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Abstract: Water suspension of light-absorbing nano-sized particles is an 

example of a medium in which non-linear effects are present at moderate 

light intensities favorable for optical treatment of organic and biological 

objects. We study experimentally the phenomena emerging in a thin layer 

of such a medium under the action of inhomogeneous light field formed due 

to the Pearcey diffraction pattern near a microlens focus. In this high-

gradient field, the light energy absorbed by the particles induces 

inhomogeneous distribution of the medium refraction index, which results 

in observable self-diffraction of the incident light, here being strongly 

sensitive to the medium position with respect to the focus. This technique, 

based on the complex spatial structure of both the incident and the 

diffracted fields, can be employed for the detection and measurement of 

weak non-linearities. 

© 2014 Optical Society of America 

OCIS codes: (260.2160) Energy transfer; (260.5430) Polarization; (350.4855) Optical tweezers 

or optical manipulation; (350.4990) Particles. 
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1. Introduction 

During the past decades, the specific behavior of small particles under the action of light has 

become a powerful and efficient tool in fundamental and applied optical research. Since the 

pioneering work by Ashkin et al [1–3], light-induced mechanical effects have been widely 

used for trapping, transportation, orientation and localization of micro-particles (see, e.g., 

Refs [4–8].), as well as for the study of fine structure of light fields [9–17]. Among various 

further applications, the use of ensembles of suspended optically-driven micro- and 
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nanoparticles has recently been proposed as a means for the control and regulation of light 

propagation [18,19]. 

In absorptive media, propagation of inhomogeneous optical radiation induces non-uniform 

distributions of temperature and, consequently, of many associated optical constants. The 

corresponding effects are coupled with self-diffraction, self-focusing and emergence of shock 

waves. Usually, such self-action phenomena accompany the propagation of short powerful 

laser pulses [20–23] where, due to high density of the absorbed energy, the medium may be 

damaged. This is detrimental, for example, in the study of organic and biological objects. 

Continuous laser radiation of moderate power can also produce a temperature gradient but 

normally it is insufficient to generate noticeable non-linear self-action of the optical field. 

Relatively large thermal non-linearity was observed in the ethanol solutions of the Chinese 

tea liquid [24–26] where the self-induced lens effect was attributed to strong absorption of the 

He-Ne laser radiation by molecules of chlorophyll and similar herbal dyes [27]. However, in 

such solutions the non-linear effects were only observable in considerably thick samples (~1 

mm). 

Recently, we have demonstrated the possibility of extremely high thermal inhomogeneity 

in a dielectric medium containing suspended absorbing particles [19]. In such systems, 

remarkable non-linear phenomena may occur within micron-size volumes in the sparing 

regime preserving integrity of the medium and its constituents. This fact can be used in 

micro- and nanotechnologies as well as in diagnostics and selective treatment of biological 

objects. The present work is devoted to the study and realization of the corresponding 

possibilities. 

Usual ways for detection and measurement of weak nonlinearities are based on the well-

known Z scan method [28] in which the sample is placed within a focused Gaussian beam and 

takes different longitudinal positions near the focal point. Then the quantitative characteristics 

of the non-linearity are derived from the additional focusing (or defocusing) of the beam 

which takes place in the sample [23–25]. However, the “strength” of the self-induced 

inhomogeneity (e.g., the refractive index gradient) inversely depends on the near-focus beam 

size which cannot be arbitrary small, and this limits the method sensitivity. This limitation 

can be overcome if the incident field inhomogeneity appears not only due to focusing but also 

due to additional modulations, e.g. caused by two-wave interference. Emergence of fine 

periodic structures is especially favorable for the study of weak non-linear effects as it 

provokes the suitably observable self-diffraction phenomena [19]. 

In this work, we continue the exploration of the non-linear effects in a disperse medium 

under the action of a strongly inhomogeneous optical field with moderate power. In view of 

the above paragraph, the next step is to employ an incident field with a controllable speckle 

pattern, regular both in the transverse and longitudinal directions. Such situations occur in the 

coherent optical field formed after a collimated beam passes a thick cylindrical lens. Due to 

strong aberrations, this focused field is characterized by the special features [29,30]: (i) the 

intensity distribution is bounded by the caustic surface and (ii) the amplitude and phase 

distributions contain the well-developed and regular system of bright and dark spots 

accompanied by the phase singularities, known as the Pearcey diffraction pattern [31]. 

The methods and background of this work represent a further development of the Z scan 

method [24,25,28] and the approach employed for investigation of the self-diffraction 

processes of the two-beam interference field in the same disperse media [19]. The disperse 

medium (dielectric liquid + suspended particles) is initially characterized by a homogeneous 

distribution of absorbing particles. Exposure of this medium to an optical field with a 

spatially inhomogeneous intensity distribution results in inhomogeneous heating, which, in 

turn, makes the medium refraction index coordinate-dependent. If the disperse medium is 

situated close to the focal plane of the cylindrical lens, additional modulations of the 

refraction index in the medium due to the light absorption by the particles becomes strong 

enough to cause a perturbation of the propagating light beam. As a result, this will induce 

#199166 - $15.00 USD Received 8 Oct 2013; revised 30 Dec 2013; accepted 6 Jan 2014; published 28 Jan 2014

(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.002267 | OPTICS EXPRESS  2269



self-diffraction processes that manifest themselves via the intensity redistribution in the beam 

leaving the medium. We have performed computer simulation and experimental modeling of 

this effect for different positions of the sample with respect to the lens focus, and confronting 

the simulation and experimental data served to measure the non-linear characteristics of the 

medium. 

2. The Pearcey diffraction pattern 

The geometrical conditions of the problem are illustrated by Fig. 1. The action of the 

cylindrical lens is considered as a passage through a phase transparency with a transmission 

function ( ) ( )exp 1ik m h x−    where 2k π λ=  ( λ  is the radiation wavelength in vacuum), 

m is the lens refraction index, and ( ) 2 2h x r x= −  is the lens profile function with r being 

the radius of the lens cylindrical surface. For calculation of the field amplitude after the lens 

we employ the two-dimensional scalar Rayleigh – Sommerfeld diffraction integral [32] 

 ( ) [ ]{ }3/ 2

( )
, exp ( , , ) ( 1) ( )

( , , )

z F x
U z ik R x z m h x dx

R x zi
ξ ξ

ξλ
= + −  (1) 

Here 2 2( , , ) ( ) ( )R x z z r xξ ξ= − + −  is the distance from a point in the lens output plane (P) 

with the transverse coordinate x to a point in the observation plane (C) with the transverse 

coordinate ξ, z  is the distance between the aperture plane and the observation plane (plane z 

= 0 coincides with the flat input face of the lens as shown in Fig. 1). The input field is 

assumed to be a plane wave with unit amplitude, then the aperture function ( )F x  can be 

approximated by the rectangular distribution which equals 1 if x r m<  and vanishes for 

other x because of the total internal reflection in the lens. 

 

Fig. 1. Setup for calculation of the optical field focused by the cylindrical lens CL in the cell C 

with the disperse medium. 

In contrast to the Kirchhoff integral [32,33], Eq. (1) is applicable to field calculations at 

small distances between the pupil plane (z = r) and the observation plane. Figure 2 shows the 

calculated intensity distribution ( , )I z ξ  in the region z > r for a lens aperture 20 mµ  and the 

cylindrical surface radius 10 mr = µ  together with the results experimentally observed where 

the cylindrical lens was formed by a segment of an optical fiber with appropriate radius and 

refraction index 1.528m = ; the radiation wavelength is λ = 445 nm. Because of the high 

spherical aberrations of the lens whose action is illustrated in Fig. 2, its geometric-optics 

focus does not coincide with the point of maximal energy concentration. Due to the better 

experimental localizability, the latter is a suitable reference point and from now on we will, 
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conventionally, apply the term ‘focal plane’ to the transverse plane containing the single axial 

brightest spot. According to Fig. 2a, this plane corresponds to 28 mz = µ . Figure 2b 

represents a fragment of the intensity distribution observed in the near-focal region with the 

help of an oblique photodetector facilitating the visualization of the longitudinal intensity 

distribution. It clearly reproduces not only caustics but many minor details of the calculated 

Pearcey pattern. 

 

Fig. 2. (a) Intensity distribution after the cylindrical lens calculated via Eq. (1) for r = 10 μm 

and λ = 445 nm, solid line is the lens contour; (b) experimental intensity pattern observed in 

the near-focus region. 

3. Influence of the disperse medium near the lens focus 

The presence of the cell C with the dispersed medium leads to modification of the standard 

Pearcey pattern of Fig. 2 in any plane located behind the cell (see Fig. 1). Let the cell be 

placed in a certain plane z near the focus and the plane of observation be situated at the 

distance Z from the cylindrical lens, Z > z. In this plane, the field amplitude distribution 

( ), ,U z Zξ ′  distorted due to interaction with the disperse medium can be calculated with the 

help of the modified diffraction integral (1), 

 
( )

( )

( ){ }

3 2

( , ) 1
, , exp

2, , ,

exp , , , ( , ) ,

Z z U z
U z Z d

R Z zi

i k R Z z k n z d d

ξ
ξ α

ξ ξλ

ξ ξ ξ ξ

−  ′ = − ′  

′× − + Δ  


 (2) 

where ( , )U zξ  is the incident beam amplitude in the cell plane, ( ), , ,R Z z ξ ξ ′  

( )
22( )Z z ξ ξ′= − + −  is the distance between the point with coordinates ( ), zξ  in the cell 

plane and the point of observation with coordinates ( ), Zξ ′ , ( , )n zξΔ  is the field-induced 

modulation of the disperse medium refraction index, α  is the intensity-independent 
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absorption coefficient and d is the thickness of the disperse medium in the cell. In Eq. (2) we 

suppose the medium layer to be thin enough so that it can be treated as a thin phase 

transparency with complex amplitude transmission function ( )exp 1 2 ( , )d i k n z dα ξ− + Δ   . 

Table 1. Values of the disperse medium parameters used in the calculation of the 

radiation-induced refraction index modification (Eqs. (3) and (4)). 

1 Mean size of the pigment particles 0.2 μm 

2 Concentration of the pigment particles 0.4 g·cm–3 

3 
Complex refraction index of the particle 

coating 
1.82 + 0.74i 

4 Refraction index of the matrix medium (water) 1.33 

5 Absorption coefficient of the medium 7·102 cm–1 

6 Cell thickness 10 μm (αd = 0.7) 

7 Radiation wavelength 0.445 μm (k = 2π/λ = 1.41·105 cm–1) 

8 Refractive index temperature coefficient ( )dn dT  = – 0.8·10−4 K–1 

9 Specific heat capacity (water) 4.2 kJ⋅kg–1⋅K–1 

10 Mass density (water) 103 kg·m–3 

The absorption coefficient α  is an effective medium characteristic determined by 

averaging the light absorption in individual particles, taking into account their distribution 

and concentration. The pigment particles used in our experiments are close to spherical with 

mean radius 0.1 ma = µ  and contain ~20 nm absorptive coating of carbon-based resin. The 

complex refraction index of the coating is assumed to be close to that of the atmospheric soot 

[34]. The parameters of the particles and of the disperse medium used in the experiment are 

specified in Table 1. 

For evaluation of Eq. (2), the key quantity is ( , )n z ξΔ . In the first approximation we 

assume that it is determined completely by the incident field, and that the prevailing 

mechanism for the refraction index modulation is associated with inhomogeneous heating of 

the medium due to the light energy absorption [19]. In view of the small thickness of the 

medium layer compared with the longitudinal scale of the near-focus Pearcey pattern, all 

points of the medium with the same transverse coordinates experience practically the same 

field-induced action. In such conditions, the density of the additional energy accumulated in 

the point ( ), zξ  (i.e. ‘stationary absorbed energy’ [19]) within the cell equals 

 ( ) ( ) ( ), , exp ,q z I z zξ αη ξ α= −  (3) 

where 0n  is the basic (zero-intensity) value of the medium refraction index, ( ),I zξ  is the 

intensity (energy flow density) in the incident light field: if amplitude (1) characterizes the 

electric field of the electromagnetic wave, ( ) ( ) ( )
2

0
, 8 ,I z cn U zξ π ξ=  in the Gaussian 

system of units. In Eq. (3), η  is the efficiency coefficient, with the dimension of time, whose 

meaning is close to the time of thermal relaxation [25]. It characterizes the stationary state of 

inhomogeneous energy accumulation which depends on interplay between the rates of light 

energy absorption in high-intensity regions and of the absorbed energy leakage to low 

intensity regions. Its exact definition relies on the heat conductivity, diffusion and convection 

arguments but here its introduction enables us to link the spatial distribution of the 

accumulated energy with the incident beam intensity distribution [19]. We do not specify it 

more exactly because, in calculations, η was considered as a fitting parameter determined 

from the condition of the best agreement with the experimental data (see below). 

Corresponding variation of the refraction index can be expressed in the form 
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 ( )
( ),

,
q zdn

n n z
dT C

ξ
ξ

ρ

 
Δ = Δ =  

 
 (4) 

where ( )dn dT  is the refractive index temperature coefficient, C is the specific heat capacity 

(per unit mass of the medium) and ρ  is the medium mass density; for simplicity, here we 

suppose nΔ  to be proportional to q  thereby neglecting possible distortion of the absorbed 

energy distribution due to the heat conductivity. Combining Eqs. (3) and (4) determines the 

spatial distribution of the induced medium inhomogeneity. 

According to these equations, the field-induced non-uniform heating only affects the real 

refraction index thus forming a phase grating. Additionally, due to the gradient optical force 

[2,9,35] and the photophoresis [7,8,36,37], the suspended particles may concentrate near the 

intensity minima which contributes to the creation of an amplitude inhomogeneity. However, 

direct estimates [19] show that at moderate light power, compatible with the medium stability 

(~40 mW to prevent the water boiling and cavitation effects), variation of the particles’ 

concentration does not exceed 5% and in the actual conditions, influence of the amplitude 

inhomogeneity is negligible. This permits us to restrict the analysis to the case of a 

homogeneous particle distribution. 

A schematic drawing of the experimental setup is presented in Fig. 3. As a radiation 

source, the semiconductor laser XJ-A140 was used with wavelength λ = 445 nm and 

controllable power ≤ 0.3 W. The laser radiation is linearly polarized in the plane orthogonal 

to the figure plane, which coincides with the focusing plane of the cylindrical lens CL and 

justifies the scalar approximation of Eqs. (1) and (2). Telescope T consisting of two micro-

objectives with a pinhole diaphragm in the common focus forms a parallel beam of 10 mm in 

diameter. Further, the beam is focused by the lens CL onto the silica cell C containing the 

medium (water) with suspended particles. The lens is made of glass with refraction index m = 

1.52 in the shape of a cylindrical segment enclosed between the plane input face and the 

cylindrical surface of radius r = 1.8 mm; the lens size along the vertical (x) direction equals 

3.6 mm and along the y-direction 8 mm. The use of the macroscopic arrangement (in contrast 

to the micron-size lens discussed in Section 2) is not of principal importance and was 

motivated by convenience of the cell manipulations. However, in this arrangement we could 

not measure the 3D diffraction pattern directly but the image of Fig. 2b can still be applied in 

view of the spatial similarity laws regulating the Pearcey pattern [29]. The lens focus defined 

as the position of the highest light concentration near the system axis (see Section 2) is 

located at a distance of f = 5 mm from the lens input plane; the plane of observation is 

situated at Z = 15 mm (10 mm behind the focus). The cell walls are of thickness 0.5 mm and 

enclose a 10 mµ  layer of the disperse medium. During normal working conditions, the light 

power reaching the cell is approximately 50 mW. 

 

Fig. 3. Optical scheme of the setup for investigation of the focused beam transformation in the 

disperse medium (explanations in the text). 
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The CCD camera registers the radiation that has passed the cell. Its spatial distribution 

shows interesting peculiarities that clearly demonstrate the presence of self-diffraction effects 

(Fig. 4). Here, results of the simulation for different cell positions are compared with the 

experiment. The cell position is specified by the distance zΔ  between the cell central plane 

and the lens focal plane (see Fig. 3) and varies from 350 m− µ  to 50 mµ  with 50 mµ  steps; 

each cell position is characterized by a group of three images numbered from (a) to (j) (see 

Table 2). 

Table 2. Correspondence between the cell shift with respect to the lens focus and the label 

of the three-image groups in Fig. 4. 

Label in Fig. 4 (a) (b) (c) (d) (e) (f) (g) (h) (j) 

zΔ , μm –350 –300 –250 –200 –150 –100 –50 0 50 

η, 10−2 s 0 4 7 8 9 0 12 15 0 

mean
nΔ , 10−3 

0 1.0 1.8 2.7 4.0 5.0 8.0 13 0 

Upper images (і) present the intensity profiles in the cell plane calculated via Eq. (1). 

They illustrate the ( ),I zξ  distribution which, according to Eqs. (3) and (4), is responsible for 

the induced refraction index inhomogeneity. Corresponding distribution of nΔ  is determined 

for the parameters of the disperse medium given in Table 1; afterwards, it is substituted into 

Eq. (2) and the distribution of the field incident onto the CCD camera is simulated (images 

(ii) in Fig. 4). Patterns marked (iii) show the experimental intensity distributions observed by 

the CCD camera. It is seen that the calculated profiles (ii) correlate adequately with the 

experimental distributions (iii) along the axis 'ξ . 

During the calculations, values of the coefficient η  in Eq. (3) were determined via the 

fitting procedure aimed at best matching the calculated plots (ii) with the corresponding 

sections of the measured intensity patterns (iii) of Figs. 4(b)–(h). An example of such a 

matching is provided by Fig. 5 where the detailed comparison between the simulation data of 

Fig. 4(e) (ii) and the experimental profile of the image of Fig. 4(e) (iii), taken along y = 0, is 

illustrated. The results obtained for η due to the best fitting procedure are presented in the 

second row of Table 2. 
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Fig. 4. Results of the numerical calculations and experimental observations of the focused 

beam that has passed through the disperse medium situated at different distances from the lens 

focus ∆z; (і) calculated intensity profile in the near-focus region; (іі) calculated intensity 

profile behind the focus in the input plane of the CCD camera; (ііі) experimentally observed 

intensity distributions. Groups of images (a) – (j) correspond to different ∆z (see Table 2). 
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Fig. 5. Comparison of the experimental (colored curve) and theoretical (black curve) intensity 

distributions along y = 0 in the plane of observation for conditions of Fig. 4e. The black curve 

coincides with that of Fig. 4e (ii) and. It is obtained via Eq. (2) with allowance for Eqs. (3) and 

(4) and the best fitting with the experimental data has been achieved at η = 9⋅10−2 s (see Table 

2). 

Importantly, once one knows η and the incident intensity distribution ( ),I zξ , the 

corresponding pattern of the non-linear refraction index modulation can be readily estimated 

along Eqs. (3) and (4). In fact, the search for adjustment between the simulated and 

experimental data is equivalent to the analytical calculation of nΔ  in the usual Z scan method 

[28]. In contrast to the latter where the only measured parameter of the self-diffracted 

radiation was its transmission through a fixed aperture, in this work the use of modern 

equipment and software allows measuring the spatial distribution of the transmitted radiation 

in much detail and, consequently, obtaining the full pattern of the nΔ  distribution rather than 

its single ‘overall’ characteristic. Leaving the detailed study of the self-induced 

inhomogeneity to another occasion, just for illustration, the bottom row of Table 2 supplies 

the mean values of the non-linear refraction index modification calculated for the mean light 

intensity in the cell. From the data presented one can ensure that the approach proposed 

enabled us to detect comparatively low non-linear modifications of the refractive index 

(~10−3, see Table 2) in very thin samples (the cell thickness is d = 10 μm). The main reason is 

that the fine structure of the refraction-index induced phase modulations entails perceptible 

structure details in the diffracted intensity distribution even if absolute phase shifts are small 

(in the conditions of our experiments 1kd nΔ < ). 

It was experimentally revealed that when the cell was placed 350 mµ  before the focus 

(Fig. 4a) and 50 mµ  behind it (Fig. 4j), the presence of the medium did not influence the 

observed intensity distribution: the self-diffraction processes cannot develop because of the 

insufficient incident intensity. The corresponding distributions in Figs. 4a and 4j were 

visually indistinguishable from the patterns obtained when the disperse medium in the cell 

was replaced by pure water; exact values of η could not be determined in those conditions and 

were conventionally assumed to be zero, and the non-linear refraction index variations 

vanished (see the first and last columns of Table 2). In all other cases (Figs. 4b–h) the patterns 

registered by the CCD camera represent the results of self-diffraction of the incident beam on 

the induced refraction index inhomogeneity following from Eq. (2). 

The different values of the efficiency factor η for different cell positions can probably be 

attributed to the peculiarity of the Pearcey diffraction pattern for which the characteristic size 

of the spatial inhomogeneity grows when moving from the lens towards the focal plane (see 

Fig. 2 and the patterns (i) of Fig. 4). The pre-focal transverse sections generally contain 

smaller details than the focal plane itself, which may slow down the thermal relaxation in the 

conditions of Figs. 4g, h compared to those of Figs. 4b–f. However, we could not trace this 

tendency forth when moving behind the focus, predominantly because of the rapid decrease 

of intensity and disappearance of observable non-linear effects. 
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When the medium is situated in the focal plane (Fig. 4h), the observed beam profile is the 

widest and contains no additional extrema. The fact that, in what concerns the self-diffraction 

efficiency, the plane (a) with 350 mzΔ = − µ  appears to be equivalent to the plane (j) with 

50 mzΔ = µ  testifies for the longitudinal asymmetry of the Pearcey pattern. Since the 

“geometrical” focus is blurred, the highly-inclined oblique rays leave the focal region faster, 

and after the focus, the beam intensity is lower than before the focus. 

Both calculations and experiment have shown that in the focal plane, the incident intensity 

( ),I fξ  is inhomogeneously distributed along the focal line (y-direction): the intensity is 

maximal near the axis and gradually decreases to the vertical edges. However, in the patterns 

observed behind the focus, in many cases, the intensity maxima occur near the edges (Fig. 4 

b–g, iii). This is explained by the self-diffraction effects due to which the near-axis energy is 

redistributed between several maxima along the x-axis. Near the focal-line edges, the intensity 

is rather small and the radiation propagates in the linear regime with preserving single 

maximum in the x-direction. Note that the observed intensity distributions in the (xy) plane 

resemble the Pearcey diffraction patterns in the (xz) plane (see Fig. 2). 

During the experiment, the laser power approximately of 100 mW (~50 mW in the cell) 

was maintained; with lowering the power, non-linear self-diffraction effects were rapidly 

suppressed, while increasing the laser power above this value led to emergence of shock 

waves, acoustic noise generation and eventually to the medium being destructed. 

Conclusion 

Following to the way outlined before [19], we have considered additional examples of 

possible applications of the disperse media containing suspended absorptive micro- and nano-

particles for creation of thermo-induced controllable optical switches and regulators. Carbon-

coated particles suspended in water efficiently absorb and accumulate the light energy and 

enable articulate non-linear behavior even being exposed to comparatively weak CW laser 

radiation with moderate power. 

In particular, in this work we present some preliminary results of theoretical and 

experimental studies of the self-induced laser beam transformations occurring near the focus 

of a cylindrical lens giving rise to the Pearcey diffraction pattern [31]. This technique can be 

considered as a generalization of the known Z scan method [24,25,28] enabling increase of 

sensitivity due to strong spatial inhomogeneity of the incident radiation. It was demonstrated 

that the self-focusing effect in the absorbing disperse medium takes place because of self-

diffraction of the incident radiation by the phase inhomogeneity caused by the high-gradient 

Pearcey pattern. Due to the high intensity gradient, the self-diffraction effect occurs in very 

thin (micron-sized) layers; along with the small consumed power this makes the described 

scheme promising for integrated optical circuits. 

The results obtained as well as the methods developed in this work open up new prospects 

in detection and measurement of weak optical nonlinearities. They testify for possibilities to 

observe non-linear optical effects at relatively low energy densities, i.e. in sparing conditions 

(note that according to the data of Tables 1 and 2, noticeable non-linear effects may occur at 

quite modest local heating not exceeding 10 K). This may be useful for the study of “delicate” 

objects, especially for biological investigations dealing with diagnostics of cells, regulation of 

their activity and manipulation based on the electromagnetic field interaction with matter. The 

media based on suspensions of strongly absorptive nanoparticles dispersed within a dielectric 

liquid offer additional advantages associated with the feasibility of preparation and control of 

the prescribed non-linear properties. 

Acknowledgments 

Steen G. Hanson acknowledges the financial support from the Danish Council for 

Technology and Innovation under the Innovation Consortium LICQOP, grant #2416669. 

#199166 - $15.00 USD Received 8 Oct 2013; revised 30 Dec 2013; accepted 6 Jan 2014; published 28 Jan 2014

(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.002267 | OPTICS EXPRESS  2277


