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Germany; and Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (B.C., J.E.D.), Université Libre
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Recent identification of new selenocysteine-containing pro-
teins has revealed relationships between the two trace ele-
ments selenium (Se) and iodine and the hormone network.
Several selenoproteins participate in the protection of thyro-
cytes from damage by H2O2 produced for thyroid hormone
biosynthesis. Iodothyronine deiodinases are selenoproteins
contributing to systemic or local thyroid hormone homeosta-
sis. The Se content in endocrine tissues (thyroid, adrenals,
pituitary, testes, ovary) is higher than in many other organs.
Nutritional Se depletion results in retention, whereas Se re-
pletion is followed by a rapid accumulation of Se in endocrine
tissues, reproductive organs, and the brain. Selenoproteins
such as thioredoxin reductases constitute the link between

the Se metabolism and the regulation of transcription by re-
dox sensitive ligand-modulated nuclear hormone receptors.
Hormones and growth factors regulate the expression of sel-
enoproteins and, conversely, Se supply modulates hormone
actions. Selenoproteins are involved in bone metabolism as
well as functions of the endocrine pancreas and adrenal
glands. Furthermore, spermatogenesis depends on adequate
Se supply, whereas Se excess may impair ovarian function.
Comparative analysis of the genomes of several life forms
reveals that higher mammals contain a limited number of
identical genes encoding newly detected selenocysteine-con-
taining proteins. (Endocrine Reviews 26: 944–984, 2005)
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I. Historical Aspects

SELENIUM (Se), DISCOVERED by Berzelius as early as
1817, is well known as an essential trace element (1).

Excess supply of Se is equally well known for inducing
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adverse effects. Administration of Se for prevention (2) and
even therapy of cancer (3) still remains controversial. The
characterization of the first mammalian enzyme containing
the unusual amino acid selenocysteine (Sec) in its catalytic
center, cellular glutathione peroxidase (GPx) (4, 5), initiated
a new field of research. Comparative genomics (6) and clon-
ing have revealed the complex mechanisms of the cotrans-
lational decoding of the opal stop codon UGA as codon for
the 21st proteinogenic amino acid Sec (7, 8). A relationship
between Se and hormones was first suspected from obser-
vations on disturbed fertility of male animals with a Se de-
ficiency (9) and of female animals affected by Se excess (10).
A breakthrough for the connection between Se and hormones
occurred with the simultaneous identification of type I 5�-
deiodinase (D1) as Sec-containing enzyme by three groups
(11–13). Additional studies elucidated the role of Se defi-
ciency in the pathogenesis of endemic myxedematous cre-
tinism (14, 15) and in regulating thyroid function (16, 17). In
recent years, several new families of mammalian and 25
human individual Sec-containing proteins have been cloned
and partially characterized with respect to their function
(18–21) (Table 1). The essential role of selenoproteins in the
endocrine network besides the thyroid axis is becoming ev-
ident: they are involved in peroxide degradation, cellular
redox and transcription regulation, thyroid hormone deio-
dination, spermatogenesis, and several additional, still un-
known biochemical pathways. Recently, the first mutations
in selenoproteins [SECIS binding protein (SBP) 2 and SEPN1]
have been linked to human diseases, i.e., disturbances of
thyroid hormone metabolism (22) and a rare form of con-
genital muscle dystrophy (23, 24).

II. Biosynthesis and Degradation of Eukaryotic
Selenoproteins

The essential trace element Se is incorporated into proteins
and a few modified tRNAs. Se may compete with sulfur in
the biosynthesis of methionine, in which it is stochastically
incorporated according to its nutritional availability. There-
fore, increasing consumption of Se leads to higher Se content
of proteins in the form of selenomethionine. No evidence
exists for either a saturation of this process or a significantly
altered function or metabolism of selenomethionine-contain-
ing proteins compared with their sulfur-methionine
counterparts.

In contrast, the biosynthesis of the 21st amino acid, Sec,
and its cotranslational incorporation into specific proteins
are highly regulated (25). The codon UGA not only acts as an
opal stop codon during translation, but also encodes the
translational incorporation of Sec into proteins when the
mRNA contains a distinct hairpin mRNA sequence down-
stream of the UGA codon in its 3�-untranslated region (3�-utr)
(Fig. 1). This Sec insertion sequence (SECIS), or Sec transla-
tion element, prevents termination of the translation by com-
peting for release factors that would otherwise lead to dis-
assembly of the mRNA-ribosomal complex (7, 26). In
eukaryotes, the SECIS structure recruits the SBP2 (27) and
binds the Sec-specific elongation factor (EFSec) loaded with
its tRNASec. In prokaryotes, but not archeae, SelB exerts the

function of these two proteins (28–31). Several other candi-
date proteins binding to SECIS elements are currently being
investigated (32, 33). The SBP2 specifically binds selenopro-
tein mRNAs, with no known preferences for individual SE-
CIS structures. SBP2 probably prevents termination of pro-
tein translation at the UGA codon (34) but does not protect
-tRNA (35). Mutations in SBP2 lead to impaired Se status and
reduced expression of several selenoproteins, including
plasma GPx (pGPx), selenoprotein P (SePP), and type II
5�-deiodinase (D2), resulting in abnormal thyroid hormone
metabolism (22).

In addition to the eukaryotic homolog(s) of SelB, EFSec,
Sec synthesis, and cotranslational insertion into the protein
chain require: a specific Sec tRNA (Trsp), a Sec synthetase,
and a selenophosphate synthetase (SPS2, SelD). The specific
tRNASer(Sec), encoded by the Trsp gene, has been identified in
most phyla (36, 37). Knockout of this gene in the mouse is
lethal shortly after implantation, but heterozygous mutants
are viable (38). Repletion of Se to Se-deficient rats restores
normal steady-state levels and tissue distribution of the
tRNASer(Sec) isoacceptor forms, and posttranscriptional mod-
ification of the tRNASer(Sec) influences its stability and func-
tion (8, 39). The transcription of the tRNASer(Sec) gene in the
selenocysteyl mouse is regulated by a specific factor (Staf)
under the control of several hormones (40).

The synthesis of Sec occurs in a complex reaction by pyr-
idoxal phosphate cofactor-dependent selenophosphate in-
corporation into the serine of the serine-loaded tRNASer(Sec)

via the enzyme Sec-tRNA synthase. The biosynthesis of sel-
enophosphate is catalyzed by SelD. One form of this enzyme,
encoded by the SelD2 or sps2 gene, is by itself a Sec-contain-
ing protein (41), although the role of the non-Sec form SelD1
is still controversial (42, 43). Se supply controls the first step
in the biosynthesis of Sec-containing proteins. The compo-
nents required for cotranslational Sec incorporation into pro-
teins are homologous to the systems so far defined in pro-
karya, archeae, and Drosophila (37, 44–48). Disruption of
selenoprotein biosynthesis in Drosophila by inactivation of
SelD affects cell proliferation and development (48). Mutants
lacking the translation elongation factor SelB/EFSec are vi-
able and fertile, even in the complete absence of selenopro-
tein biosynthesis (49). In contrast to the prokaryotic seleno-
protein mRNA, in which the SECIS element lies immediately
downstream of the UGA codon, in eukaryotes the SECIS
element is located up to 6 kB downstream of the UGA codon
in the 3�-utr. Translation of eukaryotic Sec-containing pro-
teins, albeit at low efficiency, can be achieved in cell culture
systems from cotransfected expression plasmids (50, 51). It is
improved with tRNA(Ser)Sec and SelD2. In proteins, Sec exerts
its prominent and specific functions due to its high redox
potential and the low pKa value (5.7) of its selenol (-SeH)
group compared with that of most of the sulfhydryl (-SH)
groups of cysteine residues (pKa � 8.5). The -SeH group of
Sec proteins is readily oxidized by H2O2 similar to some few
acidic cysteine residues in selected proteins (52).

Sec degradation is catalyzed by pyridoxal-5�-phosphate-
dependent Sec lyase, which is highly specific for Sec and does
not metabolize cysteine (53). It forms alanine from Sec and
recycles Se probably as elemental Se that may then be co-
translationally incorporated into tRNASer(Sec) by SelD2. Sec
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TABLE 1. Eukaryotic Sec-containing proteins

Enzyme/protein Abbreviation Reaction catalyzed Tissue, cellular distribution Human gene
locus Ref.

Glutathione
peroxidases

GPx

Cytosolic cGPx (GPx-1) H2O2 � 2 GSH3 2 H2O � GSSG Many tissues and cells, cytosolic 3q11-q13.1 18, 576, 660
Plasma or

extracellular
pGPx (GPx-3) H2O2 � 2 GSH3 2 H2O � GSSG Plasma, kidney, Gastrointestinal

tract, thyroid; secreted
5q32 18, 576, 660

Gastrointestinal GI-GPx (GPx-2) H2O2 � 2 GSH3 2 H2O � GSSG Gastrointestinal tract; cytosolic 14q24.1 18, 576, 660
Phospholipid-

hydroperoxide
PHGPx (Gpx-4) ROOH � 2 GSH3 ROH � 2 GSSG

� H2O
Many tissues and cells, testes;

cytosolic and membranes, various
splice forms

19p13.3 18, 575, 576,
660

Glutathione
peroxidase

(GPx-6) H2O2 � 2 GSH3 2 H2O � GSSG Embryos and olfactory epithelium 6p22.1 20

Deiodinases
Type I 5�D1 rT33 3,3�-T2 Liver, kidney, thyroid; many tissues 1 p32-33 227, 232, 661

T43 T3
Type II 5�D2 T43 T3 Brain, pituitary, placenta 14q24.2-3 227, 232, 661

rT33 3,3�-T2 brown adipose tissue
Type III 5D3 T33 3,3�-T2 Brain, not in adult liver, not in 14q32 227, 232,

T43 rT3 pituitary and thyroid 356, 661
Thioredoxin

reductases
TrxR Trx-S2 � NADPH � H�3 Trx-

(SH)2 � NADP�
151, 157, 622

1 TrxR1 Liver, kidney, heart, bone, cytosolic 12q23-q24.1 104, 662
2 TrxR2 Mitochondrial, testes 3q21.2 663
3 TrxR3 Liver, kidney, heart, mitochondrial 22q11.21 115, 128,

662, 664
SelZF1,2 TrxR-like function, alternative splice

form of TrxR3
63

Oxidized Trx
(Trx-ox) and
GSSG
reductase

TGR Trx and GSSG reductase, dual
function

3p13-q13.33 155

Selenophosphate
synthetase

SPS2, SelD2 Synthesis of selenophosphate Testis, liver, many tissues 41

Unknown function
Selenoprotein P SePP Inactivation of peroxinitrite,

antioxidative defense, Se transport
Liver, many tissues, secreted 5q31 70, 78

Selenoprotein W SelW Many tissues, sex-specific
expression

19q13.3 637

Prostate
epithelial-
specific
selenoprotein

PES 300-kDa holoenzyme, 32 and 15-kDa
subunits, Pi 4.5

Prostate 602

p15 H2O2 degradation, 32-kDa
holoenzyme Pi 7.9; associated with
UGTR in ER and involved in
quality control of misfolded
proteins

Thyroid, parathyroid, prostate,
granulocytes, T cells

1p31 64, 67, 593,
665

p18 Liver, spleen, brain, kidney 666
Small

selenoproteins
7 kDa, 5 kDa, 4 kDa, 3 kDa Adrenals, brain, epididymis,

pituitary, thyroid, prostate, etc.
667

SelH 11q12.1 20
SelI Phosphotrans-

ferase
2p23.3 20

SelK 3p21.31 20
SelM 22q12.2 20
SelN, SEPN1 Mutations cause rigid spine

syndrome (MIM602771)
Pancreas, ovary, prostate, spleen;

ubiquitous
1p36.11 23, 63

SelO 22q13.33 20
SelR Methionine

sulfoxide
reductase B

Redox-active 16p13.3 62

SelS Responsive to low glucose and stress
of the endoplasmic reticulum

15q26.3 20, 524

SelT Redox-active Ubiquitous 3q24 62
SelV Seminiferous tubule 19q13.13 20
SelX Pancreas, liver, kidney leukocytes;

many tissues
16 63

SelY Related to 5�D2 Inner organs 63

UGTR, UDP glucose glycoprotein glucosyltransferase; ER, endoplasmic reticulum; Pi, isoelectric point.
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lyase is distantly related to the Escherichia coli enzyme NifS,
which catalyzes the desulfurization of l-cysteine to provide
sulfur for iron-sulfur clusters (42, 53). In contrast, selenome-
thionine is metabolized by the same enzymes handling
methionine.

III. Recently Discovered Eukaryotic Selenoproteins

A. Selenoenzymes and new selenoproteins with
unknown functions

The first discovered mammalian selenoprotein was the
cytosolic GPx (cGPx) (4, 5). Four other Se-dependent per-
oxidases have been characterized in the last few years (Table
1 and Fig. 2). A fifth, highly homologous non-seleno-GPx
(GPx-5), which does not contain Sec and is controlled by
androgens, has been described in epididymis and testes of
rodents and monkeys (54–56), in bovine keratinocytes, and
in eyes and human skin (57, 58). Apparently, the mRNA of
this GPx-5 is not translated into a functional protein in hu-
man epididymis (59). A sixth GPx form, highly abundant in
the testes, which has no homolog in the mouse, has recently
been identified in the systematic in silico screen for seleno-
proteins in the human genome (20).

The selenoprotein nature of the enzyme D1 had been es-
tablished by two groups (11, 12) using biochemical and in
vivo metabolic labeling approaches. Cloning of D1 subse-
quently identified a functional UGA and the SECIS structure
in its mRNA (60). D1 was the first member of a second group
of selenoproteins, the iodothyronine deiodinases (Fig. 3). The
cloning of the D1 gene revealed the structural elements re-
quired for translation and identification of the SECIS struc-
ture (13, 60). Recently, another Se-containing enzyme family
of three members, the mammalian thioredoxin (Trx) reduc-
tases (TrxRs) (Fig. 4), was identified. Their prokaryotic or-
thologs do not contain Se (61).

Several other Sec-containing proteins (Table 1) whose bi-
ological functions are unknown (PES, p15, SelH, SelI, SelK,
SelM, SelN, SelO, SelR, SelS, SelT, SelV, SelX, and SelZ) or not
yet fully established (SelP, SelW) have been characterized or
cloned during the last 5 yr (20, 62–65). Most of these proteins

appear to be involved in redox reactions, such as the me-
thionine sulfoxide reductase B (SelR) (66). They metabolize
unusual substrates or contribute to the reduction of reactive
oxygen species (ROS) such as peroxides or peroxinitrite.
Sep15, highly expressed in human thyroid, prostate, and
testes, seems to be closely associated with the endoplasmic
reticulum resident enzyme UDP-glucose-glycoprotein-glu-
cosyltransferase. It may participate in quality control of mis-
folded, newly synthetized proteins (67). In addition, Sep15 is
involved in growth inhibition and apoptosis (68). The SEPN1
gene has been discovered by in silico cloning based on the
SECIS motive (63). It is the first link of a selenoprotein to a
rare human congenital disease, the rigid spine syndrome, a
form of muscular dystrophy (23, 69).

SePP, a glycosylated human plasma protein containing up
to 70% of plasma Se, is an unusual selenoprotein that con-
tains up to 10 Sec residues per molecule in most mammals,
12 in bovine species, and up to 17 in zebrafish. Recent re-
search implies both a low efficiency peroxidase function and
the binding of heavy metals such as mercury or cadmium (70,
71). SePP, which has strong affinity for heparin, avidly binds
to the endothelial surface and might protect the endothelium
from oxidative damage (18, 72, 73). Secreted SePP mainly is
of hepatic origin, but several tissues express its mRNA. If
translated at adequate Se supply, SePP might function in
extracellular compartments or at cellular surfaces as a com-
ponent of cellular antioxidative defense systems and actively

FIG. 1. Biosynthesis of selenoproteins and incorporation of Sec at
UGA codons. Cotranslational incorporation of the 21st proteinogenic
amino acid Sec into proteins occurs at the UGA codon, which recruits
Sec-loaded tRNASer(Sec) (SelC) to the ribosome via an interaction of the
Sec-specific translation factor EFSec with the SECIS binding protein
2 (SBP2). SBP2 recognizes the 3�-utr hairpin loop SECIS mRNA
structure found in all mRNAs encoding Sec-containing proteins.

FIG. 2. Mechanism of reaction of GPx (A) and deiodinase (B). The
selenoproteins GPx and D1 catalyze peroxide (ROOH) degradation
respectively T4 deiodination in a two-substrate ping-pong mechanism
of reaction. Peroxide reduction by the GPx forms an oxidized selenenyl
residue (E-SeOH) in the active site of the enzyme GPx, which is
regenerated by reduced (di-)thiols (RSH) (A). Deiodination of the
thyroid hormone T4 generates the oxidized E-SeI intermediate that is
reduced by (di-)thiols (RSH) while iodide is released (B).
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scavenge peroxinitrite (18, 74–77). The successful generation
of two viable mouse knockout models for SePP (78, 79) pro-
vides strong evidence for the initial hypothesis that SePP
serves as a Se transport and delivery protein for other tissues.
In these models nutritive Se accumulates in the liver, the
main site of SePP synthesis, whereas other tissues including
brain show markedly lower Se content and activities of sel-
enoproteins. This may induce ataxia and impaired growth
(78) due to disturbance of the GH axis (see Section III.B).
Increased selenite in drinking water can rescue the mouse

phenotype (33, 80). Other cytoplasmic and plasma Se-bind-
ing proteins are known (e.g., SP56) (81).

According to metabolic labeling experiments with 75-se-
lenite in severely Se-depleted rats, 2-D gel electrophoretic
autoradiographic patterns reveal more than 25 individual
selenoproteins (82). These might represent transcripts with
different start sites and promoters and translation products
of alternative splice forms of the 25 human or 24 mouse
selenoprotein-encoding genes. Several new genes encoding
putative selenoproteins are currently being characterized
(Table 1) (6, 20, 62, 63, 83, 84). The proteins were identified
by the in silico approach based on comparative genomics and
characteristic sequence and structure motifs of selenopro-
tein-encoding genes.

B. Preferential selenium supply of the vital
endocrine organs during deficiency and repletion

A general observation during Se depletion was the reten-
tion or redistribution of Se to the brain, the endocrine organs,
and the reproductive organs, whereas liver, muscle, skin, and
other large tissues rapidly lose their Se (85). In these tissues,
Se is rapidly mobilized from cellular cGPx stores, whereas
expression of other selenoproteins such as phospholipid hy-
droperoxide GPx (PHGPx) and GI-GPx, the deiodinases (es-
pecially type II and type III), and TrxRs is hardly affected or
may even be increased (type I 5�D). Uptake of Se compounds
into cells is assumed to occur via anion transporters (86–91).
Selenite is assumed to be transported by the sulfate trans-
porter (92, 93). In the hierarchy of biosynthesis of seleno-
proteins during Se repletion, some mRNAs are preferentially

FIG. 3. Deiodination of thyroid hormones by 5�- and 5-deiodinases. The prohormone L-T4 is deiodinated in the 5�-position of the phenolic ring
to yield the active hormone T3 by the two selenoproteins D1 and D2. Deiodination in 5-position of the tyrosyl ring produces rT3, which is devoid
of thyromimetic action.

FIG. 4. The Trx-TrxR system. The Trx-TrxR enzyme system links the
NADPH generation by the pentose phosphate cycle to the reduction
of several redox-active endogenous or xenobiotic substrates and rep-
resents a key component of the cellular redox regulation and control.
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translated into selenoproteins. This preference may be di-
rected by the two forms of SECIS elements (29, 94, 95). Full
expression of SePP requires a greater Se intake than does full
expression of pGPx. This suggests that SePP is a better in-
dicator of Se nutritional status than is GPx (96). In general,
those proteins residing high in the hierarchy of Se retention
during Se depletion also appear to lead in the priority for
repletion (97–102).

IV. Hormonal Regulation of the
Thioredoxin/Thioredoxin Reductase System

A. Expression and secretion of thioredoxin and
thioredoxin reductase

Eukaryotic TrxR isoenzymes have been identified (61, 103–
117). Trx, a potent low molecular weight reductant (118–120),
is involved in many intracellular and extracellular redox
reactions. It also has been proposed as a CD4� T cell-secreted,
B cell-promoting growth factor with possible involvement in
regulation of IL-2/Tac receptor function (121–123). It also
may be a chemoattractant for neutrophils, monocytes, and T
cells (124), possibly influencing autoimmune processes and
inflammatory reactions as well. Cytokine- or stress-depen-
dent secretion of TrxR in normal and transformed cells (125)
suggests a potential role for the extracellular TrxR-Trx sys-
tem in antioxidant defense and prevention of immune attack
(126).

B. Biochemistry and structure of thioredoxin reductase

Mammalian TrxRs are flavin adenine dinucleotide-con-
taining flavoproteins using nicotinamide adenine dinucle-
otide phosphate (NADPH) � H� as their cofactor system,
and therefore the pentose phosphates cycle as reducing path-
way. Their active site contains a reduced pair of cysteine
residues in the N-terminal region. They differ from gluta-
thione reductases by a conserved C-terminal GCUG se-
quence (U stands for Sec) that is essential for enzyme activity.
Lack of Sec incorporation and premature termination of the
polypeptide chain at the C residue in the absence of adequate
Se supply produces an inactive protein (110, 111). A similar
C-terminal structure has also been identified in one of the
TrxR proteins of Caenorhabditis elegans, but not in a second
TrxR enzyme more similar to the prokaryotic TrxR without
the Sec residue (127). This essential penultimate Sec residue
in mammalian TrxR may act as a cellular redox sensor for
regulation of gene expression (128) or in apoptosis (129).
TrxRs are members of the pyridine nucleotide-disulfide ox-
idoreductase family, which includes glutathione reductase,
lipoamide dehydrogenase, and mercuric ion reductase.

The discovery of several TrxR genes and their splice vari-
ants (at least three isoenzymes: TrxR1, -2, and -3) (61, 117)
suggests a specific compartmentalized and fine-tuned reg-
ulation of redox-sensitive proteins and signaling cascades
(130).

C. Thioredoxin reductase and thioredoxin are involved in
signal transduction and regulation of gene expression

1. Redox-regulated transcription factors. Several of the redox
reactions modulated via the Se Trx/TrxR system are medi-

ated through the cellular redox/DNA repair protein redox
factor 1 (Ref-1). This stimulates DNA-binding activity of
several classes of redox-regulated transcription factors, such
as activator protein 1 (AP-1), nuclear factor �B (NF�B), Myb,
Ets, and the redox-sensitive nuclear receptor family (131–
135). Several signals have been found to translocate TrxR into
the nuclear compartment where preformed Ref-1 and TrxR1
exist. Interaction with transcription factors AP-1 and p53
may result. The signals include: activation of protein kinase
C (PKC), stimulation by cis-diaminedichloroplatinum II, ox-
idative stress, cytokines, lipopolysaccharide, or UV irradia-
tion (133, 136–139) (Fig. 5).

Direct effects of Se compounds and TrxR- or Trx-depen-
dent modulation of redox-sensitive signaling pathways have
been shown for NF�B (140), AP-1 (jun and fos) (141), Sp1
(142), glucocorticoids (143), estradiol (134, 135, 144), retinoids
(145), and other nuclear receptor systems, Janus-activated
kinases, MAPK, protein-tyrosine phosphatases (128), thyroid
transcription factor-1 (TTF-1), and p53 (136, 143). The Sec
residue of TrxR and other selenoproteins could act as a sensor
for cellular ROS (128), which themselves regulate the phos-
phorylation cascades.

2. Modulation of intracellular signaling cascades by TrxR/Trx.
Involvement of the TrxR/Trx system in transcription regu-
lation and proliferation has been demonstrated for several
cell types. In A431 cells, epidermal growth factor (EGF) leads
to H2O2 and ROS production, similar to direct H2O2 stimu-
lation, with oxidation of the Sec residue of TrxR and oxida-
tive inhibition of phosphotyrosine phosphatase 1B and ty-
rosine phosphorylation of proteins. Trx reduces
phosphotyrosine phosphatase 1B and regenerates the sys-
tem. Prolonged incubation with EGF or H2O2 induces neo-
synthesis of TrxR with its regulatory consequences (128).
Trx1 is also induced by many variants of “stress,” such as UV
radiation, x-rays, viral infection, oxidative stress, and several
cytostatic (cis-platinum II) compounds or redox-active

FIG. 5. Subcellular localization of Trx 1 and TrxR 1 in COS-7 cells.
Two cells are shown with daylight microscopy (upper left) and DAPI
nuclear staining (upper right). A green fluorescent protein-Trx 1 fu-
sion protein was transiently transfected into COS-7 cells and showed
faint cytosolic and strong nuclear staining under routine cell culture
conditions (lower left, the second cell is not transfected). Antibody-
based staining of TrxR 1 in these two cells using a red fluorescence-
labeled secondary antibody showed a very similar pattern of cytosolic
and nuclear staining in both cells. (The primary antibody was given
by K. Becker, Giessen; the experiments were performed by K. Pau-
nescu and F. Jakob).
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agents (136). Selenite inhibits UVB-induced cell death (146)
and cell death enzymes, and these effects are reversed by
dithiothreitol (DTT) or �-mercaptoethanol compounds.

3. TrxR/Trx-modulated effects on proliferation and tissue specific
gene expression. Trx enhances, whereas oxidants inhibit, the
effect of various transcription factors and nuclear receptors:
the estrogen receptor � and glucocorticoid receptor (135,
147). Dominant negative Trx mutants or antisense Trx plas-
mids inhibit breast tumor cell growth and revert the trans-
formed phenotype (148, 149). Trx also augments redox-sen-
sitive DNA binding activity of the tumor suppressor protein
p53, (also activated by Ref-1), and thus stimulates p21 pro-
duction. A transdominant inhibitory mutant of Trx sup-
pressed the effects of Trx on Ref-1, p53, and p21 activation
(136).

Alterations of intracellular glutathione levels have been
shown to differentially affect gene expression in the differ-
entiated thyroid cell line FRTL-5 (150). Depletion of intra-
cellular glutathione by treatment of cells with the inhibitor of
�-glutamylcysteine-synthetase butylsulfoxime specifically
impairs the transactivation potencies of the thyroid-enriched
transcription factors Pax-8 and more so of TTF-1 on the
promoters of thyroglobulin (Tg) and to a lesser extent thy-
roperoxidase (TPO) genes. Se may influence thyroid gene
expression directly via selenoprotein or indirectly through
modulation of the cellular redox status.

4. Additional substrates of the TrxR/Trx system. Apart from its
action on cellular redox components as an antioxidative sys-
tem, TrxR appears to be involved in reduction of Trx per-
oxidase and peroxiredoxins, enzymes that degrade H2O2 to
water (151–153). Furthermore, TrxR and Trx supply reducing
equivalents for cellular redox-regulated enzymes such as
ribonucleotide reductase, a factor in DNA biosynthesis.
Other TrxR substrates include several drugs, dehydroascor-
bic acid and ascorbyl free radical, vitamin K3, lipoic acid and
lipid hydroperoxides, and NK-lysine, a cytotoxic peptide
produced by natural killer cells (154, 155). This broad spec-
ificity is unusual but might be due to the C-terminal penul-
timate exposed Sec residue of TrxR (156, 157).

V. Selenium, Cell Defense, and Thyroid Pathology

A. Selenium and thyroid pathology in humans:
endemic cretinism

1. Introduction. Within populations with severe endemic io-
dine deficiencies, higher percentages of mental retardation

occur. This complication of iodine deficiency is called an
endemic cretinism (158). Its consequences are much more
damaging than the main characteristic of such endemias:
endemic goiter. Because cretinism may be an extreme man-
ifestation among the prevalent general mental retardations,
its pathogenesis is of considerable social and medical inter-
est. Two characteristic forms of cretinism can be distin-
guished: myxedematous cretins and neurological cretins (Ta-
ble 2). The former show, aside from their mental retardation,
signs of severe hypothyroidism, developmental retardation
(i.e., dwarfism), myxedema, and—unlike the normal popu-
lation of the area—they present no goiter. Neurological cre-
tins are almost normally developed, do not exhibit signs of
hypothyroidism, have goiters as the rest of the population,
but have various neurological deficits. These sometimes in-
clude deaf-mutism. Pure forms of myxedematous cretinism
predominate in Central Africa, but there are neurological
cretins and myxedematous cretins with neurological defects.
In other endemic regions like New Guinea or in South Amer-
ica, only neurological cretinism is detected. Both forms, along
with intermediates, coexist in India (159, 160). The concept
that the two syndromes are linked to a common cause, i.e.,
iodine deficiency, is now well accepted (161–164). Neuro-
logical cretinism stems from deficient thyroid hormone in
early fetal development (165–167). Myxedematous cretinism
is associated with thyroid insufficiency during late preg-
nancy and early infancy (159, 168, 169). The distinct geo-
graphical distribution of the two forms of cretinism, as well
as their different phenotypes, suggests that other factors are
involved. Among these are: 1) autoimmune disorders and
TSH inhibitory antibodies (170, 171); 2) nutritional habits like
cassava consumption and the thiocyanate overload that en-
sues, impeding iodide trapping (172); 3) trace element defi-
ciencies like zinc, copper, manganese, iron, and Se (173–175)
through their involvement in enzymes implicated in cell
defenses; 4) vitamin A and E deficiencies also involved in cell
defenses against free radical attacks (176); and 5) enzyme
deficiencies like superoxide dismutase deficiency or glucose-
6-phosphate-dehydrogenase, possibly leading to decreased
efficacy in glutathione reduction (176).

The role of hereditary factors has not been elucidated in
detail. For the Central Africa endemia, only thiocyanate and
Se have been seen to significantly interact with thyroid hor-
mone metabolism (14). They also may contribute to thyroid
destruction (161–164, 177).

TABLE 2. Features of myxedematous and neurological endemic cretinism

Myxedematous cretinism Neurological cretinism Sporadic congenital hypothyroidism

Severe hypothyroidism (myxedema, dry
skin)

Euthyroid (Severe) hypothyroidism

No goiter, thyroid involution Goiter Goiter or athyroid dysgenesis
Dwarfism, retarded bone and sexual

development
“Normal” growth Retarded bone and sexual development

Spastic diplegia, squint
Deaf-mutism, neurological deficits Hearing deficits, inner ear defects

Mental retardation Mental retardation Mental retardation
Partially reversible Irreversible (Partially) reversible
Combined iodine and Se deficiency and

isothiocyanate ingestion
Iodine deficiency Various causes from developmental to gene

defects
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2. Myxedematous cretinism resulting from thyroid destruction in
early life. Myxedematous cretins are hypothyroid as shown
by their clinical (skin texture, sensitivity to the cold, slow-
ness, slow reflexes), biological (low thyroid hormone levels),
and radiological characteristics (bone development retarda-
tion) (178). Signs of developmental (height) and mental re-
tardation are proportional to the degree of hypothyroidism,
which suggests a causal relationship (162–164). All these
characteristics are similar to those of sporadic congenital
hypothyroidism.

Primary thyroid insufficiency causes hypothyroidism as
shown by the high serum TSH levels and the absence of
thyroid response to additional TSH administration. The in-
sufficiency itself results from thyroid atrophy, presumably
from thyroid damage, and as demonstrated by the absence
of goiter, a low radioiodine uptake, a reduced thyroid ac-
tivity under radioiodide scanning, and a rapid radioiodine
turnover (161, 162, 164, 179). A unique autopsied thyroid of
a Congolese cretin showed severe fibrosis with a few over-
active follicles constrained in a fibrotic network (Fig. 6). Thy-
roid destruction is a slow process (169, 180). It affects the
population well beyond the pathology of myxedematous
cretinism (181).

In myxedematous cretins, the damage may start in utero,
and most of the damage will occur around birth and during
the first years of life (169) when brain development depends
on the presence of thyroid hormone. This onset of hypothy-
roidism in severe cretinism, according to bone age, dates
from before or shortly after birth (178).

3. Thyroid fibrosis as a common feature of endemic cretinism and
goiter. The description of a thyroid destruction process in an
area of endemic goiter, i.e., thyroid hyperplasia, may appear
paradoxical. However, the same pathological process can be
proposed to explain the coexistence of goitrous subjects with
myxedematous subjects having a destroyed thyroid. Iodine
deficiency leads to high TSH, thyroid proliferation, and goi-
ter formation to such an extent that goiter by itself impairs
efficient use of iodine and thyroid hormone synthesis and
thus becomes a maladaptation to iodine deficiency (182). In
the peculiar condition of Central Africa (Se deficiency, thio-
cyanate exposure) pronounced TSH stimulation leads to sig-
nificant thyroid necrosis, which further increases thyroid
proliferation. Thyroid necrosis promotes fibrosis within the
wounded thyroid, which may impede proliferation and tis-

sue repair (183). As a result, the evolution of hypothyroid
subjects to develop a big goiter or to experience gland de-
struction depends on which of the two processes, prolifer-
ation or fibrosis, wins. The destruction process affects the
population on a large scale. In severe cases people become
deeply hypothyroid and develop myxedema. Thyroid dam-
age within the rest of the population decreases the efficacy
of iodine supplementation programs (181) by decreasing io-
dide trapping and impairing the adaptive mechanisms (162).
Although some myxedematous cretins may improve their
thyroid status and even resume a euthyroid status under
high iodine supplementation, others may not (168, 169, 180,
184). The fibrotic process may be important for the irrevers-
ibility of thyroid destruction by impeding repair through the
cell proliferation that follows necrosis in a process akin to
liver cirrhosis (179).

4. Biochemical relation of Se deficiency to thyroid destruction.
Other trace element deficiencies could act together with io-
dine deficiency in inducing thyroid destruction (173). Trace
elements involved in GPx and superoxide dismutases en-
zymes activities—i.e., Se, magnesium, copper, and zinc—
were lacking in Idjw Island (Central Africa) in two compa-
rably, iodine-deficient areas, one with prevalent
myxedematous cretinism, the other without. Only Se defi-
ciency correlated both with the geology and with the distri-
bution of myxedematous cretinism.

The underlying hypothesis was that the thyroid gland,
which produces H2O2 for thyroid hormone synthesis, is ex-
posed to free radical damage if H2O2 is not properly reduced
to H2O by intracellular defense mechanisms or during the
hormone synthesis process (185). H2O2 is essential for the
TPO enzyme in the process of iodide oxidation. In the human
thyroid gland, the H2O2 generating system is under the con-
trol of TSH through the stimulation of the phospholipase
PIP2-IP3-Ca2�cascade (186, 187). When iodine supply is suf-
ficient, this H2O2 generation is thought to be the limiting step
for thyroid hormone synthesis; H2O2 is reduced to H2O dur-
ing the process of synthesis. However, the KM of TPO for
H2O2 is high, and much higher amounts of H2O2 are pro-
duced than consumed by the iodination process (188, 189),
potentially exposing the thyroid gland to free radical damage
(185). The H2O2 exposure is greatest with maximal TSH
stimulation. In human thyroid slices, high levels of TSH
increase the generation of H2O2 up to 13 times the level

FIG. 6. Fibrotic thyroid of a myxedematous cretin. Paraffin sections from an African cretin. The thyroid structure was modified and highly
fibrous. A, , Some nodules had a reduced size and comprised small follicles with cuboidal cells (�150). They were surrounded by a prominent
and loose connective tissue, richly vascularized. B, Other greater nodules were made of large follicles compressed by a thick fibrous capsule
(arrow) (�150). Their colloid was heterogenous, containing cell debris and dense aggregates of Tg or calcified psammoma bodies. (B. Contempré
and I. Salmon, unpublished observations).
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produced by activated leukocytes (188, 189). TSH secretion
is acutely stimulated at birth with the postnatal TSH rise and
chronically at all times under iodine deficiency conditions.

Protection against H2O2 and resulting free radicals entails
vitamins C and E and enzymes such as catalase, superoxide
dismutase, and Se-containing enzymes. Originally, GPx was
the only identified selenoenzyme (4, 5, 173, 190). However,
other Se-dependent enzymes are present in the thyroid and
involved in antioxidant defenses (4, 74, 107, 191–193). PHGPx
is an example (194, 195). Thus, iodine deficiency increases
H2O2 generation, whereas Se deficiency decreases H2O2
disposal.

5. Epidemiological studies. Epidemiological surveys suggested
concomitant Se and iodine deficiencies where myxedema-
tous cretinism is highly prevalent in Central Africa, i.e., in the
goiter belt crossing the Congo/Zaire (173, 176, 196). How-
ever, a similar association of iodine and Se deficiency in Tibet
and in China does not lead to myxedematous endemic cre-
tinism. Thus, iodine and Se deficiencies do not appear suf-
ficient for thyroid destruction. Another important factor in
the pathogenesis of endemic goiter in Africa had already
been well identified and documented: thiocyanate. Thiocy-
anate overload results from cassava consumption, a staple in
Central Africa, but not Tibet and China. Cassava roots con-
tain the cyanogenic glucoside linamarin (197, 198). Linama-
rin metabolism releases cyanide, which is detoxified to thio-
cyanate, a known goitrogen (198). It competes with iodide for
trapping by the sodium iodide symporter and for oxidation
by the TPO (199). Thiocyanate induces both a release of
iodide from the thyroid cell and a decrease of thyroid hor-
mone synthesis. Experimental and epidemiological studies
have shown that thiocyanate overload aggravates the sever-
ity of iodine deficiency and worsens its outcome (177, 198,
200). However, the common association of these two factors
in Central Africa is not sufficient to explain the more re-
stricted prevalence of myxedematous cretinism (196).

6. Se deficiency increases the sensitivity to necrosis in various
models. Neither in the thyroid nor in other tissues have ex-
periments shown a deficiency restricted to Se (177, 201, 202).
Obvious necroses have only been documented when Se de-
ficiency combines with vitamin E deficiency or additional
stressors that lead to an additional decrease in cell defense
(202–207). Under these conditions, agents such as paraquat,
diquat, or carbon tetrachloride induce necrosis in the liver
(202–207).

Myopathy has also been reported in Se-deficient calves
that have exercised to excess (208, 209). In the cardiomyop-
athy of Keshan disease described in China in association with
Se deficiency, the proposed additional stress is more com-
plex. Se deficiency would first facilitate somatic viral muta-
tions in the coxsackie B3 virus, which in turn would become
more aggressive for the Se-deficient heart and induce ne-
crosis (202, 210). Water pollutants, i.e., fulvic acid, leading to
superoxide production, can induce joint damage in mice
(202, 211–213). In this disease, aflatoxins may also play a role.
Moreover, a statistical relation between iodine deficiency in
association with Se deficiency has been recently shown in the
Kashin-Beck disease, suggesting that iodine deficiency plays

a role in the etiology (214). Thus, Se deficiency per se, in the
thyroid as in other tissues, is not sufficient for, but facilitates
tissue destruction.

B. Experimental thyroid model

Experiments in rats failed to reproduce major thyroid
damage from the single association of Se and iodine defi-
ciencies (15). However, Se deficiency increases the sensitivity
of the thyroid gland to necrosis caused by iodide overload in
iodine-deficient thyroid glands (215–220). Another group
failed to repeat this finding (221). Se deficiency increases the
inflammatory reaction initiated by iodide overload that then
evolves to fibrosis, whereas the non-Se-deficient thyroid ex-
hibits no fibrosis (222). Fibrosis was associated with in-
creased fibroblast proliferation and decreased thyroid fol-
licular cell proliferation (222). TGF� was prominent in
thyroid macrophages in Se deficiency and was proposed to
be responsible for both effects (177, 183). Indeed, TGF� stim-
ulates the proliferation of fibroblasts and promotes fibrosis,
and on the other hand it impairs TSH-induced proliferation
(223). TGF�-blocking antibodies do the reverse, blocking the
evolution of the thyroid to fibrosis (177, 183).

The overload of iodine in iodine- and Se-deficient rats does
not mimic conditions leading to myxedematous cretinism.
Thiocyanate overload instead of iodine might elicit the ne-
crosis. It would aggravate the effects of iodine deficiency by
competing with iodide for transport and generate toxic de-
rivatives as well. Indeed, thiocyanate administration to io-
dine- and Se-deficient rats causes acute inflammation of the
thyroid followed by extensive and prolonged fibrosis and
atrophy of thyroid follicles.

The association of three factors, i.e., iodine and Se defi-
ciencies plus thiocyanate overload, mimics in rats the phe-
notype of Central Africa myxedematous cretinism (177). Cor-
rection of the iodine and Se deficiencies appears the logical
prevention strategy. Correcting the Se deficiency first would
be a daring strategy, because it induces T4 deiodination and
consequently increases loss of scarce iodine, which worsens
the hypothyroidism and might lead to catastrophic thyroid
failure (224).

C. Selenium deficiency and neurological cretinism

All three iodothyronine deiodinases are selenoenzymes,
and Se deficiency decreases the type I and II enzyme activ-
ities by two different mechanisms (see Section VI). Type II
and III deiodinases appear more resistant to Se deficiency.
The low relative incidence of neurological cretinism in Africa
might result from Se deficiency; low T4 deiodination in the
mother and in the embryo would allow higher net T4 supply
to the fetal brain, thereby mitigating at this level the decrease
in maternal T4 due to iodine deficiency (166, 167, 180, 224).
However, experiments in rats did not demonstrate higher T4

or T3 levels in fetal brains of Se-deficient mothers with iodine
deficiency (225). Although this evidence does not exclude the
postulated mechanism in humans, it certainly does not sup-
port it.
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VI. Selenoproteins and the Thyroid Axis

A. Deiodinase enzymes—selenoproteins activating and
inactivating thyroid hormones

The deiodinase isoenzymes constitute the second family of
eukaryotic selenoproteins with identified enzyme function.
Deiodinases catalyze the reductive cleavage of aromatic C-I
bonds in ortho position to either a phenolic or a diphe-
nylether oxygen atom in iodothyronines (Fig. 3). The exact
mechanism of these reactions and their possible physiolog-
ical cofactors remain unknown. In vitro, strong dithiol re-
ductants such as DTT or dithioerythreitol (DTE) act as co-
substrates in this ping-pong sequential two-substrate
reaction releasing free iodide from the enzyme intermediate
or iodothyronine substrate. Three enzymes catalyzing iodo-
thyronine deiodination have been identified, which differ in
their substrate preference, reaction mechanism, inhibitor
sensitivity, tissue- and development-specific expression, and
regulation by their substrates or products as well as by other
physiological factors and susceptibility to pharmacological
agents (226–228).

1. The selenoprotein D1. Type I iodothyronine D1 is the most
abundant and best characterized of the three deiodinases
(Table 3). D1 was established as a selenoprotein by a com-
bination of metabolic in vivo labeling of the protein in Se-
deficient rats with 75-selenite and concomitant in vitro af-
finity labeling of its active site with N-bromoacetyl
derivatives of thyroid hormones (11, 12). These studies re-
vealed the 27-kDa substrate binding subunit of D1 (229),
which only functions as intact homodimer (230, 231), and

established that one Se atom was present in the 27-kDa sub-
unit active site (11). The tissue distribution and regulation of
this 27-kDa subunit parallels that of the D1 activity in the rat,
various cell lines, and other species. The cloning of the cDNA
encoding the D1 27-kDa subunit and the identification of an
in-frame UGA codon and a 3�-utr SECIS sequence, essential
for translation of a functional D1 enzyme, confirmed the
selenoprotein nature of D1 and later of other eukaryotic
selenoproteins (13, 60). Subsequently, D1 genes have been
cloned, and their products have been characterized in many
eukaryotic species (232, 233). The 17.5-kB gene of the human
D1 has been mapped to chromosome 1p32–33 and contains
four exons (234). So far, no splice variants, mutants, or human
D1 gene defects have been reported. However, polymor-
phisms in the 3�-utr or the human D1 gene have been asso-
ciated with altered thyroid hormone and IGF-I serum levels
(235, 236). Several kilobases of the promoter of the human
gene have been cloned and partially characterized (237–240).
A series of putative regulatory consensus elements were
postulated, and two complex thyroid hormone and retinoid-
responsive elements have been functionally characterized in
the human D1 promoter (63, 237–239). These comprise a
direct repeat of three consensus half-sites (DR4 � 2) with
a spacer of four bases conferring T3-response (DR4) and a
spacer of two bases mediating retinoid response (DR2). A
further combined T3 and retinoid-responsive direct repeat
element with a spacing of 12 bases (DR12) is located down-
stream in the proximal promoter. Both elements act in tissue-
specific context with respect to T3 and/or retinoid regulation
of D1 reporter gene constructs. These elements can explain

TABLE 3. Properties of the three deiodinase enzymes

Enzyme characteristics Type I 5�-deiodinase Type II 5�-deiodinase Type III 5�-deiodinase

Function Systemic � local T3 production,
degradation of rT3 and
sulfated iodothyronines

Local � systemic T3 production Inactivation of T4 and T3

Expression Liver, kidney, thyroid,
pituitary, heart

(Hypothyroid) pituitary, brain,
brown adipose tissue, skin,
placenta; thymus, pineal and
harderian gland; glial cells
and tanycytes

Placenta, brain; many tissues;
except pituitary, thyroid,
kidney, adult healthy liver

Cosubstrate DTT or DTE in vitro (KM, 2–5
mM); not glutathione or
thioredoxin in vivo

DTT or DTE in vitro (KM, 5–10
mM); higher concentrations
than for 5�D1

DTT or DTE in vitro (KM, 10–
20 mM); higher
concentrations than for 5�D1

Subcellular location Endoplasmic reticulum in liver,
inner plasma membrane in
kidney and thyroid

Inner plasma membrane; p29
subunit associated with F-
actin respectively perinuclear
vesicles

Endoplasmic reticulum

Cloned in species Human, rat, mouse, dog,
chicken, not expressed in
Rana catesbeiana,
Oreochromis niloticus
(tilapia), rainbow trout

Human, rat, mouse, chicken, R.
catesbeiana, Fundulus
heteroclitus (teleost), rainbow
trout

Human, rat, mouse, chicken, R.
catesbeiana, Xenopus laevis

Essential amino
acid residues

Histidine, selenocysteine,
cysteine, phenylalanine

Selenocysteine Selenocysteine

Enzyme induction T3, retinoids; TSH and cAMP in
thyroid only; testosterone in
liver

cAMP; FGF; phorbolesters via
PKC; ANP and CNP via
cGMP in glial cells

T3, FGF, EGF

Stimulation Se, carbohydrate �-adrenergic agonists, nicotine Se
Repression Ca2�-PI pathway in thyroid;

dexamethasone
T3

Inhibition PTU, iodoacetate,
aurothioglucose, iopanoate

T4, rT3, iopanoate Iopanoate

ANP, Atrial natriuretic peptide; CNP, C-type natriuretic peptide.
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T3 stimulation of D1 expression in many tissues and non-
transformed cell lines as well as retinoid induction of D1 in
tumor cells (see Section VI.A.1).

Cysteine mutants of D1 are poor catalysts of 5�-deiodina-
tion of T4. Similar to GPx or TrxR, kcat or reaction velocities
are two to three orders of magnitude lower than for the
wild-type selenoprotein (241). The active site also contains a
histidine residue (probably arranged as a selenolate-imida-
zolium ion pair), as well as aromatic amino acids and a
cysteine residue (242–247). A potential membrane insertion
domain in the N-terminal part of the highly hydrophobic
protein has been partially characterized (248). So far, no in
vitro translated purified p27 kDa subunit or purified func-
tional D1 protein has been produced. Construction of eu-
karyotic expression vectors for D1 using its own or heterol-
ogous SECIS elements of other selenoproteins enabled
identification of the 75Se-labeled p27 protein and determi-
nation of D1 enzyme activity in transfected cell lines. The
translation efficiency of the D1 expression vectors is low and
can be increased by fusion of a SECIS element to the D1 open
reading frame, which is “stronger” than the natural D1 SECIS
structure (e.g., SePP).

D1 catalyzes the 5�-deiodination of l-T4, rT3, and other
iodothyronines (Fig. 7) or their sulfoconjugates. D1 also re-
moves iodide from the 5(3) position of the tyrosyl ring at
alkaline pH (249). Liver and thyroid D1 are assumed to
produce most of the circulating T3 under normal conditions.
D1 also participates in the local production of T3 from T4 in
some organs. However, the extent is difficult to determine
because many tissues express specific T3-carrier or transport
systems as well as D2 (250–253).

D1 is extensively expressed in the liver, kidney, thyroid,
and pituitary of adult higher mammals (228, 254). It is an

integral membrane enzyme localized in the endoplasmic re-
ticulum of the liver with its active site facing the cytosol. In
the kidney and thyroid, D1 is found in the basolateral plasma
membrane again with the active site directed toward the
cytosol (255–257). The domains directing these tissue-specific
differences in subcellular distribution have not been mapped
completely (228, 258).

Many hormonal, nutritional, and developmental factors
modulate the expression and activity of D1 (226, 227, 259,
260). The substrate and/or products of the enzyme (T4, T3,
3,3-T2) induce its expression, whereas hypothyroidism de-
creases its activity in most tissues (226, 227, 261–267). In the
thyroid, TSH and its cAMP-protein kinase A-signaling cas-
cade increase D1 activity in several species (268–270). Se
supply might affect this regulation because TSH enhances D1
mRNA abundance in Se-deficient rats but decreases it in
Se-adequate conditions in FRTL-5 cells (269). Sex steroids
exert tissue-specific effects on D1 expression. Although he-
patic D1 is induced by testosterone, D1 activity is higher in
pituitaries of female rats (271–273). Corticosteroid regulation
of D1 expression and activity depends on the system and
model investigated. Whereas most in vivo animal experi-
ments reveal inhibition of D1 activity, dexamethasone sta-
bilizes D1 mRNA and enhances T3 stimulation of D1 enzyme
activity in some in vitro models (264, 265).

D1 activity is also increased by stimulation of the GH-IGF-I
axis in most species and models analyzed (274–283). It is not
yet clear whether GH has a direct stimulatory effect inde-
pendent of IGF-I. Increased serum T3/T4 ratio is interpreted
as stimulation of hepatic D1 by GH. GH/IGF-I and their
binding proteins also interfere with the Se homeostasis, and
conversely, growth curves of Se-deficient animals are af-
fected (78, 284). However, growth can be restored in Se-
deficient rats by injections of 1 �g Se/100 g body weight, too
low to normalize serum thyroid hormone levels, and the
infusion of T3 alone does not increase the growth rate (284).

Fasting decreases and carbohydrate feeding markedly
stimulates hepatic D1 activity, but the exact mechanisms
involved remain elusive. In diabetic rats, expression of he-
patic D1 is reduced but can be restored by T3 or insulin
administration (285). Proinflammatory cytokines down-reg-
ulate D1 in liver and thyroid and up-regulate it in liver and
pituitary (267).

Severe Se deficiency reduces D1 protein and activity in a
tissue-specific manner, and repletion increases it (97) by com-
binations of mechanisms involving both D1 mRNA steady-
state levels and posttranscriptional regulation (286, 287). Sys-
tematic analysis of modulation of the tissue-specific
expression of various Sec-containing enzymes and proteins
revealed a pronounced hierarchy in Se responsiveness and Se
supply to individual selenoproteins in tissue-specific manner
(98, 269, 288). In general, D1, an enzyme of low abundance,
seems to hold a high rank in this hierarchy, at least above
cGPx, enabling local and systemic production of T3 from T4
even at low available Se concentrations (97). In a cell culture
model, D1 may even recruit Se liberated from the turnover
of the more abundant selenoprotein cGPx for incorporation
into newly synthesized D1 (97). Several tissues exhibit a
further hierarchy. Whereas liver, kidney, heart, skin, and
muscle are rapidly depleted from Se during severe defi-

FIG. 7. Monodeiodination cascade of T4 via iodothyronines to T0. T4
and the lower iodinated tri-, di-, and monoiodothyronines undergo
sequential 5�(3�) or 5(3)-monodeiodination to the iodine-free thyro-
nine (T0), which is found in the urine. Also 4�-sulfated iodothyronines
are substrates for the deiodinases.
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ciency, the thyroid, several other endocrine organs, the re-
productive system, and the brain retain Se to a remarkable
extent. In adult Se-deficient animals, PHGPx and even more
D1 activity are kept at high levels in the thyroid (98).

Stabilized organoselenenyl iodides were used to mimic the
Sec-containing active site of D1 and its reaction mechanism
as enzyme-mimetic substrates. Propylthiouracil (PTU) reacts
with the oxidized E-SeI enzyme intermediate, but not the
native enzyme. Basic residues in the active site, such as the
proposed histidine, which can form a selenenolate-imidazo-
lium ion-pair (242), kinetically activate the SeI bond. Hydro-
gen-iodide-catalyzed disproportionation of E-SeI intermedi-
ates to diselenides may occur if sterically feasible in the
enzyme. An E-SeI reaction with a selenol is much faster than
with a thiol, and these factors might account for insensitivity
toward PTU inhibition of D2 and D3 (289–291). PTU is in-
active toward diselenides.

2. Type II 5�-deiodinase—a second selenoprotein involved in deio-
dination of T4 to T3. The D2, like the D1, enzyme generates T3
from the prohormone T4 (Table 3). D2 has a higher affinity
for T4 than D1 (KMapp � 2 nm T4), and shows high specificity
for T4. Furthermore, D2 is rapidly inactivated by its substrate
T4, but also by rT3 (292). Its transcription is inhibited by T3;
thus, regulation is inverse to that of D1 and D3 (293). Tissue
distribution, developmental profile, and regulation by hor-
mones and other signals are distinct from that of D1 (294,
295). Therefore, D2 is assumed to generate T3 from local T4
sources for intracellular demands independent from circu-
lating T3, and the contribution of D2 to circulating T3 is
considered to be limited. The latter assumption has been
thrown into question by the findings of significant mRNA
and enzyme levels in the human thyroid and muscle and cells
derived therefrom (296, 297). D2 activity was found in neo-
natal rat thyroid, but not in adult rat thyroid (294), and
mRNA levels do not in all instances reflect expression and
activity of the enzyme (298–301).

In vitro determination of D2 activity takes advantage of its
weak inhibition and the strong inhibition of D1 by the PTU
drug. The mechanism of D2 reaction proceeds via a sequen-
tial two-substrate reaction without intermediate formation of
an oxidized selenenyl residue (Fig. 2). D2 is thought to be
unaffected by PTU, which forms a covalent intermediate
with the oxidized selenenyl residue of D1 and reacts in a
two-substrate ping-pong mechanism with formation of an
oxidized enzyme intermediate (289–291).

The selenoprotein nature of D2 has been questioned, be-
cause several models have found no clear Se-dependent ex-
pression of D2 (287, 302). The identification of a functional
SECIS element in the 3�-utr of the long D2 mRNA has only
recently been achieved. Cloning of highly conserved or-
thologs to the D2 transcript, identification of full length cD-
NAs, characterization of the human D2 gene on chromosome
14q24.2–3 (303–307), and several in vivo and in vitro findings
suggest that the D2 transcript encodes a functional D2 en-
zyme with a mass of 200 kDa (308). Strong experimental
evidence for the selenoprotein nature of D2 encoded by the
SECIS-containing D2 transcript was provided by experi-
ments with a human mesothelioma cell line. High levels of
expression of D2 transcripts, Se-dependent functional activ-

ity of D2, and 75Se-labeling of a p31 subunit were found (309).
One study compared the expression and location of the D2
selenoenzyme transcript and the transcript of the cAMP-
responsive p29 nonseleno T4 binding subunit (300). A dif-
ferent location of the two transcripts was reported in the rat
brain; p29 was expressed in neurons and in all the regions of
the blood-cerebrospinal fluid barrier, but in different cell
types than the D2 selenoprotein transcript, with the excep-
tion of the tanycytes. This does not support the assumption
that p29 has a functional relationship with D2 (310).

Whereas the human D2 gene encodes for two SeCys res-
idues in the protein, in most other species only one highly
conserved active-site SeCys residue is found. The second
SeCys residue 266 in the human D2, located seven codons
upstream of the stop codon, is not essential for enzyme
function. Site-directed mutagenesis to a cysteine residue or
a stop codon had no effect on enzyme activity but modified
Se incorporation (311).

D2 is highly expressed in the central nervous system
(CNS), with the highest levels in astroglial cells and ta-
nycytes. Neurons, in which most of the T3 receptors are
expressed, show rather low D2-enzyme activity. D2 tran-
scripts have also been localized to tanycytes (312–314). Thus,
D2, locally generating the active hormone T3 from its pre-
cursor T4, and the nuclear T3 receptors, mediating most of
thyroid hormone action, are localized within different cell
types. This suggests a regulated efflux and transport of T3
from its intracellular site of production in glial cells to sur-
rounding neurons containing T3 receptors (253). Cell-specific
membrane transporters such as MCT-8 (315) and OATP14
(316) might independently control influx and efflux of T4, T3,
and their metabolites. Both T4 and rT3 but not T3 are potent
regulators of D2 inactivation (317). Nonnuclear receptor-
mediated mechanisms of thyroid hormone action might also
play an important role in hormone action (318). Thyroid
hormones also regulate neuronal migration and neurite out-
growth as well as laminin expression in rat astrocytes and
within the rat cerebellum (319, 320). Because laminin is pro-
duced and secreted by astrocytes, which have low numbers
of thyroid hormone receptors but high D2 activity, thyroid
hormone-dependent alteration of laminin secretion might be
mediated by an extranuclear thyroid hormone effect inde-
pendent of T3 receptors.

In the hypothalamus, in situ hybridization in combination
with immunohistochemistry for the glial cell marker glial
fibrillary acidic protein revealed a colocalization of D2 tran-
scripts in glial cells of the median eminence and the arcuate
nucleus, but not the paraventricular nucleus. This indicates
a close relationship between local thyroid hormone produc-
tion in the hypothalamus and neuroendocrine TRH-produc-
ing cells in the paraventricular nucleus (321).

In the hypothyroid rat brain, D2 transcripts were found
elevated in relay nuclei and cortical targets of the primary
sensory and auditory pathways (322). The occurrence of D2
transcripts in the cochlea of the developing rat suggests a
major function of locally formed T3 in this structure (323).
Thyroid hormone receptor (TR) is expressed in the sensory
epithelium, whereas D2 is found in the periostal connective
tissue, which might thereby control T4 deiodination and T3
release for action in the epithelium in a paracrine manner.
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cAMP stimulation of D2 activity and expression has been
demonstrated in glial cells, human thyroid, and brown ad-
ipose tissue of rodents (309, 324–326). In brown adipose cells,
D2 is highly expressed and generates T3 essential for stim-
ulation of expression of uncoupling proteins and thermo-
genesis in synergism with catecholamines. A cAMP-respon-
sive element has also been identified in the human D2 gene
and functionally characterized in thyrocytes (327, 328). In rat
astrocytes, cAMP stimulation of D2 activity has been linked
to the recruitment of a 60-kDa cAMP-dependent protein to
the p29 catalytic subunit affinity-labeled by BrAcT4 to yield
the 200-kDa holoenzyme complex. During this cAMP-de-
pendent stimulation of D2 activity, its p29 subunit is trans-
located from the perinuclear space to the inner leaflet of the
plasma membrane coincident with appearance of deiodinat-
ing activity (325). The promoter of the human, but not the rat,
D2 gene contains a functional TTF-1 response element (329).
Stimulation of glial cell D2 by nicotine and its inhibition by
mecamylamine, which blocks nicotine binding to nicotinic
acetylcholine receptors, could influence brain function via
modulation of local T3 production (330).

A study reports a transgenic mouse model in which an
artificial gene construct comprising the coding region of the
human D2 and the rat SePP SECIS element flanked by the
human GH polyadenylation signal was expressed under the
control of exons I and II of the mouse �-myosin heavy chain
gene promoter (331, 332). These mice had elevated cardiac D2
activity, unchanged cardiac T3 levels, and unaltered plasma
hormone levels and growth rate. Nevertheless, signs of car-
diac hyperthyroidism were observed associated with in-
creased adrenergic responsiveness. Conversely, targeted de-
letion of D2 in mice revealed a mild phenotype (increased
serum levels of T4 and TSH, but normal T3), mild growth
retardation in males, and impaired cold adaption (333, 334).
This indicates either functional redundancies among the
deiodinases or efficient adaption of the components of the
thyroid hormone network to failure of a component.

The novel identification of mutations in the human SBP2
gene (22), which led to a phenotype of the thyroid hormone
axis resembling that of D2 knockout mice (333), illustrates the
importance of Se in thyroid hormone economy and espe-
cially for adequate function of D2. Elevated serum TSH, T4,
rT3, and low T3 are accompanied by low serum levels of Se,
GPx, and SePP, indicating a major disturbance of Se ho-
meostasis but an early manifestation of this genetic defect in
the thyroid hormone axis.

In animal models of Se deficiency, only minor alterations
of Se content are observed in most endocrine organs and in
the CNS. Similarly, only minor alterations of D1, D2, and D3
activity were found in the CNS under Se depletion and
repletion (335). The major regulator of D2 expression in the
brain is the thyroid hormone status itself. In hypothyroidism,
D2 mRNA is increased severalfold in glial cells and in in-
terneurons in the regions related to primary somatosensory
and auditory pathways (322). Because the brain strongly
depends on T4 supply from the thyroid and circulating serum
T3 probably reaches the brain only in limited quantities or
under pathological conditions, proper thyroid function, and
hence adequate Se supply, is crucial both during develop-
ment and in the adult organism. Apart from thyroid hor-

mone, stress, circadian rhythm, and several neuroactive
drugs affect brain deiodinase enzymes and local thyroid
hormone levels strongly (336–339).

Se deficiency is known to impair cold tolerance in animals,
which might be related to lower expression of D2 in brown
adipose tissue associated with decreased T3 production and
subsequent reduction of uncoupling protein expression and
catecholamine-stimulated thermogenesis (340). A rat astro-
cyte culture model has shown that the Se status modulates
cAMP stimulation of D2 expression (302).

3. Type III 5-deiodinase—the selenoprotein catalyzing T4 and T3

inactivation. The selenoenzyme D3 inactivates thyroid hor-
mones, both the prohormone T4 and its active metabolites
such as T3 or 3,5-T2. D3 does not metabolize T4-sulfate and
T3-sulfate (341). The products of deiodination of iodothy-
ronines at the tyrosyl ring in 5-(or 3-) position (Fig. 3) are
devoid of thyromimetic activity and do not bind to nuclear
T3 receptors. The main metabolite of D3, rT3, competes for
T4 deiodination by D1 and thus might have a regulatory
function in thyroid hormone metabolism. Because circu-
lating rT3 levels are in the range of T3 and high rT3 for-
mation is found in the CNS (342), a biological role for this
metabolite during brain development, such as modulation
of the polymerization state of the actin cytoskeleton, neu-
ronal migration, and neurite outgrowth, has been sug-
gested (320).

D3 activity is expressed in many tissues; particularly in
developing brain, in pregnant rat uterus, and in fetal human
liver. In adulthood, high D3 levels are maintained in the
brain and skin, several other tissues, and the placenta (301,
343–347). No D3 expression is found in the normal adult liver
and kidney, i.e., tissues with high D1 or D1 and D2 activity.
D3 is thought to prevent inappropriate exposure (i.e., in time,
space, or concentration) of cells or tissues to the active hor-
mone T3. Placental and uterine expression of D3 might play
a major role in protection of the conceptus from excessive
thyroid hormone exposure during implantation (348, 349).
Unusual expression of D3 in pathological tissues, perhaps as
a response to impaired perfusion and hypoxia, has recently
been shown for liver, pituitary, heart, and lung (350–352).

In the neonatal brain, D3 transcripts are selectively and
transiently expressed in areas involved in sexual differenti-
ation such as the bed nucleus of the stria terminalis and
preoptic nuclei (353). In the adult rat brain, focal expression
of D3 transcripts has been described in hippocampal pyra-
midal neurons, granule cells of the dentate gyrus, and layers
II to VI of the cerebral cortex (354). Transcript levels increase
during hyperthyroidism, suggesting increased degradation
of excess thyroid hormone. No evidence for regulation of
brain D3 expression by the Se status and very minor evidence
for placenta has been presented (343, 355). These observa-
tions suggest either efficient Se supply to D3 in these tissues
or a high rank of D3 in the Se hierarchy of supply during
manipulation of Se status.

The selenoprotein D3 is encoded by a gene on human
chromosome 14q32 and consists of only one exon (356). A
similar structure has been reported for the mouse gene,
which has two transcriptional start sites and whose func-
tional promoter contains consensus TATA, CAAT, and GC-
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boxes (357). The D3 gene appears to be imprinted and pref-
erentially expressed from the paternal allele in the mouse
fetus (358). In vitro, Se-dependent expression of D3 has been
demonstrated in rat astrocytes (359). Various growth factors
[basic fibroblast growth factor (bFGF)], the MAPK kinase-
ERK cascade, cAMP, phorbol esters, thyroid hormone, and
retinoic acid may induce D3 expression via defined response
elements in its promoter (359–362).

The essential role of D3 in control of active thyroid hor-
mone levels has recently been demonstrated in the model of
metamorphosis of Xenopus laevis tadpoles (363, 364). The
metamorphosis program is strictly controlled by thyroid hor-
mones and their receptors (364–367). These regulate cell pro-
liferation and apoptosis, tissue remodeling and resorption,
and switches in metabolic pathways related to the transit
from aqueous to terrestrial habitats. Overexpression of D3 in
these tadpoles enhances T4 and T3 inactivation, retards the
development in premetamorphosis, slows the process of gill
and tail resorption, and eventually leads to death after arrest
of metamorphosis (363, 368). Expression of D3, which de-
grades thyroid hormone, and D2, which locally generates T3,
in a given tissue is highest when metamorphic and metabolic
changes occur in tadpoles of Rana catesbeiana (369). Strict local
control of active thyroid hormone concentration seems man-
datory for normal frog development. Tissue-dependent ex-
pression of D3 and TR�, also regulated by T3 and highly
expressed at metamorphosis, shows different time profiles in
Xenopus tadpoles (364). Whether Se supply modulates ex-
pression and function of the deiodinase selenoproteins in
amphibia and thereby limits metamorphosis is unknown.

B. Selenium and thyroid function—the role of selenium in
thyroid hormone synthesis

1. Antioxidant defense and expression of selenoproteins in the
thyroid. Thyroid hormone synthesis requires adequate sup-
ply with the essential trace element iodide as well as con-
tinuous production of H2O2 (188, 189, 370). This is necessary
for iodide oxidation, tyrosine iodination, and coupling of
iodinated tyrosine residues to iodothyronine under the con-
trol of the pituitary hormone TSH. Appropriate antioxidative
defense systems are essential to resist this lifelong oxidative
stress. One element in this defense strategy is the production
of H2O2 in the extracellular space, i.e., the colloid lumen at the
surface of the apical membrane (Fig. 8). The active site of the
integral membrane enzyme TPO is also oriented toward this
compartment, thus avoiding exposure of intracellular com-
partments and membranes to H2O2 and other ROS. Another
element is the expression of catalase at high levels in thy-
rocytes (371). Because the KM of catalase for H2O2 is in the
millimolar range, a second defense line is required to deal
with lower micromolar concentrations (185, 372–374). There-
fore, it was not surprising to find high Se levels in the thyroid
tissue (375). GPx is involved in H2O2 degradation at up to 0.1
mm concentrations, whereas peroxisomal catalase is also in-
volved at higher H2O2 levels (371).

Most of the trace element Se is incorporated into proteins
of thyrocytes. Table 4 summarizes our current knowledge on
the expression and function of selenoproteins in thyroid tis-
sue. Apart from D1, recent evidence suggests expression of
D2 in the adult human and fetal rat, but not adult rat thyroid

FIG. 8. Schematic presentation of selenoproteins in thyrocytes and thyroid hormone synthesis. Among 11 protein bands metabolically labeled
by 75-selenite, the selenoproteins type I and type II 5�-deiodinase, cGPx and pGPx as well as TrxR and Sep15 have been identified in thyrocytes
(5�DI, 5�DII, cGPx, TrxR). pGPx is secreted across the apical membrane into the colloid lumen. The sodium iodide symporter (NIS) transports
iodine into the thyrocyte, which after passage of the apical membrane is incorporated into Tg in a reaction catalyzed by the hemoprotein TPO,
an integral membrane protein in the apical membrane. H2O2 required as substrate by TPO for the iodination and coupling of tyrosyl residues
in Tg is generated by the NADPH-dependent thyroxidase (ThOx). NADPH is provided by the cellular pentose phosphate cycle. Intracellular
unknown compounds iodinated by TPO (X-I) might inhibit TSH-receptor signaling. TSH and several growth factors regulate thyrocyte function
and thyroid hormone synthesis by cAMP and PKC- or Ca2�-mediated signaling cascades via receptors of the basolateral plasma membrane.
T4 and T3 are released via the basolateral membrane into circulation by yet unknown mechanisms. DAG, Diacylglycerol; IP3, inositoltriphos-
phate; G6P, glucose-6-phosphate; P5P, pentose-5-phosphate.
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(193, 259, 296, 376). D3 is not expressed in thyroid tissues or
6thyroid cell lines. Three of the five GPxs, cGPx, pGPx, and
PHGPx, as well as TrxR (107) and the selenoproteins of
unknown function p15 and SePP (Table 4) are also expressed
in thyrocytes and thyroid tissue (269, 377, 378). Whereas
cGPx is found at high levels in thyrocytes, pGPx appears to
be secreted across the apical membrane into the colloid lu-
men (379). Elegant studies using primary human thyrocytes
in culture and thyrocyte cell lines suggest a distinct regula-
tion of expression and secretion or function of the various
selenoproteins D1, D2, cGPx, PHGPx, pGPx, and TrxR by
signaling cascades, controlling thyrocyte growth, differenti-
ation, and function (107, 193, 288, 377, 379–385).

2. Regulation of thyroid selenoproteins. Thyrocyte D1 activity is
enhanced by the TSH-cAMP-protein kinase A cascade in
several in vitro and in vivo models and species (193, 259, 268,
270, 386) and is negatively regulated by activation of the
Ca2�-phosphoinositide (PI)-cascade (270). TSH stimulation
leads to a large increase in D1 mRNA in Se-depleted FRTL-5
cells, but to a small decrease in Se-repleted cells (269). Treat-
ment of human thyrocytes in primary culture with the cal-
cium ionophore A 23187 diminished the amount of pGPx
secreted, but TSH and cAMP had no significant effects on its
production or secretion (379). In FRTL-5 cells, Se depletion
reduces expression of cGPx mRNA and activity, but no al-
terations of PHGPx and D1 mRNA were observed (269).
Expression of the TrxR protein, identified by 75Se labeling
and Western blot analysis as a 57-kDa band, is stimulated by

the calcium ionophore A 23187 and the phorbolester phorbol
12-myristate 13-acetate, but not by TSH or cAMP derivatives.
Because activation of the calcium-PI cascade and of the PKC
pathway also activates the apical pendrin iodide channel and
stimulates NADPH-dependent H2O2 production at the lu-
minal surface of the apical membrane, the simultaneous ac-
tivation of the antioxidative defense system might be re-
quired. Taken together, these divergent effects of potent
regulators of thyrocytes suggest an important role for sel-
enoproteins. TSH and cAMP stimulate expression of the
selenoproteins D1 and D2 and of other proteins involved in
iodide transport, thyroid hormone synthesis, and secretion.

3. Expression of thyroid selenoproteins in combined iodine and Se
deficiency. Even more complex is the regulation of seleno-
proteins by combined iodine and Se deficiency in the fetal
and adult thyroid gland. Here, divergent alterations are ob-
served at the mRNA and protein level as well as in fetal vs.
adult thyroid glands. In thyroids of Se-deficient rat pups,
mRNA levels of selenoproteins D1, cGPx, and PHGPx are not
altered, whereas D1 activity is decreased to 61%, cGPx to
45%, and PHGPx activity to 29% (288). In the thyroid of adult
Se-deficient rats, D1 and PHGPx mRNA and activity are
increased or unchanged (98, 288) or unchanged (288) or de-
creased (98, 288). These differences in results from the same
group might result from different degrees of Se deficiency or
the analysis of first- and second-generation Se-deficient rats.
In iodine-deficient fetal glands, mRNAs for all three seleno-
proteins are significantly increased, as were activities of D1

TABLE 5. Biochemical and physiological functions and diseases associated with Se or its deficiency

Disease or metabolic pathway Possible mechanisms involved

Keshan disease Cardiomyopathy of children and adolescents, increased
cardiotoxicity of Coxsackie B3 viruses

Kashin-Beck disease Osteoarthropathy of joints, in connection with iodine deficiency,
exposure to fulvic acid and infections

Myxedematous cretinism Combined Se and iodine deficiency leads to pre- and postnatal
destruction of thyroid tissue

White muscle disease (muscular atrophy, vacuoles in fibers,
enlarged mitochondria, amorphous white matrix deposits)

Severe long-standing Se deficiency in anorexia nervosa or long-
term total parenteral nutrition (669)

Relationships to coronary heart diseases Expression of selenoproteins in vascular smooth muscle cells and
(cardio-) myocytes, antioxidative function of selenoproteins

Impaired immune response Impaired function of the cellular and humoral immune system
Anticancer effects of Se supplementation Modulation of initiation, progression, and proliferation; via

alteration of Se-dependent antioxidant enzymes (GPx) and
thioredoxin reductases (TrxR), cell proliferation, and apoptosis

Se deficiencies in low-protein diets (phenylketonuria), long-term
total parenteral nutrition, cystic fibrosis, chronic dialysis,
anorexia nervosa

Various side effects characterized by enhanced oxidative stress,
myopathies, disturbance of thyroid hormone economy

Impaired spermatogenesis Role of PHGPx as structural protein of the sperm mitochondrial
capsule for thiol-protamine cross-linking (575, 583)

TABLE 4. Selenoproteins expressed in the thyroid

Selenoprotein Characteristics Location Ref.

Type I 5�-deiodinase Activation of T4 to T3 ER or basolateral membrane 193, 256, 257, 270
Type II 5�-deiodinase Local activation of T4 to T3 296, 668
cGPx H2O2 degradation Cytosol 85, 379
pGPx H2O2 degradation Apical colloid 378, 379
TrxR 107
Sep15 Chaperone ER 64, 67, 593
SePP J. Köhrle, unpublished data
Several 75-labeled bands 11, 85

ER, Endoplasmic reticulum.
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and cGPx (288), whereas PHGPx activity was decreased. In
combined iodine and Se deficiency, thyroid transcript levels
of selenoproteins were also increased, but D1 activity was
elevated, cGPx activity was unchanged, and PHGPx activity
was decreased (288). Alterations in the adult maternal thy-
roid gland followed the same directions as observed in the
fetal thyroid (98, 288). Also, in thyroids of cattle, iodine
deficiency leads to marked induction of the selenoprotein D1,
accompanied by elevated cGPx activity (377). The compat-
ibility of these disparate results in different rat systems with
the clear in vivo pathogenesis of thyroid destruction in hu-
man myxedematous endemic cretinism (Table 5) is unclear.

4. Cellular integrity and Se-dependent transcription regulation.
Using a polarized pig thyrocyte culture system, the role of
Se-dependent expression of GPx activity for thyrocyte in-
tegrity and protein iodination has clearly been demon-
strated. Whereas Se-depleted thyrocytes with low GPx ac-
tivity presented cytoplasmatic iodination of proteins after
H2O2 exposure, iodination of proteins was restricted to the
apical surface in Se-adequate thyrocytes with sufficient GPx
activity, whether exogenous H2O2 was added or not (387).
This crucial finding indicates that Se-depleted cells devoid of
sufficient antioxidative defense capacity might experience
aberrant intracellular iodination of proteins, leading to del-
eterious events such as apoptosis, exposure of unusual
epitopes, recognition by the immune system, or aberrant
targeting and processing of iodinated proteins. Se also has a
protective role against cytotoxic H2O2 effects mediated by
caspase-3-dependent apoptosis in such thyrocytes (388).
These observations might provide an experimental biochem-
ical basis for the pathogenesis of myxedematous endemic
cretinism and a rationale for beneficial effects of Se supple-
mentation reported in prospective controlled studies in pa-
tients with Hashimoto’s autoimmune thyroid disease (389,
390).

5. Se content in thyroid cancer tissues and nodules—associations
or causal relationships? The human thyroid in adults and chil-
dren contains the highest Se concentrations per unit weight
among all tissues (375, 391–395). An inverse correlation be-
tween whole body Se status, Se content of the thyroid, and
incidence of human thyroid carcinoma has been postulated
in case-control studies of the Norwegian Janus cancer survey
(393, 396, 397); prediagnostically low serum Se levels were
highly correlated to the incidence of thyroid cancer, but no
direct relationship between actual tissue or serum Se content
and thyroid cancer manifestation at the time of diagnosis
could be found. In cold nodules of nine patients, Se, iodine,
and cadmium contents were lower than in residual nonaf-
fected thyroid tissues, but due to high variations in Se content
of surrounding residual tissues, this difference did not reach
statistical significance for Se (398). In contrast, Se content in
seven untreated autonomous adenoma was significantly
lower than in residual surrounding tissue, and pretreatment
of patients with Se markedly increased Se content in five
adenoma, whereas no increase was found in “normal” sur-
rounding tissue (398). Iodine content in these autonomous
adenoma was higher than in normal residual tissue.

A serial analysis of age-dependent Se and cadmium con-

tents of human thyroid, liver, and kidney was performed in
autopsy tissues in the same region of Styria (Austria), an area
with low Se supply (394). Se content increased from 1.6 in
newborns up to 6.2 nmol/g wet tissue in thyroid from adults
(45 to 59 yr of age) and decreased in old age. Similar results
with very heterogeneous distributions (399) were obtained in
Praha (400). Liver Se content showed no significant alter-
ations in the range between 1.5 and 2.9 nmol/g with increas-
ing age, whereas kidney Se steadily increased with age from
1.9 up to 7.3 nmol/g, probably due to accumulation of in-
soluble mercury and cadmium selenides. Cadmium content
increased in all three tissues with age, but no correlation was
found between Se and cadmium content in the thyroid of
adult, suggesting a deposition as insoluble cadmium se-
lenide (394). Se concentrations were decreased in hyperthy-
roid, carcinoma, and adenoma thyroid tissues compared
with control tissue (399).

In one study, but not another (401), significant correlations
were found between Se indices and serum TSH (positive),
serum thyroid hormone levels (negative), thyroid volume
(negative), and peripheral endpoints of thyroid hormone
action.

Evolution with age, or heterogeneous distribution of Se in
the thyroid, as well as Se content differences between normal
and cancer thyroid tissues, have not been found in Russia
(402). Differences are found in normal, compared with nod-
ular thyroid tissues. Increased TSH is associated with higher
iodine, zinc, and Se content in nodular tissue, whereas iodine
and Se content decrease in normal thyroid tissue with in-
creasing TSH, suggesting redistribution or altered turnover
of trace elements between functionally active and nodular
areas (403).

6. Speciation of selenoproteins in normal and pathological human
thyroid tissues. To better understand the role of Se and indi-
vidual selenoproteins in thyroid hormone cancer, we ana-
lyzed Se content and activity of the selenoproteins D1 and
GPx in the same samples from several thyroid tumors, ad-
enoma, and goiters as well as C cell carcinoma or parathyroid
adenoma. We found highest Se concentrations in tissue sam-
ples derived from follicular cells. Se content was diminished
in tumor samples compared with normal tissues, adenoma,
or goiter. No correlation was found between Se content and
activities of the selenoenzymes D1 and GPx. Activities of D1
vary by four orders of magnitude and were decreased in
thyroid carcinoma and elevated in thyroid adenoma. Vari-
ations of GPx activity were observed around only one order
of magnitude and did not correspond to alterations of either
Se content or D1. Elevated GPx activity was observed in
autonomous adenoma tissue and some carcinoma, whereas
significantly decreased activity was observed in autoim-
mune thyroid tissue (404, 405) (J. Köhrle, unpublished data).
These studies indicate that no direct conclusion can be drawn
from serum or tissue Se levels about the expression of indi-
vidual selenoproteins in the corresponding thyroid tissue.
Furthermore, the large variation of D1 activities compared
with that of GPx and the lack of correlation between these
two enzyme activities suggests that different regulators con-
trol their expression in the same tissue and override the
regulatory influence of tissue Se status in vivo. Comparative
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analyses of several trace elements and minerals found in
thyroid tissue suggest several interactions beyond that
known for iodine and Se. Especially, zinc, rubidium, and the
toxic metals cadmium and mercury might interact with or
impair the function of Se in thyroid physiology.

7. Se, iodine, zinc, and iron interactions in the rat thyroid. Feeding
rats on diets deficient in one or more of the trace elements Se,
iodine, and zinc revealed complex interactions (406).
Whereas serum total and free T4 was lower and TSH was
higher in iodine-deficient rats than in control rats regardless
of zinc and Se status, T3 was lower in zinc-deficient, zinc- and
Se-deficient, and Se- and iodine-deficient rats. As expected,
total thyroid GPx activity was reduced in Se-deficient and Se-
and zinc-deficient rats and increased in iodide-deficient
groups. No major structural alterations were found in the
Se-deficient thyroids. Iron deficiency also leads to decreased
cGPx activity in several rat tissues (407), and T4 and T3
disposal rates were also decreased (408). Impaired efficiency
of thyroid hormone synthesis in iron-deficient goitrous chil-
dren and adults has been recently reported and reviewed
(175, 409), indicating that not only adequate Se but also
sufficient iron supply is required for effective thyroid hor-
mone synthesis after iodide supplementation. Iodine defi-
ciency, independent of concomitant Se or zinc deficiency,
leads to the expected changes known for goitrogenesis over-
riding the alterations observed in other deficiencies. Inter-
stitial fibrosis was found in the Se-deficient groups similar to
the studies described before (183).

8. Se status affects thyroid hormone economy by altering conju-
gation reactions. Kinetic studies have revealed a marked shift
of T3 and T4 into sulfation pathways in Se-deficient rats (410),
which might lead to enhanced enterohepatic recycling of
sulfated iodothyronine metabolites as well as to altered tis-
sue distribution and accessibility of these conjugated metab-
olites compared with the free iodothyronines (411). More-
over, due to decreased hepatic D1 activity, the metabolic
clearance rates of iodothyronine sulfates are reduced in Se-
deficient rats (249, 412).

9. Se treatment in autoimmune thyroid disease. A European
cross-sectional study (413) found an inverse association be-
tween Se and thyroid volume and a protective effect of Se
against goiter. Recently, several studies reported on the ben-
efit of Se treatment in autoimmune thyroid disease, both
Hashimoto thyroiditis and Graves’ disease (389, 390, 414). In
two of these blind, placebo-controlled prospective studies,
serum levels of thyroid anti-TPO autoantibody decreased,
and patients’ self-assessment of the disease process im-
proved, compared with a placebo group, after 3 to 6 months
of treatment with 200 �g/d sodium selenite or selenome-
thionine. All patients were substituted with l-T4 to maintain
TSH within the normal range. Se substitution may improve
the inflammatory status in patients with autoimmune thy-
roiditis, especially in those with high activity. These studies
were performed in areas of Europe with limited nutritional
Se supply (Germany, Greece, and Croatia), and Se supple-
mentation led to increased plasma Se and GPx activity. This
suggests a phenomenology akin to the pathogenesis of myx-

edematous endemic cretinism with local mechanisms in the
thyroid or via the immune system (415).

C. Selenium status and supplementation in “low-T3

syndrome,” nonthyroidal illness, sepsis, and related
pathophysiological conditions

Initially, the discovery of D1 as a selenoenzyme with high
expression in the liver (11, 12) led to the assumption that the
observed disturbance of Se metabolism in severe illness,
sepsis, burns, or other nonthyroidal illnesses associated with
the euthyroid sick syndrome (ESS) or low-T3 syndrome,
might lead to impaired hepatic T3 production and to the
decreased serum and tissue T3 levels observed under these
conditions (226, 259, 416–422). A significant part of circu-
lating T3 is formed by hepatic deiodination of T4 to the active
hormone form T3 via D1 expressed in this tissue. Further-
more, elevations of rT3 serum levels observed under these
conditions result from impaired 5�-deiodination of rT3 by
hepatic D1. Production of rT3 in extrahepatic tissues by D3
is not affected, but reexpression of D3 in several tissues of
critically ill patients might contribute to T3 degradation and
rT3 production (352). No significant alterations have yet been
described in ESS for expression and activity of D2, which also
forms T3 from T4 but is not expressed in adult mammalian
liver. These severe illnesses are accompanied by acute-phase
responses and activation of the stress axis, enhanced secre-
tion of proinflammatory cytokines, and disturbances of sev-
eral serum-binding proteins including those of hormones
(423, 424). Reduced tissue T3 levels (except in skeletal and
cardiac muscle) and reduced hepatic T4 levels with normal
T4 in other tissues and normal circulating TSH in patients
who died from nonthyroidal illness indicate a major role for
decreased hepatic D1 activity combined with reduced he-
patic T4 uptake in this syndrome (421).

The reasons for this disturbance in thyroid hormone me-
tabolism in severe disease, the mechanisms involved, and the
relation to Se economy are still not understood (352, 418, 419,
425–428). Plasma Se is localized mainly within two proteins,
pGPx and the plasma glycoprotein SePP (429, 430). The ma-
jority of pGPx is produced by the kidney (431), but no evi-
dence for decreased pGPx production and activity has been
observed under the ESS conditions. Expression and secretion
of SePP is affected by proinflammatory cytokines and TGF�,
at least in the model of the human hepatocarcinoma cell line
HepG2 (238, 432–435). SePP contributes up to 70% of plasma
Se, and both proinflammatory cytokines and TGF� are in-
volved in pathogenesis of severe illness and acute phase
response. Thus, inhibition of production and/or secretion of
SePP might be a major factor of disturbed Se economy in
severe illness. The expression of hepatic DI is also inhibited
by proinflammatory cytokines, as shown in several cell and
animal models (424, 432, 436). The human D1 promoter in
HepG2 cells is also inhibited by the proinflammatory cyto-
kines IL-1�, TNF�, and interferon-�, but not by IL-6 (432). Se
inhibits activation of the transcription factor NF�B, which
regulates genes encoding proinflammatory cytokines (437).
Therefore, decreased hepatic Se might lead to synthesis of
positive (such as C-reactive protein) and decrease negative
(e.g., SePP and D1) acute phase proteins (422). In vitro ex-
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periments support Se-dependent expression of both the sel-
enoproteins D1 and SePP in HepG2 and other cell types (432).
No direct link between Se supply and the pathogenesis of the
ESS or low-T3 syndrome has been shown.

Recent clinical studies support these findings (438, 439). In
a prospective, randomized pilot study, initially high and
subsequently moderate supplementation doses of sodium
selenite were administered to patients with systemic inflam-
matory response syndrome. Several clinical chemical and
thyroid hormone parameters as well as intensive care med-
icine scores such as APACHE II and III were analyzed. No
significant alterations of serum thyroid hormone levels could
be linked to Se supply and clinical outcome. However, an
improved survival, APACHE score, and significant clinical
benefit were found in the group supplemented with Se. Thy-
roid hormone levels responded to clinical improvement with
some delay but were not altered directly with Se supple-
mentation. This suggests that impaired hepatic T3 produc-
tion by D1 in ESS or low-T3 syndromes might represent
adaptive changes and not causal events for the impaired
clinical situation. Se administration, by yet unknown mech-
anisms, might be beneficial in systemic inflammatory re-
sponse syndrome and sepsis patients, in addition to other
measures of intensive care. A prospective, controlled, mul-
ticentric clinical study expands these findings and addresses
possible mechanisms. Similar beneficial effects of selenite
supplementation on clinical outcome were observed in
trauma patients and preterm neonates, where normalization
of thyroid hormone serum levels correlated closely to im-
proved clinical condition but not to plasma Se status (440,
441). Disturbed serum Se status and altered thyroid hormone
serum levels are also found in other ESS-like patients on
protein-poor diets (e.g., phenylketonuria), on long-term par-
enteral nutrition, or suffering from cystic fibrosis, and in
animal models, e.g., during lactation or intoxication by heavy
metals (mercury, cadmium) (442–447).

Alterations of serum thyroid hormone levels compatible
with decreased hepatic D1 activity have been reported in
children (442) and elderly with insufficient Se supply (448).
In children undergoing cardiopulmonary bypass, a signifi-
cant reduction of plasma Se with unaltered pGPx activity
was accompanied by decreased serum free T3/free T4 ratio,
indicating impaired D1 activity and SePP secretion (449). In
elderly persons, Se supplementation (100 �g sodium selen-
ite/d for 3 months) decreased serum T4 levels and improved
serum Se and GPx activity in erythrocytes (448). This result
needs confirmation (450). No general recommendations can
be given for normalization of altered serum thyroid hormone
levels by Se supplementation. Exceptions include: 1) long-
term parenteral nutrition in children and adults; 2) children
on protein-poor diets (e.g., phenylketonuria or cystic fibro-
sis); and 3) patients on chronic hemodialysis with frequent
serious deficits in Se supply leading to enhanced oxidative
stress and alterations of thyroid hormone levels as indicators
of ESS or low-T3 syndrome (451).

A selenomethionine supplementation study in euthyroid
T4-substituted children with congenital hypothyroidism
who had decreased Se, Tg, and T3 concentrations and in-
creased TSH, rT3, and T4 levels found no effect on serum
thyroid hormone concentrations. However, elevated Tg and

TSH levels returned to those of controls after a 3-month Se
treatment (452). The authors interpreted these observations
as evidence against a direct effect of Se supplementation on
peripheral deiodinases, whereas pituitary feedback control
of TSH by local 5�-deiodination might be normalized.

Combined administration of TRH and GHRH to critically
ill patients can restore pituitary and thyroid function and
metabolic conditions, suggesting, that decreased serum Se
levels are not the causal factor for low-circulating T3 levels
in this condition (453). High doses of GH administered to
patients with prolonged critical illness increase both mor-
bidity and mortality (454). Previous attempts to substitute
low T3 in patients with the low-T3 syndrome led to incon-
clusive results and were halted due to increased nitrogen
loss, fear of cardiovascular complications, and unwanted
side effects (436, 455–458). A potential role of selenoproteins,
other than hepatic D1, in the pathogenesis of the ESS or
low-T3 syndrome needs to be considered.

Exposure to high Se supply in Se-rich areas of Venezuela
showed an inverse correlation between serum Se and free T3
levels, whereas free T4 and TSH were unaltered (459). A
study of healthy men, fed a diet for 120 d either low or high
in Se, observed in the high-Se group (300 �g/d) decreased
serum T3, elevated TSH, and weight gain, whereas the low-Se
group (47 �g/d) had elevated serum T3 and lost body fat
(460). These observations might indicate a negative effect of
excessive selenite supply on hepatic D1, similar to inhibition
of D1 in epithelial kidney cells at selenite concentrations
above 200 nmol/liter (97).

D. Selenium, the thyroid axis, and chronic hemodialysis

Metabolic disturbances in chronic hemodialysis involve sev-
eral minerals and trace elements—most importantly, decreases
in serum Se and serum GPx levels. Decreased levels of its
activity combined with decreased total serum Se seem plausi-
ble, because pGPx originates from kidney tubular cells and
contributes up to 30% of plasma Se content (431). However,
biological data also indicate a condition similar to the ESS or the
low-T3 syndrome. Because the kidney contributes only slightly
to circulating T3 levels, this suggests interference of this met-
abolic condition with liver and or thyroid function. The asso-
ciation of low serum Se and low T3 values with normal to
elevated T4 and normal, decreased, or increased TSH initially
suggested causal relationships between low Se and decreased
hepatic D1 activity (461–464). Attempts of Se supplementation
normalized serum Se levels partially, but had variable or no
effect on serum thyroid hormone parameters (451, 462). Factors
other than dialysis might interfere with pituitary and thyroid
function, such as interference by uremia at several levels of
hormonal regulation (465, 466). Nevertheless, Se supplemen-
tation might be beneficial to counter oxidative stress with its
long-term role in the cardiovascular defects, cancer incidence,
and elevated mortality in dialysis patients (467).

VII. Selenium and the Endocrine System

A. Selenium and the pituitary hormones

Toxic effects of Se observed in livestock were growth re-
duction, disturbance of the reproductive axis in males and
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females, and intrauterine resorption of fetuses (468). In sev-
eral species, Se accumulates in the pituitary more than the
brain (468–475). Se in drinking water (2.5 to 15 ppm) or ip
injection of 5 to 20 mg/kg produced dose-dependent Se
deposits in secretory granules and lysosomes mainly in so-
matotrophs, and in thyrotrophs, corticotrophs, and gonado-
troph cells, whereas nonsecretory cells were unaffected (468,
471, 472). Because the pituitary contains large amounts of
zinc, formation of zinc-selenite or zinc-selenide in the secre-
tory organelles was assumed to cause these deposits (468). In
anterior pituitaries of human accident victims, no differences
in Se content (2.4 � 1.0 �g/g dry weight) were found be-
tween females and males, but the concentration varied from
below the detection limit to double that of other endocrine
organs. Peak levels of Se were observed 2 h after a single
injection of 5 mg/kg sodium selenite (75Se) and were excreted
in a biphasic manner in the pituitary as in other tissues (472).
No differences were found in Se contents between control
and Alzheimer disease pituitaries (0.86 � 0.19 vs. 0.92 � 0.11
�g/g wet weight), but there was a significant correlation
between Se and mercury content, suggesting complexation
of both elements (476).

Both excess and deficiency of Se supply lead to impaired
growth. Long-term treatment of rats with sodium selenite
in drinking water decreases serum GH, IGF-I, and IGF
binding protein-1, -2, and -3 levels and results in growth
retardation (477, 478). The exact mechanisms involved are
not fully elucidated, but inhibition of GH secretion might
be caused by Se accumulation in secretory vesicles. Tibia
and tail length also decreased. Withdrawal of the excess
selenite during the growth spurt from d 21 and 42, re-
spectively, to d 63 restored growth and normalized GH
response to GHRH in rats 3 wk after withdrawal, but IGF-I
production remained decreased, and signs of liver damage
also persisted, including elevated alanine aminotransfer-
ase, and reduced albumin (479). High doses of GH ad-
ministered to rats during excess selenite exposure also
restored growth, indicating that circulating levels of IGF-I
do not reflect local events at the growth plates and sug-
gesting direct action of GH or paracrine GH-dependent
mechanisms (477). On the other hand, Se deficiency also
impairs growth in rats and results in increased T4 (67%)
and decreased T3 (23%). Using second-generation Se-de-
ficient male and female weanling rats maintained on ad-
equate vitamin E and methionine levels, administration of
Se in concentrations of 0.1 or 0.2 �g/g diet normalized
serum thyroid hormones, liver Se content, and GPx activ-
ity (284). T3 injection to these animals restored normal
thyroid hormone levels but did not restore growth, sug-
gesting that additional factors apart from serum T3 are
involved in growth disturbance.

B. Selenium accumulation in the pineal gland

Se accumulates in the pineal gland (480). It is probably
required for the highly active D2 (481, 482) and for a strong
antioxidative capacity against the ROS produced in melato-
nin synthesis (483).

C. Selenium and selenoproteins during lactation and in the
mammary gland

The lactating mammary gland is an essential source of
trace elements for the newborn suckling baby. Both iodine
and Se are highly enriched in milk and actively concentrated
and secreted by the lactating gland (484–489). The Se content
of colostrum is high (25.5 � 16.6 �g/liter), and human milk
contains 5 to 15 �g/liter depending on the Se supply of the
mother. The newborn baby receives 5–12 �g Se/d from
breast milk and significantly less from formula. Formula-fed
babies also exhibit lower Se and GPx blood levels until they
consume fish or meat products (485, 487, 490). In extremely
low-birth weight infants and premature babies, these defi-
ciencies are more pronounced. However, specific deficits
associated with lower Se supply in this population have not
been found (484, 488). Surprisingly and in contrast to other
supplementation experiences, selenomethionine-containing
yeast does not lead to increased GPx activity in milk as does
maternal supplementation with selenite (487).

Several reports have been published indicating a specific
cell-, proliferation-, and differentiation-specific distribution
of the selenoproteins D1 and D2 in the lactating mammary
gland of rats. During lactation, D1 expression is increased in
the lactating gland and decreased in liver (446). Expression
of D1 is restricted to the differentiated alveolar epithelium in
the gland and stimulated by suckling (491, 492). Norepi-
nephrine enhances both mRNA levels and enzyme activity,
whereas prolactin increases D1 activity but not transcript
levels. GH and oxytocin have no effect (491). Constitutive
expression of D2 is confined to the nonepithelial cells, fibro-
blasts, and fat pads in the mammary gland. Breast D2 activity
varies along the estrous cycle, with the lowest activity in
diestrus. In lactating cows and pigs, D2 expression and its
control by GH have been observed (493, 494). Apparently,
increased expression of deiodinase activity and T3 produc-
tion is essential to maintain the local thyroid hormone re-
quirements of the mammary epithelium during high milk
production, when liver deiodinase and circulating hormone
levels tend to decrease. The changes in D1 expression in the
lactating mammary gland parallel increased 5�-deiodinase
activity in the hypothalamus and pituitary, where hyperpla-
sia and hypertrophy of lactotroph and somatotroph pituitary
cells are observed.

Pregnancy and lactation lead to major tissue redistribution
of Se as well as altered expression of selenoproteins and
various chemical forms of supranutritional Se supply. They
influence Se load of the milk and tissue selenoprotein ex-
pression (495). Several selenoproteins have been identified in
milk and might contribute to the beneficial effects of Se,
which reduces infections and mastitis and improves milk
production in farm animals (487, 489, 496). Metabolic label-
ing with 75-selenite of mouse mammary epithelial cells in
vitro and in vivo identified 11 different selenoproteins re-
solved into 25 different spots after 2D-gel electrophoresis.
GPx constitutes a major fraction of these proteins (497). Se
exerts inhibitory effects on growth of mouse mammary tu-
mor cells. This inhibition has been linked to the expression
of an acidic 58-kDa protein (498–500) and to a mouse 56-kDa
protein (501, 502). The 56- or 58-kDa proteins reversibly bind
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Se and do not contain Sec residues. The 56-kDa protein, also
found recently in human tissues and shown to be repressed
by androgens, exerts growth inhibitory properties and might
be of importance in antiproliferative action of Se compounds
(503) (see Section VII.G.3). TrxR, assumed to be involved in
regulation of normal and tumor cell growth, has recently
been identified in mammary tumor cell lines, and its expres-
sion is markedly stimulated (37-fold) by selenite treatment
(149). The functional relevance of these findings for tumor
cell growth and gene expression is of interest because not all
tumor cells express TrxR, and Se-dependent apoptosis, cell
and tumor growth, and stimulation of TrxR activity differ
significantly between cell lines and among various tumors.
Recent studies found inhibitory effects of both low (�0.1
ppm) and high (2.25 ppm) selenite supply on tumor devel-
opment, which is accelerated in a transgenic mouse model
coexpressing TGF� and c-myc in hepatocytes (504). Expres-
sion of several selenoproteins was altered, and 3�-hydrox-
ysteroid dehydrogenase as well as other enzymes involved
in detoxification reactions were expressed at higher levels.
These observations caution against indiscriminate Se admin-
istration for prevention or treatment of all tumor forms.

D. Selenium and the adrenals

Se readily accumulates in the adrenals where it is retained
during Se deficiency (472, 480, 505). Rat adrenals express
significant levels of D2 activity, which are enhanced in hy-
pothyroidism (506, 507). A nyctohemeral rhythm of D2 ex-
pression has been found in the adrenals, the pineal, and the
pituitary gland (506). Se deficiency causes a marked decrease
in GPx activity in an adrenal cell line associated with de-
creased steroid hormone production (508). High expression
of mitochondrial TrxR has been found in bovine adrenal
cortex (509).

E. Selenium, pancreas, and diabetes

TrxR 1 and Trx expression have been shown in mouse
exocrine and endocrine pancreas, GPx activity and 5�-deio-
dinase in rat islet cells, and SePP in �-cells (510–514). TrxR
expression increased in the islet cells during starvation (515).
Glucose stimulates T3 production in TR-expressing islet cells
(511).

�-Cells are sensitive to oxidative stress while showing a
low capacity of antioxidative systems. Se-deficient animals
have low serum insulin levels, and their islet cells show
impaired protein secretion that is normalized by Se and
vitamin E (516). Pancreas islets from patients with Keshan
disease and from Se-deficient rats show atrophy and degen-
eration. Diabetogenic drugs like alloxan and streptozotocin
induce �-cell degeneration through production of ROS.
Overexpression of �-cell-targeted copper/zinc superoxide
dismutase enhanced resistance to the effects of diabetogenic
drugs in mice (517). Inactivation of copper/zinc superoxide
dismutase by glycation may be a factor in diabetic compli-
cations (518). High glucose concentrations up-regulated su-
peroxide dismutase and GPx in rat islet cells, but not catalase
activities (510). Earlier, the induction of cGPx in endothelial
cells suggested a defense against glucose toxicity (519).

TNF� and IL-1� are mediators of �-cell damage in auto-
immune diabetes. Ebselen, a synthetic Se-containing com-
pound mimicking GPx activity, prevented the increase in
nitrite production by human islets exposed to TNF�, IL-1�,
and interferon-�, and partially inhibited inducible nitric ox-
ide (NO) synthase expression in rat insulinoma cells. It failed
to inhibit NF�B activation and long-term IL-1-induced in-
ducible NO synthase expression (520). Similarly, �-cell tar-
geted catalase overexpression did not impair but protected
�-cell function against hydrogen peroxide and streptozoto-
cin but not IL-1 (521). In contrast, stable expression of man-
ganese superoxide dismutase in insulinoma cells prevented
IL-1 �-cell toxicity and reduced NO production (522). The
new selenoprotein SelS is induced by glucose deprivation
and endoplasmatic reticulum stress in liver cells and up-
regulated by insulin injection in adipose tissue and muscle
of diabetic, but not control subjects (523). Its overexpression
increased resistance to oxidative stress in mouse �-cells
(Min6) (524).

Diabetic patients and animal models show decreased se-
rum Se levels, lower GPx activities and increased cellular
oxidative stress (525, 526). Data on beneficial effects of Se
supplementation are controversial. In streptozotocin-in-
duced diabetic rats, Se supplementation reduces blood glu-
cose levels and lipid peroxidation (527) and brings decreased
blood and liver GPx activities, GSH levels, and Se concen-
trations to normal.

Se supplementation to diabetic rats prevents TGF-�1-me-
diated renal injury associated with diabetes (526). This is
analagous to iodide-induced thyroid fibrosis in Se-deficient
rats (183). Several reports suggest an insulin-like effect for
selenate similar to vanadate in in vitro and animal experi-
ments (528–532). Direct inhibition of phosphatases involved
in insulin signal transduction can be shown in �-cells, adi-
pocytes, and muscle cells. In the db/db mouse model, ge-
netically predisposed to develop type II diabetes, adminis-
tration of selenate (SeVI) revealed an insulinomimetic role,
whereas selenite (SeIV) or Se deficiency aggravated diabetes
(533). The development of insulin resistance and syndrome
X-like metabolic alterations in mice overexpressing GPx-1
suggests interference with insulin action through ROS (534).
This insulin resistance was associated with a reduction in the
insulin-stimulated phosphorylation of insulin receptor and
of Akt. In addition to the weight gain reported in healthy men
with high-dose Se supplementation, studies suggest (460)
that selenoproteins protect both the exocrine and the endo-
crine pancreas (535, 536). There is evidence for protective
effects of Se supplementation on surrogate parameters (e.g.,
NF�B in monocytes) for adverse cardiovascular events (537)
and diabetic complications (e.g., neuropathy and retinopa-
thy) (538–541).

F. Selenium and selenoproteins in the female
reproductive tract

1. Placenta and uterus. Se excess in rats results in reproductive
failure due to toxic Se effects in females, but not males; it
causes injury to the fetus followed by absorption (10). Se
concentrations are higher in maternal than fetal human
plasma, and placental tissue concentrations are high (542,
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543). Whether Se rapidly passes the human placenta or is
actually concentrated in placental tissues remains contro-
versial (544).

High expression of SePP mRNA has been found in the
mouse uterus and placenta, and expression levels markedly
increase 4 d before birth, reaching maximal levels at term
(545). Fetal liver also expresses SePP mRNA before term
(545). Rat placental Se content and expression of selenopro-
teins gradually increase during gestation (546). Placental Se
uptake during pregnancy is saturable and affected by several
inhibitors (89). SePP might be involved, as it is in passage,
fetal deposition, and complexation of mercury (70, 71, 547–
549). Selenite, but not selenate or the GPx mimic ebselen,
interferes with the metabolism and action of prostanoids
(550). Se deficiency and decreased expression of GPx and
other enzymes involved in antioxidative defense have been
observed in placental insufficiency and in tissues of preg-
nancies with complications such as preeclampsia (551–554).

Pregnant rat uterus expresses extremely high levels of the
selenoprotein D3 mRNA immediately after implantation
(348). D3 is localized to epithelial lining cells of the uterine
lumen surrounding the fetal cavity. D3 mRNA and activity
were found by gestational d 9 at the implantation site (348).
This regiospecific and time-dependent expression of D3 sug-
gests an important role for D3 in the control of thyroid
hormone availability to the conceptus. The high expression
of D3 at the implantation site is assumed to prevent exposure
of the developing fetus to excess thyromimetic T3. The pref-
erential supply of Se to D3 and the high Se content of the
placental membranes prevent modulation of its activity even
under marked Se deficiency. D3 activity increases in the
human placenta as a function of gestational age, and elevated
rT3 levels are observed in the amniotic fluid (301). In the
epitheliochorial porcine placenta, D3 activity is higher in the
fetal compared with the maternal part (345). This probably
limits but does not completely prevent maternal-fetal thyroid
hormone transfer during advanced pregnancy. D2 activity is
thought to contribute to local T3 production but not to trans-
fer T3 to the fetus (298, 301, 555).

Human placenta is a rich source of selenoproteins includ-
ing TrxR (556). Trx and TrxR are localized histochemically in
cytotrophoblasts, decidua, and stromal cells in the stem villi
of normal human and rodent placenta and assumed to pro-
tect placental tissues during inflammation (557, 558). In the
uterus, but not in the liver, of ovariectomized rats, expression
of Trx mRNA is stimulated by estradiol, androgen, and 5�-
dihydrotestosterone, but not progesterone. The combined
treatment by estradiol and the antiestrogen ICI 182780 or by
testosterone together with the antiandrogen flutamid atten-
uated the stimulatory effect of the hormones alone (559, 560).
These findings indicate that Trx regulation is mediated via
nuclear steroid hormone receptors possibly coupled to
growth-promoting effects of steroids in this tissue. In human
endometrial stromal cells, rapid Trx expression at the mRNA
and protein level is induced by estradiol, augmented by
progesterone, and inhibited by tamoxifen. Although Trx it-
self did not promote endometrial cell growth, it additively
enhanced the EGF-induced mitogenic effect (561).

2. Ovarian function, gonadotropins, and Se. Se deficiency leads
to degeneration of ovaries and atresy of follicles (562). In vitro
studies revealed that Se supply and expression of GPx ac-
tivity, together with other antioxidative enzymes, assist in
ovarian function regulation by FSH (563, 564). Selenite not
only stimulates proliferation of bovine granulosa cells from
small follicles, but also potentiates the stimulatory action of
gonadotropins on estradiol secretion. Bovine FSH stimulates
estradiol production in cells from large follicles in the ab-
sence of Se. Its action on cells from small follicles requires
addition of Se. The role of Se in inhibiting NO production
remains uncertain, because it decreases bovine FSH-induced
NO production in granulosa cells of small follicles. Inhibitors
of oxidative stress, such as GPx, mimic the ability of FSH to
suppress apoptosis in cultured rat ovarian follicles in vitro
(563). In cows, degeneration of the ovaries and placental
accretion occur in cases of Se deficiency (562). Se deficiency
in the developing rat decreases Se levels in the ovary, with
no alterations of D1 and D3 (565).

G. Selenium and male reproduction

1. Se deficiency and male fertility. Studies in rats have revealed
that after several generations of feeding a Se-deficient diet,
male infertility develops (566–568). There was no effect in
females (10). With mild deficiency, Se accumulated in testes;
it is preferentially found in the midpiece of spermatozoa,
which contains mitochondria. Developmental studies in rats
showed changes associated with Se deficiency, e.g., changes
in the morphology of spermatids and spermatozoa and, fi-
nally, complete absence of mature germinal cells (569, 570).

2. Expression of selenoproteins in testes. cGPx and PHGPx are
expressed in the testes, the former at a low level, the latter at
a high level (571). The onset of PHGPx expression in rat testes
was shown to start at puberty and to be gonadotropin-de-
pendent (4- to 6-fold enhancement) (99, 195, 572, 573). The
expression was localized close to nuclei and mitochondria of
the seminiferous epithelium, as shown by immunohisto-
chemical methods. In situ hybridization experiments in mice
showed a distinct and stage-specific pattern of expression of
PHGPx mRNA in developing spermatids. High expression
was found in round spermatids with a peak expression in
elongating spermatids, whereas beyond this differentiation
stage mRNA signals declined (574). Huge amounts of im-
munoreactivity for PHGPx were found in the mitochondrial
membrane. At least 50% of the keratin-like capsule material
obviously consists of enzymatically inactive PHGPx, indi-
cating that during the course of sperm maturation this pro-
tein undergoes a functional switch to a matrix constituent,
which then lacks enzyme activity (575, 576). PHGPx report-
edly plays a role in spermatogenesis in rat and other mam-
mals, including man (577–579). The time course of PHGPx
decline after Leydig cell eradication appears comparatively
slow, but could be rescued by testosterone substitution. No
direct effect of testosterone on the regulation of expression
could be demonstrated. In rats, estradiol administration in-
creased and tamoxifen decreased PHGPx mRNA levels both
in testes and prostate, but not in the epididymis. These es-
tradiol effects on PHGPx expression might be mediated via
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the estrogen receptor � signaling pathway (580). Marked
decreases in expression of immunoreactive PHGPx have
been observed in infertile males suffering from oligoasthe-
nozoospermia (581).

cGPx does not appear to possess any specific function in
spermatogenesis, because cGPx knockout mice are fertile
(573, 582). A 34-kDa selenoprotein, the specific sperm nuclei
GPx (snGPx), has been identified and cloned (583). This
selenoprotein has catalytic properties similar to PHGPx.
Structural analysis revealed that snGPx is a PHGPx isoform;
it has a different N-terminal sequence encoded by an alter-
native first exon of the PHGPx gene. This N-terminal se-
quence contains a nuclear location signal and has high se-
quence similarity to protamine. snGPx is only expressed in
nuclei of late spermatids and acts as protein thiol peroxidase
responsible for disulfide cross-linking by reduction of ROS.
snGPx influences chromatin condensation and stabilization
by acting as a “moonlighting” bifunctional protein (577, 583,
584). Knockout models of PHGPx are lethal at the embryonic
period (585, 586). Male infertility is also observed in the
SePP-knockout mouse model, which leads to diminished Se
content of the testes (78, 79).

An epididymis-specific nonseleno-GPx (GPx-5) was re-
portedly secreted into the seminal fluid of rodents and other
mammals. It was hypothetically associated with the fertil-
izing capacity of sperm, but some data suggest that no func-
tional transcripts or GPx-5 proteins are expressed in the
human epididymis as these transcripts are incorrectly
spliced or mutated (59). GPx-5 is a cysteine homolog of the
GPx family, which is expressed in several tissues of mam-
malian species except humans. GPx-5 appears to be up-reg-
ulated in mammalian epididymis in case of Se deficiency and
might act as a back-up system for the Se-dependent GPx
enzymes (55).

At least three different isoenzymes of TrxR have been
characterized. TrxR1 is known to be a cytosolic enzyme,
whereas TrxR2 and -3 appear to be located in mitochondria.
The selenoprotein Trx glutathione reductase (TGR) accumu-
lates in testes after puberty and is particularly abundant in
elongating spermatids at the site of mitochondrial sheath
formation but absent in mature sperm. TGR might serve
together with PHGPx as a novel disulfide bond-formation
system, targeting proteins that form structural components
of the sperm (587). The specific functions of TrxR1 and -2 in
testes have not been characterized. TrxR-catalyzed reduction
of critical cysteines in transcription factors like steroid hor-
mone receptors or NF�B and in other nuclear events, like
redox-dependent signaling, may be of special importance in
testes (135, 138, 143). SePP is exclusively expressed in the
Leydig cell fraction and when ethylene-dimethane-sulfonate
treatment destroyed the Leydig cells, SePP mRNA disap-
peared from the testes (588). A link between SePP expression
and testosterone production in cultured Leydig cells has
been proposed (589). SePP would protect Leydig cells from
increased levels of ROS formed after cAMP stimulation in
association with increased testosterone production. Serum
LH, FSH, and testosterone levels were reduced in Se-defi-
cient mice, along with decreased sperm number and motility,
as well as DNA fragmentation. Thus, oxidative stress gen-

erated by Se deficiency seemed to impair steroidogenesis,
spermatogenesis, and male fertility (590).

Selenoprotein W, which might act as glutathione-depen-
dent antioxidant, also appears in rat testes (591, 592). Sel-
enoprotein p15 mRNA is highly expressed in human and
mouse testes (593). However, it is substantially reduced in
two malignant cell lines. A high expression of cloned sel-
enoprotein V has been demonstrated in seminiferous tubules
of the testes (20).

Sec lyase, the 47-kDa enzyme that specifically catalyzes the
degradation of Sec to alanine and elemental Se, is also highly
expressed in testes (53). It might cooperate with the similarly
abundant selenophosphate synthase, which utilizes the lib-
erated elemental Se (42, 53, 594). High expression of SECIS-
binding protein 2 (SBP2) has been reported in testes (27).
Purified SBP2 bound to the PHGPx SECIS element proved
very effective in mediating Sec incorporation, which is quite
universal for selenoprotein synthesis in eukaryotic cells.

3. Selenoproteins of the prostate and prostate cancer. Epidemio-
logical evidence, as well as animal experiments, indicates
that low Se supply is linked to the incidence of prostate
cancer (2, 595–598). Several selenoproteins have been iden-
tified and characterized in the prostate (64, 599–603). The
prostate epithelial selenoprotein (PES) is localized in epithe-
lial cells, but not secreted. A 15-kDa Se-labeled subunit is part
of a 300-kDa holoprotein (599, 602). At low Se supply, this
protein preferentially incorporates Se. Apart from this pro-
tein, GPx subunits, SelW, small selenoproteins, and several
selenoproteins in the 50- to 70-kDa range are also expressed
(592, 599, 603).

A human ortholog (hSP56) of the mouse Se-binding pro-
tein SP56 is expressed in androgen-dependent prostate, but
not in androgen-independent cancer cell lines (503, 604). Its
expression is down-regulated by androgen treatment at low
concentrations, whereas prostate-specific antigen (PSA) is
up-regulated. In contrast to Sec-containing proteins, SP56
reversibly binds Se (503, 605). Expression of hSP56 is highest
in liver, lung, colon, prostate, kidney, and pancreas (503).
Low levels were found in testes and brain. This finding is
remarkable because Se treatment decreases cancer incidence
especially in prostate, lung, and colon tissues (2, 3, 597). A
growth-inhibitory action of SP56 has been proposed, and the
down-regulation of hSP56 by androgens might relieve this
antiproliferative action of hSP56.

A link between Se, androgen regulation, and prostate can-
cer progression and treatment is probable. Se down-regu-
lates the PSA and androgen receptor (AR) transcripts and
protein within hours in the androgen-responsive LNCaP
cells and inhibits the trans-activating activity and DNA bind-
ing of AR (606). Methylseleninic acid, a potent anticarcino-
genic Se compound, inhibits the expression of AR and AR-
regulated genes, and thus proliferation, and increases levels
of phase 2 detoxification enzymes (607). A recent short time
Se intervention study showed a down-regulation of serum-
free PSA and testosterone levels (608). Epidemiological ret-
rospective evaluations revealed increased prostate cancer
incidence in men with lowest quintiles of serum Se (609).
Thus, Se supplementation in men at risk of prostate cancer
appears promising (598).
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H. Selenoproteins in bone

1. Bone physiology and ROS. Bone is built up and remodeled
by the concerted action of mesenchymal and myeloid cells,
such as osteoblasts (OB) and osteoclasts (OC). OB secrete
extracellular matrix and associated growth factors (e.g., type
1 collagen, osteopontin, osteocalcin, hCYR61),with subse-
quent mineralization. OC develop from myeloid precursors
and are terminally differentiated cells of the monocyte/
phagocyte lineage. The receptor activator of NF�B (RANK)
and RANK ligand are essential for OC differentiation and
activation. The decoy receptor osteoprotegerin modulates
RANK ligand availability (610).

When activated, macrophages and related cells undergo
an oxidative burst, mediated by the enzyme complex
NADPH oxidase (611). Oxidative bursts of different intensity
are a source of redox signaling in the cell. Thus, the so-called
peroxide tone is important for a balance between signaling,
cellular defense mechanisms (intracellular killing of bacte-
ria), and cell damage. This process probably has to be com-
partmentalized, and we can expect that effective antioxida-
tive systems protect the cells from damage. The main players
in this process are superoxides, superoxide anions, and NO.
H2O2 and NO have been shown to stimulate bone resorption
(612, 613). We can assume this oxidative burst and the con-
secutive reactive oxygen intermediate-mediated signaling
necessary for bone resorption in the context of bone remod-
eling, but leakage or overflow of reactive oxygen interme-
diate could also impair OB function, thereby propagating
bone mass loss and subsequent osteoporosis.

2. Se deficiency, selenoproteins, and bone disease. Se-deficient
male rats were shown to develop osteopenia and impaired
bone metabolism, growth retardation, and reduction of GH
and IGF-I levels (614). Reduced activity of deiodinases in the
pituitary may be one reason for these findings (12, 274, 275,
280, 281, 283, 468, 477, 615). Impairment of OB function and
reduced sensitivity to PTH and/or 1,25-dihydroxycholecal-
ciferol (1,25-D3) were postulated, because PTH and 1,25-D3
levels were enhanced without enhanced OC formation and
bone resorption. Serum calcium levels were unexpectedly
lower in the Se-deficient group, and hypercalciuria was
noted, indicating an influence of Se deficiency on calcium
absorption and/or renal excretion.

Kashin Beck disease is a form of osteoarthritis occurring in
regions of Central Africa and China that are known for their
low Se supply (Fig. 9). The clinical course of this form of
osteoarthritis can be ameliorated by Se supplementation, but
the primary cause of the disease remains unclear (214, 616,
617). In rheumatoid arthritis, the TrxRs of monocytic cells
have long been targets for antirheumatoid therapy exploiting
gold compounds, which can inhibit TrxR activity (618). A
report on the influence of antioxidant vitamins E and C on
the risk of hip fractures postulated that ROS might exert
effects on bone metabolism, but there was no significant
effect on hip fracture incidence (619).

3. Selenoprotein expression in OB. 75Se labeling of human fetal
OB (hFOB) cell cultures shows at least nine different proteins
that incorporate the radioactive trace element (613, 620).

Their respective molecular masses are approximately 80, 70,
56, 54, 24, 21, 18, and 14 kDa (Fig. 10).

The expression of cGPx and pGPx was demonstrated in
hFOB (613). 75Se labeling of hFOB cells showed two com-
patible bands of 21–24 kDa, and GPx activity was readily
measurable. Total GPx activity could be stimulated upon the
addition of 100 nm selenite to tissue cultures and decreased
by serum deprivation (Fig. 11).

TrxR1 was identified as a 1,25-(OH)2 vitamin D-responsive
early gene in hFOB cells (116). Only a transient increase of
TrxR mRNA was observed, reaching maximal levels by 4 h
after stimulation with 1,25-D3. TrxR2 mRNA was expressed

FIG. 9. Kashin-Beck disease. The x-ray figure to the right shows
marked signs of osteochondropathy of the right hand of a patient
suffering from Kashin-Beck disease, in comparison to an age-matched
normal control (left). [Reproduced with permission from R. Moreno-
Reyes et al.: N Engl J Med 339:1112–1120, 1998 (214) © Massachu-
setts Medical Society.]

FIG. 10. Autoradiography of Se-75 metabolic labeling in hFOB and
separation of radiolabeled proteins. [Reproduced with permission
from I. Dreher et al.: Biochem Biophys Res Commun 245:101–107,
1998 (613).] hFOB-cells were cultured under Se-deficient conditions
(serum-free culture for 3 d). 75-Se (specific activity, 1.9 Ci/�g; Re-
search Reactor Facility, University of Missouri, Columbia, MO) was
added at 10 nM for 24 h. Positions of molecular weight markers are
shown on the left and right. After gel electrophoresis, the dried gel was
exposed to Kodak X-Omat x-ray film for 24 h.
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at low levels and did not respond to 1,25-D3 treatment. Total
TrxR activity was regulated by the addition of 100 nm selenite
to cell cultures, but was not stimulated by 1,25-D3 under
conditions of relative Se deficiency (e.g., cell culture condi-
tions without supplementation containing 7.5 nm Se). Only
after two passages of cultures in the presence of 100 nm
selenite was a significant rise in TrxR activity observed upon
1,25-D3 stimulation (621).

TrxR/Trx in OB could be involved in regulation of the
transcription factor (e.g., steroid hormone receptor signaling
in OB), the peroxide tone, and antioxidative scavenging.
Vitamin K is a substrate for TrxR, and thus TrxR contributes
to the activity of vitamin K-dependent proteins like �-car-
boxylase itself, osteocalcin, and bone gla protein, the latter
two being important regulators of calcification (Refs. 621 and
622 and references therein). Additional functions may com-
prise the modulation of cysteine-rich signaling proteins of
the CCN family of growth factors (e.g., CYR61, CTGF)
(623–625).

a. Other selenoproteins in OB. 75Se labeling in the region of
53–60 kDa (Fig. 10) can be assigned to TrxR1 and SePP in OB
and their precursors. A mouse chondrogenic cell line ex-
presses functional D2 and T3 receptors (626). We found no
evidence for deiodinase expression and activity in hFOB
cells. Bone development and differentiation are controlled by
thyroid hormones acting via local cell-specific expression of
deiodinases and T3 receptors (615, 627, 628). No 5�-deiodi-
nase activity is found in bone extracts of D2 knockout mice,
and both 1,25-(OH)2 vitamin D3 and TSH via its adenylate
cyclase-coupled receptor, which is expressed in OB, stimu-
late D2 activity in OB in vitro (615, 628). The 14-kDa band may
represent the 15-kDa selenoprotein expressed in T cells,
which is discussed as a putative cancer-associated factor
(629).

4. Selenoproteins and cells of the monocyte/macrophage lineage
of differentiation. 75Se labeling of monocytic THP1 cells
yielded the expression of at least nine different selenopro-

teins or selenoprotein fragments. TrxR1 was identified as a
vitamin D-responsive selenoprotein in THP1 leukemia cells
and in peripheral blood monocytes prepared ex vivo (113, 114,
630). There is presently no information available on seleno-
proteins in mature OC.

I. Selenium, the hormonal system of the skin, and
selenoproteins in muscle

Skin locally expresses most components of the endocrine
system (631). However, with the exception of expression of
GPx-1 in skin and of D2 in keratinocytes, no detailed infor-
mation on other selenoproteins in skin is available (592, 632–
634). Local T3 production by skin might be an important
source of T3, especially during the fetal period or in hypo-
thyroidism (635). Se depletion reduces skin Se levels in rats
and decreases activities of all three deiodinases in embryonic
d 21 rats as well as D1 and D3 activity in postnatal d 12 rats
(565). Whether Se supply is involved in deposition of gly-
cosaminoglycans in the skin of severely hypothyroid patients
has not yet been analyzed. GPx and SelW are expressed in
skin of Se-adequate rats (636), and Se deficiency reduced the
number of epidermal Langerhans cells that might affect cu-
taneous immunity and UV protection (634). SelW is ex-
pressed in the skin at higher levels in female rats (592, 637).
Cre recombinase-dependent inactivation of the Sec tRNA
[Ser]Sec gene (Trsp) reduced Sec tRNA [Ser]Sec amounts and
the selenoprotein population of skin (GPx-1 and GPx-4,
Sep15) (638).

Differential expression of TrxR and PHGPx has been
found in human fibroblasts, keratinocytes, and melanocytes
(639). Low (1 nm) concentrations of selenite or (10 nm) sel-
enomethionine protect keratinocytes and melanocytes from
UV-B-induced cell death in vitro (639).

Fibroblasts and muscle cells also express several seleno-
proteins including deiodinases (297, 328, 640). Functional D1
activity in rat skeletal muscle (641) might generate a signif-
icant quantity of daily T3 production, given the mass of tissue
compared with liver, kidney, and thyroid, the other organs
contributing to T3 formation (642). D2 expression, its stim-
ulation by cAMP and �-adrenergic agonists, and inhibition
by thyroid hormones and TNF� have been demonstrated in
cultured human skeletal muscle cells (297). However, skel-
etal muscle biopsies of critically ill patients revealed no D2
activity (352). SepN mutations lead to hereditary myopa-
thies, but its exact function in muscle development and phys-
iology remains to be clarified (643).

J. Selenoproteins and the hormonal regulation of
endothelial function

Se deficiency has been associated with cardiovascular
problems, thrombosis, and atherosclerosis (18, 644–646).
Many of the protective effects of Se have been attributed to
the action of the GPx family of enzymes (576), which apart
from their antioxidative effects modulate the cyclooxygenase
pathway, thromboxane production, and eicosanoid metab-
olism (647). The finding of SePP binding to the inner endo-
thelial surface (73) suggests a protective role of SePP, pos-
sibly mediated by inhibition of peroxynitrite formation and

FIG. 11. Time course of stimulation of GPx-activity by selenite in
hFOB. [Reproduced with permission from I. Dreher et al.: Biochem
Biophys Res Commun 245:101–107, 1998 (613).] hFOB cells were
cultured in 10% FCS-containing medium. From d 0 onward, cells
received serum-free medium plus/minus selenite at 100 nM. GPx
enzyme activity was measured from cytosolic extracts prepared after
24, 48, and 72 h. The assay applied does not discriminate between
various GPx isoenzymes.

Köhrle et al. • Selenium, the Thyroid, and the Endocrine System Endocrine Reviews, December 2005, 26(7):944–984 967

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/26/7/944/2355177 by guest on 21 August 2022



nitrosylation of endothelial proteins (648). Experimental ev-
idence supports the hypothesis that low Se status is linked
to enhanced lipid peroxidation, elevated levels of oxidized
lipoproteins, and etiology of cardiovascular diseases (537,
646, 649). Several selenoproteins are Se-dependently ex-
pressed in bovine arterial endothelial cells (cGPx, PHGPx,
TrxR1, TrxR2, TrxR3, SePP) (650). Selenite induces TrxR,
protects human endothelial cells from oxidative damage, and
affects calcium signaling (651–653). Several other not yet
identified Se-containing proteins were found in the arterial
wall (p15, p18, p30, p43, p67) (654). Combined Se and vitamin
E deficiency increased microvascular permeability in rat
heart and eye tissues, but not in others (655). GPx-4 expres-
sion in human endothelial cells depends on Se supply and is
markedly modulated in a complex manner by fatty acids,
cytokines, and other oxidants indicating possible protective
links of Se against atherogenic processes (656). The role of Se
in the immune system and hormonal influences in the in-
teraction of these key networks in maintaining and regulat-
ing communication and information transfer in multicellular
systems are beyond the scope of this review (see Refs. 415
and 657–659).
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576. Brigelius-Flohé R 1999 Tissue-specific functions of individual glu-
tathione peroxidases. Free Radic Biol Med 27:951–965

577. Flohe L, Andreesen JR, Brigelius-Flohe R, Maiorino M, Ursini F
2000 Selenium, the element of the moon, in life on earth. IUBMB
Life 49:411–420

578. Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M 2002
Male fertility is linked to the selenoprotein phospholipid hydroper-
oxide glutathione peroxidase. Biol Reprod 67:967–971

579. Nayernia K, Diaconu M, Aumuller G, Wennemuth G, Schwandt
I, Kleene K, Kuehn H, Engel W 2004 Phospholipid hydroperoxide
glutathione peroxidase: expression pattern during testicular de-
velopment in mouse and evolutionary conservation in spermato-
zoa. Mol Reprod Dev 67:458–464

580. Nam SY, Baek IJ, Lee BJ, In CH, Jung EY, Yon JM, Ahn B, Kang
JK, Yu WJ, Yun YW 2003 Effects of 17�-estradiol and tamoxifen on
the selenoprotein phospholipid hydroperoxide glutathione perox-
idase (PHGPx) mRNA expression in male reproductive organs of
rats. J Reprod Dev 49:389–396

581. Imai H, Suzuki K, Ishizaka K, Ichinose S, Oshima H, Okayasu I,
Emoto K, Umeda M, Nakagawa Y 2001 Failure of the expression
of phospholipid hydroperoxide glutathione peroxidase in the sper-
matozoa of human infertile males. Biol Reprod 64:674–683

582. Cheng W-H, Ho Y-S, Ross DA, Valentine BA, Combs GF, Lei XG
1997 Cellular glutathione peroxidase knockout mice express nor-
mal levels of selenium-dependent plasma and phospholipid hy-
droperoxide glutathione peroxidase in various tissues. J Nutr 127:
1445–1450
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FASEB Summer Research Conference on

DYNAMIC STRUCTURE OF NUCLEAR HORMONE RECEPTORS

Aim: To bring together experts in protein dynamics with experts in field of NHRs
Location: Omni Tucson National Golf Resort, Tucson, Arizona
Date: July 8–13, 2006
Co-Organizers: Raj Kumar and Brad Thompson, University of Texas Medical Branch
For updates and applications to attend, visit www.faseb.org/meeting/src

Société Française d’Endocrinologie

JOURNEES INTERNATIONALES D’ENDOCRINOLOGIE CLINIQUE

Henri-Pierre Klotz

First announcement

The 49th Journées Internationales d’Endocrinologie Clinique will be held in Paris on May 11–12, 2006 and
will be devoted to: “Hormones, calcium and osteoporosis.”

Program will include 20 state-of-the-art lectures and a limited number of selected free communications for
oral or poster presentation.

Deadline for submission of abstracts: January 5, 2006

Information:
Dr. G. Copinschi
Laboratory of Experimental Medicine
Brussels Free University – CP 618
808 Route de Lennik
B-1070 Brussels
Belgium
E-mail: klotz@ulb.ac.be
Website: http://www.endocrino.net
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