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When comparing psychological models a researcher should assess their relative selectivity, scope,
and simplicity. The third of these considerations can be measured by the models' parameter
counts or equation length, the second by their ability to fit random data, and the first by their
differential ability to fit patterned data over random data. These conclusions are based on
exploration of integration models reflecting depth judgments. Replication of Massaro's (1988a)
results revealed an additive model (Bruno & Cutting, 1988), and Massaro's fuzzy-logical model
of perception (FLMP) fit data equally well, but further exploration showed that the FLMP fit
random data better. The FLMP's successes may reflect not its sensitivity in capturing psycholog-
ical process but its scope in fitting any data and its complexity as measured by equation length.

Good scientific theories are usually thought to have several
properties: They are accurate, simple, broad in scope, inter-
nally consistent, and have the ability to generate new research
(Kuhn, 1977). When models can be used to instantiate theo-
ries, they might reflect these same properties. For our purposes
the two key concepts in this set are simplicity and scope.
Simplicity can be measured in several ways. We measure it
in two: by the number of parameters in a model and, in a
way not customary to experimental psychology, by the length
of the equation that instantiates a model. Scope can also be
measured in various ways, but here we consider how theory
or model accounts for all possible data functions, where those
functions are generated by a reasonably large sample of ran-
dom data sets. Under this construal, broad scope is a mixed
blessing. A model with greater scope than another may fit
more data functions of interest to the researcher, but simul-
taneously it may also fit more functions of no interest. Thus,
we propose a new criterion for testing and comparing models:
selectivity. We define selectivity as the relative ability of a
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model to fit data functions of interest with its ability to fit
random data factored out.

This perspective on modeling arises out of our struggles
with three different sources of evidence: first, our continuing
empirical study of how individuals use multiple sources of
information about the perception of objects laid out in depth
(see also Bruno & Cutting, 1988); second, our study of the
properties of the models used to fit those data; and third, our
investigation of why those models have the data-fitting prop-
erties they do. Thus, our presentation is divided into these
three parts, followed by a set of suggestions about how future
research with psychological models might be conducted.

Models of Information Integration and Their Fits to
Human Judgments of Depth

How do we perceive the layout of objects in depth? This is
among the oldest questions in psychology, and answers to it
have been myriad. One reason for persistent interest in, and
debate over, this query is the existence of multiple sources of
information in any scene, which can contribute to perceived
depth. One list, reworded and reorganized from Gibson (1950,
pp. 71-73), includes binocular disparity, convergence, accom-
modation, linear perspective, apparent size, relative motion,
occlusion, aerial perspective, height in plane, shading, and
texture gradients. To be sure, some theorists deny the exis-
tence of multiple sources of information (e.g., Burton &
Turvey, 1990), based largely on Gibson's later thoughts about
invariance and one-to-one mappings between information
and objects or events (see Cutting, 1986, 199la, 1991b).
However, for those who accept their existence for the percep-
tion of objects in depth (and for the perception of many other
properties) a major question arises: How is all this information
used?

Two general possibilities about information use emerge:
Either perceptual information is selected, one source from
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many, or many sources are integrated in some manner. Al-
though there are examples in support of information selection
(e.g., Cutting, 1986; Cutting & Millard, 1983; Knudsen &
Konishi, 1979), information integration is probably more
common. If integration of various sources of depth informa-
tion occurs, a new question arises: By what rule are these
sources combined? Many more possibilities emerge here, but
we confine ourselves to three approaches—additive, multi-
plicative, and averaging—and four corresponding models
from the literature.

Modularity, Paradigms, Models, and Depth

Results concerning how information is combined have been
taken as evidence both for and against modularity (Fodor,
1983; Marr, 1982)—an idea about isolable and independent
subfaculties of the mind that do not pass information freely
among themselves. Cutting and Bruno (1988), for example,
reported additive combination of visual information and took
their data as evidence for separate "minimodules" within the
visual system. Maloney and Landy (1989; Landy, Maloney,
& Young, 1991) also espoused this point of view. In contrast,
Massaro (1989) reported multiplicative combination of var-
ious kinds of information and took his data as evidence
against modularity—interactions of data and similarities of
processing strategies abound.

As a result of the set of investigations reported here, we
now doubt that models of information combination can speak
to the issue of modularity. We do not doubt, however, the
importance of information integration to all areas in, and all
modalities of, perception. Thus, we consider integration
models in detail.

A Paradigm and the Fuzzy-Logical Model of
Perception (FLMP)

Massaro (1987b, 1989) promoted a new paradigm for psy-
chological research.1 For our purposes, it has three parts. First,
the paradigm embraces the existence of multiple sources of
information and the problem of their integration in percep-
tion. We are pleased with this stance, in part because it
dovetails nicely with directed perception (Cutting, 1986,
199 la, 1991b), which embraces multiple specification of per-
ceived objects and events but makes no statement about the
combination rule.2 In both Massaro's view and in ours the
perceptual world is a rich place, full of information to be
picked up, gathered, and processed at every turn. Second,
incorporating Platt's (1964) idea of strong inference, the par-
adigm proceeds by binary opposition, pitting two hy-
potheses—instantiated as models—against one another. We
are not fans of strong inference (see Cutting & Millard, 1983,
p. 207), but we recognize its attractiveness in dealing with
competing hypotheses, unfettered by considerations of the
null hypothesis. Third, the paradigm is idiographic; wherever
possible it focuses on individual data. This focus is appropri-
ate, but we offer a caveat against it when these data are the
inputs to models with different scope.

Built on the work of Anderson (1981, 1982), Massaro's
paradigm systematically explores information integration.

Massaro found impressive support for a type of multiplicative
combination, as captured by his FLMP. Many models can be
cast in fuzzy-logical format, and thus it is not the format we
are interested in by its multiplicative nature. The domains
Massaro has studied are impressive in breadth and cover most
of cognitive psychology; they include attention (Massaro,
1985), reading (Massaro, 1984, 1987a), letter recognition
(Massaro & Friedman, 1990; Massaro & Hary, 1986), and
speech perception (Massaro, 1987b, 1989), and they all sup-
port FLMP. Before Bruno and Cutting (1988), however,
Massaro had not explored the perception of objects laid out
in depth, and visually perceived depth is the domain of this
article.

Additivity, Depth, and Previous Results

There are two empirical byproducts of adding sources of
depth information to a display: The range and mean of
observers' depth judgments increases, and the variability in
their judgments decreases (Ktinnapas, 1968). Bruno and Cut-
ting (1988) and Massaro (1988a) focused on increases in
apparent depth; others, such as Maloney and Landy (1989),
have focused on both. Here, we continue our focus on the
former.

Bruno and Cutting (1988) reported three experiments on
the perception of three panels laid out in depth, with variation
in four sources of information: relative size (s), height in plane
(h), occlusion (o), and motion parallax (p). Schematic ver-
sions of the stimuli are shown in Figure 1. The observer's
simulated path for motion parallax stimuli is shown in Figure
2. Together, we call these sources of information shop, follow-
ing a scheme suggested by Massaro (1988a), and we indicate
the presence or absence of information about each source by
a 1 or 0, respectively, as codes for each variable. Thus,
Stimulus 0000 has no depth information. Stimuli 1000,0100,
0010, and 0001 have only one source of information about
size, height, occlusion, and motion parallax, respectively;

' Massaro (1987b, 1989) cast his paradigm in the shadow of Popper
(1959) and falsificationism. However, there is an inherent conflict
between the notion of falsification (an idea from Popper about the
logic of the scientific method) and the notion of paradigm (an idea
from Kuhn, 1970, against the logical standards of any scientific
method). There are also abundant criticisms of falsificationism (see
Schilpp, 1974; Suppe, 1977). In addition, Kuhn (1974) later recast
his notion of paradigm as a disciplinary matrix consisting of several
parts. He considered only three in detail: symbolic generalizations
(equations with agreed-on variables), models (or, to avoid confusion
with the mathematical models as used here, metaphors), and exem-
plars (or examples of how one should do science). We think this last
meaning is closest to Massaro's intention in his use of the term
paradigm; it is also this intention we question, at least in the para-
digm's current instantiation.

2 Massaro's approach also contrasts with directed perception in one
other important way. That is, his approach partly follows Brunswik
(1956) in that it embraces the idea of cue validity, the notion that
sources of information are probabalistically related to objects and
events in the world. Directed perception assumes multiple sources of
information each specify (map uniquely back to) objects and events
(Cutting, 1986, 199 la, 1991b).



366 CUTTING, BRUNO, BRADY, AND MOORE

0000

nrn

0010

1000

Dan

1010

a

0100

DrM
1 1

01 10

1 1

rts1 r

1 100

nn
D

i i

11 10

r^1 M

0001

O D D

0011

D D Q

1001

O D D

1011

a an

0101

a a a

01 11

a a a

1101

O D D

1 1 1 1

a DD

Figure 1. Representations of the 16 stimuli used in the two experi-
ments reported here and in Bruno and Cutting (1988). (The upper
panels show the eight static stimuli and the last frames of the eight
moving stimuli; the lower panels show the first frames of the eight
moving stimuli. The four places in each stimulus code correspond to
the four sources of information: size, height in plane, occlusion, and
motion parallax; 1 indicates the presence and 0 indicates the absence
of information.)

Stimulus 1001 has size and parallax information; and so forth,
until one reaches Stimulus 1111, which has all four sources.
In this manner, across the 16-item set, a stimulus could have
0, 1,2, 3, or 4 sources of information. Notice that all sources
of information were either present (providing differential
depth information) or absent (providing no differential depth
information); nothing beyond binary oppositions was used.

Bruno and Cutting's (1988) first experiment was a direct-
scaling task. Viewers indicated the degree of relative depth
perceived among the panels on a scale of 0 to 99, with larger
numbers indisating more depth. The data for the first exper-
iment are shown in the left panel of Figure 3. Their second
experiment was an indirect-scaling task using dissimilarity
judgments ("how different are these stimuli in the relative
depth they portray?"). Viewers rated differences among pairs
of stimuli on a scale from 1 to 9 (with 9 indicating maximal
difference). Results were forced (but with relatively little stress)
into one dimension using multidimensional scaling. Their
third experiment was also an indirect-scaling task, this time
using preference judgments among pairs ("which stimulus

reveals most depth?"). Results were scaled according to Thur-
ston's Case V (e.g., see Dunn-Rankin, 1983).

In all three studies Bruno and Cutting (1988) claimed
support for additive information integration. That is, ignoring
differences in weights among separate sources of information
(which are reported in detail in Bruno & Cutting, 1988, and
in Massaro, 1988a), scaled judgments of stimuli with different
numbers of information sources were generally linear. In
addition, an expected set of inequalities held for judgments
among stimulus classes with increasing numbers of informa-
tion sources, with mean scale values in the order 0 < 1 < 2 <
3 < 4. Moreover, the differences were roughly equal between
means of stimulus classes differing by one source: (1 — 0) ~
(2- l ) ~ ( 3 - 2 ) ~ ( 4 - 3 ) .

Massaro (1988a) was unconvinced by these claims; an
additive model is only one of many classes of models that
might fit the kinds of results Bruno and Cutting (1988)
reported. Massaro then proposed two models of perceived
layout and reanalyzed the individual data from Bruno and
Cutting's first experiment, fitting models to data. We now
consider these models.

panels

Figure 2. The setting simulating Stimulus 1111, suggesting the
motion of the observer for those stimuli with motion parallax. (The
lower panels show three frames taken out of the stimulus sequence.
From "Minimodularity and the Perception of Layout," by N. Bruno
and J. E. Cutting, 1988, Journal of Experimental Psychology: General,
117, p. 163. Copyright 1988 by the American Psychological Associ-
ation. Adapted by permission.)
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Figure 3. Rating scale data of Bruno and Cutting (1988, Experiment 1) and data of the two experiments
reported here, as a function of the number of sources of information in a stimulus. (Error bars indicate
± 1 SEM.)

Additive and Multiplicative Models of Information
Integration for Judgments of Depth

Before presenting these two integration models we need to
establish a set of conventions. Lowercase italicized letters,
shop, stand for the codes indicating the presence (1) or absence
(0) of each source of information in the stimuli; uppercase
italicized letters, SHOP, stand for the weights corresponding
to the codes as they are to be determined by fitting the models
to data; and uppercase bold letters, SHOP, stand for their
respective parameters as implemented in the models.

The Additive Model

The first model is essentially an analysis of the data by
multiple linear regression. Its full form is as follows:

-R(Depth) = S + H + O + P + B,

where |S = 5 when s = ! (Present> 1 etc
IS = zero when s = zero (absent)J '

for H,O,P,B, (1)

and where .R(Depth) is the rating for the amount of perceived
depth in a given display. The new term, B, is the parameter
for a background variable (b) not manipulated in the experi-
ment but present on all trials and in all stimuli. The back-
ground variable (which includes the flatness of the screen)
would usually suggest less depth than would otherwise be
apparent in the display; it also serves, simply, as an intercept
in the regression function. Given one-to-one mappings be-
tween codes and weights and between weights and parameters,
the stipulations below the equation line are not needed. The

full form is given here only so it can be compared with FLMP
and, later, with other models.

FLMP

Massaro's model takes on different forms in different con-
texts for different purposes. Applied to our four-source situa-
tion, and with some clarifications, it is as follows:

.R(Depth) = SxHxOxPx B/[S xHxOxPxB
+ (1 - S) x (1 - H) x (1 - O) x (1 - P) x (1 - B)],

where j? =
 ?

 whe° s
 7*

 !' .} etc., for H,O,B, and
IS = (1 - S) when s = 01

where •!„' ,. , , '_ [ and
IP = 0.5 when p = 0,J

where 0.0 < S,H,O,P,B < 1.0. (2)

The difference between weights and parameters in FLMP is
crucial: When relative size is present in a stimulus (e.g., as in
Stimulus 1000), the parameter for Size S in Equation 2 is
given the weight S. However, when it is absent (e.g., as in
Stimulus 0000), all instances of S are given the weight (1 -
S). Notice then that the parameter string corresponding to
size in the denominator, (1 - S), is then given a weight of [(1
— (1 — 5)], or S, in the absence of relative size.3

3 In addition, one can also recast the additive model into fuzzy-
logical format as well. It becomes the following:

*(Depth) = S + H + O + P + X / [ S + H + O + P + X
+(1 - S) + (1 - H) + (1 - O) + (1 - P) + (1 - X)],
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Three other aspects of FLMP are also important. First, the
value of 0.50 is reserved for complete ambiguity, with values
less than 0.50 indicating degrees of flatness and values above
indicating degrees of depth. Moreover, the effect of presence
and absence of a source of information is measured by the
same-sized weights as they deviate positively or negatively
from 0.50. Thus, when one source is present it might have a
weight of 0.61, and when absent it might have a weight of
0.39.

Second, Massaro treated motion parallax (p) differently
than the other sources. He argued that when p is absent it
leaves depth ambiguous, and hence the variable should be
removed from Equation 2. Giving it a fixed value of 0.50
effectively does this (see Massaro, 1987b, p. 167).

Finally, the difference between the additive model and
FLMP (a multiplicative model) is less than might first be
apparent. If an individual's judgments were fit to a normal
distribution and then z transformed, FLMP simply adds the
resulting z scores (see Massaro & Friedman, 1990). Thus,
both models can be thought to be additive; the additive model
simply adds evaluations of information among the five
sources, whereas FLMP evaluates the normalized information
from those judgments and then adds it. Thus, differences
between the additive model and FLMP will manifest them-
selves most clearly in the use of the extremes of the scale
range, where linear and logistics functions diverge.

Fits of the Two Models to Human Data

In his commentary on Bruno and Cutting (1988), Massaro
(1988a) found mixed support for additive combination of
information. Computing best fits to the data of 10 subjects
who participated in Bruno and Cutting's Experiment 1, he
found that the data from 5 were better fit by the additive
model and the data from 5 others were better fit by FLMP.
In response, Cutting and Bruno (1988) reanalyzed their orig-
inal data, looking for a subadditive trend. Subadditivity is one
of the possible fruits of multiplicative integration, where the
addition of successive sources results in successively smaller
increments in judgment values. Cutting and Bruno found
reliable subadditivity in the results of their Experiment 1 but
not in Experiments 2 and 3.

Two Methodological Qualms

Although the outcome of debate between Bruno and Cut-
ting (1988) and Massaro (1988a) was inconclusive, two em-

with the same provisos as Equation 2 for mappings between codes,
weights, and parameters. Of course, this equation vastly simplifies to
something very close to Equation 1. However, run this way the
computational results of this fuzzy-logical equation and Equation 1
are different. That is, although for any given input data the sum of
least squared deviations is the same as given by Equation 1, the
weights (as deviations from 0.50) are closer to those given by the
fuzzy-logical model of perception (FLMP) and Equation 2. Thus, we
claim it is not the fuzzy-logical form of FLMP that is important, it is
the Bayesian form and the multiplicative manner in which sources
of information are combined.

pirical leads held hope for differentiating the two positions.
Both are based on a critique of the methods used by Bruno
and Cutting (1988); one is a criticism of multiplicative inte-
gration based on assumptions underlying direct-scaling pro-
cedures, and the other is a criticism of additive integration
based on the composition of stimulus sets.

The first qualm concerns multiplicativity. Despite finding
results partly consistent with a multiplicative model, Cutting
and Bruno (1988) questioned FLMP's efficacy in the direct-
scaling task. The 16 shop stimuli seemed to have a strong
anchor, as suggested by inspecting the panels in Figure 1 and
the results in Figure 3. That is, the Stimulus 0000 garnered
judgments of near zero with essentially no variance. On the
other hand, stimuli with three (1110, 1101, 1011, and 0111)
and four (1111) sources of information were all rated toward
the upper middle of the scale. This relative isolation of one
stimulus at one end of the continuum and clustering of stimuli
at the other looked like a possible range-frequency effect
(Parducci, 1965, 1974). In particular, it seemed as if viewers
may not have been using the scale in a linear fashion. The
use of the scale, then, might reflect not simply perceived
differences in depth but also perceived differences in the
spacing of stimuli along a continuum of depth and their
consequent compensatory adjustments.

The second qualm concerns additivity. Bruno and Cutting
(1988) combined the four sources of information orthogonally
in their stimulus set. Although the results seemed generally to
support additivity, this result may have been directly caused
by the independent manipulation of the four sources. That is,
uncorrelated information in a stimulus set may create uncor-
related information use; perhaps correlated information
would create interactions implicating some other model.

Two experiments were conducted to resolve these two issues
and then provide more grist for modeling. In one experiment
we manipulated the shape of the frequency distribution of
information in the stimulus set, and in the other we correlated
selected sources across the stimulus set.

General Method

Stimuli were identical to those used by Bruno and Cutting (1988).
Four sources of information were varied orthogonally across the set:
relative size, height in plane, occlusion, and motion parallax. The
eight static stimuli are shown in the top panels of Figure 1; the
beginning frames of the motion stimuli are shown in bottom panels.
The last frame of each motion stimulus was identical to its static
counterpart. Again, Figure 2 shows the experimental situation gen-
erating motion parallax. Stimuli were generated on a Hewlett-Packard
(HP) 1000L Series computer and displayed on an HP 1350s vector-
plotting system with a P31 phosphor and 1,024 x 1,024 pixel reso-
lution. They subtended about 8" and were seen binocularly in a
moderately lit room, with the sides of the display clearly visible. Each
stimulus was presented for about 2 s, and each frame of the motion
sequences was 87 ms. (See Bruno and Cutting, 1988, for further
details.) The two experiments reported here differed in how often the
stimuli were selected from the population of 16. The distributions
are shown in Table 1. In Experiment 1 the stimuli were selected by
skewing the population of stimuli in the test sequence according to
the number of sources represented, as shown in Table 2.

Thirty-four members of the Cornell University community were
run individually, 16 in Experiment 1 and 18 in Experiment 2.
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Table 1
Stimulus Frequencies for Experiments 1 and 2

Experiment 2: Correlation

Stimulus
(shop) codea

0000
1000
0100
1100

0010
1010
0110
1110

0001
1001
0101
1101

0011
1011
0111
1111

No. of
sources of

information

0
1
1
2

1
2
2
3

1
2
2
3

2
3
3
4

Experiment 1: Skew

Pos

10
5
5
5

5
5
5

10

5
5
5

10

5
10
10
50

Neg

50
10
10
5

10
5
5
5

10
5
5
5

5
5
5

10

sh

Pos

10
2
2

10

10
2
2

10

10
2
2

10

10
2
2

10

Neg

2
10
10
2

2
10
10
2

2
10
10
2

2
10
10
2

.so sp

Pos

10
2

10
2

2
10
2

10

10
2

10
2

2
10
2

10

Neg

2
10
2

10

10
2

10
2

2
10
2

10

10
2

10
2

Pos

10
2

10
2

10
2

10
2

2
10
2

10

2
10
2

10

Neg

2
10
2

10

2
10
2

10

10
2

10
2

10
2

10
2

pos = positive; neg = negative.
" Stimulus (shop) code refers to the presence (1) or absence (0) of information on relative size (s), height in plane (h), occlusion (o), and motion
parallax (p).

Participants in Experiment 1 were paid $4 for about 25 min of
viewing; those in Experiment 2 were paid $5 for about 35 min of
viewing. Individuals rated the relative depth of the panels in the
stimuli on a scale from 0 to 99. Each stimulus was presented once
before the individual was to make his or her response, but the trial
could be repeated if the viewer desired. As practice, Stimuli 0000 and
1111 were alternated several times to familiarize viewers with the
range of stimuli.

Experiment 1. Bruno and Cutting's(1988) Experiment 1 had one
stimulus with no sources of information about depth (0000), four
stimuli with one source (1000, 0100, 0010, 0001), six stimuli with

two sources (1100, 1010, 1001, 0110, 0101, 0011), four with three
sources (1110, 1101, 1011, 0111), and one with four sources (1111).
Because each stimulus was presented 10 times, the distribution of the
number of sources in the test sequence—as measured by the second
moment (variance, or spread), third moment (skewness, or asymme-
try), and fourth moment (kurtosis, or peakedness)—was approxi-
mately normal (variance = 1.06 sources of information, skew = 0.0,
and kurtosis = 2.2). In contrast, the distribution of stimuli in the two
conditions in this study were equal to each other in variance (1.61)
and kurtosis (2.1), but one had positive skew (0.56) and one had
negative skew (-0.56). Two groups of 8 participants each viewed

Table 2
Distribution of Information Sources and Scale Values in
Bruno and Cutting (1988) and in Experiment 1

Experiment

No. of sources of information"

1

Frequency distribution of stimuli (%)

Bruno & Cutting ( 1 988), Experiment 1 6 25
Experiment 1, negative skewb 7 13
Experiment 1, positive skewb 33 27

Mean normalized scale values0

Bruno & Cutting (1988), Experiment 1 0 32
Experiment 1, negative skew 0 19
Experiment 1, positive skew 0 22

38
20
20

58
46
54

25
27
13

76
68
73

6
33
7

84
96
87

* How many of the sources of information—size, height in plane, occlusion, and motion parallax—are
found in given stimuli. b Negatively skewed distributions have their long tail at the low end, and
positively skewed distributions have their long tail at the high end. c The maximum mean scale value
used by any subject for a particular stimulus was set at 100, and other values increased proportionately.
Means were then taken across subjects.
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sequences of 150 stimuli, randomized differently for each viewer.
Thus, we tested possible range-frequency effects in a between-subjects
design.

Experiment 2. The second study also molded stimulus popula-
tions, this time in six ways. Each selection involved .s correlated with
other sources of information. Two sequences correlated the occur-
rences of s and h. In one sequence stimuli were selected such that
they were positively correlated (r = .71) across the test sequence, as
shown in Table 3; in the second they were negatively correlated (r =
—.71), but in both there were no correlations between all other sources
(so, sp, ho, hp, and op), as can be computed from Table 1. In two
other sequences s and o were correlated (rs = .71 and -.71), with
other pairs uncorrelated, and in two others s and p were correlated,
with other pairs uncorrelated. Each sequence consisted of 96 stimuli,
randomly ordered for each participant. Three groups of 6 participants
each viewed each pair of correlated sequences. Within groups, 3
viewed the positively correlated set first, then the negative set; the
other 3 viewed the sequences in reverse order. Thus, we tested positive
versus negative correlation effects within subjects, order effects be-
tween subjects, and source correlation effects between groups.

Experiment 1: Skewed Distributions of Information
Do Not Affect the Use of the Response Scale

Massaro's (1987b, 1989) view of perception and pattern
recognition entails three operations: evaluation of informa-
tion, integration of information, and response classification.
We concur with his claim that any complete approach to
perception and the issue of multiple sources of information
must have the formal equivalent of these three stages. In his
application of FLMP to our stimulus situation (Bruno &
Cutting, 1988), however, we worried that the classification
process—rating (between 0 and 99) the perceived depth in
the display—might have an additional classification compo-
nent impeding the straightforward measurement of informa-
tion integration. In particular, if the stimulus continuum used
by Bruno and Cutting (1988) were perceived to be nonuni-
form, nonlinearities might result, and, thus, the data might
be subject to range-frequency analysis (Parducci, 1965, 1974).

Range-frequency analysis starts with a consideration of two
variables, a stimulus continuum and a response scale, and the
relation between them. It proposes that the mappings between
them are flexible and that participants adjust their use of a
response scale (corresponding to Massaro's classification
stage) according to the perceived distribution of stimuli along
a continuum. One general prediction is that when the distri-
bution of stimuli is skewed, the distribution of responses will
be less skewed, and that individuals spread their responses
more uniformly throughout the scale. These could create
nonlinearities in the data.

Table 3
Correlation Matrix for Four Sources of Information in
One of the Six Conditions in Experiment 2

Source of Height in plane Occlusion Motion parallax
information (h) (o) (p)

Relative size (s)
Height in plane (h)
Occlusion (o)

.71 .00
.00

.00

.00

.00

If range-frequency analysis applies here, the following pat-
terns of shifts should occur in the response scale: A positively
skewed stimulus continuum (the long tail at the upper end of
the distribution, with more stimuli with 0 and 1 sources of
information in them) should generally raise ratings for stimuli
with 2 and 3 sources of information. A negatively skewed
distribution (more stimuli with 3 and 4 sources of informa-
tion) should lower ratings for stimuli with 1 and 2 sources.
Thus, if range-frequency effects occur, the results should show
a main effect of skewness (higher scores for positively skewed
distributions than for negatively skewed distributions) and a
possible interaction between skewness and number of sources
(no difference between conditions at 0 and 4 sources, but with
higher scores for the positively skewed distribution for stimuli
with 1, 2, and 3 sources). Such a main effect and interaction
would indicate that the classification stage can play a nonsig-
nificant role in the results of Bruno and Cutting (1988) and
perhaps create nonlinearities in the data; absence of such
effects would suggest that the integration results are not con-
taminated by range-frequency-dependent classification ef-
fects.

The range of scale values was first normalized within indi-
viduals to correct for individual differences in scale use un-
related to the experimental manipulation. In particular, the
lowest and highest mean values assigned to the 16 stimuli
were set to 0 and 99, and intermediate values were linearly
scaled between them. Analysis of variance was then performed
on the data, looking at differences across groups (skewness of
the stimulus distribution) and level (number of information
sources). There was no reliable effect of skewness, F(\, 14) =
0.128, p > .70, and only a marginal interaction of Skewness
x Number of Information Sources, F(4, 56) = 2.35, p < .065.
Because of a cross-over in the data between stimuli with 3
and 4 sources (shown in Table 2), this second result is not
easily interpretable as a range-frequency effect.

Thus, we conclude, contrary to the suggestion of Cutting
and Bruno (1988), that the subadditivity seen in Experiment
1 of Bruno and Cutting (1988) is not due to a range-frequency,
or classification, effect in the viewers' use of the scale. The
lack of such an effect here may have been due to the ortho-
gonality of information in the implied stimulus set (Garner,
1966; Pomerantz & Lockhead, 1991) rather than the actual
stimulus sequence. That is, the mere presence of two shop
stimuli, one with all sources of information (1111) and one
with none (0000), may suggest to the viewer the 14 other
possibilities; just as two dice, one with one pip and the other
with six, imply the other four possibilities (two, three, four,
and five), as well as their 20 other combinations. With such
sets implied in the stimulus structure, little room may be left
for any effect of a differential frequency manipulation.

Experiment 2: Correlated Information Sources Do Not
Affect Responses

If uncorrelated information could create additive results,
then correlated information might create differences across
data sets revealed in any number of interactions. Candidates
are between-groups interactions concerning which informa-
tion sources are correlated, within-group interactions concern-
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ing the order in which viewers participated, and within-subject
interactions of polarity of correlation (positive or negative).
More concretely, in a stimulus sequence within the positive
sh correlation condition, Stimuli 11** and 00** (where * is a
place holder for other sources of information, taking the value
of 1 or 0) were frequent and Stimuli 01** and 10** were rare.
The exemplar model of classification (Nosofsky, 1991) or any
model based on the mere-exposure effect (Zajonc, 1968)
would predict that due to their frequency, Stimuli 11** and
00** might garner higher than normal judgments, and due to
their infrequency, Stimuli 10** and 01** might receive lower
than normal judgments. These shifts should create a statistical
interaction. When compared with the values for sequences
with negative sh correlations, the interaction should be com-
pounded, and so forth for other conditions.

Globally, there were no main effects of correlated sources
of information; for sh vs. so vs. sp, F(2, 12) = 0.005, p > .99;
means were 23.7, 24.7, and 25.1, respectively. There was no
effect of polarity, with means of 24.0 and 25.0 for positive
and negative correlations, F(i, 12) = 1.306, p > .27. There
also was no effect of order of presentation; positive/negative
= 24.3 and negative/positive = 24.7; F(l, 12) = 0.116, p >
.73. Also, there were no simple interactions among polarity
and order of presentation. Because there were seven factors
in this experiment (Source Correlation X Order x Polarity x
Presence/Absence of Four Sources of Information, shop),

there are many other potential interactions to consider. Of
the 122 interactions involving source correlation, order, and
polarity, only 8 (6.5%) were reliable with an alpha level of
.05, and only 1 (0.8%) with an alpha level of .01. None were
interpretable, and we view the overall pattern of interactions
as not deviating from random variation in the data.

Inspecting separately the data of the three source-correla-
tion groups (sh, so, and sp) revealed only one reliable, pre-
dictable interaction (sh in the sh group). However, this inter-
action was also reliable in one of the other groups, and within
the sh group there was no interaction of sh stimuli across
positively and negatively correlated sets. More concretely,
Stimulus 11 ** always garnered lower than expected judgments
based on values given Stimuli 10**, 01**, and 00**. Thus,
the overall sh interaction cannot be attributed to source
correlations.

An Interaction and a Trend, Both Against Additivity

Because the two qualms motivating these studies were not
borne out by the data, we focused our attention on informa-
tion integration and pooled the data of the 34 viewers. Bruno
and Cutting (1988) looked at the main effects and interactions
in the analysis of variance as potential sources of additivity
and nonadditivity. If all main effects and no interactions are
reliable, additivity is indicated; that is what was found. In the
combined data presented here, all four main effects (s, h, o,
p) were significant, Fs(\, 33) > 15.4, ps < .001. Among the
many possible interactions, only one first-order interaction
(sh, reported earlier) and the one highest-order interaction
(shop) were reliable, Fs(l, 33) > 8.1, ps < .008. The latter
interaction would be expected if the data were subadditive or
had other nonlinear trends. Bruno and Cutting (1988) found

neither of these interactions, but then they used only 10
viewers rather than 34, and thus their tests had less statistical
power.

In addition, following Cutting and Bruno (1988), we looked
at the pattern of responses for stimuli with 0, 1,2, 3, and 4
sources of information. In particular we looked at the differ-
ences in the individual data that accrued from successively
adding information sources. Assuming scale use was linear
(and the results of Experiment 1 suggest it was), we subtracted
the value of the 0-source stimulus from the mean of the four
1-source stimuli, then the mean of the 1-source stimuli from
the 2-source stimuli, then the mean of the 2-sources from the
3-sources, and finally the mean of the 3-sources from the 4-
source stimulus. If information is added, these differences
ought to be equal; if, on the other hand, it is subadditive,
differences ought to be systematically smaller across compar-
isons: (1 - 0) > (2 - 1) > (3 - 2) > (4 - 3). Indeed, the four
differences were 16.6, 18.1, 12.0, and 10.2, respectively, F(3,
99) = 5.87, p < .001, generally consistent with a decreasing
trend. Moreover, this is essentially the same result found by
Cutting and Bruno (1988). The patterns of data for Experi-
ments 1 and 2 here are shown in the middle and right panels
of Figure 3.

Modeling Analyses

We then refocused on Massaro's (1988a) paradigm and
considered the two competing hypotheses entertained by Mas-
saro, instantiated as the additive model of information inte-
gration and FLMP (Equations 1 and 2). We also broadened
our approach by looking at two other models. Consider the
new models first.

A Partial-Cue Model

Our third model is adapted from Maloney and Landy
(1989; Landy, Maloney, & Young, 1991). They presented an
averaging model of information integration based on a logical
analysis of sources of depth information.4 For our purposes,

4 Maloney and Landy (1989) regarded depth as being provided by
four classes of information. The first class provides absolute infor-
mation and includes motion parallax and binocular disparity. That
is, with an individual's movement path known and with the distance
between the eyes known, absolute depth between the observer and
all objects can be computed, at least in principle. These sources of
information can be represented by only one variable, their weight
given in the equation of combination. The second class provides
depth estimates up to a multiplicative scale factor. That is, a source
of information might reveal that one object is twice as far away as
another, but the two objects could be 1 and 2 m or 15 and 30 m
away. Maloney and Landy listed texture gradients and linear perspec-
tive as examples of such sources; relative size and height in plane are
others. Each of these sources needs at least two variables, one for
weighting in perceptual combination and the other for scaling. The
third class provides scaled depth information but is subject to reversals
and includes kinetic depth (in parallel projection) and shading. These
need three variables: one for weighting, one for scaling, and one for
sign. Finally, and most important for our situation, the fourth class
offers no depth information per se but can only be used to disam-
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however, the important feature of their model is that they
regard occlusion as giving no information about depth; it can
only disambiguate other sources (such as shading) not present
in our stimuli. Maloney and Landy devised their model to
test perceived amount of depth, not rated depth, and the
experimental procedures their model entails include variation
of information beyond mere presence or absence. Nonethe-
less, by collapsing some parameters and assuming perceived
depth maps linearly onto rated depth, it can be written as an
additive model with four parameters:

where

R(Depth) = S

= S when* = l
>

= zero when s = zero
} etc., for H, P, B. (3)
)

Three aspects of this application should be noted. First,
Maloney and Landy (1989) did not include a background
variable, but they did consider retinal disparity as a source of
information. Because our stimuli were seen on a flat display
scope, retinal disparity is always zero and can thus be included
in the background variable. Second, our purpose here is not
to try to do justice to the Maloney and Landy model (which
also uses robust estimators to de-emphasize outliers in re-
sponse distributions); instead, we only wish to step outside
direct comparisons between FLMP and the additive model
by presenting a model related to one in the existing literature.
Third, because this model is a subset of the additive model,
and because the additional parameter in the additive model
is orthogonal to the others, the additive model will always fit
data at least as well as this model, and usually better. This
model is included here to indicate how much better and to
provide additional comparisons with the other, nonadditive
models.

A Full-Cue Weighted-Averaging Model

Our fourth model is patterned after one used by Massaro
(1987b, pp. 182-183). Adapted to our purposes, it includes
occlusion and is written as follows:

where

.R(Depth) =

= S whe° s =

B,

1 etc., for H, O, P, B and
J ' '

(4)

if
 =

IS = zero when 5 = zero

where 0.0 < S,H,O,P< 1.0 and

where S + //+ 0 + /> = 1.0.

The major difference between this model and our additive
model is the last conditional statement: All weights of manip-
ulated variables sum to 1 .0, making it a weighted-averaging
model. Because of this constraint the model has only four free
parameters. The parameter P, for example, becomes the
complex of ( 1 - S - H - O).

Implementing and Verifying the Models

The four hypotheses about information integration were
instantiated in four models (Equations 1-4). To accommo-

biguate other information, such as kinetic depth or shading. Maloney
and Landy regarded occlusion as one such information source.

date restrictions on FLMP and on the weighted-averaging
model, all data were divided by 100, transforming the scale
values to a range between 0.0 and 1.0. We implemented the
four models using the NONLIN module of SYSTAT (Wilk-
inson, 1990), which allows specification of a model as an
equation (computer subroutine) and iterates through it, min-
imizing deviations in a data set. We chose the sum of least
squared deviations method to fit the data because of its
consistency with standard statistical practice. Massaro (1987b,
1988a, 1988b; Massaro & Friedman, 1990) has used root
mean squared deviations (RMSD) in a modification of the
program STEPIT (Chandler, 1969). SYSTAT does not allow
RMSD as an option, but because both methods rely on
minimization of squared deviations, we felt our method
would be a straightforward transformation of RMSD.

Data of Bruno and Cutting (1988). To insure our method
captured the same results as Massaro's RMSD/STEPIT in-
stantiation of FLMP, we ran our versions of the models on
the data of Bruno and Cutting (1988, Experiment 1), which
Massaro (1988b, Tables 2 and 3) analyzed. Results are shown
in Table 4, and the relative deviations for the additive model
and FLMP are reasonably well matched to those reported by
Massaro: The data of the same 5 subjects are better fit by the
additive model, and the data of the other 5 are better fit by
FLMP. Means of individuals are shown in Table 4 and in
Table 5.

Moreover, and more importantly, the FLMP sums of least
square values for the 10 individuals are a straightforward
transformation of their RMSD values as given by Massaro
(1988a). Our measure simply sums squared deviations,
whereas RMSD sums them, divides them by 16 (the number
of stimuli), and then takes the square root. After transforma-
tion the FLMP residual values reported in Table 4 for Cutting
and Bruno (1988, Experiment 1) are the same as those re-
ported by Massaro (1988a), to three significant figures.

As expected, fits of the additive model were superior to the
partial-cue model data in all cases, and the fits of FLMP were
better in 9 of 10 cases (p < .02). In addition, fits of both the
additive model and FLMP were superior to the weighted-
averaging model in all cases.

Weights and other aspects of model fits. In our FLMP
analysis, the weights of the four experimental parameters
SHOP and the background variable, B, were identical to those
reported by Massaro (1988a), to three significant figures,
adding further evidence that we properly implemented FLMP.
However, we had two concerns about Massaro's modeling.

First, as seen in Equation 2, Massaro (1988a) treated mo-
tion parallax (p) differently from the other three sources of
information. That is, the absence of p is ambiguous infor-
mation about depth (and should achieve a fuzzy-logical value
of 0.50), whereas absence of s, h, or o is information about
no depth (and achieves a value closer to 0.0). We wondered
what effects this might have on the model fits. Empirically,
we determined that this coding procedure had essentially no
effect on either the sum of least squares measure or the weights
of the other variables (both mean effects did not differ in the
third significant decimal). Thus, we kept Massaro's scheme
in latter modeling of human data.

Second, Massaro's (1988a) implementation of the additive
model did not allow it to have negative weights, whereas the
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analog of negativity (weights below 0.50) was allowed in
FLMP. We worried that this might penalize our model un-
duly, because in our running of the model the data of 3
subjects indicated a negative effect of occlusion.5 Empirically,

Table 4
Sum of Least Square Fits for Four Models

Table 5
Mean Sum of Least Square Fits for the Additive Model
and FLMP Across Experiments and Simulations

Subj ADD FLMP PCUE WTAVE

Bruno & Cutting (1988), Experiment 1

01
02
03
04
05
06
07
08
09
10

Mean of individual fit
Fit to grouped data

.103

.031

.212

.119

.150

.082

.148

.021

.214

.082

.116

.017

.110

.047

.207

.105

.161

.107

.145

.031

.152

.076

.114

.034

.179

.054

.227

.144

.190

.097

.315

.063

.215
1.179
.266
.041

.185

.523

.512

.831

.276

.289

.879

.366

.617

.413

.489

.358

Experiment 1

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Mean of individual fit
Fit to grouped data

.069

.045

.177

.066

.019

.084

.047

.204

.149

.102

.054

.030

.049

.291

.030

.050

.092

.012

.084

.059

.142

.032

.007

.099

.049

.221

.145

.031

.053

.038

.066

.145

.045

.057

.080

.024

.237

.207

.448

.152

.158

.757

.086

.206

.255

.449

.090

.071

.093

.990

.109

.062

.273

.075

.741

.618

.288

.511
1.683
.952

1.015
.327
.914
.120
.229
.034
.226
.941
.556
.701
.612
.537

Experiment 2

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Mean of individual fit
Fit to grouped data

.034

.121

.053

.247

.118

.265

.210

.049

.020

.042

.067

.266

.075

.074

.099

.180

.097

.146

.120

.015

.035

.092

.066

.251

.152

.280

.087

.078

.043

.070

.066

.265

.083

.018

.095

.177

.095

.140

.116

.028

.058

.604

.299

.397

.198

.329

.383

.130

.293

.457

.924

.413

.107

.148

.104

.181

.166

.157

.297

.052

1.153
.122

1.210
.320
.690
.601
.799
.734
.514
.300
.088
.601
.188

1.263
1.122
.719
.100

1.293
.656
.375

Note. ADD is the additive model (Equation 1), FLMP is Massaro's
(1987b, 1988a) fuzzy-logical model of perception (Equation 2), PCUE
is the partial-cue model without an occlusion parameter (Equation
3) adapted from Maloney and Laridy (1989), and WTAVE is the
weighted-averaging model (Equation 4) adapted from Massaro
(1987b, pp. 178-183). Subj = subject.

Data source

Bruno & Cutting (1988)
Experiment 1

Experiments 1 & 2
Simulation 2

Random data
Regressed to range of

Experiments 1 & 2
Simulation 3:

Added random error (%)
0
2.5
5.0

10.0
20.0
40.0
60.0

Additive

.116

.107

.932

.117

.00000

.00053

.00218

.00861

.03447

.1380

.3136

FLMP

.114

.099

.924

.098

.00066

.00061

.00224

.00865

.03446

.1386

.3120

FLMP advantage

.002

.008

.009

.0198

-.00066
-.00008
-.00006
-.00004

.00001

.0004

.0016

Note. FLMP = fuzzy-logical model of perception.

however, we determined that allowing negative weights had a
small effect on least square values everywhere except for
Observer 7 and had essentially no effect on the weights of the
other, positively weighted variables. In later modeling we
allowed parameters to have negative weights, but because
weights themselves are not pertinent to the rest of our discus-
sion, we do not refer to them further.

Fitting Models to the New Individual and Group
Mean Data

We next fit the four models to the individual data of
Experiments 1 and 2. Results are also shown in Table 4. We
were roundly thwarted in our efforts to differentiate the
additive model and FLMP: Of the 34 subjects' data, 18. were
better fit by the additive model, and the other 16 were better
fit by FLMP. Across the 34 subjects the fits of FLMP were
slightly but not significantly better, r(33) = 1.143, p > .26.
The mean advantage of FLMP was 0.008, also shown in Table
5. Again, the additive model and FLMP were superior to the
others. In all cases, both fit individual data better than the
partial-cue model. The additive model bested the weighted-
averaging model in all cases, and FLMP fit better in 33 of 34
cases.

Interestingly, the fit of the additive model to each of the
three group data sets was somewhat better than FLMP, as
shown at the bottom of Table 4. In each case the residuals for
the additive model were about half those for FLMP. More-
over, across the group data of 44 subjects in the three experi-
ments, the residuals of the additive model were only about
one-third of those for FLMP (0.0091 vs. 0.0271, respectively).

5 In addition, three other subjects' data showed negative effects of the
background variable. A negative weight of occlusion, for example,
might arise when Stimulus 1100 is seen as having more depth than
Stimulus 1110, because occlusion is seen as indicating that the three
panels lie on top of one another, reducing depth here and elsewhere
that is otherwise seen when relative size and height in plane are
present.
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Again the additive model and FLMP fit the group data better
than the other two models.

Preliminary Conclusions

Three conclusions can be drawn from these studies. First,
the partial-cue and weighted-averaging models did not fare
well against the additive model and FLMP. Insofar as the
partial-cue result applies to the full Maloney and Landy (1989)
model, we think their omission of occlusion may be a mistake.
Second, with respect to the additive model and FLMP, the
cluster of results is inconsistent. The modeling results of the
group mean data favored the additive model, the modeling
results of the individual data were indeterminate, and the
results of analyses of variance on the raw data and on differ-
ence scores were against the additive model and therefore, it
would seem, favored FLMP. Third, it seemed unlikely that
we would replicate twice, once in each experiment reported
here, the indecisiveness Massaro (1988a) found between
models in fitting individual data. To try to make more sense
of these antinomies, we investigated the numerical properties
of the models.

Models of Information Integration and Their Fits to
Simulated Data

As noted earlier, Cutting and Bruno (1988) interpreted
FLMP as a model that captured -miadditivity in data. From
inspecting some of the model fits of individual data in Exper-
iments 1 and 2, and from reading Massaro (1988b) and
Massaro and Friedman (1990), it became clear that fitting
subadditivity is not all that FLMP is good at. Thus, we ran
three classes of simulations involving FLMP and the additive
model.

Simulation 1: FLMP Fits Most Monotonic Functions

Exponentials

We created a series of 15 functions anchored at values of
0.001 and 0.999, as shown in the upper-left panel of Figure
4. Again, 16 stimuli with four orthogonal sources of infor-
mation were used. All four sources were treated identically;
that is, there was no analog to motion parallax here, which in
its absence had been treated as noninformative (given a value
ofO.50).

As with the real stimulus sets, there were 1 stimulus with
no information, 4 with one source, 6 with two sources, 4 with
three sources, and 1 with four sources. Stimuli were given
values that fit exponentials, plotted on an abscissa with 0
through 4 sources of information. The 15 functions fit the
following equation:

/{(depth) = n" / 4", (5)

where n is the number of sources of information. The expo-
nent a took the values 0.01, 0.15, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0,
1.11, 1.25, 1.43, 1.66, 2.5, 6.67, and 100.0 for the 15 func-
tions, respectively. Every stimulus with a given number of
sources had the same value. Thus, there was no variance at
any level on the abscissa.

The fits of the two models to the 15 sets of simulated data
are shown in the upper-middle panel of Figure 4. Notice three
results: First, the additive model was superior to FLMP for
only five data sets, obviously those most nearly linear. Using
only the sign and ignoring the magnitude of fit differences,
the upper-right panel of Figure 4 shows that, within the region
covered by possible exponential functions, FLMP fit better
throughout 80.3% of the area. Second, even when the additive
model was superior the two fits were quite similar. For these
functions the additive model's advantage was never greater
than 0.016; for the 44 subjects included in Table 4, only 5 of
the 23 subjects favoring the additive model showed differences
greater than this value. Third, all functions deviating signifi-
cantly from linearity were fit extremely well by FLMP.

Psychometric Functions

We next generated a family of psychometric functions, from
a linear function to a step function. These are shown in the
bottom-left panel of Figure 4, again plotted for 0 through 4
sources of information. Again, there was no variance at any
level on the abscissa, except for the step function (for which
three sources were coded as having values of 0.999 and three
others were coded with values of 0.001). The six functions fit
the following logistics equation:

/{(depth) = n X /)) (6)

where e is 2.718, n is the number of sources of information,
and a and b are the two parameters for a logit function. Values
for a across the first 5 functions were -2.7, -3.3, -4.0, -5.3,
and -48.7, respectively; and values for b were 1.35, 1.63, 2.0,
2.65, and 24.4.

Again, the additive model fit only a few functions better
than FLMP, and even when it did the difference between the
two models was small. Ignoring the differences in magnitude
of fits, FLMP fit better within 95.7% of the region covered
by these functions. Moreover, FLMP fit all functions ex-
tremely well. It is clear FLMP has more scope than the
additive model; indeed, it appears to be a very powerful
model. How powerful is it?

Simulation 2: FLMP Fits Random Data

From Simulation 1 we learned that FLMP fits many more
types of functions than does the additive model. We wanted
to explore this idea further. By generating many random data
sets, we hoped to sample the population of all possible data
functions. Random numbers between 0.001 and 0.999 were
generated for each of the 16 stimuli, 1,000 times each. Of the
1,000 simulated data sets, 608 were better fit by FLMP; only
392 were better fit by the additive model. Across the set
FLMP's mean sum of least squares advantage was 0.009,
F(l,999) = 104.6, p < .0001, as shown in Table 5. As seen in
Table 5, this difference is at the high end of the range of the
fits to the subject data in Experiments 1 and 2 and in Bruno
and Cutting (1988, Experiment 1).

One might suggest, however, that FLMP's superiority in
this domain could be ignored. For example, the magnitudes
of least square values in the random simulations are about
eight times those in Experiments 1 and 2, and one might
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Figure 4. A comparison of the additive model and fuzzy-logical model of perception (FLMP) in fitting
exponential and psychometric functions. (The upper panels show the exponential functions and their
measures of sum of least squares fit by the additive model [add] and FLMP and the area of the functions
better fit by FLMP. The lower panels show approximations to psychometric functions, the fits, and the
area of the functions better fit by FLMP. Functions were generated by Equations 5 and 6.)

expect the difference between the two models to inflate with
the magnitude of the least squares fit. However, the reverse
was true: The difference between model fits was slightly
negatively correlated with the magnitude of least square val-
ues; r = -.16, f(998) = 5.07, p < .0001, as shown in Figure 5.
This means larger differences between model fits occur with
smaller sum of least square (and hence RMSD) values. As
shown in Table 5, when regressed back to the range of fits of
Experiments 1 and 2, the difference between the models in
favor of FLMP is 0.0198. This value is more than double the
difference found in any of the experiments. Thus, it is clear
from the first 2 simulation studies that FLMP is at an advan-
tage compared with the additive model.

Simulation 3: FLMP Absorbs Random Error

If FLMP accrues an advantage in random data, it ought to
begin to reveal it in data that start out as linear (additive) but
then have increasing amounts of random error added to them.
To explore this idea we started with a perfectly additive
function. Stimulus 0000 was fixed at a value 0.30; all four
stimuli with one source were fixed at 0.40, the six stimuli with
two sources were fixed at 0.50, the four stimuli with three
sources were fixed at 0.60, and Stimulus 1111 was fixed at
0.70. An additive model fits these data perfectly (with a sum

of least squares residual of 0.00000); FLMP also fits them
very well (0.00066).

Adding Random Error to an Additive Function

What happens when random error is added? To explore
this idea we generated random values to add or subtract from
the baseline values for each of the 16 stimuli, a method similar
to that used by Collier (1985). Each deviation was constrained
within a range, and the proportion added or subtracted was
yoked across three conditions. Thus, the depth rating is gen-
erated as follows:

.R(depth) = 0.30 + 0.10 x H +r , (7)

where n is again the number of sources of information and r
is a random number generated within a rectangular distribu-
tion. Across three conditions these distributions spanned
±0.05, 0.10, and 0.20—10%, 20%, and 40% of the range of
values, respectively. These bounds correspond to grand mean
RMSD values of about 0.029, 0.058, and 0.115 from the
linear trend.6 The yoking occurred as follows: if, in the 10%

6 Grand mean RMSD values were computed by creating 20 equal-
sized bins within the range of random values, squaring the mean for
each bin, averaging those squared values, and taking the square root
of the average.
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condition, a value of 0.035 was added to one stimulus, a value
of 0.070 was added to it in the 20% condition, and a value of
0.140 was added to it in the 40% condition. If a different,
negative value were added to one stimulus, the resulting
additions might be -0.024, -0.048, and -0.096, respectively.

Across 200 triads of simulated data, the patterns of results
were straightforward, as shown in Table 5. With increasing
amounts of random error added to the data, FLMP begins to
accrue its advantage over the additive model. In particular,
the interaction between the two models and the amount of
random error added to the baseline data were reliable, F(2,
398) = 3.782, p < .024. This interaction was not due simply
to increases in the residual value of the sum of least squares.
When the differences are rescaled for increases in variance
(dividing the 20% variability data by 4, dividing the 40%
variability data by 16, then comparing both with the 10%
condition), the effect is still reliable, F(2, 398) = 3.702, p <
.026. More concretely, in the 10% variation condition 110 of
200 data sets favored the additive model, but in the 20%
condition this dropped to 103 of 200, and in the 40% condi-
tion it dropped further to 87 of 200.

Different Additions of Random Error

The previous result seemed worth replicating with different
amounts of random error. We added three more data points
on a possible function between 0% and 100% added error,
two smaller (2.5% and 5%, or adding ±0.0125 and 0.025 to
the linear function in Equation 5) and one larger (60%, or
adding ±0.30). These correspond to grand mean RMSD
values of about 0.007,0.014, and 0.173 from the linear trend,
respectively.
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Figure 5. A scatterplot of the 1,000 comparisons of model fits in
Simulation 2. (The difference in sum of least square residuals of
fuzzy-logical model of perception [FLMP] and the additive model to
random data sets is plotted as a function of the magnitude of the
mean sum of least square residual of the two models. The size of the
dot indicates the number of comparisons at each point on the graph.
FLMP < add indicates that FLMP fit better than the additive model.
That most values are positive shows that FLMP is at an advantage
compared with the additive model; that the slope is negative shows
that FLMP is of a particular advantage when residuals are smallest.)
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Figure 6. The proportion of simulated trials in which the additive
model (add) fits better than fuzzy-logical model of perception (FLMP)
as a function of how much random error is added to a linear function.

Across 200 more triads of simulated data, results were
similar, as shown in Table 5. Again, with increasing amounts
of error, FLMP accrues an advantage, both in the raw data,
F(2, 398) = 8.11, p < .001, and in the variance scale-trans-
formed data, F(2, 398) = 13.3, p < .001. The strength of the
effect is greater here due to the increased range of error added.
Again, and more concretely, the additive model was superior
to FLMP for 149 of 200 data sets in the 2.5% condition and
129 of 200 data sets in the 5% condition, but only 91 of 200
in the 60% condition.

The overall results are combined in Figure 6, along with
the logical consideration of 0% random error and the results
of Simulation 2. The pattern shows how, by adding random
error to a linear function, FLMP attains its advantage over
the additive model. The data are well fit by a negative expo-
nential; the more error that is added, the more often FLMP
will be superior. In particular, when the error reaches 22%,
or a grand mean RMSD value of about 0.063, from the linear
trend, FLMP becomes superior even when the mean data are
linear.

Discussion

When compared with the additive model, FLMP appears
to capitalize on fitting data by three methods. First, as shown
in Simulation 1, even when the additive model fits better,
FLMP is not far behind. Second, also shown in Simulation 1,
FLMP fits certain nonlinearities in data, accruing great ad-
vantage over the additive model. Thus, in truly linear do-
mains, both models fit well; in certain nonlinear domains,
only FLMP fits well. Neither of these methods, however, \s
able to account for the increasing proportion of data sets fit
better by FLMP as variability increases. Thus, the third way
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it accrues its advantage, shown in Simulation 3, is simply to
absorb increasing variability. The last method shows how a
model with broader scope is at an advantage in fitting rela-
tively noisy individual data.

Simulation 4: Comparative Fits of the Other Models
to Random Data

In our earlier modeling we found that the partial-cue and
weighted-averaging models fit the data of our human subjects
quite poorly compared to both FLMP and the additive model.
Thus, it seemed worth investigating how they would fit ran-
dom data. As in Simulation 2, we generated random data sets
with entries between 0.001 and 0.999 for each of 16 stimuli.
Again, the stimuli corresponded to a 2 x 2 x 2 x 2 set, with
each comparison representing the presence or absence of four
sources of information. We generated 300 random data sets
and then fit them with the four models: additive, FLMP,
partial cue, and weighted averaging.

Median fits of the four models were 0.934, 0.946, 1.028,
and 1.872, respectively. Again FLMP fit the random data
better than the additive model, F(l, 299) = 25.4, p < .001,
this time in 181 of 300 sets (60.3%), a result similar to that
of Simulation 2. FLMP was also superior to the other two
models, besting the partial-cue model in 268 of 300 compar-
isons and the weighted-averaging model in 287 of 300.7 As
expected, the additive model fit the random data better than
the partial-cue model in all 300 cases, and the additive model
bested the weighted-averaging model in 287 of 300 cases.
Finally, the partial-cue model fit the random data better than
the weighted-averaging model in 282 of 300 cases.

Measuring Simplicity and Discounting Scope

Tensions Between Simplicity and Scope

Given two self-consistent and fruitful scientific theories of
roughly equal scope, the standard view in science is to prefer
the more parsimonious, or simpler, theory. When these the-
ories can be instantiated as models, there is a preference for
the simpler model (Reichenbach, 1949). Ockham's razor dic-
tates as much. But how do we measure simplicity? There are
many difficulties in and few agreements about its measure
(e.g., Goodman, 1972; Kuhn, 1977; Popper, 1959; Quine,
1976). Nonetheless, we consider three general proposals for
arbitrating simplicity and their relation to the concept of
scope.

Parameter Count, Simplicity, and Scope

First, Jeffreys (1957, 1961), among others, proposed that to
compare models or theories one should sum the number of
parameters in the equation, including the degree of an expo-
nent or derivative that may be contained in it. The lower the
count, the simpler the model or theory. Most views of mod-
eling in contemporary psychology follow Jeffrey's dictum. In
this view simplicity and scope are independent attributes of a
theory.

Any concern about the number of parameters in a model
is well justified. Models with more free parameters are likely
to fit data better than those with fewer free parameters. At
the limit, considering a set of data with n observations, any
model with n - 1 parameters should fit perfectly. Collier
(1985) and many others have noted that when building
models, researchers face a trade-off between the number of
parameters and closeness of fit to the data. Thus, when
comparing different models researchers often try to make
comparisons between those with equal numbers of free pa-
rameters.

FLMP and the additive model have the same free parameter
count—5. This measure of simplicity aside, then, one would
ordinarily turn to considerations of scope. In our analyses we
found FLMP superior to the additive model in fitting expo-
nentials, psychometric functions, and random data and about
equal to the additive model in fitting human data. These
considerations and results would imply that FLMP and the
additive model are equally simple but that FLMP has more
scope. Thus, under this construal of simplicity and scope,
FLMP is the better model and represents the better theory.

Falsifiability, Simplicity, and Scope

A second and perhaps less standard approach to simplicity
is Popper's (1959): Competing theories should be compared
on grounds of falsifiability. Thus, given two theories in the
same domain, we should prefer the simpler, but where sim-
plicity is defined as a property that places the greatest restric-
tions on the world. Thus, we should prefer the theory, or its
model, that is more easily proved wrong (falsified). Kemeny
(1955) proposed a similar idea. Notice that this view contrasts
with the previous one in that scope and simplicity are corre-
lated, rather than independent; simple theories by definition
have less scope, and are preferable to, more complex theories.

Popper's (1959) idea can be applied to the current situation
as follows: Given the results of Simulation 1 showing the
superiority of FLMP over the additive model in fitting expo-
nential and psychometric functions, and given the results of
Experiments 1 and 2 here and those of Bruno and Cutting
(1988, Experiment 1) showing the veritable equality of the
two models to fit human depth-judgment data, one should
prefer the additive model over FLMP because it is more
falsifiable. Thus, under this construal of simplicity and scope,
the additive model is better and represents a better theory.

Given opposite conclusions from these two approaches to
modeling from the perspective of the philosophy of science,
we searched for an alternative. Consistent with the second
approach, we think broad scope is not always a positive quality
in a model or theory, but consistent with the first approach
we think the concept of simplicity ought to be measured
independently of scope. To discuss our view we need first a
new measure of simplicity.

7 In certain speech perception tasks, Massaro (1987b, pp. 178-183)
found the FLMP to fit human data much better than a weighted-
averaging model. Given that FLMP fits random data so much better
than a weighted-averaging model, we find it unsurprising that it also
fits human data better.
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Equation Length and Simplicity

A third approach to measuring simplicity comes from
information theory and the economics of transmitting data.
In general, the data could be auditory signals, visual images,
or simply strings of numbers. One area within this field is
concerned with predicting the next datum or a missing datum
in a finite data sequence. Within this area algorithmic infor-
mation theory (Chaitin, 1977; see also Komolgorov, 1968) is
concerned about the minimal length of the algorithm, equa-
tion, or computer program for making this prediction. The
shortest such program is deemed the simplest, and longer
programs are deemed more complex.8

There are two important corollaries of this information-
theoretic approach. First, once programs have been set to
their minimal form, longer programs are deemed more com-
plex and are expected to represent more data sets (have greater
scope) than shorter ones. Second, given equally good predic-
tions for a particular sequence of data, a longer program is
considered more complex than a shorter one.

Notice that the relation between an information-theoretic
algorithm and the data set it represents parallels the relation
between a psychological model and a subject's data. In both
cases the model must predict the data and do so economically.
Thus, if this approach is applied to psychological modeling,
equation length might be a predictor of how well models fit
data. Notice further that, in contrast to parameter counting,
length considerations will include all elements in the algo-
rithm, not simply the free parameters. In this manner, com-
paring Equations 1 and 2, one can see that FLMP is more
complex than the additive model, despite the fact both have
five free parameters. In addition, the additive model and the
other two models would be about equally complex despite
their varying numbers of parameters.

But how is equation length measured? As a first approxi-
mation program complexity can be measured as the number
of ASCII characters needed to run the program unambigu-
ously in a general-programming language on a general-pur-
pose computer. Such an approximation works well for equa-
tions but has potential difficulties in coding other logical and
extralogical operations. To accommodate this problem we
follow the general lead of Goodman (1972) and his predicate
calculus for simplicity; we represent each possible operation
or predicate with a single symbol. We also count each syntac-
tic marker as a single symbol. To be more concrete, a comma,
a bracket, a zero, a where, and an etc. statement each count
as a single symbol.

Measuring Relative Effects of Parameter Count and
Equation Length

The most straightforward way to apply the criterion of
equation length to our situation is to count the elements in
the right-hand side of Equations 1 through 4, representing the
four models. Two counts will be considered, one without and
one with the conditional statements beneath each equation
line. The counts without conditionals are simply the total
number of the ASCII characters; those with conditionals are
ASCII-based except where words are used to set up restrictions
on the calculations. Each word is counted as a single symbol

(or character), as it might be represented as such in the
compiled form of an algorithm. We prefer the measure with-
out conditionals, because conditionals are not strictly in-
volved in the computation; they only clarify or set bounds on
it. The relative equation lengths of each model with and
without conditionals are shown in Table 6, along with their
numbers of free parameters.

To determine the effect of equation length in fitting data
we used multiple regression on difference scores. The two
independent variables were the differences in length of the
models considered two at a time and the differences in the
number of free parameters in those models considered two at
a time. The dependent variable was the difference in least-
squared fits of the two models to the data of each of the 44
subjects shown in Table 4. Given four models to consider, six
pairwise model comparisons are made for each of the 44
subjects, yielding a total of 264 comparisons.

Consider first the comparison between parameter count
and the measure of equation length without conditionals. As
expected, the multiple correlation using both as independent
variables was statistically reliable; R = .26, F(2, 261) = 9.37,
p < .0001. However, the partial correlations are more inter-
esting. In particular, equation length was a reliable predictor
of fit; r = -. 19, F( 1,261) = 4.87, p < .03, whereas the number
of free parameters was not, r = -.09, F(\, 261) = 1.14, p>
.28. To be sure, the range of difference in parameters is highly
constrained, but the difference values in length of equations
is functionally constrained as well. If one dummy codes
equation length (1 = long, for FLMP; 0 = short, for other
models) and reruns the regression analysis, the partial corre-
lation is essentially the same; r = -.21, F(l, 261) = 6.36, p <
.01. In neither case was the difference between partial corre-
lations for length and parameter count reliable.

If conditional statements are included in measurements of
equation length, the multiple correlation is again reliable; R
= .22, F(2, 261) = 6.83, p < .001. However, equation length
is this time not reliable (r = -.15, p > .80), and parameter
count is reliable (r = —.24, p < .01). Equation length did
poorly here because the weighted-averaging model is quite
long with its conditionals but fitted the data relatively poorly.

A Tentative Conclusion

Our analysis of equation length and number of free param-
eters indicates that, at least in some circumstances, a re-

8 In perceptual psychology equation length has played a role in formal
models of perception and in our understanding of the concept of
simplicity. This tradition arose in Gestalt psychology and is best
represented by the minimum principle (Hochberg, 1957,1988) where
good gestalts were regarded as simpler than other configurations.
Over the last 20 years, this idea has been promoted in the structural
information theory of Leeuwenberg (1971, 1982; see also Cutting,
1981; Cutting &Proffitt, 1982;Restle, 1979). According to this theory,
we perceive the simplest description of the possibilities in the physical
stimulus, where simplicity can be measured by equation length:
Simpler equations are shorter. It is as if the perceiver constructs many
possible representations or models of the object or event and perceives
only the object or event with the simplest equation. There are
problems with the minimum principle (Hatfield & Epstein, 1985;
Hochberg, 1988), but it remains an attractive idea.



DEPTH AND MODELS OF INFORMATION INTEGRATION 379

Table 6
Equation Lengths and Parameter Counts for the Four Models

Equation length
(no. characters)

Model

Additive
FLMP
Partial-cue
Weighted-averaging

Equation

1
2
3
4

Without
conditionals

9
51
7
9

With
conditionals

37
121
34
69

No. of free
parameters

5
5
4
4

Note. FLMP = fuzzy-logical model of perception.

searcher might profitably pay as much attention to the form
of a model's equation (without conditionals) as to the number
of parameters it contains. On the basis of our analysis, we
think it is possible that FLMP fits data because it is longer
and hence more complex than other models.

Controlling for Scope to Measure Selectivity: A New
Way to Compare Models

Models can be thought to have two data-fitting properties.
The first is scope, which we define as the measure of a model's
ability to fit all possible data functions. These are represented
by a broad sample of functions filled with random numbers.
The second is selectivity, or the ability of a model to capture
particular patterns of interest in the data to the exclusion of
all others. Because a large collection of random functions will
contain a few data patterns of interest to the researcher and
many patterns of no interest, we are interested in a model's
ability to select all and only those patterns of interest.

Thus, we suggest that in any situation where psychological
models are to be fit to data they should be compared simul-
taneously in two ways: The relative fits of the models to
individual data sets of interest ought to be compared against
their relative fits to random data. In this manner, any advan-
tage of a model in fitting random data (its scope) can be
neutralized, and the researcher can focus on the residual and
differential advantage of the model's fits to the patterned data
of interest (its selectivity).

What we propose is a binomial test (e.g., Siegel, 1956)
comparing selectivity with scope, where the probabilities for
the obtained fits to psychological data are compared against
those predicted by the fits to random data. The standard
formula is:

= [ ( x ± 0.5) - NP] I - />)], (8)

where x is the number of observations favoring a particular
model in comparisons across subject data sets (corrected for
continuity), N is the number of subjects, and P is the proba-
bility that model has in besting its competitor, computed from
many runs on random data sets. The outcome of six such
tests is shown in Table 7.

Notice three new results: First, the fits of the additive model
and FLMP to the data of 44 subjects from Bruno and Cutting
(1988) and from Experiments 1 and 2 here do not statistically
differ from their fits to random data. Thus, although the
scopes of the two models differ somewhat, that difference (as
represented by relative fits to random data) is not sufficiently

great to prefer one model over the other. Second, the additive
model's and FLMP's overwhelming advantages over the par-
tial-cue and weighted-averaging models in fitting the human
data do not differ from their advantages in fitting random
data. Thus, on the basis of these comparisons, we conclude
that nothing of psychological value can be said about any of
those comparisons involving FLMP and the additive model.
Third, although the weighted-averaging model fits random
data poorly compared with the partial-cue model, it fits our
human data remarkably well. Thus, by our account, the
weighted-averaging model has narrow scope but high selectiv-
ity compared with the partial-cue model.

General Discussion

Massaro's (1987b) paradigm for experimental psychology
consists, for our purposes, of three parts: (a) a focus on the
analysis of multiple sources of information and (b) a compar-
ison of alternative models in (c) the analysis of individual
data. On the basis of more than 10 years of research, Massaro
has used his paradigm and found broad support for his model,
FLMP. Like Massaro, we embrace the first idea, but we worry
about the second and often the third in the current context
of his paradigm.

Models and Their Hidden Properties

FLMP has broad scope; it is a powerful model. It has shown
noted success in fitting data in many domains, including
attention, reading, letter recognition, and speech perception.

Table 7
Binomial Tests for the Fits of Models to Human Data
(N = 44) Against Their Relative Fits to Random Data_

Model comparison Observed

Additive
Additive
Additive
FLMP

<FLMP
< Partial Cue
< Weighted Averaging
< Partial Cue

FLMP < Weighted Averaging
Partial Cue < Weighted Averaging

23
44
44
42
43
35

Predicted z score

17.2
44
42.1
38.0
42.1
41.4

1.63*

.29
1.53
.29

-3.74**

Note. Because better fits are indicated by smaller residuals, additive
< FLMP, (fuzzy-logical model of perception) indicates that the ad-
ditive model fits the data better. Predictions are based on results from
Simulations 2 and 4.
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However, on the basis of our simulations, we think its success
could be based, at least in part, on a property models should
not have: It can fit random error. To be sure, variability is
part of all human data, but the intent of any model should
be to capture systematic trends in data sets, not surreptitiously
to capture random error within them. We also think our
worry is ironic: Massaro (198 8b) warned psychologists against
models with too much power, or (in our terms) scope.

The FLMP's ability to fit randomness is, we think, a
heretofore hidden property. Hidden properties tend, erro-
neously, to mold our views of what is being modeled. Uttal
(1990) captured this idea best:

Sometimes models may superimpose their own properties on
our concept of the object being modeled. Hence, the modeler's
conception of the object may reflect a property that the object
does not actually possess. In this sense, therefore, the model may
be more (rather than less) than the object it represents, (pp. 195-
196)

Thus, FLMP may not capture information integration better
than competing models; instead, it may simply capture all
patterns of data better, and that property may have masquer-
aded as a representation of psychological process. At mini-
mum, at least within Massaro's paradigm, we think that
comparing numbers of parameters in two models is no longer
an adequate method to begin model comparisons. We think
running the models on random data is a necessary test of
their relative scope.

Consequences of Comparing Models With
Unequal Scope

Without baseline comparisons of models run on random
data, we think any approach that proceeds by comparing
models with matched numbers of parameters may be in
jeopardy. Two general effects seem possible. First, when one
model may have a moderate advantage over another (such as
FLMP compared with the additive model), it may use that
advantage in its fits to data of individuals but not of groups,
as demonstrated in the results of Experiments 1 and 2 and in
the results of Bruno and Cutting (1988). In general, group
data are smooth; individual data are more noisy. Because
FLMP fits random noise better than the additive model, it
will be at an advantage in the noisier, individual comparisons.
Second, when one model has a large advantage (such as FLMP
compared with the partial-cue and weighted-averaging
models), it will win in virtually all comparisons when run on
human data because it generally fits all possible functions
better. Thus, the model's performance on human data cannot
be attributed to the idea that it reflects psychological process;
it reflects only the general scope of a much more powerful
model.

The problem of the relative scope in modeling, at least as
used in Massaro's paradigm, is inherited from the straightfor-
ward application of Platt's (1964) idea of strong inference.
Strong inference is like a horse race, or more particularly a
match race between two horses. One horse (one model) is
pitted against another, and the null hypothesis is scratched
from entry. Winner takes all. Because there is no way to
measure statistical error in the margin of a single win, the

horses (models) are run many times (run on sets of data from
different individuals). It now appears however, that some
models (like horses) are differentially handicapped, not so
much by their apparent abilities to fit patterned data (to run
fast) but by heretofore hidden differences in scope (steward-
ship at the track).

Conclusions

On the basis of this collection of investigations we have
three conclusions. First, given the now reasonably extensive
data base of viewers'judgments about the layout of objects in
depth beyond that offered by Bruno and Cutting (1988) and
Massaro (1988a), there is still no empirical reason to choose
between two contenders—an additive model and FLMP. To
be sure, finding interactions and other indications of subad-
ditivity impugns the additive model, but as shown by the
model fits to individual data, these results do not inherently
support FLMP. In fact, given the superior scope of FLMP the
additive model may be marginally favored, as shown in Table
7.

Second, if a researcher wishes to compare two or more
models and how they fit the data of human participants, we
suggest he or she ought to first consider how the models fit
random data. This consideration will partial out a model's
scope, its ability to fit all patterns of data that are of no interest
to a researcher, from its selectivity to particular patterns of
data that are of interest. The binomial test we propose is one
such partialing method.

Third, we suggest that parameter counting is not the only
way to evaluate the fairness of comparisons between models.
Considerations of equation length might be given equal
weight. We believe that FLMP may have garnered some of
its advantage over the other three models due to its increased
complexity, as measured by the length it takes to specify.
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