{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1007/BF00375026
Self-accommodation in martensite — Source link [/

Kaushik Bhattacharya

Institutions: Courant Institute of Mathematical Sciences

Published on: 01 Sep 1992 - Archive for Rational Mechanics and Analysis (ARCHIVE FOR RATIONAL MECHANICS
AND ANALYSIS)

Topics: Diffusionless transformation, Bainite, Martensite, Austenite and Microstructure

Related papers:

« Fine phase mixtures as minimizers of energy

» Proposed experimental tests of a theory of fine microstructure and the two-well problem
» Wedge-like microstructure in martensites

« Theory of structural transformations in solids

» Equilibrium configurations of crystals

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/self-accommodation-in-martensite-
12153h4xba


https://typeset.io/
https://www.doi.org/10.1007/BF00375026
https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba
https://typeset.io/authors/kaushik-bhattacharya-d35gr4fuk8
https://typeset.io/institutions/courant-institute-of-mathematical-sciences-2qhtzu4z
https://typeset.io/journals/archive-for-rational-mechanics-and-analysis-3try2441
https://typeset.io/topics/diffusionless-transformation-frt019vc
https://typeset.io/topics/bainite-3536ob2n
https://typeset.io/topics/martensite-5774w2zk
https://typeset.io/topics/austenite-55c0vtw9
https://typeset.io/topics/microstructure-16y9qido
https://typeset.io/papers/fine-phase-mixtures-as-minimizers-of-energy-2wtqikza52
https://typeset.io/papers/proposed-experimental-tests-of-a-theory-of-fine-1qot8wiorj
https://typeset.io/papers/wedge-like-microstructure-in-martensites-17t4u1zs4c
https://typeset.io/papers/theory-of-structural-transformations-in-solids-4th2852fr8
https://typeset.io/papers/equilibrium-configurations-of-crystals-243g5isr1i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba
https://twitter.com/intent/tweet?text=Self-accommodation%20in%20martensite&url=https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba
https://typeset.io/papers/self-accommodation-in-martensite-12153h4xba

SELF-ACCOMMODATION IN MARTENSITE

By

Kaushik Bhattacharya

IMA Preprint Series # 879
October 1991



SELF-ACCOMMODATION IN MARTENSITE

Kaushik Bhattacharya
Department of Aerospace Engineering and Mechanics
University of Minnesota
Minneapolis, MN 55455




ABSTRACT

The shape-memory effect is a phenomenon wherein an apparently plastically deformed specimen
recovers all strain when heated to above a critical temperature. This is observed in some crystalline
solids that undergo the martensitic phase transformation. The martensitic transformation is a
temperature induced, diffusionless solid to solid phase transformation involving a change in
crystalline symmetry. Shape-memory materials are able to transform from the high temperature
austenite to the low temperature martensite phase without any apparent change in shape. This is
known as self-accommodation. Though there is a change of shape at the microscopic level, the
martensitic variants arrange themselves in such a microstructure that there is no macroscopic
change in shape. Apart from being an inherent part of the one-way shape-memory effect, it can be
argued that self-accommodation is also important for the reversibility of transformation in
polycrystals and for easy nucleation of martensite during cooling. Using a continuum theory based
on finite thermoelasticity, we investigate which materials can form a self-accommodating
microstructure. In particular, necessary and sufficient conditions that the lattice parameters of a
material have to satisfy in order that it is able to form a self-accommodating microstructure are
derived. The analysis here is significantly different from the previous studies because it makes no
a priori assumption on the microstructure. The main result states that if the austenite is cubic, the
material is self-accommodating if and only if the transformation is volume preserving. On the
other hand, if the symmetry of the austenite is not cubic, it is not possible to construct any
microstructure that is self-accommodating unless the transformation strain or the Bain strain
satisfies additional, rather strict, conditions. These results show good agreement with the available
experimental data. Necessary conditions are derived using the minors relations, while sufficiency
is demonstrated by explicit construction.
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§1. INTRODUCTION

One-way shape-memory is the ability of a material to remember its shape above a critical
temperature. This phenomenon is observed in certain crystalline solids, typically metallic alloys.
Below the critical temperature, the alloy is extremely malleable - undergoing apparently plastic
deformations with strains as large as 10% under very small forces. It is therefore possible to
deform a piece of shape-memory material into a variety of new shapes. However, all the strain is
recovered when it is heated to above the critical temperature. Cooling from above to below the
critical temperature does not cause any macroscopic shape change and the cycle can be repeated.
This is shown schematically in Figure 1.1.

Temperature
A

heat

cool

deform

Figure 1.1: The shape-memory effect.

Intensive experimental and crystallographic investigation during the 1960s and the 70s
revealed that the heart of the effect lies in the reversible or "thermoelastic" martensitic
transformation that these crystalline solids undergo. A martensitic transformation is a temperature
induced first order diffusionless phase transformation between the high temperature austenite phase
and the low temperature martensite phase. The critical temperature of the shape-memory effect is
the transformation temperature. In these solids, the lattice of the austenite has higher symmetry
than that of the martensite. This gives rise to more than one variant of martensite. Variants are
identical crystal lattices which are oriented differently with respect to the austenite. The variants



may arrange themselves in fine microstructure in order to satisfy imposed boundary conditions.
These microstructures are coherent and free of internal stresses on a macroscopic scale.

Consider a specimen of a given shape in Figure 1.1a. It is in the austenite phase. On
cooling, the austenite transforms to the martensite. However, the variants of martensite arrange
themselves in such a manner that there is no macroscopic change in shape (Figure 1.1b). When
loads are applied to the martensite, it deforms by converting one variant to another and forming
new microstructures (Figure 1.1¢). On heating, each variant transforms back into the austenite.
Since there is only one variant of austenite, all the strain is recovered and the specimen goes back
to its original shape (Figure 1.1a).

As mentioned above, the variants of martensite in a shape-memory material arrange
themselves in such a microstructure that there is no macroscopic change in shape during the
transformation from austenite to the martensite. Therefore, though there is a deformation at the
microstructural scale due to the transformation, the variants "accommodate each others strains” so
that there is no change in shape at the macroscopic level. This is known as self-accommodation.
A self-accommodating microstructure is a coherent arrangement of martensitic variants occupying
a region whose boundary suffers no displacement with respect to the austenite. Thus, it is possible
to embed a self-accommodating microstructure in a sea of austenite in a coherent manner without
introducing macroscopic stresses. A recent paper of Tan and Xu[63] contains striking optical
micrographs of such islands of martensite surrounded by the austenite in an alloy of copper,
aluminum and nickel (Cu - 14 wt. % Al - 4.2 wt. % Ni). A material that can form a self-
accommodating microstructure is called a self-accommodating material. Wayman and others have
emphasized the importance of self-accommodation to the shape-memory effect[58].

Apart from the fact that self-accommodation is an inherent part of the shape-memory
phenomenon, it arguably plays a crucial role in making the transformation reversible or
thermoelastic. The following argument is intuitively appealing. A typical piece of shape-memory
material is a polycrystal consisting of a large number of randomly arranged grains. Owing to the
random arrangement and shapes of the grains, it is easy to believe that any change in the shapes of
the grains would cause some mismatch at the grain boundaries resulting in internal stresses and,
possibly, cracks. The possible presence of temperature gradients further complicates the situation.
Thus, a change in shape during transformation may be hostile towards reversibility. On the other
hand, the property of self-accommodation is certainly sufficient to prevent any mismatch in a
polycrystal. Similarly, it may also be argued that self-accommodation is important for the easy
nucleation of the martensite during cooling. Any nucleus of martensite that forms in the interior of
the specimen is completely surrounded by the austenite. Only self-accommodating materials can



do this in a coherent and stress-free manner. Thus, internal nucleation is likely only in self-
accommodating materials.

Studying common shape-memory alloys using the crystallographic theory of martensite,
Tas, Delaey and Deruyterre[65] and Saburi and Wayman([58] proposed certain microstructures as
self-accommodating. The central idea in both their analysis is that of a "self-accommodating plate
group”. This is explained in the appendix. It turns out that these microstructures are either
incoherent or require macroscopic internal stresses. Moreover, their analysis does not determine
which materials can and which materials cannot form a self-accommodating microstructure. It is
clear that not every material that undergoes martensitic transformation is self-accommodating. For
example, consider a material where the volume of the martensite is smaller than that of the
austenite. In this material, is not possible to embed any microstructure of martenisite in a sea of
austenite in a coherent manner without introducing macroscopic stresses. Therefore, this material
is clearly not self-accommodating. The central issue of this paper is to find necessary and
sufficient conditions on the lattice parameters of a material in order that it be self-accommodating.

The main result is shown in Table 3.1. A surprising consequence of our results is that
even though it is the variants of martensite that participate in the self-accommodating
microstructure, the conditions for self-accommodation as stated in Table 3.1 depend only on the
symmetry of the austenite. As explained above, volume preservation during transformation is
necessary for self-accommodation. It turns out that volume preservation during transformation is
also sufficient for self-accommodation if the symmetry of the austenite is cubic. In fact, in the case
of cubic austenite, it is always possible to construct a microstructure which is a pure dilatation with
respect to the austenite. The amount of dilatation, of course, depends on the transformation
volume change. However, if the symmetry of the austenite is not cubic, the lattice parameters of
the material have to satisfy additional restrictions which are extremely stringent and non-generic.
For example, in a tetragonal to orthorhombic transformation, in addition to volume preserving
transformation, it is necessary (and sufficient) that there is no stretch in the direction of the "c-axis"
of the tetragonal lattice. In summary, materials with cubic austenite have to satisfy a rather easy
constraint while materials with non-cubic austenite have to satisfy very restrictive conditions in
order to be self-accommodating. This may be the reason why every shape-memory material that I

have found in the literature has cubic austenite and undergoes very small volume change during
transformation.

Following the work of Ericksen and James amongst others[9,10,12,19,22-29,37-
39,56,57,71], these crystals are modelled as thermoelastic solids. This continuum model is
derived by linking the movement of the atoms to the macroscopic deformation using the Cauchy-



Born hypothesis{27,71]. Different configurations of the crystal are regarded as deformations from
a chosen reference configuration. Section 2 explains the constitutive assumptions and develops the
mathematical concepts used in the analysis. The main constitutive assumption is that there is a free
energy per unit reference volume which depends on the local change in shape measured by the
deformation gradient and the temperature. At the transformation temperature, the energy has wells
in the space of deformation gradients corresponding to both the austenite and the martensite
phases. The position of the wells is determined by the lattice parameters of the crystal lattices of
both phases. Because of the wells, the energy is not "quasiconvex"” and it is possible that certain
minimization problems with prescribed homogeneous boundary conditions have no solution. In
such cases, it is necessary to study minimizing sequences. The minimizing sequences in which the
gradients remain uniformly bounded are interpreted as coherent fine scale microstructure. The
necessary and sufficient conditions for self-accommodation are derived in Section 3. The "minors
relations"”, which are consequences of the weak continuity of the minors of the gradient are used to
derive the necessary conditions. The sufficiency is demonstrated by constructing special
microstructures involving multiple levels of laminates. Section 4 contains some comparison of
theory and experiment. In Section 5 we discuss the implications of the results in Table 3.1 for the
shape-memory phenomenon. It ends with a speculative discussion of why actual materials do not
exhibit as many levels of laminates as required by the constructions in Section 3.

We use the minors relations in Section 3 to derive necessary conditions that turn out to be
sufficient for the existence of a self-accommodating microstructure. The minors relations are a
statement of certain special properties of the minors or subdeterminants of matrices. Any set of
matrices that participate in a microstructure must satisfy the minors relations. Therefore, the
minors relations are an easy way of deriving necessary conditions for the existence of certain
microstructures. However, it is well-known that there are matrices which satisfy the minors
relations but do not participate in any microstructure[6,31,59]. Therefore, in general the
conditions derived using these relations are not sufficient to guarentee the existence of
microstructure. However, they often turn out to be sufficient, as they do in our problem. Ball and
James[10] and James and Kinderlehrer[39] amongst others have also used these relations to derive
conditions that turn out to be sufficient in problems involving martensites. Ball[5,8] has used the
weak continuity of the minors in problems of elasticity. Avellaneda, Charkaev, Lurie and
Milton[4] amongst others have used the same properites of the minors to obtain optimal bounds on
the effective properties of composites and polycrystals. Murat and Tartar[50-52,64] have used the
weak continuity of the minors to develop what they call "compensated compactness”. Thus, these
minors relations appear to be extremely useful in problems involving microstructure.



Before we begin, a word about the notation and conventions which are used unless
otherwise mentioned. Scalars are denoted using Greek letters. Bold faced Roman letters denote
vectors, while bold faced Roman capitals denote tensors or matrices. 1 denotes the identity

. 4
tensor. All vectors with hats, €.g. 1

are unit vectors. The subscripts or indices i,j,k,1 are integers
from 1 to 3, while I,J,K,L are integers between 1 and some specified integer. The superscripts j
and k are used to index sequences and run from 1 to infinity, while superscripts n,m and s denote
some fixed positive interger. SO(3) is the group of all rotations (QTQ = QQT =1and detQ =+1)

in three dimensions. R[0,e] denotes a counterclockwise rotation of 6° about e.



§2. CONSTITUTIVE ASSUMPTIONS AND MICROSTRUCTURE

Consider a specimen consisting of undistorted austenite at the transformation temperature.
Let it occupy an open, connected and bounded domain Q C R? such that 9Q is Lipschitz. Choose
this as the reference configuration. Since the phase transformation is structural and does not
involve any diffusion or change in composition, all the configurations of the crystal can be
described as the deformation y : Q—>IR3 of this reference configuration. For example, the
transformation from austenite to martensite is described by the homogeneous deformation
y(x) = §;x. S, is known as the transformation strain. It satisfies det S; > 0. For a given
material, it depends on the lattice parameters of both the austenite and the martensite and may be
determined experimentally.

Assume that there is a free energy per unit reference volume ¢(F,0) which depends on the

change of shape measured by the deformation gradient and the temperature. The total energy of the
crystal Eq[y,0] under the deformation y(x) at the temperature 0 is given by

Eqly.0] = J-¢(Vy(X),9) dx.
Q

Let ¢(F,8) be defined on Dx ®* , where D is a suitable open, bounded subset of all second order
tensors in three dimensions and ® CIR is an open interval containing the transformation
temperature 0,. Also assume that for each 0 € O, the restricted function ¢(F,8) is continuous on
D. Restricting the definition of ¢ to D instead of the space of all tensors is motivated by the
molecular theory. According to that, it is necessary to restrict the domain of deformation gradients

to some "Pitteri neighborhood" in order to obtain a finite material symmetry
group[10,25,26,34,56,57]. We assume that Dis bounded and that 1 and S, belong to D.

At a given temperature, the configuration observed in a crystal subjected to a displacement
boundary condition y(x) =y,(x) on dQ is given by the deformation that minimizes Eq[y,0]
amongst all deformations y € S that satisfy y(x) =y, (x) on dQ. S is a suitable class of
functions. The answer to the above minimizing problem depends on the choice of S. We are
interested in coherent deformations that do not open up holes or cracks in the specimen. At the
same time however, we would like to allow jumps in the gradient. Lipschitz functions, or
equivalently, functions in W1‘°°(Q ; ]R3) are the best suited to describe such deformations. Finally,

* X denotes the cartesian product.



we do not want the material to collapse into a point. This is ensured by assuming that the
deformation gradient has a positive determinant. All of the above motivate the following choice.

S= {y e WhQ: R Vy(x)e D } where

W1'°°(Q ; ]R3) is the Sobolev space of mappings y : Q—R? with finite norm

Iy lly .. € ess sup { ly@)! + Vy)l }.
xe Q

For future use, we make the following definition here. Let m be any positive integer. L™(Q ; R™)
is the Banach space of mappings F : Q—R™ with finite norm

IF I, % ess sup IFX)I.
xe Q
We do not expect rigid body rotations of the crystal to change its energy. Similarly, the

austenite lattice contains crystallographically indistinguishable directions.  In order that our free
energy reflects these, we make the following assumptions. Firstly, assume that 2 has the

following invariance.
FeD = QFRe D VQeSOB) and VRe 7,

Here, 2, is the point group of the austenite lattice. The point group of a lattice is the group of
rotations that map a lattice back into itself. Corresponding to the different crystal systems, there
are seven point groups, all of which are finite. For example, the point group of the cubic lattice

consists of the 24 rotations that map a cube back into itself. Now, assume that the free energy
¢0(F,0) has the following invariance.

Frame indifference: ¢(F,0) = d(QF,0) V Qe SO3B3), VOe O. 2.1
Material Symmetry: ¢(F,0) =¢(FR,8) VRe 7, Voe O,

The assumption of frame indifference ensures that rigid body rotations of the crystal do not change
the energy. By the Polar Decomposition Theorem([13], any tensor F with det F > 0 can be written
uniquely as a product of a rotation Q and a positive-definite symmetric tensor U, i.e,

F=QU where U=VFTF  and Q =FU! e SO®3). (2.2)

Therefore, frame indifference implies that the energy depends only on the positive-definite
symmetric part of the deformation gradient. The choice of %, as the material symmetry group is



motivated by the molecular theory and reflects the fact that the austenite lattice contains
cystallographically indistinguishable directions.

We assume that there is a point group %, © P, associated with the lattice of the martensite
which leaves the martensite lattice unchanged. Simple molecular arguments imply that S, satisfies

T
RTSTS,R =STs, V Re?,.

It is not generally true that RTS¥SIR = STS1 forR e P, LetS, S,.,...,S, be the distinct tensors
of the form RTS;R for R € 2,. It is easy[66] to see that

Order of 2,

V= Order of Pn (2.3)

The configurations described by the deformations y(x) = Sgx where K =1, 2, ..., v correspond
to the different variants of martensite. An immediate consequence of the invariance assumption is
that each of these configurations has the same energy.

Above the transformation temperature 8,, a crystal with no loads applied on it is in the
austenite phase. Below 6, it is in the martensite phase. At 6, there is an exchange of stability
and we are led to assume that both the homogeneous austenite as well as homogeneous martensite

minimize the energy. Without any loss of generality, we assume that the value at the minimum is
zero. Therefore, using the invariance, we conclude that ¢(F,8,) is minimized at the

Austenite well: 2% (Q1Qe sOQ)) and 2.4)

v
Martensite wells: M & Y (QSk!Qe S0B) }.

Finally, we assume that the tensors belonging the wells 4 and M are the only minimizers of
o(F,9,). Therefore, at the transformation temperature, the free energy satisfies

0=0(G,8,) < (F,0,) VGe AunM and VFe DU, (2.5)

For a energy function described above, it is possible that for certain prescribed boundary
conditions there are no minimizers{39]. This may occur even for "acceptable boundary conditions"
for which there are functions y € Sthat satisfy y =y, on dQ. In such cases there is no function
z € Sthat satisfies z = y, on dQ2 and for which



Eolz,8,] = inf  Zq[y.0,] .

ye s
y=y,0ndQ

However, it is always possible to find a sequence of deformations yk € S which satisfy the
prescribed boundary condition and for which Z'Q[yk,eo] becomes smaller and smaller, going to the
infimum in the limit. These sequences may not converge in Wl’“(Q ; ]R3). However,
Vyk € D, a bounded set, and IIVykIIm is uniformly bounded independent of k. Hence, Ilyklllvw is

uniformly bounded and by extracting a subsequence if necessary, the sequence converges weak*
in W' Q:; R ask —» o (denoted by y* 2> y in Wh(Q ; 1123))[20,30]. These sequences of
deformations often involve certain microstructure on a finer and finer scale. The fundamental
hypothesis of Ball and James[9,10] is that these weak* convergent minimizing sequences model
the coherent fine scale microstructure. Recall the following definitions.

A sequence F¥ 22 Fin L™(Q; R™) as k — oo means that there exists a constant o, such that

IF*I, < o V integers k and

J FX(x) dx - J F(x) dx V smooth subdomains Q'C Q as k — oo,
Q' Q'

A sequence ¥ 2> y in W'(Q ; R?) as k — oo means that
Vy* 2 vy inL™(Q; R%) ask 5« and

Yoy uniformly on Q ask — oo,



Figure 2.1: The kth term of the sequence of deformations (2.8) involving one level of laminates.

Here is an example of a weak™* convergent sequence that satisfies homogeneous boundary
conditions.

Example 2.1. (Laminates or Fine Twins) Suppose the tensors F_ and F, satisfy
F,-F,=a®n (2.6)

for some vector a and some unit vector n. This is the Hadamard jump condition that is necessary
and sufficient for constructing any continuous piecewise affine deformation with gradients F and
F,[9,13]. In any such deformation, the gradients can jump only along planes with normal n. Let
k be any positive integer and A € (0,1). Let x(t):(0,1) = R be the characteristic function of (0,A).
Extend % periodically with period 1 to R. Then the deformation

kx-n
25(x) = Fox + & _[x('c) dt a

k
0

10



is continuous and piecewise affine with gradients F, and F; in the alternate bands as shown in
Figure 2.1. Notice that the thickness of the bands is scaled by % However, z does not satisfy
homogeneous boundary conditions. This is achieved by introducing a small transition layer

(shaded in Figure 2.1) at the boundary. Following Chipot and Kinderlehrer[19], let
\pk : IR3—>[0,1] be a smooth cut-off function with the following properties:

‘ 0 outside Q
V= { 1 xeQ with distance (x,9Q) > { 2.7)
k| <2k
[Vy®I< ol

Now, the deformation
yE(x) = ¥ (x) 25(x) + (1- y*(x)) Fy, x xe Q (2.8)
where Fy =AF; + (1-A) F,,.

satisfies homogeneous boundary conditions Fyx. It is laminated except for a small transition layer

at the boundary. Moreover, it is easy to verify that
kK * : Ley. 3 : =
y: — y inwW(Q; R where y(x) =F;x xe Q.

Thus as k — oo, y* approximates the homogenous deformation F, x uniformly, while its gradients

take on the values F, and F; except in the transition zone, the volume of which goes to zero. We
call F, the average deformation gradient of the laminate.

Notice that
Eoly5,0] o>  volume(Q) { A0(F;,0) + (1-X) ¢(F,.0) } while
Eqly.0] = volume(Q2) ¢(AF; + (1-L)F,,0)

Thus, unless we make additional hypothesis on ¢, the limit of the energy is not equal to the energy
of the limit configuration. O

To determine the conditions under which given tensors satisfy (2.6), we appeal to Ball and
James[10].

11



Proposition 2.1. (Ball and James[10]) Given tensors F, and F with positive determinants, it is

possible to solve
QF-F,=a®n (2.9)

for Q e SO@3),a=0and n if and only if C = F‘oT F'F F'o1 # 1 and the ordered eigenvalues
A S Xy A5 0f C satisfy the condition L, = 1. The solutions are given by

a=p M eA1 + K M eA3 and (2.10)
A3-A A3-hy

p Vs,
where p # (0 is chosen to make In = 1, x ==*1 and {31,32,33} is an eigenbasis of C

A
corresponding to the eigenvalues Ny, A, and Xy. For each of these values of aandn, Q is

determinted by substituting back in (2.9). |
Remark 2.1. In the special case when F and F satisfy
F =RF_R for some R = R[180, ¢] & 2, 2.11)

(R is a 180° rotation about é and is given by the formula R =-1 +2 e® e ), it is easy to verify

directly that it is always possible to solve (2.9) and that the solutions are given by

-T A .
F
) azz(t_'—%_??'F"ﬁ)’ n=eé, and (2.12)

[o]

12



The simple example of laminates (2.8) shows that for a sequence that convergés weak* in
W1'°°(Q ; IR3), though the deformations converge uniformly, the gradients oscillate and need not
converge even pointwise. Thus, if y* == y in W1'°°(Q ; 1R3), it is not true in general that

W(Vy(x) 2 y(Vyx)) inL™(Q; R® (2.13)

for any continuous \jf:lR9 — R°®. However, Vy¥ is uniformly bounded in L™(Q ; 1R9).
Consequently, \V(Vyk) is uniformly bounded in L™(Q ; R®) and it contains at least a weak*
convergent subsequence. To determine this weak* limit, we need some knowledge of the
oscillation of the gradients. The Young measure serves as an accounting device for these
oscillations. Here, we state a suitable version of the Young measure theorem.

Theorem 2.1. (The Young Measure Theorem (Ball[7])) Suppose F* <> FinL=(Q: R™) as
k — oo, Let X € R™ be compact. Suppose further that for any open UD K

lim meas{erle(x)é u}=0.

k—yoo

Then, there exists a subsequence, which is also called (F¥}, and a family of probability measures
Vy for xe Q such that

(i) supp vyC X _ for almost every x € Q and

(i) y( F¥(x) ) = J Y(A) dv,(A) inL™(Q; R%ask >
]R m
for every continuous y:R™ — R®. O

For a sequence of deformations, yk RN y in W1’°°(Q ; IR3), let vx[{yk}] denote the
Young measure associated with the sequence of deformation gradients FX = Vy*. We will call it
the Young measure of the microstructure. v, { yk}] contains information about the distribution of
the gradients Vyk in the neighborhood of the point x as k — oo, For the laminate (2.8) in Example
2.1, it is easy to verify that the Young measure is A 8F1 + (1-A) SFO, where O is a Dirac mass

supported at F. Given any sequence of deformations { y¥} .5 which converges weak* in

wh=Q; 1R3), it is possible to calculate the limit energy with a knowledge of the Young measure
of the microstucture. Since ¢(-,0,) : © — R is continuous,

13



lim Eo[y*6,] = lim _fq)(vyk(x),eo) dx = J fq)(A,eo) dv (A)dx  (2.14)
k—oo k—oo
Q Q R’

where v, = vx[{yk}]. Because of our assumptions on ¢, lim EQ[yk,O] = 0 if and only if
k— oo

supp vV, C AUM for a.e. xe L. In particular, the laminate (2.8) has zero limit energy if and only
ifF,,F,e a0M.

Though (2.13) is not true in general, it does hold for the minors of the matrix[10,20,30].
This is the well-known weak continuity of the minors. The minors of a matrix are its
subdeterminants. In three dimensions, the minors are the matrix itself, the cofactor (i.e., the
matrix of all 2x2 subdeterminants) and the determinant. Thus, combining (2.13) with the Young

measure theorem, we obtain the following theorem.

Theorem 2.2. (The Minors Relations (Ball and James[10])) Suppose yk 2 yin
Wl'w(Q ; ]R3) ask = oo, Letv, = vx[{yk}] be the Young measure of the microstructure.

Then, 1) Vyx) = J A dv,(A)
R 9
(ii) cof Vy(x) = j cof A dv,(A) - and (2.15)
R 9
(iii) det Vy(x) = J det A dv,(A) for almost every xe L. a
R 9

We now wish to specialize these relations for the special case of homogeneous boundary
conditions. In such cases, we can think of an averaged Young measure, which contains
information about the distribution of gradients in the the entire domain. This follows from the

following theorem.
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Theorem 2.3. (The Averaged Young Measure Theorem (Kinderlehrer and Pedregal[40], Ball
and Murat[11]) Suppose Q, and Q, are open, connected and bounded domains in R? such that
02, and 0Q, are Lipschitz. Suppose v X yin Wl'm(Ql ; IR3) as k = o and y*(x) = F.x on
0Q, for fixed F, . Let v, = v,[{y*}] and suppose supp v,C X.

Then, there exists a sequence zZ" X zin Wl'”(Qz i R 3) as k — oo such that vx[{zk}] is
independent of x. i.e., vx[{zk}] = U. Moreover,

@ suppp < %,

()  zx) =Fx x € 0Q, for every k, (2.16)
i) z(x)=Fxx x e Q,, and
. 1
(iv) J- y(A) du(A) = volume(Q;) I j Y(A) dv,(A) dx
R’ Q, R’
for every continuous y:R° — R®. O

We will call any microstructure homogeneous if its Young measure is independent of x. The
theorem tells us that if there is a microstructure which satisfies homogeneous boundary conditions
in one domain, it is possible to find (construct) a homogeneous microstructure on any other
domain that satisfies the same boundary conditions. Moreover, the Young measures of both
microstructures have the same support. Therefore, in problems with homogeneous boundary
conditions, we can pick any suitable domain and consider only homogeneous microstructures.

Given y* 2> y in W™(Q; R?), we set Q; =Q, = Q. We call the Young measure
u[{yk}] delivered by the above theorem the averaged Young measure of the microstructure. It
contains information about the distribution of gradients in the entire domain.

The minors are also null Lagrangians[22]. Thus, their integrals depends only on the

boundary values. In particular, for a deformation y satisfying homogeneous boundary condition
y(x) = F x on 0Q,

JW(VY(X))dx = Y(F,) volume(S). (2.17)
S ‘

15



for any minor y. Therefore, integrating the minors relations (2.15) over Q, and using (2.17)
along with (2.16)(iv) for the averaged Young measure, we obtain the following.

Theorem 2.4. (The Minors Relations for Homogeneous Boundary Conditions) Suppose
v X yin W1‘°°(Q ; 1R3) as k — o and y¥(x) = F x on 0Q for fixed ¥, and suppose that
W= pu{{y*}] is the averaged Young measure.

Then, i F, = J A du(A),
]R9
(ii) cof F, = _[ cof Adu(A)  and (2.18)
IR9
(iii) det F, = _[ det A du(A). O
IR9

For the laminate (2.8) in Example 2.1, (2.18) reduces to
cof (AF; + (1-A) F, ) =A cof F; + (1-A) cof F (2.19)
det (AF, + (1-A) F,) =L det F, + (1-A) det F,

for F,, and F; which satisfy (2.6) and A € [0,1].

Before we proceed, we construct one more weak* convergent sequence which is use
repeatedly in Section 3 in order to show sufficiency. Given any microstructure that satisfies
homogeneous boundary conditions, the averaged Young measure theorem delivers a homogeneous
microstructure. Under suitable hypothesis, it is possible to construct a sequence of laminates
consisting of alternating bands of two such microstructures.
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Example 2.2. (Multilaminates) Suppose
v 2 yinWhQ; RY), y¥) = F,x on 9Q and supp u[{y*})]< %, and
X 2> 2in WH(Q: RY), 25(x) = Fix on 9Q and supp p[{z"}]< %,

where F, -F 3 =a ® N for some vectors a and n. For any Ae [0,1], set
F; = AF; + (1-M)F,. Then, itis possible to find a sequence of deformations w* such that

wh 2w inwh@Q; RY where w(x) =F3x xe Q.

wh (x) = F;x X e 0Q and (2.20)

supp R[{WF}] © K UK.

Here is a sketch of the construction. Firstly, according to the averaged Young measure theorem,

we may assume without any loss of generality that
yx)=F,x and z(x)=Fx xe Q.

For each positive integer j,  set Bj = max { sup | yi(x) - y(x) I, sup! 2(x) - z(x) | }. Since y
v xeQ xeQ

and 7/ converge uniformly on €, B’ — 0 as j — e, For positive integers j and k with j sufficiently
large, find smooth functions Pk . [0, %] — [0, 1] such that

_ AL
0 T = 0, C X
phigy =19 - and
1 ve (AU ke gl Lopi)
’ k k ’ k
"
a2
dt B’

Extend WX periodically with period Lio R. Define the function ubi(x) : Q-R? by
k

‘Pk'j(x-ﬁ) zj(x) + (I-Tk'j(x-ﬁ))le - i(l:”) a i<1-< x-n < i%
ui(x) =
whitx.n) yi(x) + (1-¥59(x-n)F x + (“‘% a R

17



for x € Q and integers i. It is easy to verify that u*J e W1‘°°(Q ; IRS).
Let smooth cut-off functions \J/k R’ > [0,1] satisfy (2.7). Set,

whix) = R U ) + (1- k) ) Fix xe Q where F, = AF; + (1-A) F, .

Find J(k) such that B](k) k — 0 as k — oo ( for example, BJ(k) < é ). This is possible since Bj—>0.

Set  wX(x) = wk’](k)(x) xe Q.

[t is a matter of analysis to verify that wX satisfies (2.20). We call F, the average deformation

gradient of the multilaminate. O

Given two laminates, each of the form (2.8), we may follow the above construction to
obtain a multilaminate which resembles Figure 2.2. We call this a laminate with two levels or a
double laminate. Using the same construction on two double laminates, we may obtain a laminate
with three levels or a triple laminate. Proceeding similarly, we may obtain a laminate with n levels.
To make the jargon complete, we call the laminate (2.8) a single laminate or a laminate with one

level.

Figure 2.2: The kth term of the sequence of deformations involving two levels of laminates.
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§3. SELF-ACCOMMODATION

In this section, we ask which materials are able to form a self-accommodating
microstructure. Since S; can be measured for a given material, we want to find necessary and
sufficient conditions on S, that there exist a self-accommodating microstructure. A self-
accommodating microstructure consists of martensitic variants arranged in such a manner that the
boundary of the crystal suffers suffers no deformation. Recall that we have chosen SO@3)1 to
correspond to the austenite (2.4). Since minimizing sequences model microstructure, we adopt the
following definition.

A self-accommodating microstructure is a sequence of deformations {(y*)
weak* in W'(Q ; R?) and satisfies

C.$ which converges

yk(x) =X x € 0Q and (3.1
supp Vi [{y*}1c M for almost every xe Q,

Recall that v [{ yk}] is the Young measure of the microstructure. It follows from (2.14) that for
this sequence Eq[y*,8,] = 0 as k — oo,

The necessary and sufficient condition for self-accommodation are summarized in Table
3.1. Though the ideas are the same, it is necessary to study the problem case by case. The
necessity of the conditions in Table 3.1 will be derived using the minors relations for
homogeneous boundary condition (Theorem 2.4). In each case, the sufficiency of the conditions
listed in Table 3.1 will be demonstrated by constructing self-accommodating microstructures.

In order to save a few words, we say that a tensor F is achieved if there is a sequence of
deformations { yk} C S which converges weak* in W1’°°(Q ; IR3) and satisfies

yk(x) =Fx xe dQ and  supp vx[{yk}] < M for almost every xe Q.

For example, if we have a self-accommodating microstructure, we say that 1 is achieved.
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Table 3.1: Necessary and sufficient conditions for self-accommodation

Group 2, Necessary and Sufficient conditions for self-accommodation
(Symmetry of the austenite)
Cubic det S, =1
Tetragonal @) detS; =1 and
(ii) —12— s 1sEy
Ej B33 - Egz
Orthorhombic @) detS, =1,
Ez2E33 - Ej3
1
E1E3;3 - Ef3
(lV) _12— <1< E33.
E\jEx - Efs
Monoclinic The two well problem. (See Section 3.4 and [10))

S, is the the transformation strain and E = STSl. The components of E are expressed in an
orthonormal basis parallel to the cubic/tetragonal/orthorhombic unit cell of the austenite. In the

oA e .
case of the tetragonal austenite, I, is the "c-axis" of the tetragonal lattice.
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Before giving the proofs, we make a few remarks.

Remark 3.1. If F is achieved, det F = det S;. Notice that for every A € A, det A = det S;.

Therefore, by the minors relations for homogeneous boundary conditions (2.18)(iii),

detF = J det A du(A) = J. det S; du(A) = detS;. O
M M

Remark 3.2. Suppose F is achieved. Then, for any Q € SO(3) and any R € 2,, QFR is
achieved. This follows from the invariance of the set M. In particular, VC, where C = F'F, is

achieved. This is a consequence of the Polar Decomposition Theorem (2.2). O

Remark 3.3. Suppose F, and F, are achieved where F; -F =a ® n for some vectors a
and n. Then, for any A € [0,1], Fy = AF; + (1-A)F, is achieved. This follows by constructing

multilaminates as described in Section 2 (Example 2.2). Notice that we may write,
FX=FO+Ka®ﬁand

Cp =F1F, =F ' F,+MFla®n+n®Fla)+A%a’n®n, (3.2)
C, = F'F, and C, =FIF,.

In particular, if R = R[ISO,Q] € P,, it follows from Remark 2.1 that for a suitable Q € SO(3),
Fy, = AQRF R + (1-M)F is achieved. F{Fx is given by (3.2) for a and n according to (2.12)(i).
In this case, C; = RC,R. | O

Remark 3.4. (Diagonalization about ?1) Suppose F, is achieved and R = R[180,/i\1] € P,

Cn Ci2 Cy3
If C,= F'F, =| Ci3 Cy Cy3 | in anorthonormal basis { 1, i, {3},
Ci3 Cy3 Gy

: T . .
we show that we can achieve F where F ' F has the following form for some positive constant c.

o> 0 0
0 Cp Cp (3.3)
0 Cy Css
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By Remark 3.3, for a suitable Q € SO(3), F, = AQRF_R + (1-A)F, is achieved for any
A e [0,1]. By (3.2) and (2.12)(1),

C,=F}F,=C,+A(Fra®1, +i, ® Fla) + A2 1a’i, ®1,.

Cii Ci2 Cyp3 Ci1 -Cip -Cys
Co=| Ci2 C2 C33 | and C;=RC,R=| -C;, Cyp; Cp3
Ci3 Cy3 Gy -Ci3 Gz Cy

Notice, if ij # 11, (Cy);; = 1;-C,f; is a linear function of A.

Also, if 1_] =12,21, 31 0r 13, (Co)l.] = - (Cl)l_] = (Cl/z)ij =0.
Slmllarly, if i#l,j¢1 (CO)U = (Cl)ll = (Cl)lj = (Co)l] Y Ae [0,1].
Therefore, C,;, = has the form (3.3). ' O

We can similarly have diagonalization about ?2 and diagonalization about li\3 provided R[1 80,?2]
and R[180,?3] belong to P, respectively.

3.1. Self-accommodation with Cubic Austenite. We now restrict ourselves to the case
when the austenite lattice has cubic symmetry. 2,, the point group of the austenite, is the cubic
group - the group of 24 rotations that map a cube back into itself. In an orthonormal basis
{fl,fz,ﬁ\;;} chosen parallel to sides of the cubic unit cell of the austenite lattice, it consists of the

elements

1,

R[+90,1,], R[+90,i,], R[+90,1,], _(3.4}
R[+120,1, + 1, + 1], R[+120,- i, +1, + 151, R[*120%, -1, + 15, R[£120,8, +1,- 1,1,
R[180,1,], R[180,1,], R[180,i;], R[180,3, £1,], R[180,i,+1;] and R[180,i;*1,].

Without any assumption on the symmetry of the martensite except that 7, © ®,, we will show that

the martensite is self-accommodating if and only if the transformation is volume preserving i.e.,
det S; = 1. All calculations are performed in the orthonormal basis {?1 ,fz,f»,. }.
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Necessity. Given any self-accommodating microstructure (3.1), it follows from Rerhark 3.1 that
det Sl = 1.

Sufficiency. Assuming that det S; = 1, we now show in two steps that 1 is achieved.

Step 1: In this step, we show that Diag[o,B,y]*, where o < B <y are positive constants satisfying
afy =1, is achieved.

Using the diagonalization procedure about %1 described in Remark 3.4 with F, = §;, we achieve F
where F'F has the form (3.3). Now use diagonalization about fz to achieve G where
G'G = Diag[OLz,ISZ,'y2 ] where o, B and vy are positive constants. Therefore, appealing to Remark
3.2, Diag[a,B,y] is achieved.

Now if R = R[180,{; + 1,1, RDiag[o.,B,¥IR = Diag[B,o.,y].

Similarly, using R[180,1, + i] and R[180,i; + i3], it is possible to interchange B with v and o
with y respectively. Since all these rotations belong to 2,, by Remark 3.2, U = Diag[o.,B,y] with
o < B <vis achieved. By assumption, det S; =1 and it follows from Remark 3.1 that afy= 1.
This completes Step 1.

Step 2: Given that U = Diag[a,B,y], where o < B < v satisfy oy = 1, is achieved, we show in
this step that 1 is achieved. Without loss of generality, we may assume that o < 1 <. If this
does not hold, .= =y =1 and we are done.

Let R = R[180, ?1+If3]. R € P,. Therefore, by Remark 3.3 for a suitable Q € SO(3) and
for any Ae[0,1], it is possible to achieve F; = AQRUR + (1-A)U. From (2.12)(i) and (3.2), it is

a long, but easy calculation to see that

a?(1-0)? + y*¢? 0 EQ)
C;. = FFy = 0 p? 0
30) 0 o+ Y+’
al -y
where { =A S

. o A .
Now, use the diagonalization about i; to achieve G, such that

*Diag[a.,B,y] denotes the diagonal 3x3 matrix with diagonal elements o, B and ¥.
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n"® 0 0
G1Gy = 0 B2 0
0 0 o2t? + Y (1+0)?
where 1(A) is some positive function of A.

The idea now is to pick A such that a2§2 + Yz (1+C)2 = 1. This equation is quadratic in A with the

solution

N L e s
- ol '

It is now necessary to verify that A € (0,1).
Notice that since o < 1, o +y-o-at = (a2 +¥)(1-0?%) > 0. Therefore,

a2+yz-a2'y2 >a*>0 and \/a2+‘{2-a2‘{2 is real.

Also, \/a2 + 72 - azyz > a?  which impliesthat A < 1.

Similarly, since y> 1, o +y o -y = (2 +¥)(1-7) < 0. Therefore,

oc2+72-a272 < 74 sothat\la2+yz-a272 < yz This implies that A>0.

Thus for an appropriate choice of A, GIG;» = Diag[nz,Bz,l]. Appealing to Remark 3.2, we
achieve Diag[n,B,1]. ButsincedetS; =1,nB=1andn =é. If =1, theneither B<1<nor

N <1 < B. In either case, it is possible to repeat the same construction again, but with
A A .
R[180,i,+1,], to achieve 1.
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3.2. Self-accommodation with Tetragonal Austenite. Suppose that P,, the point group
of the austenite, is the tetragonal group consisting of eight rotations. In an orthonormal basis
{41\1 ,‘1\2,%} chosen parallel to the sides of the tetragonal cell, #, consists of the elements

1,
R[+90,1,], (3.5)
R[180,i,], R[180,,], R[180,i5] and R[1801,+1,].

S 2 " LT} . . .
i; is the "c-axis" of the tetragonal lattice. There is no assumption on the symmetry of the

martensite except that 2, C P, and S, is any tensor with positive determinant. All calculations are
. A8
performed in the orthonormal basis {i;,1,,13].

LetE = S¥Sl and let E;; be the components of E in the basis {?1}2,?3}. Then, the material
is self-accommodating if and only if
@ detS; =1 and (3.6)

1

i) ————
EjE33 - Ej3

<1< E,.

Necessity. Given any self-accommodating microstructure (3.1), we now show that it satisfies
(3.6). (3.6)(i) follows from Remark 3.1. To see (3.6)(ii), let i be the averaged Young measure

of the given self-accommodating microstructure. Because supp g © M, we have from (2.18)(i)

1= j A dp(A), so that e = J Ae du(A) Vee R’
M M

According to the Jensen's inequality[70], given any convex function y:R™—R and any
probability measure p with support contained in X,

v Jaaw | < [vw an.
X X

R 2. .
Since |e i is convex function,
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lel? = J Aedu(A) | < j | Ae P du(A) € max  e-SgSge.
K=1,..,
M M Y

To obtain the last inequality, we use the fact that if A € M, A = QS forsome K =1, ..., v and
some Q € SOQ3).

Set e = fl. Recall that Sx = RTS,R for some R € 2, so that €l.s{£sK fl = R?I-STSI R?l.
Observe that R/l.\l = i-/l)l VRe Ta so that fl'SESK ﬁ\l = i\l‘STSI i\l = Ell for all K = 1, V.
Hence, 1 < Ey;.

Now, for any tensor F with det F > 0, cof F = (det F) F! . Therefore, using the fact that
det S; = 1, we can write the transpose of (2.18)(ii) as

1= I A TduA)
M

As before, operating on e and using Jensen's inequality, we get

2

J ATedpA) | < I IATePdu(A) € max e(SgSp)'e.
K=1,.,
M M ’

le

) ) ) E,,Eq3 - B2
As before, set e =/i\1 and observe that/i\l-(S;gSK) 1€1 =€1-(STSI) 1?1 = (E 1)11 = —2-2de3t3—EE23

for all K. Therefore,

2
E,sEz3 - E .
1 < _.%._23. = E,Es; - EX, since det E = 1.

Sufficiency. Assuming that (3.6) holds, we show that 1 is achieved.
Step 1: In this step, we show that Diag[1,0.,y] where o <y satisfies oy = 1 is achieved.

Start with F, =S,. Since R = R[180,f1] € P,, by Remark 3.3, for a suitable Q € SO(3),
F; = AQRF R + (1-L)F, is achieved for every Ae[0,1]. Let C) = F;{Fl. Using (3.2) and
(2.12)(i) and the diagonalization procedure (Remark 3.4),
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2

a 0 0
Co = STSI =K and C1/2 = 0 Ezz E23
0 Ej Eg
Using det Cyjp = (det Fyp)? = (det S)* = 1, o L

=——2 .
Ej;E33 - Egs

1

Therefore, (C,);; =Ey; and (Cyp)yy = 7 -
Ej E33 - Ejs
1

2
22E33 - Eg3
A, it is possible to choose Ae [0, 1 such that (Cy11 = 1. Thus we achieve F; such that -

By (3.6)(ii), < 1< Eyy. Therefore, noting that (C;)q; is a continuous function of

¢ g
FiFy=| { E, Es; where { and & depend on A.

& Ey Ess

Now use diagonalization first about /i\z and then about f\3 to achieve F such that
F'F = Diag[l,ocz,yz]. Since det F'F = (det Sl)2 =1, oc272 = 1. As in the case of cubic austenite,
R[180,€2i f3] € P, and we can interchange the position of o and 7y in F'F if necessary.
Appealing to Remark 3.2, we achieve U = Diag[1,a,y] where ooy =1 and o <.

Step 2: Given that U = Diag[1,,y], where a < satisfy oy = 1, is achieved, we show in this step

that 1 is achieved. This is identical to the Step 2 of the case of cubic austenite. The only case to.
consider is o <1 <7v. Now, R =R[180,1,+15] € #,. By Remark 3.3, for a suitable Q,
F; = AQRUR + (1-A)U is achieved for any A € [0,1]. We can calculate F;l:F;L using (3.2) and
(2.12)(i). Use diagonalization about/i\z on F, to achieve G such that

1 0 0
a? -y
GGy =| O BL) 0 where { = A ——.

o+
0 0 oczc2 + \(2(1+t;)2

2 2 2 2.2
By picking A = T \/ocz * Yz A , we have 0c2C2 +Yz(1+C)2 = 1. As before, it is
Y- o
verified that A (0,1). Finally, using det G}:G;‘ = 1, we see that B(A) = 1. Therefore G}:G;‘ =1

and appealing to Remark 3.2, we achieve 1.
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3.3. Self-accommodation with Orthorhombic Austenite. Suppose the austenite has

orthorhombic symmetry. The point group of the austenite, 2,, is the orthorhombic group which
consists of the identity and 180° rotations about three mutually perpendicular axes. The three axes
{fl,/i\z,f3} form an orthonormal basis. All calculations are performed in this basis. There is no
assumption on the symmetry of the martensite except that £, © P, and S; is any tensor with

positive determinant.

LetE = S}NS1 and Ej; be the components of E in the orthonormal basis {?1 ,fz,/i\3}. Then,

the material is self-accommodating if and only if the following are true.

@) detS, =1,

i) ——— <1<E,
EjpE33 - Egs

1

(lll) [ <1< E22 and (37)
E1E33 - Ef;

) 1

(IV) <1< E33.

7
Ej1Exn-EfR

Necessity. The necessity of the conditions (3.7) follows from the minors relation for
homogeneous boundary condition and the Jensen's inequality. The proof is similar to the case of
the tetragonal austenite and hence, omitted.

Sufficiency. In order to see the sufficiency, suppose S, satisfies (3.7). Defining

2 def 1 2 def
min = 2 Omax = Ei1,
E;;E33 - Egs

2 def 1

min ~— 2 max 22
Ej1E33-Ef

2 def 1 2 def
1 S and Ymax - Es3,
™ EnEx-Ep
we may rewrite (3.7) as
1) detS; =1 and (3.8)

(11) {1,1,1} € [amin’ amax]x[Bmin’ Bmax]x[Ymin’ Ymax]
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Consider the positive numbers of o, § and ¥ such that
ofy=1 (3.9)
{a’BvY} € [amin’ amax]x[Bmin’ Bmax]x[Ymm’ Ymax]

Ip the o-B-y space, the points {a,B,y} satisfying (3.9) lie on the shaded surface shown in Figure
3.1. We will show that it is possible to achieve Diag[a, B, v] for each «, B, y satisfying (3.9).

According to (3.8), {1,1,1} satisfies (3.9) and hence, 1 is achieved.
Step 1: Fix a € [0y, Omaxl-
Suppose F, = Diagla, By, 11] and F, = Diagla, 85, V], By <B,

B,

are achieved. By Remark 3.1, B;v,= B,Y, . Therefore, B2 and the eigenvalues of

Y1 1
2 2
FIF F, F} = Diag[ 1, (EL) , (11) }
B Y1

satisfy the necessary and sufficient conditions for solving the equation QF, - F =a ® n for Q,a
and N as stated in Proposition 2.1. By Remarks 3.2 and 3.3, we achieve F; = AQF; + (1-A)F,

Y1 B
aandn. Noting that Fr a-1, = n.1; = 0, we can conclude from (3.2) that

Y BaY o _a A b .
for any A € [0,1]. Substituting A, = (—) v Ay = (—-——) , €, =13 and €3 = 1, in (2.10), we obtain

(FIFDU = (FZFo)lj j=1,2,3.
o> 0 0
Therefore, FF{F;‘ =] 0 Bz(X) EQ\) where B, & and { depend
0 &M Tt

continuously on A. Since BX0) = (FTF,),, = B2 and P*(1) = (FiF,)y, = B3, B(A) can take
any value in [B;,B,] for a suitable choice of A € [0,1]. Now use diagonalization about €3 to
achieve G, such that G”{Gl = Diag[az, Bz(?\.), 72 (M)]. Thus, appealing to Remark 3.2, it is
possible to achieve Diag[a, B, v] for each value of (B,Y) that lies on the hyperbola By = ibetwcen

the points (B,,y;) and (By,Yy).
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Y max T / BY T a min
d
a
1
By = -
max
Ymin T b
' t B
Bmm Bmax

Figure 3.2: The sections of the surface oy = 1 taken through the planes & = Olpiq and o0 = Otpgy.
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In order to complete the proof, it remains to be shown that it is possible to achieve the
tensors on the boundary of the box in Figure 3.1. This is shown in Step 2.

Step 2: Let us examine the plane o = o,

. . I A .
Start with S;. Use diagonalization about i, to achieve F where

Ejy 0 Eyp Omax 0 Eys
T 2
F'F = 0 ﬁmin 0 = 0 Bmzin 0
E;3 0 Ess Ez 0 Ej;
Now use diagonalization about 'i‘3 to achieve G where GG = Diag [amzax, Bmzin, ——2—1—2— ]
] amamein
By Remark 3.2, we achieve Diag [amax, Brmins ] which corresponds the point (a) in
mamein
Figure 3.2.
Starting with S, use diagonalization about ?3 and then about ?2 to achieve F where F'F =
Diag [a,fax, TIT, szin]. By Remark 3.2, we achieve Diag I:amu, ;, ymin}
max Ymin max Ymin

which corresponds the point (b) in Figure 3.2. Finally, by Step 1, all points in between (a) and (b)
are achieved. The planes B = B, and Y = ¥, are treated similarly.

Let us now examine the plane & = ot

. . . o 4 ') .
Starting with S;, use diagonalization first about 1, and then about 1, to achieve F where F'F =

Diag [amzin, —71—7— ymix]. By Remark 3.2, we achieve Diag [amin, —‘—1——, Ymax ]
min {max min imax

which corresponds the point (c) in Figure 3.2. Starting with S,, use diagonalization first about ?1

and then about /i\3 to achieve F where F'F = Diag [amzin, Bmix, 5 L 5 ] By Remark 3.2, we
amianax
achieve Diag [amin, Bmax —1——] which corresponds the point (d) in Figure 3.2.. Finally
aminﬁmax

all points in between (c) and (d) are achieved by step 1. The planes B = B, and Y = Y are
treated similarly.
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3.4. Self-accommodation with Monoclinic Austenite. Suppose the symmetry of the
austenite is monoclinic. P, consists of the identity and R = R[180,4l\] for some §. The only
crystallographic subgroup of the monoclinic group is the triclinic group, which contains only one
element, the identity. Thus, in this case we need to consider only the monoclinic to the triclinic
transition. According to (2.3), there are two variants of martensite with variants S, and S, which
satisfy RS;R =8S,. Therefore from Remark 2.1,

() QS,-S, =a®n for some vectors a and i and some Q € SO(3) and  (3.10)
(11) det Sl = det S2.

In this case, Ball and James[10] have characterized all microstructures whose Young measure
supported is on M. We adopt their result.

Let Q, a, and n solve QS,-5,=a® n (for example according to (2.12)(ii)).
s{n
Define 8 ' 11al1sTn, & &2, e & =17
a IST n |
LEs!(1-8e;®e)) and (3.11)
DYLTL

Then, in order for a material to form a self-accommodating microstructure, it is necessary and
. . R A A A
sufficient that in the orthonormal basis {e;,e,,e3},

Dyj; 0 Dy

D = 0 1 O where (3.12)
Di3 0 Ds;

0 < Dll < 1+82, 0< D33 <1 and D11D33-D%3 = 1.

This follows immediately from Ball and James[10] who show that a sequence y* Xsy in
W1'°°(Q ; IR3) satisfies supp v, C M, a.e x € Q if and only if D(x) = LT (Vy(x))TVy(x) L
satisfies (3.12) a.e. x € Q.

32



Remark 3.5. Suppose det S; # 1. We ask the question whether the material can form a
microstructure which is a pure dilatation with respect to the austenite, i.e., is it possible to ahieve
ol where o = (det S))'” ? By scaling, ( y* éyk) it is clear that this is true if and only if a

material with transformation strain é S, is self-accommodating. Since det (é S,) = 1, this is

always true in the case of cubic austenite. However, the answer is not true in general for the other
cases because the restrictions on E listed in Table 3.1 are not invariant under this scaling. O
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§4. COMPARISON OF THEORY WITH EXPERIMENT

In order to make any comparison of theory and experiment, it is necessary to calculate the
transformation strain from the lattice parameters of both the austenite and the martensite measured
at the transformation temperature. Unfortunately, such measurements were not always found in
the literature. Often, all that was found were parameters for the austenite measured by one
researcher at some temperature and those for the martensite measured by a different researcher at a
different temperature. Similarly, the shape-memory effect was observed by one researcher while
the lattice parameters were measured by others. Furthermore, in some cases the parameters had to
be read off from graphs plotted on rather coarse scales. Strictly speaking, the relations derived in
Section 3 are true only at the transformation temperature. As we go away form this temperature,
thermal expansion changes the lattice parameters. Similarly, the lattice parameters change with
composition, which unavoidably differs in specimens used by the different researchers. We shall
keep these in mind while making any comparison.

Table 4.1 shows the percentage change in volume during transformation of various alloys
with cubic austenite. Also see Figure 5.2 for the lattice parameters of some alloys undergoing the
cubic to tetragonal transformation. The common, well-known shape-memory alloys like Ni-Ti,
Cu-Al-Ni, Ni-Al, Cu-Al and Cu-Zn-Al have small transformation volume change. Moreover, the
volume seems to decrease in these alloys during the transformation from austenite to martensite.
Often, the lattice parameters of the austenite are measured at a high temperature while those of the
martensite are measured at a low temperature. Therefore, part of the decrease in volume can be
attributed to thermal expansion across this temperature difference. Ferrous steels have larger
volume changes. Moreover, the volume increases during the transformation from the austenite to
the martensite. Zirconia undergoes a tetragonal to monoclinic transformation accompanied by a
volume change of approximately 3%([61]. This transformation often results in the cracking of the

specimen.

The observations of Arlt[3] in polycrystals of BaTiO; and YBa,Cu;04 5 are very
interesting. BaTiO, undergoes a volume preserving cubic to tetragonal transformation[33].
YBa,Cu;0,_5 undergoes a first order tetragonal to orthorhombic transformation which may be
induced either by temperature or by diffusion of oxygen. Arlt takes aged polycrystals which have
completely transformed from the high to the low symmetry phase. He carefully cuts out a slice in

order to reveal the microstructure deep in the interior of the polycrystal. He studies the
microstructure using both optical and electron microscope. The grains of BaTiO; show no cracks
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Table 4.1: The measured transformation volume change in some alloys with cubic austenite

Alloy Symmetry of Percentage Shape- Comments and Ref.
Martensite Volume change | mem.?
100(1 - det Sy)
Ni-36% Al Tetragonal 0.305 Yes 17,21
Ni -49.4% Mn Tetragonal 0.725 ? 1,41
Ni-48% Zn-20% Cu Tetragonal 0.820 Yes | Lattice parameters were
read off a graph [48,49]
Ni-34% Zn-15% Si Tetragonal - 0.139 Yes Lattice parameters were
read off a graph [48]
In-22.73% TI1 Tetragonal 0.046 Yes 35,53
Fe-31.2% Pd Tetragonal 0.2 Yes 60
Fe-24% Pt Tetragonal - 0.0 Yes 62
Fe-31% Ni-0.3% C Tetragonal - 1.833 No 54
Fe-7.9% Cr-1.1% C Tetragonal - 2.568 No 47
Fe-7% Al-2% C Tetragonal -2.414 No 68
Cu-14.2 wt.% Al Orthorhombic 0.297 Yes |55
-4.3 wt.% Ni
Au-47.5% Cd Orthorhombic 0.413 Yes 14,18
Ag-52 wt.% Cd Orthorhombic 0.157 Yes 44
Z1-19.5% Th Orthorhombic 2.22 No 36
Ni-50% Ti Monoclinic 0.023 Yes Most commonly used
shape-memory
alloy.[42,46]
Cu-17.2% Al Monoclinic 0.356 Yes |58
-13.3%Zn (18R)
Cu-Zn-Ga Monoclinic 1.06 Yes 58
(18R)
Cu- Al Monoclinic "approx. zero" Yes 65
(18R)

All compositions are in at. % at unless indicated otherwise. The temperature is given in °C.
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and there is no mismatch at the boundaries suggesting self-accommodation. In contrast, there is
significant cracking and grain boundary mismatch in YBa,;Cu307.5. In a tetragonal to

orthorhombic transformation, S, = Diag[c,B,Y] in an orthonormal basis parallel to the edges of the
tetragonal unit cell. If ?1 is the c-axis of the tetragonal unit cell, according to Table 3.1, o = By =1

is necessary and sufficient for self-accommodation. The measured value[2] of
S, = Diag[0.9887,0.9898,1.0068] for YBa,Cu30, 5 clearly does not satisfy that condition. Arlt

also remarks that the cracks lie in a plane perpendicular to ?1 indicating that they arise as a result of

the lack of accommodation in the direction of the c-axis. These remarks should be tempered with
the observation due to Van Tendeloo[67] that cracking in YBa,Cu30, ; is a result of the creation of

Oxygen-rich atomic layers by diffusion in the presence of moisture.

In summary, in cases where comparisons are possible, the overall agreement between the
experiments and the predictions of Table 3.1 are quite satisfactory.
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§5. CONCLUSIONS AND DISCUSSION

Self-accommodation is an inherent feature of the one-way shape-memory effect. It may
also be important for the reversibility of transformation in polycrystals and for the easy nucleation
of martensite during cooling. The main result of the paper is summarized in Table 3.1. It lists
necessary and sufficient conditions that the transformation strain of a material has to satisfy in
order to be able to form a self-accommodating microstructure. Materials whose austenite phase is
cubic are self-accommodating if and only if the transformation is volume preserving. If the
symmetry of the austenite is not cubic, the material has to satisfy additional, rather strict conditions
in order to be self-accommodating. These results agree quite well with the experimental
observations in cases where comparisons are possible.

The analysis in this paper, however, does not include any mechanism for the nucleation
and growth of martensite into the austenite during cooling. In coarse grained specimens of shape-
memory alloys, a wedge-like or spear-like microstructure schematically shown in Figure 5.1 is
often seen. During cooling, wedge-shaped domains of martensite grow into the austenite[55,63].
This microstructure provides an easy way for the initiation of transformation[55] and is thus
important for thermoelasticity and reversibility of transformation. Bhattacharya[12] found that such
a microstructure is coherent if and only if the lattice parameters of the material satisfy certain
conditions. For example, in a cubic to tetragonal transformation, there are three variants of
martensite defined by

S, = nl+My-N)L®F i=1,2,3, (5.1)

where {/1'\1}2,‘1\3} is an orthonormal basis parallel to the edges of the cubic unit cell. Here,n; and
T, are positive constants determined by the lattice parameters of both the austenite and the
martensite lattice. For example, in Ni-Al n; = 0.9392 and 1, = 1.1302[17]. Coherence of the
wedge-like microstructure forces 1; and 1, to satisfy[12]

2 (1 le) +4ﬂ2(1+ﬂ2)
(1-n3)+8m;

Figure 5.2 shows plots of this relation as well as the relation Tﬁ M, = 1 (which corresponds to
volume preserving transformation) in the 1, - N, plane. It is interesting to observe that these two
curves are very close to each other when (n;,1,) is close to (1,1), the values of practical interest.
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Austenite

Figure 5.1: The schematic view of a wedge-like deformation. The figure on the left shows the
wedge in a three dimensional specimen and the one on the right shows a typical cross-section.

M
1.2¢ a - NiMn
b - NiZnCu
C - Nial
\11.1 d - NizZnSi
\\\\ c 1.1 e - InTl
.\ [
g \\\
0 s 0.9 1.1 1.2 M2
4
f - FeAlC c
b e
g - FePt 0.9¢ a
h - FeCrC
—— Wedge Possible
i - FeNiC
---- No volume change
0.8%

Figure 5.2: The special relations that the transformation strain has to satisfy in order to be able to
form a wedge or in order that the transformation is volume preserving. The measured lattice
parameters of some common alloys are also plotted. Refer to Table 4.1 for details about the alloys.
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Similarly, in the case of the cubic to orthorhombic transformation, there are six variants of
martensite and

ary o oy |
2 0 3
S = 0o B 0 in an orthonormal basis parallel to the cubic unit cell.
oy aty
L 2 0 5

o, B and 7y are positive constants determined by the lattice parameters of both the austenite and the
martensite lattices. A material undergoing this kind of transformation can form a wedge if and if it
lies on a certain family of surfaces in o-B-y space[12]. The transformation is volume preserving if
and only if the material lies on the surface oy = 1. Thus, a material is self-accommodating and
can form a wedge if and only if it lies on the intersection of the family of wedge-surfaces with the
surface oy = 1. This intersection is a family of curves in a-B-y space whose projection on the

oY plane is shown in solid lines in Figure 5.3. On any of these curves, B = a_li . The reasoning

in this paper suggest that good a shape-memory alloy in which wedge-like microstructures are seen
should lie on one of these curves. It turns out that Cu-Al-Ni does not. However, Cu-Al-Ni lies
very close to one the wedge-surfaces[12] and has very small volume change (Table 4.1). In order
to understand this apparent contradiction, let us examine the intersection of one of the wedge-
surfaces with the plane B = 0.9178 (which corresponds to the measured value for Cu-Al-Ni). This
intersection is a curve which can be parametrized by o. Figure 5.4 is a plot of the percentage
volume change ( 100 (1 - afy)) along this curve plotted as a function of .. Though the volume
change is zero at just two points, observe that the volume change is very small for a whole range of
of values of o. Thus, going back to the a-B-y space, though the wedge-surfaces intersect the
surface of zero volume change only on some curves, large portions of these wedge-surfaces lie
very close to the surface of zero volume change. The shaded region in Figure 5.3 is the projection
on the a-y plane of those regions of the family of wedge-surfaces in which the transformation
volume change is less that 0.5%. Therefore, if the measured values of (o) for a given material
which undergoes small change in volume during transformation lies in the shaded region, the
material lies close to one amongst the family of the surfaces on which it is possible'to form a

wedge.
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Figure 5.3: Projection of the curves on which it is possible to form both a wedge-like and a self-
accommodating microstructure. The shaded regions are the projection of those portions of the
wedge surfaces where the volume change is less than 0.5%

Percentage
Volume change

1.03 1.04 ¥.05 1.06 1.

Figure 5.4: Percentage volume change ( 100(1 - det S;) ) along the curve of intersection of one
amongst the family of wedge surface with the plane § = 0.9178.
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The lucky accident that these two relations are close to each other suggests that a self-
accommodating material with cubic austenite can form the wedge-like microstructure with small
elastic energy. Therefore, it is an ideal candidate for displaying the shape-memory effect. On the
other hand materials which do not have cubic austenite have to satisfy very strict relations in order
to be self-accommodating. Thus, it is a reasonable to conclude that shape-memory materials must
have cubic austenite and must undergo a volume preserving transformation. In fact, this is one of
the empirical criteria currently being used to invent ferrous shape-memory alloys[43,45].

The self-accommodating microstructure that we constructed in Section 3 was a laminate
with several levels. However, in an actual material, it is uncommon to see a laminate with more
than two, at most three, levels. We speculate on the possible reasons. Firstly, the construction in
Section 3 treats martensites of all symmetries alike. It so happens that it is possible to construct
laminates with fewer levels in special cases. For example, in a cubic to tetragonal transformation,
S, given by (5.1) is already diagonal so that we may skip Step 1 in the construction described in
Section 3.1. Secondly, it is common in these problems involving microstructure to have a high
degree of non-uniqueness[10]. The construction in Section 3 is just one self-accommodating
microstructure and there may exist many self-accommodating microstructures, especially if one
also considers non-homogeneous microstructures. In actual materials, non-homogeneous
microstructures are typically seen[63]. Therefore, one can speculate that there are self-
accommodating microstructures which are not homogeneous and which do not involve laminates
of more that two or three levels.

Finally, the following idea is very suggestive. Suppose we want to satisfy the
homogeneous boundary conditions F x on 0Q. Suppose {yk} is a laminate with n levels and has

an average deformation gradient F where IF, - Fl is small. Notice that yk satisfies Fx on 0Q.
Further, let the Young measure of the laminate, vx[{yk}], be supported on M. Now, consider the
sequence Z%(x) = FOF'lyk(x). {zk} is also a laminate with n levels and average deformation
gradient F. It also satisfies the boundary condition F x on 0Q. Now, VZ¥(x) = FOF'lVyk(x).
Since FOF'1 is close to identity, Vz¥(x) is close Vyk(x). Therefore, the Young measure,
vx[{zk}], is supported on tensors which are close to M. Therefore, if the free energy ¢ is smooth,
ZQ[zk,Go] becomes very small as k — . Thus, the material can satisfy the prescribed boundary
conditions using a laminate with n levels which has a small energy. In the thermoelasticity theory
being used here, the surface energy is neglected as are any dynamic effects and hysteresis. There
is no notion of metastability either. It is possible that the laminate above is metastable in a theory
that takes these into account.
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The results of Ball and James[10] in the case of the two well problem can be used to derive
some interesting estimates. As mentioned earlier, they study the special case when there are two
variants of martensite S, and S, that satisfy (3.10). For definiteness, we consider the case arising

out of the tetragonal to orthorhombic transformation where
S, = Diag[a,(3,7] and S, = Diag[a,y,B], B<y

. oA &8 .

in an orthonormal basis { 1y, I, 13} parallel to the edges of the tetragonal unit cell are the two
. A . .

variants. We have chosen 1, as the c-axis of the tetragonal lattice.

Define p, {F, | F,is achieved} .

Recall that we say that F, is achieved if there is a microstructure with Young measure supported on
M which satisfies the homogeneous boundary condition F x on 0. The results of Ball and
James[10] can be adapted to show that F € D, if and only if

(FoF)p + (FoFo)y + (FoFo)yy < B2+7" and  detF, = detS,.

Moreover, every F, € D, can be achieved by a double laminate, though not necessarily by a single
laminate. However, for every F, € D,, there is a single laminate with average deformation
gradient F; such that

2,4
- B

1
MR

On the other hand, it is possible to find a particular F, € D,* such that

|F'F, - F1F, | <

|F'F, - STS; | > y(y-B) 1=12.

In problems of practical interest,  and vy are both close to 1. Therefore, IFZFO-FTFll = O(ly - BI"')
is small and using arguments presented earlier, it is possible satisfy the boundary condition F x on
0Q using a single laminate whose energy is very small. However, since IFEFO-STSI I > O(ty - BD,

the homogeneous deformation will require relatively large energy. In fact, the pictures of
polycrytalline YBa,Cu;30, 5 by Arlt[3] shows that the microstructure is predominantly a single

laminate.

*For example, F, = Diag[a, ‘/ﬂ. ‘/FY 1.
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Similarly, consider a volume preserving cubic to tetragonal transformation. Th,ere are three
variants of martensite and S; are given by (5.1) with 1, and 1, satisfying n% N, = 1. As we saw
in Section 3, it is possible to construct a self-accommodating microstructure. How well can this be
approximated by a single laminate? For any i,j € {1,2,3}, it is possible to find Q € SO(3) such
that QS;-S;=a ® n if i#j[10]. Therefore, it is possible to form a single laminate with the
support of the Young measure contained in M and with average deformation gradient
F; =2QS; + (1-M)S; for some A € [0,1]. Therefore it is a matter of calculation to find that

o 6 0
in the basis (§. & 8.8
FiF, =| & B 0 in the basis {1;, 1}, 1;a1;} where
o, B and § are functions of A and 7;.
0 0 n

Hence, for any single laminate with Young measure supported on M, the average deformation
gradient F, satisfies. |

IFTF-112 1n2-11 = 1= - 11.

U

However, we can do substantially better with a double laminate whose Young measure is
supported on M. Laminate S; with QS, (for a suitable Q) to obtain an average deformation
gradient %QSz - %Sl. Let R = R[180, %2 + f3]. Notice that R € 2,. Therefore, for a suitable

Q,, there is double laminate with average deformation gradient
1 2 1 1,2 1
F2 = EQO(EQsz-gsl)R + E(gQSZ-gsl ).

In Figure 5.5, the solid curve is a plot of | F;Fz - 1| as a function of N,. The dotted line is a plot

of | FﬁfFl -1 = IL - 11. Thus, the best singe level laminate has an approximating error (in | |

N2
norm) on or above the dotted line, while the best double level laminate has an approximating error
on or below the solid line. Therefore, using arguments presented earlier, in a volume preserving
cubic to tetragonal transformation, we can find a double laminate which likely has small energy and
satisfies boundary conditions corresponding to self-accommodation. In fact, the pictures of
polycrystalline BaTiO3 by Arlt[3] shows a fairly homogeneous double laminate, despite some
refining at the boundaries and occasional inhomogeneities.
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Figure 5.5: The best singe level laminate has an approximating error on or above the dotted line,
while the best double level laminate has an approximating error on or below the solid line.



APPENDIX: SELF-ACCOMMODATING PLATE GROUPS

In general, only very rare materials can form a coherent interface of the austenite and a
single variant of martensite. The Hadamard jump condition for such an interface requires that one
of the eigenvalues of S, is equal to one[9]. The only material known to me that satisfies this
condition is Ti - 21at. % Ta[16]. In this alloy, Bywater and Christian varied the composition until
the middle eigenvalue became equal to one. However, it is very common to find a set of fine twins
(laminates) forming a coherent interface with the austenite. This follows from the fact that
coherence now requires the less restrictive set of conditions[9]

QSI-S] = a®ﬁ (Al)
Q,(AQS; + 1-M)S;) -1 =b®m

hold for some L] € {1, ... v}, A e (0,1), Q,, Q € SO(3) and vectors a, b, nand m. n is the
normal to the twin planes and m is the normal to the austenite-martensite interface. It turns out that
it is possible to satisfy (A1) for a vast range of values S;. This is the well-known crystallographic
theory of martensite developed independently by Wechsler, Leiberman and Read[69] and Bowles
and MacKenzie[15]. Also see Ball and James[9] and Bhattacharya[12] for a description of the set
of values of S, that permit the existence of an austenite-martensite interface.

In all the shape-memory alloys found in the literature, the austenite has cubic symmetry.
Tas, Delaey and Deruyterre[65] and Saburi and Wayman[58] found that in a large number of
shape-memory alloys, there are 24 symmetry related solutions to (Al). Moreover, in every
solution, the austenite-martensite interface is close to one of the {110} family of planes in the cubic
austenite i.e, in the cubic basis, m is close to some permutation of the vector {1,+1,0}. There are
six crystallographically equivalent {110} planes in a cubic lattice. Thus, one can classify the 24
possible austenite-martensite interfaces into six sets. Each set of four austenite-martensite
interfaces ( or equivalently, the set of four fine twins of martensite, each of which has an average
deformation gradient of the form 1 + b ® m which forms the interface ) is known as a "plate
group". Furthermore, in Cu-Al, Tas et. al. and in a variety of other shape-memory alloy, Saburi
and Wayman found that the sum of the average deformation gradients of the four sets of fine twins
that comprise each plate group is close to 41. Therefore, they concluded, a microstructure
consisting of the four sets of fine twins in a plate group arranged in four subdomains of equal
volume would be self-accommodating.
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Figure Al: A schematic view of the microstructure using self-accommodating plate groups.

However, it is not clear whether they use our strict definition of self-accommodation (i.e.,
y¥(x) = x on 9Q). Taset. al. suggested the microstructure shown in Figure Ala while Saburi and
Wayman suggested the diamond microstructure shown in Figure Alb. Owing to its geometric
simplicity, the diamond microstructure has found widespread acceptance in the metallurgical
literature. Notice that it is not clear whether the microstructure Figure Ala can be surrounded by a
sea of austenite on all sides. Similarly Figure Alb satisfies homogeneous boundary conditions
corresponding to the austenite only in the plane; but it is not clear what happens out of plane. The
self-accommodating microstructure observed by Tan and Xu[63] to a degree resembles the
diamond microstructure, but clearly involves more than four sets of fine twins.

Moreover, the proposed microstructure is not coherent according to the concept of
coherence being used here. One way to seeing this is by checking the jump condition at each
interface as Bhattacharya[12] did for the wedge-like microstructure. Consider for example the
diamond microstructure. It consists of two back to back wedges described in Section 5. Recall
that the coherence condition of the wedge-like microstructure imposed certain strict restrictions on
the transformation strain. It turns out that the coherence condition of putting two wedges back to
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back imposes further, apparently impossible restrictions on the transformation strain. Checking
individual jump conditions is a long and cumbersome procedure. Moreover, it is specific to the

microstructure. Here we use a different method that demonstrates the power of the minors
relations.

Suppose we have a coherent microstructure that satisfies a homogeneous boundary
condition y(x) = F x on 0Q using n sets of fine twins with average deformation gradients

1+b;® l{\‘li, i=12,.,n. Let A, and B; (that satisfy B;- A; = a;® ﬁi) form fine twins in the
proportion ;. By assumption,

WB. + (1) A; = 1+b, ®m,*. (A2)

The averaged Young measure of the entire microstructure is a convex combination of Dirac masses
with support on A; and B;. Using the minors relations for homogeneous boundary conditions

n
(2.18), we find that for some A; > 0 satisfying .lei =1
i=

=]

n
@ F, = & Ai (i By + (1-pp) Ay = .21 Ai(1+b; ® my),
1= 1=
n
() cofF, = '21 Aj (1 cof B; + (1-1;) cof A)) and
n
() detF, = T A (udetB;+ (1) det A).
Because B;-A; = a;® ﬁi, from (2.19) and (A2),
i, cof B; + (1-p) cof A; = cof (4; By + (1)) Ap = cof (1 +b; ® m) and
5 det Bi + (l-ul) det Ai = det ( SN Bi + (l-ul) Ax) = det (1 + bi ® mi).
Therefore,
n
6)) F, = 'Zl A1 +Db;®m,),
1=
n .
() cofF, = '21 Ajcof (1 +b;®m,) and (A3)
1=

* Notice that this assumption does not follow for the inner sets of fine twins from the jump condition in Figure
Ala. However, we assume this as a part of the plate group idea.
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n

(iii) detF, = X A;det(1+Db;®m,).

These conditions are necessary for coherence. It turns out that they are violated. One can verify
that directly or use the following argument. We recall the identities,

i) cof G =(det G) G™! if  detG=#0,

@) det(1+b®m)=1+b-m and
1_4; b®m :

@) A+b®m) =1 - T+ bm if b-m > -1.

Substituting these in (A3)(ii), we obtain
1 n n
(det FO) F-O = ( 1+ ZI(lel-ml)) 1- 2 ().1 bi ® mi).
i= i=1

Substituting from (A3)(iii),
detF)F) = (1+detF,)1-F,
Post-multiplying by F, and rearranging,
- (l+detF)F, + (detF,)1=0.

From this we can conclude that the eigenvalues of F, are {1, 1 and det F}. Hence, if F is
symmetric, it is of the form 1 + a ® a for some vector a.

In each of the cases studied by Saburi and Wayman,n =4 and A; = i and

n I+ O 0
F, = 241(1+b ®myisoftheform | 0 1+B 7y | (Ad)
= 0 v 1+

Therefore F, is symmetric and it has to be of the form 1 + a ® a. This is true if and only if

o =0and p* =4 or B=vy=0. (A5)
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However ., B, and y are non-zero, though small. Thus the minors relation are violated and a plate

group can not form a coherent (according to the concept of coherence used here) microstructure
that satisfies homogeneous boundary conditions.

It may be argued that in the above examples o, 3, and 7y are small and their non-zero
values reflect round-off errors errors during calculation and the errors in the measurement of lattice
parameters. To clarify this, let us examine the cubic to tetragonal case in more detail. In this case,
there are three variants of martensite and the transformation strain is given by (5.1). Wechsler,
Leiberman and Read[69] have derived explicit solutions to (A1) for this case. However, the
fomulae of Ball and James[9] which are in the format being followed here are used for the
calculations. It is easy to verify that in the cubic basis {gl,fz,%} described above, the following
vectors b; and l'/l\‘li, i=1,.., 4 solve (A1) and potentially form a plate group.

2
- - o1 d
b1,2=l3‘1_nl'{"'8_t pasd 'ﬂz} and l?‘1.2=1_{"” KR 1}

14m, © 27 27 pl 27727
2
1-n] { 3-1 8+1} A 1 { 51 8+‘t}
bys=p—Li+, My, 5-f and My =it 1,
34=P 1+, 3> N2, 3 3.4 D 2 2
2, 2 2.2 .2 .2
- 2 - .
where 8=,\/m+n22 2 :='\/ mnz-ong-mg
1-mj 1-m;
and p¢0ischosentomakelrlf|il=1.
Therefore,
1+(8-1)° 0 0
2
s A(1+b,®m) = I 0 1+ %((SH)2 - 4n,) (1-n(3+7)
N 1 1 1
i=1 4 (1+n,)
0 (1-M)(5+7) 1+ 2 ((3+1)* - 4ny)

which is of the form (A4). Therefore, in order to satisfy the minors relation, (A5) must hold. A
straight forward calculation reveals that any solution requires that m; =1 orm, = 1. Thisis
precisely the condition that allows us to form an interface between the austenite and a single variant
of martensite and one that we saw is very rarely true. Thus, it is not possible to form a coherent
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microstructure that satisfies homogeneous boundary conditions using, in equal proportion, the four
sets of fine twins from any plate group.

Tas et al. as well as Saburi and Wayman found that F_ is close to 1 and concluded that
the microstructure is self-accommodating. However, F is not of the form 1 + a ® a. This means
that the minors relations are violated which in turn means that not all the internal jump conditions
are satisfied. If a microstructure which we know is coherent has an "average deformation
gradient" close to 1, we can argue as we did in the end of Section 5 that it can be made to satisfy
identity boundary conditions with small energy; but that is not the case here. Also, it may be
possible to make an incoherent microstructure coherent at a small expense of energy. We were not
possible to verify whether that is the case here.

In summary, the minors relations are a simple first check to determine whether it is
possible to form a coherent microstructure that satisfies homogeneous boundary conditions using a
given set of tensors. However, it should be emphasized that the satisfaction of the minors relation
is a necessary, but not a sufficient, condition and hence, the satisfaction of minors relation is not a

proof for the existence of microstructure.
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