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Abstract

Collaborative filtering (CF) aims to predict users’ ratings on items
according to historical user-item preference data. In many real-
world applications, preference data are usually sparse, which would
make models overfit and fail to give accurate predictions. Recently,
several research works show that by transferring knowledge from
some manually selected source domains, the data sparseness prob-
lem could be mitigated. However for most cases, parts of source
domain data are not consistent with the observations in the tar-
get domain, which may misguide the target domain model build-
ing. In this paper, we propose a novel criterion based on empirical
prediction error and its variance to better capture the consistency
across domains in CF settings. Consequently, we embed this cri-
terion into a boosting framework to perform selective knowledge
transfer. Comparing to several state-of-the-art methods, we show
that our proposed selective transfer learning framework can signif-
icantly improve the accuracy of rating prediction on several real-
world recommendation tasks.

Keywords: Transfer Learning; Collaborative Filtering; Cross Do-
main Recommendation;

1 Introduction

Recommendation systems attempt to recommend items (e.g.,
movies, TV, books, news, images, web pages, etc.) that are
likely to be of interest to users. As a state-of-the-art tech-
nique for recommendation systems, collaborative filtering
aims at predicting users’ ratings on a set of items based on
a collection of historical user-item preference records. In
the real-world recommendation systems, although the item
space is often very large, users usually rate only a small num-
ber of items. Thus, the available rating data can be extremely
sparse for each user, which is especially true for new online
services. Such data sparsity problem may make CF mod-
els overfit the limited observations and result in low-quality
predictions.

In recent years, different transfer learning techniques
have been developed to improve the performance of learning
a model via reusing some information from other relevant
systems for collaborative filtering [11, 26]. And with the
increasing understandings of auxiliary data sources, some
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works (like [5, 21]) start to explore data from multiple
source domains to achieve more comprehensive knowledge
transfer. However, these previous methods over-trust the
source data and assume that the source domains follow the
very similar distributions with the target domain, which is
usually not true in the real-world applications, especially
under the cross domain CF settings. For example, in a local
music rating web site, natives may give trustful ratings for
the traditional music; while in an international music rating
web site, the ratings on those traditional music could be
diverse due to the culture differences: those users with good
culture background would constantly give trustful ratings,
others could be inaccurate. If the target domain task is the
music recommendation of a startup local web site, obviously
we do not want all the International web site’s data as source
domain without selection. To better tackle the cross domain
CF problems, we face the challenge to tell how consistent the
data of target and source domains are and adopt only those
consistent source domain data while transferring knowledge.

Several research works (like [2]) have been proposed to
perform instance selection across domains for classification
tasks based on empirical error. But they cannot be adopted
to solve CF problems directly. Especially when the target
domain is sparse, because of the limited observations of
user’s ratings on the items in the target domain, getting a
low empirical error occasionally in the target domain does
not mean the source domains are truly helpful in building
a good model. In other words, the inconsistent knowledge
from source domains may dominate the target domain model
building and happen to fit the few observations in the target
domain, which gives high accuracy unacceptably.

We take careful analysis on this problem and in our
observation on the music rating example, some users, such
as domain experts, follow standard criteria to rate and hence
share a consistent distribution over the mutual item set across
domains. And further, we find this consistency can be better
described by adding the variance of empirical error produced
by the model. The smaller the variance of empirical error on
predictions for a user, the more likely this user is consistent
with those from other domains. And we would like to adopt
those who are more likely to share consistent preferences to
perform knowledge transfer across domains. Based on this
observation, we propose a new criterion using both empirical
error and its variance to capture the consistency between
source and target domains. As an implementation, we
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Figure 1: Selective transfer learning with multiple sources. The first row
illustrates the case where items that are in the target domain also appear in
the source domains. A real-world example is the rating prediction for the
movies that appear in several web sites in various forms; the second row
illustrates the case where users that are in the target domain also appear in
the source domains. A real-world example is the Douban recommendation
system, which provides music, book and movie recommendation for users.

embed this criterion into a boosting framework and propose
a novel selective transfer learning approach for collaborative
filtering (STLCF). STLCF works in an iterative way to adjust
the importance of source instances, where those source data
with low empirical error as well as low variance will be
selected to help build target models.

Our main contributions are summarized as follows:

e First, we find that selecting consistent auxiliary data
for the target domain is important for the cross-domain
collaborative filtering, while the consistency between
source and target domain is influenced by multiple
factors. To describe these factors, we propose a novel
criterion, based on both empirical error and its variance.

e Second, we propose a selective transfer learning frame-
work for collaborative filtering - an extension of the
boosting based transfer learning algorithm that take the
above factors into consideration, so that the sparseness
issue in the CF problems can be better tackled.

e Third, the proposed framework is general, where dif-
ferent base models can be embedded. We propose an
implementation based on Gaussian probability latent
semantic analysis, which demonstrates the proposed
framework can solve the sparseness problem on various
real-world applications.

2 Preliminaries

2.1 Problem Settings Suppose that we have a target task
D where we wish to solve the rating prediction problem.
Taking the regular recommendation system for illustration,
D is associated with mg4 users and ngy items denoted by U
and V¥ respectively. In this task, we observe a sparse matrix

X (@) € R™MaXnd w1th entries z¢,. Let R\ = {(u,i,7) :
r = zd, where x¢, # 0} denote the set of observed links
in the system. For the rating recommendation system, r can
either take numerical values, for example [1,5], or binary
values {0,1}. We aim to transfer knowledge from other
N source domains S = {S*}¥, with each source domain
St contains m?! users and n! items denoted by /" and
V<", Similar to the target domain, each source domain S*
contain sParse matrices X (") € R™st X"t and observed
links R = {(u,4,7) : 7 = a5, where 25, # 0}.

The settings of STLCF are illustrated in Figure 1. We
adopt a setting commonly used in transfer learning for
collaborative filtering: either the items or the users that are in
the target domain also appear in the source domains. In the
following derivation and description of our STLCF model,
for the convenience of interpretation, we focus on the case
that the user set is shared by both target domain and the
source domains. The case that the item set is shared can
be easily tackled in a similar manner.

Under the assumption that the observation R{ds) jg
obtained with u and ¢ being independent, we formally define
a co-occurrence model in both the target and the source
domains to solve the collaborative filtering problem:

Pr(@l®Y = u,i)=Pr(u)Pr(i | u) Pr(z\*"} = r | u,i)
—Pr(u)Pr(i)Pr(z'"F = | u,i)
ocPr(:rq{;ii’s - | u, i)

In the following, based on Gaussian probabilistic la-
tent semantic analysis (GPLSA), we first briefly present a
transfer learning model for collaborative filtering - trans-
ferred Gaussian probabilistic latent semantic analysis (TG-
PLSA) as an example, which is designed to integrate into
our later proposed framework as a base model. After that,
we present our selective transfer learning for collaborative
filtering (STLCF) to perform knowledge transfer by analyz-
ing the inconsistency between the observed data in target do-
main and the source domains. Careful readers shall notice
that other than the TGPLSA example, STLCF is compatible
to use various generative models as the base model.

2.2 Collaborative Filtering via Gaussian Probabilistic
Latent Semantic Analysis (GPLSA) Following [7], for
every user-item pair, we introduce hidden variables Z with
latent topics z, so that user v and item % are rendered
conditionally independent. With observations of item set V,
user set U/ and rating set R in the source domain, we define:

)= ZPr(acui =r|i,2)Pr(z]|u)

z
We further investigate the use of a Gaussian model for
estimating p(xm = r|u, 1) by introducing ;. € R for the
mean and o2, for the variance of the ratings. With these, we

Pr(zy; =r|u,t



define a Gaussian mixture model for a single domain as:

Pr(wy; = rlu,i) = > Pr(zu)Pr(r; iz, 0:2)

where Pr(z|u) is the topic distribution over users, and
Pr(r; iz, 0;.) follows a Gaussian distribution.
Maximum likelihood estimation amounts to minimize:

QD L==>" " log[Pr(zy =r|u,i;0)]

r€Rx,;€X

where 6 refers to a particular model.

2.3 Transfer Learning for Collaborative Filtering
(TLCF) When the target data X(%) is sparse, GPLSA may
overfit the limited observed data. Following the similar idea
in [24], we extend GPLSA to the Transferred Gaussian Prob-
abilistic Latent Semantic Analysis (TGPLSA) model. Again
we use s to denote index of the source domain where the
knowledge come from, and d to denote the index of the tar-
get domain where the knowledge is received. For simplicity,
we present the work with one source domain, and this model
can be easily extended to multiple source domains. More-
over, we assume all the users appear in both the source do-
mains and the target domain. Such scenarios are common in
the real-world systems, like Douban'.

TGPLSA jointly learn the two models for both the
source domain and the target domain using a relative weight
parameter® ). Since the item sets V* and V¢ are different or
even disjoint with each other, there could be inconsistency
across domains as we discussed in Section 1. Clearly, the
more consistent source and target domains are, the more help
target task could get from source domain(s). We propose a
weighted TLCF model (WTGPLSA) to further analyze this
inconsistency in our work by learning item weight vectors
w® = {w}?, and w® = {w?}"™’, of the instances in
source and target domain respectively. Then, the objective
function in Eq.(2.1) can be extended as:

2.2)
L==3"(\ > log(w; - Pr(xy, =r|u,i*0)
reR  xzf,eXs
FU=N) Y ol Priad = [, id; 1)
w eXd

Notice that in our setting, either u® = u® or i® = i%. We
adopt the expectation-maximization (EM) algorithm, a stan-
dard method for statistical inference, to find the maximum
log-likelihood estimates of Eq.(2.2). Details of derivations
can be found in the appendix.

Thttp://www.douban.com - a widely used online service in China, which
provides music, book and movie recommendations.

2X € (0,1), which is introduced to represent the tradeoff of source and
target information.

Algorithm 1 Selective TLCF.
Input: X%, X5, T
X? e R™*n"; the target training data
X* € R™*"": the auxiliary source data
G the weighted TLCF model wTGPLSA
T': number of boosting iterations
Initialize: Initialize w* : wf + =, w
for iter =1toT do
Step 1: Apply G to generate a weak learner
G(X?, X%, w?, w*) that minimize Eq.(2.2)
Step 2: Get weak hypothesis for both the d and s
domains hiter : X4 X — X4 X
Step 3: Calculate empirical error £¢ and E° using
Eq.(3.6)
Step 4: Calculate fitness weight 5°* for each source
domain sy using Eq.(3.13)
Step 5: Choose model weight a**" via Eq.(3.9)
Step 6: Update source item weight w* via Eq.(3.12)
Step 7: Update target item weight w? via Eq.(3.11)
end for
Output: Hypothesis Z = H(X(@) = 2T a!ht(X (@)

. ond 1
.wi(*m

d

3 Selective TLCF

As we have discussed before, using the source domain data
without selection may harm the target domain learning. By
proposing the selective knowledge transfer with the novel
factors (empirical error and variance of empirical error),
we come up with the details of Selective Transfer Learning
framework for CF in this section. As illustrated in the second
example in Figure 1 where the domains have mutual user set,
we would like to transfer knowledge of those items’ records
that consistently reflect the user’s preferences. Because of
our finding that the consistent records have small empirical
error and variance, the selection shall consider these two fac-
tors. We embed these two factors into a boosting framework,
where the source data with small empirical error and vari-
ance receive higher weights since they are consistent with
the target data. This boosting framework models the cross-
domain CF from two aspects: on one hand, we take more
care of those mis-predicted target instances; on the other
hand, we automatically identify the consistency of the source
domains during the learning process and selective use those
source domains with more trustful information.

As shown in Algorithm 1, in each iteration, we apply
base model TGPLSA over weighted instances to build a
weak learner G(-) and hypothesis h*¢". Then to update
the source and target item weights, domain level fitness
weight $°*% is chosen for each source domain s, based
on domain level consistency [4]. And o'®" for base
model is also updated, considering empirical errors and
variances. Accordingly, the weights of mis-predicted target



items are increased and the weights of those less helpful
source domains are decreased in each iteration. The final
ensemble is given by an additive model, which gives larger
weights to the hypotheses with lower errors. We provide a
detailed derivation of STLCEF in the rest of this section.

In previous works in collaborative filtering, the mean
absolute error (MAE) is usually chosen as the loss function.
In addition to the MAE loss, if we tolerate some prediction
error 7, we define:

(3.3)
ll(X*l7 X*Z) = T €EXig
Toi €Xwi

where nnz(-) is the number of observed ratings. X.,; and
X; denote the true values and predictions respectively. We
may also define the item level MAE error for target domain
with respect to 7 as:

cd

(3.4) ed =1y (x4

*7)
To facilitate the optimization, we consider the following
exponential loss for empirical risk minimization:

~ o d
(i) = 1o(XE;, XE;) = e

*1)9

(3.5)

As stated in previous section, the lower variance of empirical
errors can provide more confident consistency estimation,
we combine these factors and reformulate the loss function:

36 L= bli) + 7y Y 0al0) — ()2

Above all, the model minimize the above quantity for some
scalar v > 0:

Assume that the function of interest H for prediction is
composed of the hypothesis i’ from each weak learner. The
function to be output would consist of the following additive
model over the hypothesis from the weak learners:

(3.7 igi = f(xii) = Z atht(xgi)
t=1
where af € RT.

Since we are interested in building an additive model,
we assume that we already have a function h(-). Subse-
quently, we derive a greedy algorithm to obtain a weak
learner G*(-) and a positive scalar o such that f(-) =
h(-) +atGH().

In the following derivation, for the convince of presen-
tation, we omit the model index ¢, and use G to represent G,
« to represent o.

By definingy1 = (1 + (n —1)y), 2 = (2 - 2v), «,
wi = eh(MXL)XL) and G¢ = 1, (G(XY,),X%,), Eq.(3.6)

can be equivalently posed as optimizing the following loss
with respect to a:

(3.8)
nd
L= (e + e 4 Y e
iel ieJ i>ji,jel
’I’Ld Tld
2 Y wiufe P by Y wif

i>jii,Ged i>ji€l,jEJori€ ] jEI
For brevity, we define the following sets of indices as [ =
{i : G4 = +1} and J = {i : G¢ = —1}. Here J denotes
the set of items whose prediction by G(-) falls into the fault
tolerable range, while I denotes the rest set. By making the
last transformation in Eq.(3.8) equal to zero, we get:

3.9

1
a = —log

( (1= (i wh? +yn? 3 p(wih)? )
4

(1= (ieswh)? +yn? 3 e s (wi)?
If we set v = 0, then it is reduced to the form of AdaBoost:

(3.10)
1 (216 wg)Q _ 1 (Zze wfl)

Finally, the updating rule for w¢ is

(3.11) (—aGY)

wé — wie
And for the instance weight wz‘»i in the source domain, we can
also adopt the similar updating rule in Eq.(3.11).

Other than the instance level selection discussed above,
we also want to perform the domain level selection to
penalize those domains that are likely to be irrelevant, so
that the domains with more relevant instances speak loudly.
Following the idea of task-based boosting [3], we further
introduce a re-weighting factor 8 for each source domain
to control the knowledge transfer. So we formulate the
updating rule for w; to be:

w;i wfe(_o‘G'i —B)

(3.12)
where (8 can be set greedily in proportion to the performance
gain of the single source domain transfer learning:

_ Swie - &)

[lwilh

(3.13) B

where ¢; is the training error of the transfer learning model,
and &; is the training error of the non-transfer learning model,
which utilizes only the observed target domain data.



Table 1: Datasets in our experiments.

Notation [ Data Set [ Data Type [ Instances No.
DI Douban Music | Rating [1,5] 1.2 x 108
D2 Douban Book | Rating [1,5] 5.8 x 10°
D3 Douban Movie | Rating [1,5] 1.4 x 108
D4 Netflix Rating [1,5] 1.8 x 10%
D5 Wikipedia Editing Log 1.1 x 108
D6 IMDB Hyperlink 5.0 x 103

4 Experiments

4.1 Data Sets and Experimental Settings We evaluate
the proposed method on four data sources: Netflix*, Douban
IMDB*, and Wikipedia® user editing records. The Netflix
rating data contains more than 100 million ratings with
values in {1, 2, 3,4, 5}, which are given by more than 4.8 x
10° users on around 1.8 x 10* movies. Douban contains
movie, book and music recommendations, with rating values
also in {1,2,3,4,5}. IMDB hyperlink graph is employed
as a measure of similarity between movies. In the graph,
each movie builds links to its 10 most similar movies. The
Wikipedia user editing records provide a {0, 1} indicator of
whether a user concerns or not about a certain movie.

The data sets used in the experiments are described as
follows. For Netflix, to retain the original features of the
users while keeping the size of the data set suitable for
the experiments, we sampled a subset of 10,000 users. In
Douban data sets, we obtained 1.2 x 10° ratings on 7.5 X 103
music, 5.8 x 10° ratings on 3.5 x 102 books, and 1.4 x 10°
ratings on 8 x 102 movies, given by 1.1 x 10* users. For both
the IMDB data set and the Wikipedia data set, we filtered
them by matching the movie titles in both the Netflix and the
Douban Movie data sets. After pre-processing, the IMDB
hyperlink data set contains ~ 5 x 10* movies. The Wikipedia
user editing records data set has 1.1 x 10° editing logs by
8.5 x 103 users on the same ~ 5 x 103 movies as IMDB
data set. To present our experiments, we use the shorthand
notations listed in Table 1 to denote the data sets.

We evaluate the proposed algorithm on five cross-
domain recommendation tasks, as follows:

e The first task is to simulate the cross-domain collab-
orative filtering, using the Netflix data set. The sam-
pled data is partitioned into two parts with disjoint sets
of movies but identical set of users. One part consists
of ratings given by 8,000 movies with 1.6% density,
which serves as the source domain. The remaining
7,000 movies are used as the target domain with dif-
ferent levels of sparsity density.

e The second task is a real-world cross-domain recom-
mendation, where the source domain is Douban Book

http://www.netflix.com
“http://www.imdb.com
Shttp://en.wikipedia.org

and the target domain is Douban Movie. In this setting,
the source and the target domains share the same user
set but have different item sets.

The third task is on Netflix and Douban data. We extract
the ratings on the 6, 000 shared movies from Netflix and
Douban Movie. Then we get 4.9 x 10° ratings from
Douban given by 1.2 x 10* users with density 0.7%, and
106 ratings from Netflix given by 10* users with density
1.7%. The goal is to transfer knowledge from Netflix to
Douban Movie. In this task, item set is identical across
domains but user sets are totally different.

The fourth task is to evaluate the effectiveness of the
proposed algorithm under the context of multiple source
domains. It uses both Douban Music and Douban
Book as the source domains and transfer knowledge to
Douban Movie domain.

The fifth task varies the type of source domains. It
utilizes the Wikipedia user editing records and IMDB
hyperlink graph, together with Douban Movie as the
source domains to perform rating predictions on the
Netflix movie data set.

For evaluation, we calculate the Root Mean Square
Error (RMSE) on the heldout ~ 30% of the target data:

>

(u,i,24:)ETE

RMSE = (@i — Zui)?/|TE|

where x,,; and Z,,; are the true and predicted ratings, respec-
tively, and |T'g| is the number of test ratings.

4.2 STLCF and Baselines Methods We implement two
variations of our STLCF method. STLCF(E) is an STLCF
method that only take training error into consideration when
performing selective transfer learning. STLCF(EV) not only
considers training error, but also utilizes the empirical er-
ror variance. To demonstrate the significance of our STLCF,
we selected the following baselines®: PMF [19] is a re-
cently proposed method for missing value prediction. Previ-
ous work showed that this method worked well on the large,
sparse and imbalanced data set. GPLSA [7] is a classical
non-transfer recommendation algorithm. CMF [23] is pro-
posed for jointly factorizing two matrices. Being adopted as
a transfer learning technique in several recent works, CMF
has been proven to be an effective cross-domain recommen-
dation approach. TGPLSA is an uniformly weighted trans-
fer learning model, which utilize all source data to help build
the target domain model. It is used as one of the baselines
because we adopt it as the base model of our boosting-based
selective transfer learning framework.

4.3 Experimental Results

®Parameters for these baseline models are fine-tuned via cross validation.



Table 2: Prediction performance of STLCF and the baselines.

Datasets Source Target Non-TL Non-Selective TL Selective TL
o sparseness sparseness GPLSA PMF TGPLSA CMF STLCF(E) STLCF(EV)

D4(Simulated) 0.1% 1.0012  0.9993 0.9652 0.9688 0.9596 0.9533
to 1.6% 0.2% 0.9839  0.9814 0.9528 0.9532 0.9468 0.9347
D4(Simulated) 0.3% 09769  0.9728 0.9475 0.9464 0.9306 0.9213
0.1% 0.8939  0.8856 0.8098 0.8329 0.7711 0.7568
D2 to D3 1.5% 0.2% 0.8370  0.8323 0.7462 0.7853 0.7353 0.7150
0.3% 0.7314  0.7267 0.7004 0.7179 0.6978 0.6859
0.1% 0.8939  0.8856 0.8145 0.8297 0.7623 0.7549
D4 to D3 1.7% 0.2% 0.8370  0.8323 0.7519 0.7588 0.7307 0.7193
0.3% 0.7314  0.7267 0.7127 0.7259 0.6982 0.6870

4.3.1 Performance Comparisons We test the perfor-
mance of our STLCF methods against the baselines. The
results of the collaborative filtering tasks under three differ-
ent target domain sparseness are shown in Table 2.

First, we observe that the non-transfer methods, i.e.
GPLSA and PMEF, fail to give accurate predictions, espe-
cially when the target domain is severely sparse. With the
help of source domains, the (non-selective) transfer learn-
ing methods with equally weights on the source domains,
like TGPLSA and CMF, can increase the accuracy of the rat-
ing predictions. And our selective transfer learning methods
(i.e., STLCF(E) and STLCF(EV)) can do even better. The
fact that our STLCF outperforms others is expected because
by performing the selective knowledge transfer, we use the
truly helpful source domain(s), which is designed to handle
the sparseness issue in CF problems.

Second, comparing the two non-selective TLCF meth-
ods with the other two selective TLCF methods, we observe
that on the last two real world tasks (D2 to D3 and D4 to D3)
when the target domain is extremely sparse (say 0.1%), the
improvement of accuracy achieved by our STLCF methods
against the non-selective transfer learning methods is more
significant than it does on the simulation data set based on
Netflix (D4 to D4). Notice that the inconsistency of the tar-
get domain and the source domains on the simulation data
sets is much smaller than that on the real-world cases. The
experiment results show that our STLCF algorithm is effec-
tive in handling the inconsistency between the sparse target
domain and the source domains.

Third, we notice that some factors, like empirical error
variance, may affect the prediction. In Table 2, we compare
our two STLCF methods, i.e., STLCF(E) and STLCF(EV)
when the target domain sparsity is 0.1%. We can find
that on the task “D2 to D3”, i.e., Douban Book to Movie,
STLCF(EV) is much better than STLCF(E). But on the
task “D4(Simulated) to D4(Simulated)”, the improvement of
STLCF(EV) is not so significant against STLCF(E). These
observations may be due to the domain consistency. For
the tasks “D4(Simulated) to D4(Simulated)”, both the source
and target entities are movie ratings from Netflix data set,

Table 3: Prediction performance of STLCF for Long-Tail Users on the D2
to D3 task. STLCF(E) does not punish the large variance of empirical error,
while STLCF(EV) does.

Ratings . Selective TL
per Non-TL || Non-Selective TL i.e. STLCF

user GPLSA | TGPLSA CMF || (E) (EV)
1-5 1.1942 0.9294 0.9312 0.8307  0.8216
6-10 0.9300 0.7859 0.7929 0.7454  0.7428
11-15 0.8296 0.7331 0.7390 0.7143  0.7150
16-20 0.7841 0.7079 0.7113 0.7042  0.7050
21-25 0.7618 0.6941 0.6947 0.6942  0.6910
26-30 0.7494 0.6918 0.6884 0.6917  0.6852
31-35 0.7370 0.6909 0.6911 0.6915 0.6818
36-40 0.7281 0.6896 0.6856 0.6907  0.6776
41-45 0.7219 0.6878 0.6821 0.6890  0.6740
46-50 0.7187 0.6881 0.6878 0.6800  0.6734

while the task “D2 to D3” tries to transfer the knowledge
from a book recommendation system to the movie recom-
mendation system, which may contain some domain spe-
cific items. When the target domain is very sparse, i.e. the
user’s ratings on the items are rare, there are chances to get
high prediction accuracy occasionally on the observed data
with a bad model on the source domains that are inconsis-
tent with target domain. In this case, it is important to con-
sider the variance of empirical error as well. Comparing to
STLCF(E), STLCF(EV), which punishes the large variance,
can better handle the domain inconsistency in transfer learn-
ing, especially when the target domain is sparse.

4.3.2 Results on Long-Tail Users To better understand
the impact of STLCF with the help of the source domain, we
conduct a fine-grained analysis on the performance improve-
ment on Douban data sets, with Douban Book as source do-
main and Douban Movie as target domain. The results on
different user groups in the target domain are shown in Table
3. First, we observe that the STLCF models, i.e., STLCF(E)
and STLCF(EV) can achieve better results on those long-
tail users who have very few ratings in historical logs. Such
fact implies that our STLCF methods could handle the long-
tail users that really need a fine-grained analysis when per-
forming knowledge transfer from source domains. Current



Table 4: Prediction performance of STLCF with multiple source domains containing much irrelevant information.

Source Domain: [[ None [[ D3 [ D3&D5 [ D3&D6 | D5& D6 | D3 & D5 & D6
Target | 0.1% [[ 0.9983 [] 0.9789 [ 0.9747 [ 0.9712 [ 0.9923 0.9663
(D4) 0.2% || 0.9812 ][ 0.9625 | 0.9583 | 0.9572 | 0.9695 0.9505
sparseness | 0.3% || 0.9703 || 0.9511 0.9409 0.9464 0.9599 0.9383

Table 5: Prediction performance of STLCF with multiple source domains
(Douban).

Source Domain: H None H D1 D2 [ D1 & D2
Target 0.1% 0.8856 0.7521 | 0.7568 0.7304
(D3) 0.2% 0.8323 0.7163 | 0.7150 0.6904
sparseness | 0.3% 0.7267 0.6870 | 0.6859 0.6739

CF models without any fine-grained analysis on the specific
users usually fail to capture the preferences of the long-tail
users, while our STLCF methods work well because they can
selectively augment the weight of the corresponding source
domain instances with respect to those long-tail cases at both
instance level and domain level. Second, STLCF(EV) works
better than STLCF(E) on those non-long-tail users, i.e., with
more than 25 ratings per user in the historical log. This is
expected because users with more ratings can benefit more
from the error variance analysis to avoid negative knowledge
transfer.

4.3.3 STLCF with Multiple Source Domains We apply
STLCF(EV) on the extremely sparse target movie domain,
with two sets of source domains: one is composed of
Douban Music and Douban Book, the other is composed
of Douban Movie, IMDB hyperlink graph and Wikipedia
user editing records. The results are in Table 5 and Table 4
respectively. We demonstrate our STLCF method can utilize
multiple source domains of various types by handling the
inconsistency between the target and the source domains.

First, for the Douban experiments shown in Table 5, we
observe that comparing to only using either Douban Book
or Douban Music as source domain, there are significant
improvements when both of them are used. The result is
expected because each of the source domains has its own
parts of effective information for the target domain. For
example, a user who show much interests in the movie “The
Lord of the Rings” may have consistent preferences in its
novel. In this case, with the help of more auxiliary sources,
better results are expected.

Second, we explore the generalization of the choices of
source domains by introducing domains like Wikipedia user
editing records and IMDB hyperlink graph, which are not
directly related to the target domain but still contain some
useful information in helping the target task (Netflix rating
prediction). The results are shown in Table 4. Comparing
the results of the experiment that uses no source domain
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Figure 2: Change of the RMSEs with different s.

(non-transfer) to those that use source domains D5 & D6,
we observe that although the Wikipedia user editing records
or IMDB hyperlink graph is not closely related to the target
domain and can hardly be adopted as source domains by
previous transfer learning techniques, our STLCF method
can still transfer useful knowledge successfully. In addition,
comparing the results of the experiment that uses single
source domain D3 to those that use source domains D3
& D5, D3 & D6, or D3 & D5 & D6, we find that the
Wikipedia user editing records or IMDB hyperlink graph
could provide some useful knowledge that is not covered by
the related movie source domains. Despite of the noise and
heterogeneous setting, our STLCF method can still utilize
these source domains to help the target domain tasks. As we
have discussed in Section 3, our STLCF performs selective
transfer learning at both domain level and instance level. On
one hand, the domain level selective transfer can block the
noisy information globally. As we can see, D5 & D6 are
noisy and therefore contain much data that are inconsistent
with the observed data in the target domain, therefore the
overall transfer of D5 & D6 is penalized. On the other
hand, the instance level selective transfer learning can further
eliminate the affections of those irrelevant source instances.
Above all, our STLCF is highly adaptive to utilize
source domains that are relatively inconsistent with the target
domain, even when the target domain is rather sparse.

4.3.4 Parameters Analysis of STLCF There are two pa-
rameters in our STLCEF, i.e., the prediction error threshold 7
and the empirical error variance weight ~y. Since 7 and -y are
independent, we fix one and adjust another.

We fix the empirical error variance weight to be v = 0.5
and adjust the parameter 7. Based on our results shown in
Figure 2, the model has good performance when 7 is of order
1072. We also tuned the parameter ~, which balances the
empirical error and its variance. We fix the prediction error
threshold to be 7 = 0.03 in tuning . As shown in Figure 3,
when we vary the parameter v from 0 to 1, the best choices
of ~ are found to be around 0.4 — 0.5.
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learners join in the committee.

4.3.5 Convergence and Overfitting Test Figure 4 shows
the RMSEs of STLCF(EV) as the number of weak learners
changes on the Douban Book to Movie task. From the figure
on the left, we observe that STLCF(EV) converges well after
40 iterations. We can also find that the corresponding « also
converge to around 0.68 after 40 iterations as well.

The number of latent topics of the base learner TGPLSA
reflects the model’s ability to fit training data. When we
keep increasing the number of latent topics, the model tends
to better fit the training data. But if the number of latent
topics is too large, the model may suffer from overfitting. We
investigate the overfitting issue by plotting the training and
testing RMSEs of the non-transfer learning model GPLSA,
the non-selective transfer learning model TGPLSA and our
selective transfer learning model STLCF(EV) over different
numbers of latent topics in Figure 5. The data sparsity for
the target domain is around 0.3%.

We can observe that comparing to our STLCE, the
training RMSEs of GPLSA and TGPLSA decrease faster,
while their testing RMSEs go down slower. When £ is about
50, the testing RMSEs of GPLSA start to go up. And for
TGPLSA, its testing RMSEs also go up slightly when £ is
larger than 75. But the testing RMSEs of our STLCF keep
decreasing until k& = 125 and even when k is larger than
125, the raise of our STLCF’s testing RMSEs is not obvious.
Clearly when the target domain is very sparse, our STLCF
method is more robust against the overfitting, by inheriting
the advantage from boosting techniques and the fine-grained
selection on knowledge transfer.

5 Related Works

The proposed Selective Transfer Learning for Collaborative
Filtering (STLCF) algorithm is most related to the works
in collaborative filtering. In Table 6, we summarize the
related works under the collaborative filtering context. To
the best of our knowledge, no previous work for transfer
learning on collaborative filtering has ever focused on the
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Figure 5: Change of the RMSEs with different numbers of latent topics.

Table 6: Overview of STLCF in a big picture of collaborative filtering.

H Selective [ Non-Selective
Transfer STLCF RMGM [11], CMF [23],
Learning TIF [15], etc.
Non-Transfer - MMMF [?], GPLSA [7],
Learning PMF [19], etc.

fine-grained analysis of consistency between source domains
and the target domain, i.e., the selective transfer learning.

Collaborative Filtering as an intelligent component
in recommender systems has gained extensive interest in
both academia and industry. Various models have been
proposed, including factorization models [10, 15, 16, 18],
probabilistic mixture models [8, 9], Bayesian networks [17]
and restricted Boltzman machines [20]. However, most of
the previous work would suffer from overfitting to the small
set of observed data. In this paper, we introduce the concept
of selective transfer learning to better tackle the overfitting
and data sparseness issue.

Transfer Learning Pan and Yang [14] surveyed the
field of transfer learning. Some works on transfer learn-
ing are in the context of collaborative filtering. Mehta and
Hofmann [13] consider the scenario involving two systems
with shared users and use manifold alignment methods to
jointly build neighborhood models for the two systems. They
focus on making use of an auxiliary recommender system
when only part of the users are aligned, which does not
distinguish the consistency of users’ preferences among the
aligned users. Li ez al. [12] designed a regularization frame-
work to transfer knowledge of cluster-level rating patterns,
which does not make use of the correspondence between
source and target domains.

Recently, researchers propose the MultiSourceTrAd-
aBoost [25] to allow automatically selecting the appropri-
ate data for knowledge transfer from multiple sources. The
newest work TransferBoost [3] was proposed to iteratively
construct an ensemble of classifiers via re-weighting source
and target instance via both individual and task-based boost-



ing. Moreover, EBBoost [22] suggests weight the instance
based on the empirical error as well as its variance. However
so far, the works limit to the classification tasks. Our work is
the first to systematically study selective knowledge transfer
in the settings of collaborative filtering. Besides, we propose
the novel factor - variance empirical error that is shown to be
of much help in solving the real world CF problems.

6 Conclusions

In this paper, we proposed to perform selective knowledge
transfer for CF problems and came up with a systematical
study on how the factors such as variance of empirical error
could leverage the selection. We found although empirical
error is effective to model the consistency across domains,
it would suffer from the sparseness problem in CF settings.
By introducing a novel factor - variance of empirical error
to measure how trustful this consistency is, the proposed
criterion can better identify the useful source domains and
the helpful proportions of each source domain. We embed-
ded this criterion into a boosting framework to transfer the
most useful information from the source domains to the tar-
get domain. The experimental results on real-world data sets
showed that our selective transfer learning solution performs
better than several state-of-the-art methods at various spar-
sity levels. Furthermore, comparing to existing methods, our
solution works well on long-tail users and is more robust to
overfitting.
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