who 
have undergone surgery for their epilepsy. In this clinical operation, the patients have implanted electrodes that 
measure the degree of epileptic and activities at each  location9. A key advantage of our study design was that 
highly active brain regions are compared �rst to less active, internally controlled, samples from the same patient 
and then common changes are identi�ed across many patients. �is focuses on transcriptional e�ects of brain 
activity genes that were globally in common across all patients. �is study design excludes di�erences in sex, 
age, medications, genetic background, and tissue processing. We performed this research on cortical tissues not 
needed for clinical care or diagnosis that were removed as part of epilepsy surgery for 20 patients. Informed 
consent was obtained from each patient (or legal guardian/parent for subjects under 18) at Wayne State Uni-
versity (Detroit. MI, USA) and the University of Illinois (Chicago, IL) with IRB approvals at both institutions. 
All methods were performed in accordance with the relevant guidelines and regulations. Resected tissues were 
immediately placed on ice followed by freezing within 60 min at − 80 °C to protect RNA from degradation or de-
novo transcription. For these studies, di�erential gene expression di�erences between more and less active brain 
regions were determined both using RNAseq and  microarrays7. We cross-referenced the microarrays genes with 
the genes present in the RNAseq study and used a total of 15,655 genes that were both present in microarrays 
and in RNAseq experiments.

RNAseq and PCA analysis. RNAseq was performed on two samples, one with low activity and one with 
high activity, from two epileptic patients (EP158 and EP168). Total RNA was prepared using TRIzol (Invitrogen) 
followed by DNase treatment, puri�ed on an RNeasy column (Qiagen) as previously  described11 and quanti�ed 
both by nanodrop and Quibit. RNA was fragmented (Ambion Fragmentation reagents AM8740) and the quality 
was assessed using a Bioanalyser (Agilent). Poly A + paired-end stranded sequencing libraries were made using 
the Illumina TruSeq stranded sample preparation kit (Catalog No.15031048) as previously  described11. Librar-
ies were sequenced on the HiSeq platform using paired-end 100 bp chemistry. Sequences are available from the 
Short Read Archive (http://www.ncbi.nlm.nih.gov/sra).

RNAseq results obtained from our fresh samples were compared to RNAseq results of cortical brain regions 
from postmortem samples from 4 control patients without neurological  disorders10, and from individuals with 
neuropsychiatric disorders:  Schizophrenia20, Parkinson’s  disease19, Huntington’s  disease10 and autism  disorder18 
(Table 1). Di�erential expression was assessed using the so�ware Qualimap 2 (V2.244) using the default param-
eters and visualized with the so�ware IGV (V2.3.6845). All the samples were part of the same pipeline of analysis, 
FPKM (Fragment per kb per Million reads) were quantile normalized between samples and had similar quality-
check metrics.

�e signi�cance used for di�erential expression was |Fold Change|≥ 1.5 with a FDR ≤ 12%. Hypergeometric 
analysis was performed with the statistical so�ware ‘R’. We separated the samples by PCA using the expression 
of 500 brain activity-dependent genes that showed the greatest decrease in postmortem samples. �e barycenter 
of the clouds and the 80% con�dence ellipses were computed using "FactoMineR"46.

Fresh brain sample collection and RNA extraction. A freshly isolated region of human neocortex was 
obtained from a temporal lobe epilepsy adult, female patient and the histology of the tissue was reported to be 
non-pathological by a neuropathologist (TVN). At time zero, a portion of the neocortical tissue was frozen on 
dry ice (0H). �e remaining tissue was placed at 24 °C and sealed in plastic wrap. At each designated time point 
(1, 2, 4, 8, 12 and 24 h), an additional sample was removed from the tissue block and cut in half. We did 7 dis-
sections from the same tissue block, one half was �xed in 4% paraformaldehyde for 28 h for histological analysis 
and the other half was frozen on dry ice and stored at − 80 °C prior to RNA extraction. For RNA preparation, 
gray matter containing approximately equal amounts of each layer of the 6-layered cortex was used. Total RNA 
from each time point was isolated using Qiagen RNAeasy columns (mini kit, RNeasy lipid kit, Qiagen) following 
the manufacturer’s protocol.

Statistical analysis. �e reads were trimmed using ‘Trim Galore!’ (Babraham Institute, Cambridge, UK) 
with default parameters resulting in a total of around 20 million reads for each sample. STAR (V2.7.0)47 was used 
for the alignment using GenCode V30 as reference resulting in an average of 90% of unique mappings. Gene 
counts were extracted using ‘SeqMonk’ (Babraham Institute, Cambridge, UK). We used a statistical clustering 
algorithm to predict cell-type speci�c clusters as we have  described9. In brief, this algorithm cross-references 
groups of brain activity-dependent genes that follow the same expression pro�le and clusters them using Pearson 
correlation metrics. �ese clusters are visualized using Cytoscape and identi�ed using AlegroMcode (Allegro-
Viva Corporation, 2011), cell assignation has been done using Tissues 2.048 and corresponds to cells that are 
most likely to express them. Enrichments and depletions were computed with ‘R’ by hypergeometric  analysis49. 
A list of 65 human reference genes were taken from seven  publications15,16,50–54.

Immunohistochemistry. Immunohistochemistry and tissue staining (Hematoxylin & Eosin) were per-
formed on �xed tissues at each time point that RNAseq data was obtained (0 to 24H). We used the following 
antibodies: Astrocytes GFAP (clone 6F2, Dako), Microglia CD68 (clone KP1, Dako) and Neurons with NeuN 
(cat #MAB377, Millipore). Signals were ampli�ed using the ‘ABC kit’ (Vectastain, Vector Labs) following the 
manufacturer’s protocol followed by developing with ‘SigmaFast DAB’ (Millipore).

http://www.ncbi.nlm.nih.gov/sra
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