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SELECTIVE TOXICITY AT LOW DOSES: EXPERIMENTS WITH THREE PLANT
SPECIES AND TOXICANTS

Aki Sinkkonen, Mervi Myyrä, Olli-Pekka Penttinen, Anna-Lea Rantalainen
� Department of Environmental Sciences, University of Helsinki, Finland

� During the last decade, the paradigm that low toxicant doses often have stimulatory
effects on plants has become widely accepted. At the same time, low toxicant doses of
metal salts have been observed to inhibit the growth of the most vigorous seedlings of a
population in vitro, although mean plant size has remained unaffected. We hypothesized
that this kind of selective low-dose toxicity is not restricted to inorganic contaminants. We
exposed annual plants (baby’s breath Gypsophila elegans, purslane Portulaca oleracea, and
duckweed Lemna minor) to 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-
benzopyran (HHCB) and 4-tert-octylphenol and lead acetate. As compared to unexposed
G. elegans roots, 4-tert-octylphenol did not affect the mean root size of all seedlings, but it
reduced the average length of roots longer than the 98th percentile. A comparable
response was found in case of G. elegans roots treated with lead acetate beyond the 90th per-
centile. The average size of roots beyond the 90th percentile was decreased also when L.
minor was exposed to lead acetate though the means of all roots were constant. P. oleracea
seemed to be insensitive to selective toxicity. We conclude that selective toxicity at low
doses should be considered in parallel with hormesis.

Keywords: HHCB, lead acetate, NOEC, octylphenol, seedling growth, selective toxicity

INTRODUCTION

Numerous xenobiotics are toxicants at high concentrations, but many
of them have stimulatory effects on plants at low concentrations
(Calabrese and Blain 2009). The phenomenon is called hormesis, and its
existence has led to an intense debate on the safe threshold levels of envi-
ronmental contaminants (Rietjens and Alink 2006). Especially, it has
been argued that if commonly used xenobiotics have unexpected stimu-
latory effects on human health and wildlife at low concentrations, legis-
lation on threshold levels should not be based on traditional toxicity
assays that do not take into account the possibility of low-dose stimulation
(Hoffmann and Stempsey 2008). The counterarguments have been that
hormesis may not be a universal phenomenon, and that the level of
hormesis may depend on environmental conditions, like plant stress
(Pickrell and Oehme 2006; Hoffmann and Stempsey 2008; Chobot and
Hadacek 2009; Sharma and Diez 2009). Most of this argumentation is
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based on statistical differences in mean response between treated and
control individuals, probably because mean values have been thought to
be a proper way to explore potential ecological and toxicological effects
of any compound (references above).

Low-dose stimulatory effects are not the only biological phenomenon
occurring in the low dose range. Sinkkonen et al. (2008, 2009) have
recently proposed that it may be ecologically more valuable to understand
the response of the most vigorous individuals in exposed stands or plant
populations, instead of purely focusing on mean responses. The authors
have also presented evidence that aqueous solutions of lead acetate and
copper sulfate reduce the number of exceptionally long-rooted seedlings
in vitro at toxicant concentrations that do not affect mean plant size
(Sinkkonen et al. 2008, 2009). The phenomenon may be related to densi-
ty-dependent phytotoxicity (San Emeterio et al. 2007; Sinkkonen 2001,
2006, 2007), or it may be caused by genotoxic or gene regulation effects
of the contaminants on fast-growing seedlings of a population (Aina et al.
2006; Quaggiotti et al. 2007). Further, fast-growing seedlings may simply
be exceptionally sensitive to a toxicant due to within-population genetic
differences. No matter what factors are the ultimate reasons for the selec-
tive low-dose toxicity, the phenomenon may be of ecological significance
in wild plant populations. If selective mortality by a natural environmental
factor allows the survival of fast-growing individuals only, and if low-dose
toxicity alters the number of the fast-growing i.e. surviving individuals, the
total number of surviving plants is changed by the very low toxicant expo-
sure. Light competition, drought and declining water table are known to
lead to the survival of the largest or deep-rooted individuals (Mahoney
and Rood 1991; Horton and Clark 2001).

In this paper, we ask whether organic xenobiotics can be associated
with selective low-dose toxicity, whether the degradation of organic xeno-
biotics with time annuls the low-dose effects on seedlings, and how essen-
tial is the role of plant species in the context of selective low-dose toxici-
ty on vigorous individuals. In addition, we explore if the frequency of
long-rooted aqueous plants is reduced when exposed to very low lead
acetate concentrations. Our ultimate goal is to investigate how regularly
the frequency of long-rooted seedlings is reduced with a variety of toxi-
cants under laboratory conditions.

MATERIALS AND METHODS

Toxicant and species selection

HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-
benzopyran and related isomers; CAS No: 1222-05-5) is a synthetic poly-
cyclic musk that is used as fragrance in a variety of consumer products
such as cosmetics, perfumes, air fresheners and household and laundry
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cleaning products. Low levels of HHCB have been detected in aqueous
ecosystems and in urban soils and high concentrations in sewage sludge.
HHCB is very persistent in soil (half life 10-17 months) and has been
shown to accumulate in carrot roots from soil (Litz et al 2007). Potential
acute toxicity of HHCB on plants is largely unknown (Anonymous 2004).

Alkylphenol ethoxylates are a class of nonionic surfactants common-
ly used in the manufacture of plastics, detergents and other products
(Nimrod and Benson 1996). 4-Tert-octylphenol (4-(1,1,3,3-tetramethyl-
butyl)phenol, CAS No: 140-66-9) is a degradation product of 4-Tert-
octylphenolethoxylate. Octylphenol is found in the wastewater and
sludge of sewage treatment works and river sediments (Giger et al. 1984;
Hernando et al. 2004). Alkylphenols are even found in drinking water
and they are generally considered as estrogenic compounds (Kuch and
Ballschmiter 2001; Koh et al. 2009).

Lead acetate [Pb(CH3COO)2] is an inorganic toxicant that has been
observed to create selective toxicity on long-rooted seedlings in even-aged
stands at concentrations that do not affect mean plant size in vitro
(Sinkkonen et al. 2008). Lead acetate consists of two potentially toxic
components, i.e. lead and acetate ions. In this paper, lead acetate trihy-
drate ([Pb(CH3COO)2·3H2O], CAS No: 6080-56-4) was used.

Annual baby’s breath (Gypsophila elegans M. Bieb.) grows naturally at
open, arid environments in South-Eastern Europe and Western Asia. It is
a naturalized, sometimes invasive species in many geographical areas
ranging from North America to Australia. The plant germinates rapidly
and is insensitive to soil characteristics. Sinkkonen et al. (2008) have pre-
viously demonstrated that long-rooted seedlings of G. elegans are sensitive
to lead acetate levels that do not affect mean plant size.

Purslane [Portulaca oleracea L. ssp. sativa (Haw.) Celak] is one of the
most widespread plants in the world. Typically, it plagues agricultural
areas in mild and warm climates. P. oleracea has several ecotypes that all
germinate and grow rapidly in environments characterized by warm cli-
mate and periods of drought (Singh 1973; Zimmerman 1977).
Sinkkonen et al. (2009) have recently demonstrated that the growth of
the most vigorous P. oleracea ssp. sativa seedlings is inhibited at copper sul-
fate levels that do not affect mean plant size.

Common duckweed (Lemna minor L.) is one of the most widespread
aquatic freshwater plants at temperate and high latitudes. The species
occupies and can sometimes form large colonies in a wide array of habi-
tats, ranging from small pools and ponds to river basins and large lakes.
Duckweeds, and especially L. minor, are model organisms for ecotoxico-
logical studies with a standardized test protocol (ISO 2005), and are used
commonly as a part of different ecotoxicological test batteries (e.g.
Hagner et al. 2010). Here the growth inhibition test with L. minor fol-
lowed ISO (2005), with slight modifications (explained below).
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Plant material and growth conditions

Seeds of G. elegans and P. oleracea ssp. sativa were purchased from com-
mercial horticultural companies (G. elegans from Nelson Garden Oy,
Turku, Finland; P. oleracea from Oy Schetelig Ab, Vantaa, Finland,). In July
2008, leaflets of a local strain of L. minor were collected from a pond
(EUREF-FIN N 61° 2.664’ E 25° 45.322’) in Päijät-Häme, Finland, next to
a nature reserve area. The strain was grown at 22 °C and 24 h light for at
least one month before used for testing.

Fifty P. oleracea seeds per dish were germinated for one day in tightly
closed 53 mm diameter polyethylene Petri dishes on a filter paper
(Whatman® Grade 41) in 1 ml aqueous solution that consisted of deion-
ized Milli-Q grade water and 5.75 KCl, 123.25 MgSO4 · 7H2O, 294.0 CaCl2
· 2H2O, and 64.75 mg l-1 NaHCO3 (total Ca+Mg: 0.5 mM, ratio
Ca:Mg=4:1). On the second day, seedling number of P. oleracea was har-
monized to 47 per dish by removing all potentially ungerminated seeds
and if necessary also some random seedlings. The procedure harmonized
the mean dose per seedling (Sinkkonen 2001, 2007). In case of G. elegans,
the setup was the same, except that seed number was 60 per dish in the
beginning of the experiment and seedling number 50 per dish after the
removal process on the second day.

Thereafter, treatments as randomized replicates were established by
adding 2 ml of deionized water that had been enriched with micronutri-
ents described above and contaminated with aqueous HHCB (LGC
Promochem, Germany), octylphenol (Supelco, USA) or lead acetate (J.T.
Baker, The Netherlands) at the following concentrations (Table 1).
Gypsophila elegans was treated with 0, 1.25 or 1.75 mg l-1 HHCB in one
experiment; with 0, 0.0425, 0.425 or 4.25 mg l-1 octylphenol in another
experiment; and with 0, 0.38, 3.79 or 37.93 mg l-1 lead acetate trihydrate
in a third experiment. P. oleracea was treated either with 0, 0.01, 0.10 or
1.00 mg l-1 HHCB; 0, 0.042, 0.425 or 4.25 mg l-1 octylphenol; or 0, 3.79 or
37.92 mg l-1 lead acetate trihydrate, depending on the experiment. The
dishes were closed airtight and the seedlings were grown at 28 °C and 16
h light:8 h darkness diurnal rhythm in a growth chamber. Root lengths of
G. elegans seedlings were measured after three more days. P. oleracea
seedlings were measured similarly after four more days.

For the L. minor experiment, all roots of plant individuals consisting
of 2 mature leaves were cut off and ten individuals per 135 mm diameter
dish were let to grow on 150 ml ultra pure water enriched with nutrients
and 0, 0.15 or 9.5 mg l-1 lead acetate trihydrate. Nutrient concentrations
were 42.5 NaNO3, 37.5 MgSO4 · 7H2O, 18.0 CaCl2 · 2H2O, 0.5 H3BO3, 0.1
MnCl2 · 4H2O, 0.025 ZnSO4 · 7H2O, 0.005 Co(NO3)2 · 6H2O, 0.0025
CuSO4 · 5H2O, 0.005 Na2MoO4 · 2H2O, 0.42 FeCl3 · 6H2O and 0.7 mg l-1

NaEDTA · 2H2O. Treatments as six randomized replicates were let to
grow for 6 days at 28 °C and 16 h light: 8 h darkness diurnal rhythm and
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root lengths and the number of leaves per
dish were measured.

Chemical analyses

After removing the plants from the
Petri dishes in G. elegans + HHCB and P. oler-
acea + octylphenol experiments, the filter
papers were transferred to glass bottles with
a 1 ml ethanol rinse. The samples were
stored in a freezer until HHCB and
octylphenol levels were analyzed.
Furthermore, control treatments without
plants and without chemicals, reagent
blanks, and blanks with spiked water and fil-
ter paper were analyzed.

Filter papers used in octylphenol
exposures were transferred to 30 ml test
tubes with an ethyl acetate rinse. Ethyl
acetate (20 ml) and internal standard
deuterated bisphenolA (120 ng or 480
ng) were added into the tubes. The sam-
ples were sonicated for 30 minutes and
the extract was transferred to an
Erlenmeyer flask. The extraction was
repeated and both extracts were com-
bined. The sample was concentrated (2
ml) with a rotary evaporator and quanti-
tatively transferred to a Kimax tube,
where an aqueous layer was separated.
The top layer was transferred into a new
Kimax tube through a sodium sulphate
column to remove remaining moisture.
After that the sample was concentrated
under gentle nitrogen flow until 0.5 ml
was remaining. The sample was trans-
ferred to a 1.5 ml gas chromatography
vial and concentrated further until 100 µl
was left. Silylation reagent N-methyl-N-
( tr imethy l s i l y l) t r i f luoroacetamide
(MSTFA, 200 µl) was added to the vial and
phenolic compounds were silylated at 85
°C for one hour. The sample was concen-
trated and depending on the concentra-
tion either 100 or 500 ng deuterated
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anthracene was added as a recovery standard prior to analysis in gas
chromatograph-mass spectrometer (GC-MS).

Filter papers used in HHCB exposures were fortified with deuterated
phenanthrene as an internal standard. The amount of internal standard
was either 100 or 400 ng depending on the HHCB concentration of the
sample. The sample was extracted with 20 ml dichloromethane/hexane
(3:7, v:v) for 30 min in an ultrasound bath and overnight in a shaker (300
rpm). The extraction was repeated with a shorter 2 h shaking. After con-
centrating and drying the sample in a sodium sulphate column it was
transferred to a GC vial. Deuterated anthracene (100 or 200 ng) was
added as a recovery standard prior to analysis on GC-MS.

All samples were analyzed using a gas chromatograph (Shimadzu GC-
17A) equipped with a low resolution mass spectrometer (Shimadzu
GCMS-QP5000). ZB-5MS column length was 30 m, i.d. 0.25 mm and
phase thickness 0.25 µm. The helium carrier gas was set at 1 ml min-1.
Splitless injection mode was used for 1 min. Both injector and detector
temperatures were maintained at 280 °C. The GC oven program for
octylphenol samples began at 100 °C for 1 min. Thereafter, the tempera-
ture was ramped to 200 °C at 10 °C min-1, then to 260 °C at 15 °C min-1,
then to 300 °C at 3 °C min-1. The final temperature was held for 2 min.
The GC oven program for HHCB samples began at 80 °C that was held
for 1 min. Thereafter, the temperature was ramped to 250 °C at 10 °C
min-1, then to 280 °C at 7 °C min-1, then to 320 °C at 20 °C min-1. The final
temperature was held for 10 min.

At least two ions per compound were monitored in MS (SIM mode).
Target ion m/z was used to quantify the concentration of an analyte and
additional ion m/z was used to confirm the qualitative result in addition
to correct retention time. Quantitation was based on an internal standard
and performance was evaluated with the aid of a recovery standard. The
mean recovery for internal standard in HHCB analysis was 75 ± 9 % and
in octylphenol analysis 122 ± 20 %.

Statistical analyses

Statistical analyses were executed with SPSS for Windows 15.0.1. The
first goal was to find exposed treatments that were not significantly dif-
ferent from non-exposed control treatments in mean root lengths. The
major goal was thereafter to investigate if there still was a significant dif-
ference between the most long-rooted seedlings in any of the treatments
that were not significantly different in treatment means from control.

Univariate analysis of variance (Anova) was performed with Tukey
honestly significant difference tests to sort out treatments with signifi-
cantly different mean values. Whenever the assumption of normality was
seriously violated, the probability of rejecting a true null hypothesis was
higher than indicated by the analysis. Then, Kruskal-Wallis test was per-
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formed and two-treatment differences between medians were analyzed
non-parametrically with Mann–Whitney U tests.

If Anova or its non-parametric alternatives indicated no difference
in treatment means, Moses test of extreme reactions was executed to
find out if individuals were equally distributed in the two treatments
compared (Moses 1952; Sinkkonen et al. 2009). Because the Moses
extreme reactions test tests for one-tailed differences, exposed treat-
ments were set as Group 1 in the test. Because this test also is affected
by extreme values that may occur due to experimental or systematic
errors, the three longest seedling roots were excluded as potential out-
liers at the right tails of the two distributions compared (Sinkkonen et
al. 2009). As Moses test cannot be used to discover if large but not short
individuals are sensitive to low toxicant levels in the substratum, we
compared seedlings at the right tails of the size distribution diagrams
of control and exposed treatments with Mann–Whitney U tests. We
tested 99, 97, 95 and 90% percentiles adjusted for ties (Sinkkonen et
al. 2009). The 98th percentiles were tested instead of the 99th per-
centiles whenever there were less than four replicates in any of the 99th

percentiles explored. If the distributions compared were not similar,
Kolmogorov-Smirnov Z tests were performed instead of the Mann-
Whitney U tests.

Since roots of any single experiment were measured during 2-3 con-
secutive days, we also analyzed the effect of day on root length mean, stan-
dard deviation, and min and max values per dish, despite the fact that
plants were stored at +5 °C during those days.

The EC50 for plant roots was also estimated, according to the logistic
model by Haanstra et al. (1985). However, not a single significant
inhibitory effect was found in any of the experiments for plant responses
within the exposure regimes that were used in this study.

RESULTS

Extreme values in octylphenol treatments.

Root lengths of G. elegans (mean ± SD) were 18.0 ± 8.3, 18.6 ± 7.9, 18.2
± 8.6 and 18.4 ± 8.0 mm in 0, 0.043, 0.425 and 4.250 mg l-1 treatments,
respectively. There were no significant differences between treatments in
mean root length of G. elegans (F =0.396, df = 1495, 3, p = 0.76). In Moses
extreme reactions tests, root lengths in 4.250 mg l-1 treatment were sig-
nificantly different from those in 0 and 0.425 mg l-1 treatments (p < 0.05)
but not from root lengths in 0.043 mg l-1 treatment (p > 0.1). In trimmed
Moses tests, 4.250 mg l-1 treatment was significantly different from 0 mg l-
1 (p = 0.003), 0.043 mg l-1 (p = 0.025) and 0.425 mg l-1 (p = 0.001) treat-
ments. When roots that were equal to or longer than the 98 % percentiles
were compared, 4.250 mg l-1 treatment was significantly different from 0
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mg l-1 (K-S Z =1.39, p = 0.042) and 0.425 mg l-1 (K-S Z = 1.62, p = 0.01)
treatments in Two-Sample Kolmogorov-Smirnov tests (Figure 1).

Root lengths of P. oleracea (mean ± SD) were 20.8±5.5, 21.2±6.0,
20.1±5.4 and 19.4±5.2 mm in 0, 0.043, 0.425 and 4.250 mg l-1 treatments,
respectively. In comparison with 0 mg l-1 treatment, octylphenol affected
mean root length of P. oleracea at 4.250 mg l-1 concentration but not at the
three weaker concentrations (data not shown). There were no significant
differences in Moses extreme reactions tests between 0 mg l-1 and other
treatments (data not shown).

Extreme values in HHCB treatments.

Root lengths of G. elegans (mean ± SD) were 17.6±8.2, 17.8±7.9 and
18.9±9.1 mm in 0, 1.25 and 1.75 mg l-1 treatments, respectively. There
were no significant between-treatment differences in mean root length of
G. elegans (F = 1.39, df = 1041, 3, p = 0.24). In Moses extreme reactions
tests, 1.75 mg l-1 was significantly different from 1.25 mg l-1 treatment (p
= 0.038) but these treatments were not significantly different when mean
values of 97-90 % percentiles were analyzed in Mann-Whitney U-tests (p >
0.05).

Root lengths of P. oleracea (mean ± SD) were 21.8±5.9, 20.0±5.9,
21.6±6.7 and 20.2±6.3 mm in 0, 0.01, 0.10 and 1.00 mg l-1 treatments,
respectively. HHCB affected mean root length of P. oleracea at 0.01 and
1.00 mg l-1 but not at 0.10 mg l-1, as compared to 0 mg l-1 treatment (K-W
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χ2 = 22.49, df = 3, p = 0.024). The latter two treatments were not signifi-
cantly different in Moses extreme reactions test (data not shown).

Extreme values in lead acetate treatments.

Root lengths of G. elegans (mean ± SD) were 19.1±8.7, 18.9±8.3,
18.3±7.5 and 17.1±7.1 mm in 0, 0.38, 3.79 and 37.90 mg l-1 treatments,
respectively. There were significant between-treatment differences in
mean root length of G. elegans (χ2 = 7.95, df = 3, p = 0.047). 0 mg l-1 treat-
ment was not significantly different from 0.38 and 3.79 mg l-1 treatments
(p > 0.50) but significantly different from the 37.90 mg l-1 treatment. In
Moses extreme reactions tests, there was a significant difference between
0 mg l-1 and 0.38 mg l-1 treatments (p = 0.044). After trimming, 0 mg l-1

treatment was significantly different from both 0.38 and 3.79 mg l-1 treat-
ments in Moses extreme reactions tests (p = 0.01 and p = 0.004, respec-
tively). When 97-90 percentiles were compared, 3.79 mg l-1 differed sig-
nificantly from the 0 mg l-1 treatment (Table 2).

Root lengths of P. oleracea (mean ± SD) were 22.2±5.9, 22.1±5.7 and
19.5±4.6 mm in 0, 3.79 and 37.90 mg l-1 treatments, respectively. As com-
pared to the 0 mg l-1 treatment, lead acetate affected mean root length of
P. oleracea at 37.90 mg l-1 but not at 3.79 mg l-1 concentration (data not
shown). There were no significant differences between 3.79 mg l-1 and 0
mg l-1 treatments in Moses extreme reactions or 97-90 percentile tests.

Root lengths of L. minor (mean ± SD) were 16.6±18.2, 16.0±17.1 and
12.3±16.5 mm in 0.0, 0.1 and 9.5 mg l-1 treatments, respectively. Lead
acetate reduced root lengths of L. minor at 9.5 mg l-1 but not at 0.1 mg l-1

treatments, as compared to the 0 mg l-1 treatment (χ2 = 179.4, df = 2, p <
0.0005). Control and 0.1 mg l-1 treatments were significantly different in
trimmed and untrimmed Moses tests (p < 0.0005). When 90th percentiles
were compared with Mann-Whitney U-tests, mean root length was short-
er in 0.1 mg l-1 treatment as compared to the 0 mg l-1 treatment (U = 37,
p =0.032). However, there were no differences when the 95th and 97th per-
centiles were compared between these two treatments.
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TABLE 2. Statistically significant effects of aqueous 0.38 and 3.79 mg l-1 lead acetate at 97th 95th and
90th percentile (adjusted for ties) on seedling roots of G. elegans in vitro (n = 11, 14, 34, respective-
ly). 99th percentile was not tested due to small number of replicates. 

Percentile 97 95 90

Mann-Whitney U:
0.38 vs 0 mg l-1 22.0 63.0 303.0
3.79 vs. 0 mg l-1 18.0 40.0 220.0

p-values:
0.38 vs 0 mg l-1 0.301 0.302 0.572
3.79 vs. 0 mg l-1 0.082 0.004 0.003
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Effect of day on root length.

When the effect of harvesting day was analyzed, there was only one
statistically significant difference in mean values, standard deviations, and
min and max values per dish in all the experiments. When P. oleracea was
treated with different octylphenol levels, the standard deviations of root
lengths on day five were greater than standard deviations on day seven (F
=3.47, df = 45, 2, p =0.04).

Chemical analyses.

At the end of the experiment, HHCB concentrations (mean ± SD)
were zero or lower in Petri dishes with G. elegans seedlings (0.2 ± 0.1, 0
and 1.4 ± 2.4 ng sample-1 in 0, 1.25 and 1.75 mg l-1 treatments) compared
to the level found in 0 mg l-1 + filter paper controls. HHCB levels in the
filter paper controls and GC-MS blanks were 5.7 ± 0.6 ng sample-1 and 0.7
± 0.5 ng sample-1, respectively. Petri dishes with 1.75 mg l-1 HHCB but
without seedlings contained 510.7 ± 8.5 and 46.6 ± 15.5 ng HHCB sample-

1 at the beginning and at the end of the experiment, respectively. Also 4-
tert-octylphenol concentrations decreased below the level found in 0 mg
l-1 + filter paper controls (Table 3.). At the end of the experiment, 4-tert-
octylphenol levels in spiked samples were higher in treatments without P.
oleracea, as compared to treatments with P. oleracea (Table 3.). One sample
in the 4.250 mg l-1 treatment contained 651.7 ng 4-tert-octylphenol, and
was removed as a statistical outlier due to potential contamination during
chemical analysis.

DISCUSSION

In the three experiments performed with G. elegans, significant dif-
ferences were observed in Moses extreme reaction tests. Similarly, two of
the three experiments ended up in significant differences in Mann-
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TABLE 3. The amount of 4-tert-octylphenol (ng sample-1) in different treatments with and without
47 seedlings of P. oleracea. 

Treatment Time Amount of octylphenol n

0.043 mg, no seedlings Start of experiment 60.3 ± 2.2 2
4.250 mg, no seedlings Start of experiment 7073.4 ± 177.0 2
0 mg + seedlings End of experiment 9.9 ± 8.34 3
0.043 mg + seedlings End of experiment 6.9 ± 5.1 3
0.425 mg + seedlings End of experiment 4.1 ± 0.6 3
4.250 mg + seedlings End of experiment 11.0 ± 1.4 2
0.043 mg, no seedlings End of experiment 19.0 ± 5.7 2
4.250 mg, no seedlings End of experiment 1640.1 ± 265.7 2
Blank samples in GC-MS 3.2 ± 0.3 2
0 mg and filter paper but no seedlings 17.8 ± 11.2 2
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Whitney U tests made with ninety or higher percentiles. The differences
were found when control roots were compared with roots exposed to tox-
icant concentrations that did not affect mean root length. This supports
the hypothesis that very low toxicant concentrations may shape the size
distribution diagram even if toxicant concentrations are so negligible that
mean values are not affected. The effect on G. elegans was significant also
with lead acetate, which confirms our earlier observation (Sinkkonen et
al. 2008).

The fact that the frequency of long-rooted P. oleracea seedlings did not
differ from root lengths in control treatments is in contrast with our pre-
vious observation that low concentrations of copper sulphate reduced the
number of long-rooted P. oleracea seedlings (Sinkkonen et al. 2009). It is
possible that P. oleracea is not especially prone to the selective toxicity stud-
ied in this paper, but an alternative explanation is that the concentrations
used and the short turnover time of HHCB and octylphenol masked sig-
nificant effects. Belz (2008) has suggested that the concentration range at
which stimulatory hormesis can be observed may be very narrow. If the
same is true with selective toxicity on long-rooted seedlings in dense plant
stands, degradation of organic compounds may complicate efforts to veri-
fy the phenomenon. Moreover, since organic toxicants are not often recal-
citrant, the ecological effects of selective toxicity at low doses may not be
as severe as in case of low levels of inorganic or recalcitrant toxicants.

The effect of the lowest lead acetate concentration on long-rooted L.
minor plants supports the hypothesis that selective toxicity is not restricted to
terrestrial ecosystems. In the experiment performed, nutrients did not limit
plant growth. If natural aquatic ecosystems are considered, slow growth of
the largest individuals may affect light competition between different plant
species, or it could delay sexual reproduction. Since those factors often play
a major role in the determination of plant fitness, the selective toxicity at low
doses deserves further attention in aquatic environments.

In this study, selective low-dose toxicity was studied by comparing all
plants at one concentration to all plants at another concentration without
separating replicate dishes from each other. Although mean root lengths
were not significantly different between different dishes within any treat-
ment involved in Moses extreme reactions tests (data not shown), a more
optimal strategy might be to compare if 90-99 percentile values of plants
at different dishes of an exposed treatment are statistically different from
the respective values of a control treatment. This, however, requires many
replicate dishes per treatment in order to separate variation between
treatments from random variation within treatments. If every dish con-
tains 40-60 seedlings, and if there are 30 dishes per treatment, the root
lengths of all plants may be difficult to measure within an acceptable time
limit. Another possible method to evaluate how commonly selective low-
dose toxicity exists is to make a literature survey similar to the one made

A. Sinkkonen and others

140
11

Sinkkonen et al.: Selective toxicity at low toxicant doses

Published by ScholarWorks@UMass Amherst, 2014



by Calabrese and co-authors on the prevalence of hormetic growth stim-
ulation in low-dose studies (see Calabrese and Blain 2009). Since many
published studies tell treatment means and standard deviations but not
high percentiles, direct contacts with authors may be needed to complete
such a survey.

The species studied seem to be quite inert to low-dose effects of
HHCB. Although there were no differences in mean values of roots of G.
elegans exposed to HHCB, the two exposed treatments were significantly
different in Moses extreme reactions test. This opens an interesting view
that xenobiotics that have traditionally been considered relatively harm-
less may change the frequency of very low or very high values. Many sur-
factants and other estrogenic compounds that are continuously spread by
human activities to numerous ecosystems in industrialized countries
belong to this category.

The purpose of this study was to explore the effects of plant species
and toxicant type on selective toxicity at low doses, and the relationship
between stimulatory hormesis and the selective toxicity. The results lend
support to the hypothesis that the selective toxicity can be found with
many toxicants and species. Thus, it is possible that fairly significant
effects of low doses on subpopulations are missed because the effects are
masked by a lack of effect on most of the population. Alternatively, there
could be a stimulation of a part of the population that would mask
inhibitory effects on the normally faster growing part of the population.
However, we were not successful in our efforts to verify hormesis statisti-
cally though we observed selective toxicity together with slightly
increased treatment means. Thus, it is possible that hormesis and selec-
tive toxicity occur in parallel i.e. the number of the most-long rooted
plant individuals may decrease even if stimulatory hormesis exists. The
results also indicate that there are differences between plant species.
Much more research effort will be needed to find out if the growth of fast-
growing plant seedlings is decreased in nature due to very low toxicant
doses, and what are the possible consequences of the potential decrease
on plant fitness and population dynamics.
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