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Abstract This paper investigates the self-adaptation behavior of (1, λ)-
evolution strategies (ES) on the noisy sphere model. To this end, the stochas-
tic system dynamics is approximated on the level of the mean value dynam-
ics. Being based on this “microscopic” analysis, the steady state behavior
of the ES for the scaled noise scenario and the constant noise strength sce-
nario will be theoretically analyzed and compared with real ES runs. An
explanation will be given for the random walk like behavior of the mutation
strength in the vicinity of the steady state. It will be shown that this is a
peculiarity of the (1, λ)-ES and that intermediate recombination strategies
do not suffer from such behavior.

1 Introduction

The performance of evolution strategies in continuous search spaces depends
sensitively on the correct choice of the mutations’ sizes. In the simplest
case, the mutation operator produces iid normally distributed mutation
components each of which with standard deviation σ resulting in an isotropic
mutation distribution. The mutation parameter σ controls the size of the
mutations and has to be adapted online to the shape of the local fitness
landscape: A small value of σ will generally lead to a high probability of
generating better offspring. The expected improvement w.r.t. the step size
towards the optimum, however, will be minor. In contrast to this, a relatively
large mutation strength may be connected with a low probability of reaching
the success region.

Various methods to control the mutation parameter have been devel-
oped. Among these there are for example Rechenberg’s 1/5th rule [12], the
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self-adaptation of Rechenberg and Schwefel [12,14], or the cumulative path-
length control by Hansen and Ostermeier [11].

This paper focuses on σ-self-adaptation (σSA) as introduced by Rechen-
berg and Schwefel. The adaptation of the mutation strength is directly con-
trolled by the evolution strategy itself. The σ-self-adaptation of an (1, λ)-ES
without noise was already analyzed in [3]. There, it has been shown using
a dynamical systems approach that the (1, λ)-ES is able to achieve linear
convergence order on the sphere model test function F (y) = f(‖y− ŷ‖) (f
– strictly monotonic function, ŷ – location of the optimizer). Furthermore,
it has been shown that choosing the correct scaling law for the learning
parameter τ (for its definition, see below), the ES is able to travel with the
maximal speed toward the optimizer.

For a time period of approximate five years [3] remained the only the-
oretical analysis on σSA. In 2002 and the following years, however, other
researchers have also developed alternative approaches investigating and
proving, respectively, the convergence behavior of the σSA-ES: Semenov
and Terkel [15,16] presented an approach based on stochastic Lyapunov
function inspired by Lyapunov’s “second method” in stability theory of dy-
namical systems. Hart et al. [8] gave a rigorous proof of convergence for a
special one-dimensional version of the (1, λ)-ES. Bienvenüe and François [7]
provided a Markov chain analysis. By a similar approach, Auger [2] showed
the linear convergence order for the standard (1, λ)-σSA-ES using Monte-
Carlo simulations.

All these analyses done so far consider deterministic fitness functions.
We will consider an (1, λ)-Evolution Strategy trying to optimize a fitness
function F disturbed by noise. Noisy optimization is a field of growing inter-
est [9]. Its importance in simulation optimization (e.g. Monte-Carlo simula-
tions) and in robust optimization (using injected noise to test robustness)
is self-evident. (1, λ)-σSA-ES exhibit some interesting dynamical behaviors
which are not well understood up to now. It is the aim of this paper to shed
some light on these behaviors.

The analysis will be restricted to fitness functions of the form F : R
N →

R with F (y(g)) = c‖y(g) − ŷ‖α, and constant c > 0, α ∈ R, α > 0, and ŷ
the optimal point of F . Considering basically the (1, λ)-ES in this paper, we
have to deal with only one parent. Therefore there is no recombination and
the new generation is created in the following way. Based on the parental
object vector y(g), the offspring population is created by adding normally
distributed mutation vectors zl. The components have zero mean and stan-
dard deviation σ (the so-called mutation strength). The seemingly best of
the λ offspring is then chosen as the parent in the next generation. Since we
consider noisy fitness evaluations the selection is not based on the actual
fitness value but on the observed fitness

Q̃(x) = F (x) + ǫ. (1)

That is, we will investigate an additive noise model. The noise term ǫ is
assumed to be a normally distributed random variable with zero mean and
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standard deviation σǫ, also referred to as noise strength. The model allows
to consider two cases of special interest:

a) the constant noise problem: σǫ = const. and
b) the scaled noise problem: σǫ = g(‖y − ŷ‖).
As known from empirical investigations and theoretical analyses, case a)
causes a behavior with a dynamics approaching a final residual distance of
the parents to the global optimizer ŷ. That is, the ES is not able to locate the
optimizer arbitrarily exact. Case b) can exhibit convergence and divergence,
respectively, depending on the noise scaling law considered. It is the aim of
this work to quantitatively investigate these behaviors. To this end, we will
use the techniques developed in [4] on the level of the mean value dynamics:
On the “microscopic” level this concerns the determination of the so-called
self-adaptation response (SAR) function and on the “macroscopic” level the
solution of the evolution equations. The former will be done in Section 2
while Section 3 is devoted to the solution of the evolution equations in
the deterministic approximation. Finally, the concluding Section 4 gives a
summary and an outlook.

2 How to Model the σSA-ES

2.1 Self-Adaptation Operators

As already mentioned, in self-adaptive ES the adaptation of the mutation
strength σ is evolutionary controlled by the ES itself, i.e., the mutation
strength is subject to mutation and selection: The mutation strength which
is connected with the seemingly best offspring survives and serves as the
mutation strength “parent” in the next generation. The change of the mu-
tation strength, i.e., in this context its mutation, is the first step in an
offspring’s creation. The operator performing the mutation of the strategy
parameter should fulfill several conditions. Among these are the concept of
reachability, unbiasedness, and scalability. For a detailed discussion see [6,
5]. The concept of scalability ensures that the ES is able to adapt to the
characteristics of the local fitness landscape. With respect to the mutation
operator this leads to the requirement that the mutation is to be realized
by a multiplication with a random variable ζ. In general, ζ has to fulfill
E[ζ] ≈ 1.

There are several operators [4] that fulfill the conditions above. Among
these there are for example the “two-point rule” by Rechenberg [13] where
the offspring’s mutation strength is generated according to

σl :=

{

σα, if u(0, 1] ≤ 1
2

σ/α, if u(0, 1] > 1
2

, (2)

with α > 0 and u standing for the uniform distribution. Probably the most
frequently used rule is the “log-normal rule”

σl := σeτN (0,1). (3)
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In this article, we will concentrate on the latter. The density function [4,
p.262] introduced by this operator reads

pσ(ς|σ) =
1√

2πτς
e−

1
2

(ln(ς/σ))2

τ2 . (4)

The parameter τ , τ ≥ 0, is referred to as the learning rate.

2.2 Modeling the Evolution Dynamics

Generally, one is interested in the behavior of the ES over the course of the
generations g which is referred to as “evolution dynamics” in the sequel. For
the sphere model considered, the main dynamical quantities of interest are
the mutation strength and the distance to the optimizer r(g) = ‖r(g)‖ :=
‖y(g) − ŷ‖. They fully characterize the system’s behavior.

Their evolution can be described by so-called evolution equations. These
difference equations model the change of the variables from one generation
to the next and are made up of two parts: One represents the expected
change of the variable, i.e., the deterministic part of the equation, the other
covers the stochastic fluctuations

r(g+1) = r(g) − ϕ(r(g), ς(g), σǫ, N) + ǫR(r(g), ς(g), σǫ, N), (5)

ς(g+1) = ς(g)(1 + ψ(r(g), ς(g), σǫ, N)) + ǫσ(r
(g), ς(g), σǫ, N). (6)

The variables ǫR and ǫσ represent the perturbation parts of the evolution
equations. The local performance measures ϕ and ψ which appear in (5)
and (6) denote the expected change of the parameters considered. In the
case of the distance r(g), the so-called progress rate ϕ is defined by

ϕ(r(g), ς(g)) := E[r(g) − r(g+1)|r(g), ς(g)], (7)

that is, it gives the expected one-generation change of the distance to the
optimizer. In contrast to the additive change of the distance, the mutation
strength is changed by a multiplication with a random variable. Therefore,
we are interested in the relative change of the mutation strength from one
generation to the next. The resulting expected relative change is denoted
by the measure ψ also referred to as “self-adaptation response” (SAR). It
is defined by

ψ(r(g), ς(g)) := E

[

ς(g+1) − ς(g)

ς(g)
|r(g), ς(g)

]

. (8)

Both quantities, the progress rate and the SAR, depend on the noise strength

σ
(g)
ǫ or its normalized version σ∗

ǫ
(g) (see below) at generation g.

We will now introduce normalizations to simplify the analysis. Let N
denote the search space’s dimensionality. Setting

ϕ∗(g) = ϕN/r(g), ς∗(g) = ςN/r(g), σ∗
ǫ
(g) = σǫN/(r

(g)F (g)′), (9)
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with F ′ = d
dRF (R) and

ǫ∗R
(g) = ǫRN/(r

(g)), ǫ∗σ
(g) = ǫσ/(ς

∗(g)) (10)

we arrive at

r(g+1) = r(g)
(

1 − 1

N
ϕ∗(ς∗(g), σ∗

ǫ
(g), N)

)

+
r(g)

N
ǫ∗R

(g) (11)

and

ς∗(g+1) = ς∗(g) 1 + ψ(ς∗(g), σ∗
ǫ
(g), N) + ǫ∗σ

(g)

1 − 1
Nϕ

∗(ς∗(g), σ∗
ǫ
(g), N) +

ǫ∗
R

(g)

N

. (12)

If the noise strength σǫ is assumed to be constant, the normalized noise
strength changes according to

σ∗
ǫ
(g+1) = σǫ

N

r(g+1)F (g+1)′
= σǫ

N

cα(r(g+1))α

= σǫ
N

cα
(

r(g)
(

1 − 1
Nϕ

∗(ς∗(g), σ∗
ǫ
(g), N)

)

+ r(g)

N ǫ∗R
(g)
)α

=
σ∗
ǫ
(g)

(

1 − 1
Nϕ

∗(ς∗(g), σ∗
ǫ
(g), N) +

ǫ∗
R

(g)

N

)α . (13)

Note, the r(g)-evolution is governed by the evolution of the noise strength
and of the mutation strength, whereas their dynamics – as we will see later
on – are independent of r(g). Assuming in turn σ∗

ǫ as a constant leads to
the equation

σǫ
(g+1) = σǫ

(g)

(

1 − 1

N
ϕ∗(ς∗(g), σ∗

ǫ ) +
ǫ∗R

(g)

N

)α

. (14)

In this paper, we will neglect the stochastic perturbation parts of (11)
and (12) leading to deterministic evolution equations. This can be regarded
as a first approximation, the resulting dynamics is also referred to as mean
value dynamics.

2.3 The Progress Rate

In order to investigate the mean value dynamics, the progress rate (7) must
be determined. Using the normalization (9), the expression

ϕ∗ = N E[1 − r(g+1)/r(g)|ς∗(g), r(g)]. (15)

has to be calculated. In this paper we will make the assumption that the
learning parameter τ in (3), (4) is sufficiently small so that we can neglect
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its influence on ϕ∗. This is in accordance with findings on the non-noisy case
where τ should scale with the search space dimension N , i.e., τ ∝ 1/

√
N

[4]. That is, as N → ∞, one can assume τ = 0 (but only for ϕ, not for ψ)
and use the asymptotically exact progress rate formulae from [4, p.88]:

ϕ∗(ς∗(g), σ∗
ǫ
(g)) ≃ c1,λ

(ς∗(g))2
√

(ς∗(g))2 + (σ∗
ǫ
(g))2

− (ς∗(g))2

2
. (16)

The coefficient c1,λ := d
(1)
1,λ is a special case of the so-called progress coeffi-

cients d
(k)
1,λ (see [4, p. 119] or Eq. (26), respectively) and equals the expec-

tation of the λth order statistics of the standard normal distribution.

2.4 The Self-Adaptation Response

The self-adaptation response (SAR), Eq. (8), is the expectation of the rela-
tive change of the mutation strength from one generation to the next. After
normalizing the expressions using r(g)/N , the SAR is given by

ψ(ς∗(g), σ∗
ǫ
(g), r(g)) =

∫ ∞

0

(

ς∗ − ς∗(g)

ς∗(g)

)

p1,λ(ς
∗) dς∗. (17)

The density p1,λ(ς
∗) is the density of the mutation strength associated with

the seemingly best of the λ offspring. Using the concept of induced order
statistics [1,4], p1,λ(ς

∗) consists of the density that is given by the distribu-

tion of the mutation strength p∗σ(ς
∗|ς∗(g)) and of the probability that the

mutation strength ς∗ leads to the seemingly best of λ candidates, i.e.,

p1,λ(ς
∗) = p∗σ(ς

∗|ς∗(g))λ

∫ ∞

−∞

p(Q̃|ς∗, r(g))

×
(

1 − P (Q̃|ς∗(g), r(g))
)λ−1

dQ̃. (18)

The SAR (17) can thus be expressed by the double integral

ψ(ς∗(g), σ∗
ǫ
(g), r(g)) = λ

∫ ∞

0

(

ς∗ − ς∗(g)

ς∗(g)

)

p∗σ(ς
∗|ς∗(g))

∫ ∞

−∞

p(Q̃|ς∗, r(g))

×
(

1 − P (Q̃|ς∗(g), r(g))
)λ−1

dQ̃dς∗. (19)

The probability density function (pdf) p(Q̃|ς∗, r(g)) remains to be deter-
mined. To this end, let us consider the observed fitness Q̃ = F + ǫ (1).
The noise term ǫ in (1) is assumed to be normally distributed. Therefore,
the pdf of the observed fitness Q̃ of an offspring given the offspring’s real
(i.e., hidden) fitness value F is p(Q̃|F ) = 1/(σǫ

√
2π) exp(−[Q̃−F ]2/[2σ2

ǫ ]).
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The fitness value F in turn is a function of the offspring’s distance vec-
tor R to the optimizer. The vector is given by the distance vector of the
parent r and a mutation vector, i.e., R = r + z. The corresponding fitness
F = f(‖R‖) = f(R) can be expressed as F = f(r

√

(1 − x/r)2 + ‖h‖2/(r)2)
(see Appendix A). The x- and ‖h‖-term stem from a decomposition of r
into a part pointing into the direction of the optimizer and a perpendicular
part. As a result, one finally obtains (for details, see Appendix A)

p(Q̃|ς∗, σ∗
ǫ
(g), r(g)) =

1√
2π

exp









−1

2









Q̃− F (g) − σǫ

2σ∗

ǫ
(g) ς

∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2









2







× 1
√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2

(20)

with F (g) = F (y(g)).
In the following, we will only give a short sketch of the derivation of the

self-adaptation response. A detailed version can be found in Appendix B.
Note, that we will consider the limit case of N → ∞. As we will see later,
the approximation quality of the thus obtained SAR is quite good for finite
dimensional search spaces.

The expressions in (19) generally do not allow for an analytical solution,
therefore some simplifications have to be introduced. The most important
is the consideration of τ ≪ 1. It has been shown in [4] that the cumulative

distribution function (cdf) P (Q̃|ς∗(g), r(g)) in (19), which is given by

P (Q̃|ς∗(g), σ∗
ǫ
(g), r(g)) =

∫ ∞

0

Φ









Q̃− F (g) − σǫ

2σ∗

ǫ
(g) ς

∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2









×p∗σ(ς∗|ς∗(g)) dς∗, (21)

can be approximated with

P (Q̃|ς∗(g), σ∗
ǫ
(g), r(g)) = Φ









Q̃− F (g) − σǫ

2σ∗

ǫ
(g) (ς

∗(g))2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2









(22)

if log-normal or two-point distributions are considered. Inserting (22) and
(20) into (19) leads to

ψ(ς∗(g), σ∗
ǫ
(g), r(g)) =

λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − ς∗(g)

ς∗(g)

)

p∗σ(ς
∗|ς∗(g))
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×









1 − Φ









Q̃− F (g) − σǫ

2σ∗

ǫ
(g) (ς

∗(g))2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2

















λ−1

×exp









−1

2









Q̃− F (g) − σǫ

2σ∗

ǫ
(g) ς

∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2









2







× 1
√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2

dQ̃dς∗. (23)

In order to simplify the expressions in (23) further, we introduce a new
variable −t for the term inside the Φ-function. Rewriting it for Q̃ leads to

−t =
Q̃− F (g) − σǫ

2σ∗

ǫ
(g) (ς

∗(g))2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2

⇒ Q̃ = −t
√

σ2
ǫ +

(

σǫ

σ∗
ǫ
(g)

)2

(ς∗(g))2 + F (g) +
σǫ

2σ∗
ǫ
(g)

(ς∗(g))2

and to

ψ(ς∗(g), σ∗
ǫ
(g)) =

λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − ς∗(g)

ς∗(g)

)

p∗σ(ς
∗|ς∗(g))

×

√

√

√

√

√

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2

×exp









−1

2









√

√

√

√

√

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2

t

−
σǫ

2σ∗

ǫ
(g)

(

(ς∗(g))2 − ς∗2
)

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2









2







×Φ(t)λ−1 dtdς∗

=
λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − ς∗(g)

ς∗(g)

)

p∗σ(ς
∗|ς∗(g))

×g(ς∗)h(ς∗, t)Φ(t)λ−1 dtdς∗, (24)
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with h standing for the exponential and g for the root function.

The consideration of τ ≪ 1 allows further simplifications. Basically,
we will expand g and h into Taylor series around the parental mutation
strength ς∗(g). Since the learning parameter controls the distance between
these two mutation strengths, it can be assumed that with a very high
probability |ς∗ − ς∗(g)| ≪ 1 is fulfilled, thus, allowing us to break off the
Taylor series after the first terms without introducing severe approximation
errors. As a result, the functions g and h can be represented by polynomials
in (ς∗ − ς∗(g))k.

We will first consider the inner integral in (24), i.e.,
∫∞

−∞
h(ς∗, t) Φ(t)λ−1 dt.

First, h is substituted by its Taylor series Th. Due to the form of h, it is
possible to regroup the terms of Th into terms of tkexp(−t2/2), leading to

the general form Th(t) = exp(−t2/2)
∑4
k=0 hkt

k. The coefficients hk depend

on (ς∗−ς∗(g))m and are derived in Appendix B, Eq. (78). Thus, the integral
over t in (24) can be approximated with

It = λ

4
∑

k=0

hk

∫ ∞

−∞

tk
e−

t2

2√
2π
Φ(t)λ−1 dt. (25)

Comparing It with the so-called progress coefficients [4, p.119]

d
(k)
1,λ =

λ√
2π

∫ ∞

−∞

tke−
t2

2 Φ(t)λ−1 dt. (26)

it can be re-written as It = h0 +
∑4
k=1 hkd

(k)
1,λ. Since the integration over ς∗

remains to be done, re-ordering It in terms of (ς∗− ς∗(g))m is the next step.
Thus, It (25) can be given by the general expression T (ς∗) = 1 + At(ς

∗ −
ς∗(g)) +Bt(ς

∗ − ς∗(g))2/2 +O((ς∗ − ς∗(g))3). Again, the coefficients may be
found in Appendix B, Eq. (81). Similar to h, the root

g(ς∗) =

√

√

√

√

√

√

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

(ς∗(g))2

σ2
ǫ +

(

σǫ

σ∗

ǫ
(g)

)2

ς∗2

, (27)

is approximated by a Taylor series with the general form Tg(ς
∗) = 1 −

Ag(ς
∗ − ς∗(g)) + Bg(ς

∗ − ς∗(g))2/2 + O((ς∗ − ς∗(g))3). For the coefficients,
see Appendix B, Eq. (74). Thus, the SAR (24) becomes

ψ(ς∗(g), σ∗
ǫ
(g)) =

λ√
2π

∫ ∞

0

∫ ∞

−∞

ς∗ − ς∗(g)

ς∗(g)
p∗σ(ς

∗|ς∗(g))

×g(ς∗)h(ς∗, t)Φ(t)λ−1 dtdς∗

=

∫ ∞

0

ς∗ − ς∗(g)

ς∗(g)
Tg(ς

∗)T (ς∗)p∗σ(ς
∗|ς∗(g)) dς∗. (28)



10 Hans-Georg Beyer, Silja Meyer-Nieberg

Computing the product of Tg and T and neglecting the higher order terms
leads finally to

ψ(ς∗(g), σ∗
ǫ
(g)) =

∫ ∞

0

(

ς∗ − ς∗(g)

ς∗(g)

)(

1 + (At −Ag)ς
∗(g)

(

ς∗ − ς∗(g)

ς∗(g)

)

+

(

Bg +Bt
2

−AgAt

)

(ς∗(g))2

(

ς∗ − ς∗(g)

ς∗(g)

)2

+O
(

(ς∗ − ς∗(g))3
)

)

p∗σ(ς
∗|ς∗(g)) dς∗. (29)

Since the expectation of a log-normally distributed variable is given by

ς∗k = (ς∗(g))kexp(τ2k2/2), the ((ς∗ − ς∗(g))/ς∗(g))k-terms can be calculated
easily. In addition, due to considering τ → 0, it is possible to break off the
exponential series exp(τ2k2/2) =

∑∞

n=0 2−n(kτ)2n/n! after τ2. Thus, we
finally arrive at the asymptotical SAR

ψ(ς∗(g), σ∗
ǫ
(g)) ≃ τ2

(

1

2
+
(

d
(2)
1,λ − 1

) (ς∗(g))2

(σ∗
ǫ
(g))2 + (ς∗(g))2

− c1,λ(ς
∗(g))2

√

(σ∗
ǫ
(g))2 + (ς∗(g))2

)

. (30)

Equation (30) was obtained assuming τ ≪ 1 and N → ∞ which enabled
several simplifications of the original SAR. Equation (30) is compared to
the results of experiments in Fig. 1. As can be seen, for the (1, λ)-ES and

noise strengths considered, the prediction quality seems to be good if ς∗(g)

is sufficiently small.

3 Deterministic Approximation

The evolution of the σSA-ES is fully described by the system of stochastic
evolution equations (11), (12), and (13). Due to the stochasticity, the gen-
eral solution would be given by a time-dependent pdf p(r, ς∗, σ∗

ǫ )
(g) to be

obtained by solving the corresponding Chapman-Kolmogorov-Equations. In
this section, we will abstain from trying to solve these equations by means
of analytical approximations in general. Instead, we will only consider the
stationary state (also referred to as steady state) which is observed for a
sufficiently large generation time g, i.e., in the limit g → ∞. Furthermore,
we will not search for the steady state pdf, but rather for its first moment
assuming that the fluctuating parts in the evolution equations (11), (12),
and (13) can be neglected. This is a rather crude approximation, therefore
it will be compared with simulations.
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Fig. 1 The first-order self-adaptation response function ψ (30) for some choices
of τ . The noise strength is σ∗

ǫ = 1. The points denote the results of one-generation
experiments on the quadratic sphere and each was obtained by averaging over
250, 000 trials.

3.1 The Stationary State

As already mentioned, we will neglect the stochastic perturbation parts of
the evolution equations (11), (12), and (13). Applying thus a deterministic
approach, the equations simplify to

r(g+1) = r(g)
(

1 − 1

N
ϕ∗(ς∗(g), σ∗

ǫ
(g))

)

(31)

ς∗(g+1) = ς∗(g) 1 + ψ(ς∗(g), σ∗
ǫ
(g))

(

1 − 1
Nϕ

∗(ς∗(g), σ∗
ǫ
(g))
) (32)

σ∗
ǫ
(g+1) =

σ∗
ǫ
(g)

(

1 − 1
Nϕ

∗(ς∗(g), σ∗
ǫ
(g))
)α . (33)

The progress rate and the SAR in (31) – (33) are given by (16) and (30).
As one can see, the r-evolution, Eq. (31), is governed by the evolution of
the mutation (32) and the noise strength(33). However, (32) and (33) do
not depend on (31). That is why we only have to consider the system (32),
(33) whereas the r-dynamics is fully controlled by the solution of (32) and
(33).

We will consider two typical cases of noisy environments. First, we as-
sume that the noise strength σǫ scales with the distance to the optimizer
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resulting in a σ∗
ǫ = const. condition. Second, we consider the constant noise

strength scenario.

3.1.1 Evolution under Constant Normalized Noise σ∗
ǫ From a correctly

working σ-self-adaptation, one expects the normalized mutation strength
to reach a stationary value, i.e., ς∗(g) → ς∗stat, because ensuring ς∗stat in the
vicinity of the maximizer of Eq. (16) ensures maximal progress toward the
optimum. Considering the evolution equation (32), this leads to the steady
state condition

−ψ(ς∗stat, σ
∗
ǫ
(g)) = ϕ∗(ς∗stat, σ

∗
ǫ
(g))/N. (34)

It is well known that for sufficiently small normalized noise level σ∗
ǫ the

normalized progress rate ϕ∗, Eq. (16), has two zeros. The ϕ∗-function is

positive in the interval [0,
√

4c21,λ − (σ∗
ǫ
(g))2]. Thus, we have to require

ς∗stat <
√

4c21,λ − (σ∗
ǫ
(g))2 =: ς∗ϕ0

(35)

for the stationary mutation strength. Note, a positive progress rate can only
be obtained if the normalized noise strength is smaller than σ∗

ǫmax = 2c1,λ.
Because of (34) the zero of the SAR (30) ς∗ψ0

has to be smaller than
ς∗stat in order to allow progress in the steady state. A necessary evolution
condition is therefore 0 ≤ ς∗ψ0

< ς∗stat < ς∗ϕ0
. Let us first consider the zeros

of the SAR (30)

ψ(ς∗, σ∗
ǫ ) = 0

⇐⇒ 0 =
1

2
+

ς∗2

ς∗2 + σ∗
ǫ
2 (d

(2)
1,λ − 1) − ς∗2

√

ς∗2 + σ∗
ǫ
2
c1,λ

⇐⇒ 0 = ς∗6 −
(2d

(2)
1,λ − 1)2 − 4c21,λσ

∗
ǫ
2

4c21,λ
ς∗4

−σ∗
ǫ
2 2d

(2)
1,λ − 1

2c21,λ
ς∗2 − σ∗

ǫ
4

4c21,λ
. (36)

The equation obtained is a third-order polynomial in ς∗2 so that the so-
lutions (see Appendix D) are not very informative. The results of the nu-
merical comparisons between the zero of the SAR and the second zero of
the progress rate are shown in Fig. 2. If the offspring population size is
chosen sufficiently large with respect to the normalized noise strength, the
positive real solution of ψ = 0 is far smaller than ς∗ϕ0

and the first part of
the necessary evolution condition is fulfilled.

Trying to determine the general stationary mutation strength using (34)
leads to a fourth-order polynomial in ς∗2. This equation will not be consid-
ered further since we are basically interested in the mutation strength that
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Fig. 2 The zero of the SAR and the second zero of the progress rate as functions
of λ for some noise strengths. The progress rates are denoted by the dashed lines.
The zeros (SAR and progress rate) for the higher noise strengths in a) and in b)
are plotted in gray.
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Fig. 3 Optimal choice of τ (N = 100) as given by (38). The values for σ∗

ǫ = 1,
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ǫ = 2, σ∗

ǫ = 3, and σ∗

ǫ = 4 are shown from top to bottom in figure a). The
figure on the right shows the results for λ = 50 (bottom), λ = 100, λ = 500, and
λ = 1000 (top).

maximizes the progress rate ϕ∗ (16). Setting the derivative of ϕ∗ to zero
leads to a polynomial of third-order in ς∗2

(

ς∗2 + σ∗
ǫ
2
)3

= c21,λ

(

ς∗4 + 4ς∗2σ∗
ǫ
2 + 4σ∗

ǫ
4
)

. (37)

Its solution ς∗opt is provided in Appendix D. The optimal choice of the τ -
value is then obtained by inserting ς∗opt into the steady-state condition and
resolving it for τ

τopt =
1√
N

√

√

√

√

√

√

ς∗opt
2

2 − ς∗opt
2√

ς∗opt
2+σ∗

ǫ
2
c1,λ

1
2 +

ς∗opt
2

ς∗2+σ∗

ǫ
2 (d

(2)
1,λ − 1) − ς∗opt

2√
ς∗opt

2+σ∗

ǫ
2
c1,λ

. (38)

The optimal learning rate scales with 1/
√
N which is due to the form of the

steady state condition (34) and due to the form of the SAR (30). Figure 3
shows the optimal τ -value for some combinations of noise strengths and
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offspring population sizes λ. As one can see, as long as λ is sufficiently large
in relation to σ∗

ǫ , an optimal choice of τ exists. Therefore, for a constant
σ∗
ǫ , the ES is able to adapt the mutation strength so that it progresses with

maximal speed – provided that the offspring population size is large enough.
Generally, the parameter τopt grows with increasing λ and decreases with
increasing noise.

3.1.2 Evolution under Permanent Noise σǫ Let us now consider the case
of a constant noise strength σǫ. The normalized noise strength defined in
(10) σ∗

ǫ
(g) = σǫN/(cα(r(g))α) gradually increases during the course of the

evolution until no progress is possible anymore and the evolution of the r(g)

comes to a hold (on average).
Three phases can be distinguished. As long as the system is far away

from the optimum, the influence of the normalized noise strength can be
neglected. As a consequence, the steady state formula

ς∗stat = c1,λ(1 −Nτ2) +

√

c21,λ(1 −Nτ2)2 +Nτ2(2d
(2)
1,λ − 1), (39)

obtained in [4], holds. And considering the maximizer ς∗ = c1,λ of the noise-

free progress rate, one gets τ = c1,λ/
√

N [2c21,λ + 1 − 2d
(2)
1,λ] for the optimal

τ -value.
As the ES progresses and the normalized noise strength increases, ς∗ =

c1,λ does not fulfill the steady state condition anymore. The former steady

state is lost. The increasing noise strength σ∗
ǫ
(g) influences the equations

more and more and leads to a continuously changing mutation strength. As a
result, the r-dynamics converges to a stationary state which is characterized
by ϕ∗(ς∗(g), σ∗

ǫ
(g)) = 0.

Recall, there are two qualitatively different zeros of ϕ∗ (16), ς∗1 = 0

(associated ideally with σ∗
ǫ = 2c1,λ) and ς∗2 =

√

4c21,λ − σ∗
ǫ
2. Demanding

stationarity of the ς∗-evolution, i.e., ψ = 0, the latter condition can be used
to determine a stationary mutation strength ς∗∞ and thus the corresponding
noise strength σ∗

ǫ∞. Setting ψ(ς∗∞) = 0, we arrive at

0 =
1

2
+

(ς∗∞)2

(ς∗∞)2 + (σ∗
ǫ∞)2

(d
(2)
1,λ − 1) − c1,λ(ς

∗
∞)2

√

(ς∗∞)2 + (σ∗
ǫ∞)

2

⇒ 0 =
1

2
+ (ς∗∞)2

d
(2)
1,λ − 1 − 2c21,λ

4c21,λ

⇒ ς∗A∞ = 2c1,λ
1

√

2
(

2c21,λ + 1 − d
(2)
1,λ

)

. (40)

This leads to the stationary noise strength

σ∗
ǫ
A
∞

= 2c1,λ

√

1 − 1

2
(

2c21,λ + 1 − d
(2)
1,λ

)
(41)
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and using σ∗
ǫ
(g) = σǫN/(cα(r(g))α) to a residual location error

RA∞ =
α

√

√

√

√

√

σǫN

cα2c1,λ

√

√

√

√

2
(

2c21,λ + 1 − d
(2)
1,λ

)

2
(

2c21,λ + 1 − d
(2)
1,λ

)

− 1
(42)

defined for 2c21,λ + 1 − d
(2)
1,λ > 1/2.

As explained above, the r-evolution is determined by those of the mu-
tation strength and the noise strength. Therefore, the r-evolution will not
be considered further. There are two different pairs of equilibrium points
of the evolution equations (32) and (33). The first with e1 = (0, w)T with
w ∈ R and ideally w = 2c1,λ and the second at e2 = (s2, w2)

T with s2 given
by (40) and w2 by (41). The question arises which of these pairs is locally
stable, i.e., stable w.r.t. small disturbances.

Let us consider a difference equation x(g+1) = f(x(g)). Let y be an
equilibrium or fixed point with y = f(y). The effect of small disturbances
w(g) = y + ∆w(g) can be examined using the Taylor series of f at y and
neglecting the higher order terms [10]. We obtain the new difference equation
∆w(g+1) = Df |x=y∆w(g), where Df |x=y is the Jacobian of f at y. In the
case of a function f : R

N → R
N , f = (f1, . . . , fN )T, it is given as

Df =







∂
∂x1

f1 . . . ∂
∂xN

f1
...

...
∂
∂x1

fN . . . ∂
∂xN

fN






. (43)

The fixed point y is then called asymptotically (locally) stable if limg→∞

∆w(g) = 0. The question, whether y is a stable fixed point can be solved
by determining the eigenvalues of Df |x=y. If an eigenvalue λi exists with
|λi| > 1, then y is unstable [10]. Thus, we have to determine the solutions
of det(Df |x=y − λTE) = 0, where E is the unity matrix.

Considering the evolution equations (32) and (33), we have to compute
the Jacobian matrix at (ς∗∞, σ

∗
ǫ∞)T of

f

(

ς∗

σ∗
ǫ

)

=

(

ς∗
1+ψ(ς∗,σ∗

ǫ )
1−ϕ∗(ς∗,σ∗

ǫ )/N

σ∗
ǫ

1
(1−ϕ∗(ς∗,σ∗

ǫ )/N)α

)

. (44)

In general, it is given by

Df

(

ς∗

σ∗
ǫ

)

=

(

∂
∂ς∗ f1

∂
∂σ∗

ǫ
f1

∂
∂ς∗ f2

∂
∂σ∗

ǫ
f2

)

(45)

with

∂

∂ς∗
f1 =

1 + ψ(ς∗, σ∗
ǫ )

1 − ϕ∗(ς∗, σ∗
ǫ )/N

+ ς∗

(

∂
∂ς∗ψ(ς∗, σ∗

ǫ )

1 − ϕ∗(ς∗, σ∗
ǫ )/N
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+
∂

∂ς∗
ϕ∗(ς∗, σ∗

ǫ )
1 + ψ(ς∗, σ∗

ǫ )

N(1 − ϕ∗(ς∗, σ∗
ǫ )/N)2

)

∂

∂ς∗
f2 = σ∗

ǫ

α ∂
∂ς∗ϕ

∗(ς∗, σ∗
ǫ )

N(1 − ϕ∗(ς∗, σ∗
ǫ )/N)α+1

∂

∂σ∗
ǫ

f1 = ς∗

(

∂
∂σ∗

ǫ
ψ(ς∗, σ∗

ǫ )

1 − ϕ∗(ς∗, σ∗
ǫ )/N

+
∂

∂σ∗
ǫ

ϕ∗(ς∗, σ∗
ǫ )

1 + ψ(ς∗, σ∗
ǫ )

N(1 − ϕ∗(ς∗, σ∗
ǫ )/N)2

)

)

∂

∂σ∗
ǫ

f2 =
1

(1 − ϕ∗(ς∗, σ∗
ǫ )/N)α

+ σ∗
ǫ

α ∂
∂σ∗

ǫ
ϕ∗(ς∗, σ∗

ǫ )

N(1 − ϕ∗(ς∗, σ∗
ǫ )/N)α+1

. (46)

The derivations of the progress rate and the SAR are given by

∂

∂ς∗
ϕ∗(ς∗, σ∗

ǫ ) =
c1,λς

∗

√

ς∗2 + σ∗
ǫ
2

(

2 − ς∗2

ς∗2 + σ∗
ǫ
2

)

− ς∗

∂

∂ς∗
ψ∗(ς∗, σ∗

ǫ ) =
τ2ς∗

√

ς∗2 + σ∗
ǫ
2

(

2(d
(2)
1,λ − 1)

√

ς∗2 + σ∗
ǫ
2
(1 − ς∗2

ς∗2 + σ∗
ǫ
2 )

+
c1,λς

∗2

ς∗2 + σ∗
ǫ
2 − 2c1,λ

)

∂

∂σ∗
ǫ

ϕ∗(ς∗, σ∗
ǫ ) = − c1,λσ

∗
ǫ ς

∗2

√

ς∗2 + σ∗
ǫ
2
3

∂

∂σ∗
ǫ

ψ∗(ς∗, σ∗
ǫ ) =

τ2σ∗
ǫ ς

∗2

√

ς∗2 + σ∗
ǫ
2
3

(

c1,λ − 2
d
(2)
1,λ − 1

√

ς∗2 + σ∗
ǫ
2

)

. (47)

Let us now consider the first equilibrium point e1 = (0, w)T with w ∈ R.
The Jacobian at e1 is easily calculated as

Df =

(

1 + τ2

2 0
0 1

)

(48)

leading to the equation (1+τ2/2−λ1)(1−λ2) = 0 for the eigenvalues. Since
λ1 > 1, a disturbance that affects the mutation strength is intensified and
ς∗(g) grows. Thus, a point with ς∗∞ = 0 is unstable.

The stability of the second equilibrium point can be determined by in-
serting (40) and (41) into the Jacobian. The expression obtained is rather
clumsy, therefore, we provide a numerically obtained plot of the eigenvalues
for α = 2 and a range of λ-values in Fig. 4. As one can see, the larger of
both eigenvalues is less than the critical value of one. Generally, the larger
eigenvalue approaches 1 if τ → 0 and decreases if the learning parameter
increases. This is a reasonable result: If τ = 0, the mutation operator (2)
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Fig. 4 Numerically obtained eigenvalues of the Jacobian for the fixed point e2,
i.e. the mutation strength given by (40) and the noise strength by (41). The search
space dimension was set to N = 100 and additionally α = 2 was chosen.

does not change the mutation strength. That is, the mapping is neither con-
tracting nor expanding. In finite dimensional search spaces and for τ > 0,
one can conclude that the second fixed point, where the mutation strength
is given by (40) and the noise strength by (41), is locally stable – at least
for the sphere. Figure 5 illustrates the behavior of the equilibrium points if
small disturbances occur.

Interestingly, the distance RB∞ = α
√

σǫN/(2cαc1,λ) obtained as an ideal
case for a vanishing mutation strength and for a noise strength σ∗

ǫ∞ = 2c1,λ
does not differ much from (42) (see Fig. 6). If the size of the offspring
population is sufficiently large, the difference is negligible. This means in
turn, any mutation strength between zero and (40) leads to similar residual
location errors.

3.2 Simulations

Due to space limitations and because of its higher practical relevance, we will
focus on the constant noise strength case of Section 3.1.2. We will compare
the predicted stationary mutation strength (40) and the residual location
error (42) with the results of experiments. The quadratic sphere was chosen
as test function in all experiments.

Figure 6 compares the predicted expected r-value at the steady state
with simulations of real ES runs depending on the number of offspring
individuals. As one can see, the predictive quality of (42) is rather good,
however, one observes some randomly appearing small deviations of some
data points from the curve. There is a deeper reason for this behavior which
can be traced back to the ς∗-evolution.

Figure 7 a) presents the long-term ς∗-dynamics of a typical run of an
(1, 100)-ES on a sphere with constant noise strength. After approaching
the vicinity of the steady state (within a few hundred generations) the
initial steady state is lost again. Unlike the prediction of the determin-
istic approximation, the ES is generally not able to regain the predicted
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Fig. 5 Behavior of the evolution equations (30) and (31) close to the fixed points.
As parameters λ = 100, N = 100, τ = 0.1, and α = 2 were chosen. The dashed
lines represent the steady state mutation strength (40) and the noise strength
(41), respectively.

steady state ς∗ (40). Sometimes short nearly stationary phases exist, but
they appear only sporadically. The only observable tendency seems to be
a general preference of small mutation strengths. That is, the predicted
stationary mutation strength (40) cannot be observed after reaching the
vicinity of R∞. However, the resulting effect on the finally observed steady
state r is rather small: Since any mutation strength between zero and (40)
leads to nearly the same residual location error, both estimates (42) and
RB∞ = α

√

σǫN/(2cαc1,λ) serve relatively well as predictors of the final R∞

which can be seen in Fig. 6.

Interestingly, it can be seen in Fig. 7 that the non-existence of a final
stationary state of the mutation strength seems to occur only in the case of
(1, λ)-ES. If intermediate recombinative (µ/µI , λ)-ES are used, the behavior
changes qualitatively: The mutation strength fluctuates very stably around
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Fig. 7 The ς∗-evolution of some typical (µ/µI , 100)-ES runs (N = 100) on the
sphere (α = 2). Shown are the results for τ = 0.01 (topmost curve), τ = 0.1, and
τ = 0.9 (lowest curve). The duration of the initial steady state for ς∗(g) depends on
τ and thus on the convergence velocity of the r-variable towards the final steady
state.

a stationary value. We will discuss this interesting phenomenon in the next
section.
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3.3 On the Erratic Behavior of the (1, λ)-ES and a Possible Remedy

In order to discuss the steady state behavior of the ES, we should recall
that the ES is operating in the high-noise regime. After having reached
the vicinity of R∞, the noise with strength σǫ = const. is so large that
it totally overshadows the actual fitness information. Thus, the selection
process becomes nearly random, i.e., the ς∗-evolution is basically driven by
random samples from a log-normal distribution with parameter τ . Under
this condition, the probability of an in- or decrease of the mutation strength
equals 1/2

Pr
(

ς∗(g+1) ≤ ς∗(g)
)

=

∫ ς∗(g)

0

e−
(ln(ς∗/ς∗(g)))2

2τ2

τς∗
√

2π
dς∗

=

∫ 0

−∞

e−
t2

2τ2

τ
√

2π
dt = Φ0,τ2(0) =

1

2
. (49)

Put it another way, the ς∗-evolution of the (1, λ)-σSA-ES performs a biased
random walk: It probabilistically accepts any ς∗-decrease, however, it pun-
ishes large ς∗ values due to its selective disadvantage. As a result, the (1, λ)-
σSA-ES has a slight tendency towards smaller mutation strengths. This is
a clear disadvantage of the standard version of (1, λ)-σSA-ES. A possible
remedy would be to increase the probability of ς∗-increases slightly. We will
come back to this idea below.

The question arises why recombinative strategies exhibit a qualitatively
different behavior. For sake of simplicity, we consider the case of an infi-
nite number of parents. Without loss of generality, let ς∗(g) = 1. Since the
mutation strengths Yi of the µ parents are independently identically dis-
tributed random variables with mean m = exp(τ2/2) and variance s2 =
exp(τ2)[exp(τ2) − 1], the sum 1/µ

∑µ
i=1 Yi converges to a normally dis-

tributed random variable S ∼ N (m, s2/µ). If µ is sufficiently large, the
probability that the mutation strength decreases can be estimated using
the cdf of the normal distribution. The probability of 1/µ

∑µ
i=1 Yi ≤ 1 be-

comes

Pr

(

1

µ

µ
∑

i=1

Yi ≤ 1

)

→ Φ

(

√
µ

1 − e
τ2

2

√

eτ2(eτ2 − 1)

)

(50)

which is smaller than 1/2 if τ > 0. Actually, this preference for ς∗-increases
can also be shown for the smallest parental population size µ = 2. There-
fore, an intermediate recombinative strategy possesses a natural tendency
to provide more ς∗-increases than decreases.

As to the (1, λ)-ES, this suggests the introduction of a slight preference
for ς∗-increases in the mutation operator by using a log-normal distribution

p∗σ(ς
∗|ς∗(g)) =

1

ς∗τ
√

2π
exp






−

(

ln(ς∗/ς∗(g)) − β
)2

2τ2






(51)
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Fig. 8 Dynamics of the normalized mutation strength of (1, λ)-ES. Shown are the
results of typical ES runs on the quadratic sphere. The dimension of the search
space is N = 100 and the noise strength is set to σǫ = 1.

with a bias β > 0. The question remains how to choose β. On the one hand,
it has to be sufficiently large to induce a trend towards higher mutation
strengths. One the other hand considering the change σl = σ(g)ζ, the E[ζ] ≈
1 condition still has to be fulfilled.

Figure 8 shows the results of some ES-runs with different choices of β.
The effect of the bias β also depends on the learning parameter. If τ is
relatively high, the ES tends towards smaller values and shows irregular
patterns. An increase of β changes the behavior. Larger learning rates seem
to require larger biases in turn. One the other hand, a learning parameter
that is too small may lead to divergent behavior.
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In order to investigate this behavior theoretically, one can apply the
techniques developed in this paper. In what follows, we will only sketch the
derivations. Introducing β > 0 changes the raw moments of the log-normal

distribution to ς∗k = (ς∗(g))kexp(kβ)exp(k2τ2/2). Thus, if β is chosen suffi-
ciently small, the approximations of the functions in (24) with their Taylor
series are still valid. Therefore, the derivation of the SAR remains the same.
The only change occurs in the last step of the calculation leading to (30),

because the expectations of [(ς∗−ς∗(g))/ς∗(g)]k w.r.t. the log-normal density
with bias β = 0 must be replaced. Finally SAR (30) becomes

ψ(ς∗(g)) =
τ2

2
eβ + (ς∗(g))(At −Ag)e

2βτ2

= τ2eβ
[1

2
+ eβ

(

d
(2)
1,λ − 1

) (ς∗(g))2

(σ∗
ǫ )

2 + (ς∗(g))2

− eβc1,λ(ς
∗(g))2

√

(σ∗
ǫ )

2 + (ς∗(g))2

]

. (52)

We will now determine the stationary points, i.e., the solutions of ϕ∗ = 0 and
ψ = 0 using (16) and (52). The condition ϕ∗ = 0 gives (ς∗(g))2 + (σ∗

ǫ
(g))2 =

4c21,λ. Inserting this into (52) leads to the stationary mutation strength

0 =
1

2
+ eβ

(

d
(2)
1,λ − 1

) ς∗∞
2

σ∗
ǫ
2
∞

+ ς∗∞
2 − eβc1,λς

∗
∞

2

√

σ∗
ǫ
2
∞

+ ς∗∞
2

⇒ 0 =
1

2
+ eβς∗∞

2

(

(

d
(2)
1,λ − 1

)

4c21,λ
− 1

2

)

⇒ ς∗∞ =
2c1,λe

−
β
2

√

2
(

2c21,λ + 1 − d
(2)
1,λ

)

. (53)

Finally, the associated noise strength σ∗
ǫ∞ = 2c1,λ

√

1 − e−β

2
(

2c2
1,λ

+1−d
(2)

1,λ

)

gives an estimate of the residual location error

Rβ∞ = α

√

√

√

√

√

σǫN

2cαc1,λ

√

√

√

√

1

1 − e−β

2
(

2c2
1,λ

+1−d
(2)

1,λ

)

. (54)

As can be shown numerically (see Fig. 9), as long as β is sufficiently small,
the estimates (53) and (54) do not differ significantly from (40) and (42)
obtained for β = 0.

Several caveats must be added here. It seems to be difficult to find a value
of β that on the one hand raises the mutation strength sufficiently and on the
other hand does not lead to a deterioration of the residual location error. In
addition, the estimates only hold for sufficiently small β-values and they do
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not account for the interplay with the learning parameter τ . Considering the
results of the experiments (see Fig. 10), one finds that in the case of larger
β-values, i.e., here already for β ≥ 0.01, the predicted mutation strength
(53) is lower than the experimentally observed one. Also, the ES shows a
significant higher sensitivity w.r.t. choice of β than predicted by (53). These
deviations clearly indicate the limits of the deterministic analysis presented.
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a) residual location error b) mutation strength

Fig. 9 Comparison of the predictions of the stationary mutation strength and the
residual location error. Figure a) shows the prediction obtained by RA

∞
(42) and

Rβ
∞

(54). Figure b) compares the mutation strengths (53) and (40). The dimension
is N = 100, the noise strength σǫ = 1, and α = 2. The gray lines indicate the
results for λ = 100 whereas the black stand for λ = 10.

4 Conclusions

In this paper, we have investigated the self-adaptation of (1, λ)-ES on the
noisy sphere model. The evolution of the distance to the optimal point and
of the mutation strength can be modeled by evolution equations – difference
equations describing the one-generation change.

In general, they can be divided into stochastic and deterministic parts.
The latter denote the expected change leading in the case of the distance to
the progress rate. The mutation strength is generally changed multiplica-
tively. Thus, the so-called self-adaptation response is the expected relative
change of the mutation parameter.

After obtaining equations describing the self-adaptation response and
the progress rate, a deterministic approach was applied and the stochastic
parts of the evolution equations were neglected.

The evolution equations can be used to characterize the steady state
and can be used to analyze the ES’s behavior. It has been shown that the
optimal learning rate scales with 1/

√
N and depends on the normalized

noise strength.
In the case of a constant noise strength σǫ, three different phases of the

evolution have been identified. As long as the system is still far away from



24 Hans-Georg Beyer, Silja Meyer-Nieberg

20 40 60 80 100

1

2

3

4

5

6

7

8

λ

R∞

20 40 60 80 100

0.5

1

1.5

2

2.5

λ

ς∗
∞

a) residual location error, β = 0.001 b) ς∗
∞

, β = 0.001

20 40 60 80 100

1

2

3

4

5

6

7

8

λ

R∞

20 40 60 80 100

0.5

1

1.5

2

2.5

λ

ς∗
∞

c) residual location error, β = 0.005 d) ς∗
∞

, β = 0.005

20 40 60 80 100

1

2

3

4

5

6

7

8

λ

R∞

20 40 60 80 100

0.5

1

1.5

2

2.5

λ

ς∗
∞

e) residual location error, β = 0.01 f) ς∗
∞

, β = 0.01

Fig. 10 Comparison of the predictions of the stationary mutation strength (53)
and the residual location error (54) with the results of experiments on the sphere
function for some choices of β. The search space dimension is N = 100, the noise
was set to σǫ = 1, and τ = 0.1 was chosen as the learning parameter. Each
data point was averaged over 500, 000 generations. The vertical bars indicate the
measured standard deviations.

the optimum, the influence of the noise can be neglected. As a result, the
ES reaches a similar stationary mutation strength as in the noise free case
and the same recommendations for choosing the learning parameter apply.

Approaching the optimum, however, changes the situation. Due to the
increasing normalized noise, the steady state of the mutation strength is
lost. The progress gets smaller and smaller until the ES cannot get any
closer to the optimum on average. The progress rate becomes zero. This can
be used to determine the residual location error. There are two estimates
that can be obtained. The first is associated with a vanishing mutation
strength, the other demands stationarity of the mutation strength evolution
by requiring additionally the SAR to be zero. Interestingly, both are very
similar especially if large offspring population sizes are considered.
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A remarkable observation is that the (1, λ)-ES is not able to stabilize
the mutation strength although the deterministic approach predicts a locally
stable non-zero mutation strength. Instead its behavior resembles a random
walk where the mutation strength fluctuates between the non-zero mutation
strength (40) and zero. A general preference of small values can be observed.
Since any mutation strength between these two extremes leads nearly to the
same residual location error, the estimates that were obtained lead to good
predictions.

The reason for the behavior of (1, λ)-ES cannot be explained by consid-
ering the deterministic approximation. Comparing the behavior of (1, λ)-ES
with that of intermediate (µ/µI , λ)-ES, one finds that the latter show a sec-
ond stationary phase of the mutation strength once the system has reached
the vicinity of the residual localization error. The difference in the behavior
is clearly due to the missing recombination of the mutation strength. If the
normalized mutation strength is considerably smaller than the normalized
noise strength, the ES is nearly unable to choose the offspring on basis
of the actual fitness values. Instead – concerning the mutation strength –
the selection is similar to a random sampling of log-normally distributed
variables.

Using intermediate recombination introduces a probabilistic preference
towards an increase of the mutation strength whereas an (1, λ)-ES de- and
increases the mutation strength with the same probability. Thus, (µ/µI , λ)-
ES will tend to increase a small mutation strength until it is sufficiently
large so that the information obtained by the fitness function is taken into
account. As far as the constant noise scenario is considered this “bias” can
be regarded as a desirable property of intermediate recombination.

The (1, λ)-ES on the sphere model has a slight bias towards a decrease
of the mutation strength. This explains the wandering behavior of the mu-
tation strength. It can be remedied to a certain extend by introducing a
slight bias in the σ mutation operator.

While this paper has provided first insights into the mechanism of self-
adaptation of the ES on the noisy sphere, the investigations are far from
being complete. First, our considerations did not explicitly take into account
the stochasticity of the evolutionary process. Especially in the high noise
regime, the deterministic approximation leads to predictions which are not
fully consonant with the observed dynamics. Therefore, incorporating fluc-
tuations and solving the corresponding Chapman-Kolmogorov-Equations
remains as a task for the future. Additionally, and even with higher prior-
ity, the case of intermediate recombination remains to be considered. As we
have learned in this work, besides the genetic repair effect responsible for
larger progress rates, intermediate recombination introduces an additional
bias which seems to be beneficial in highly noisy environments. Therefore,
the theoretical investigation of these strategies should be considered with
high priority.
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A Derivation of the Density p(Q̃|ς∗, σ∗

ǫ
(g), r(g))

The noise is modeled by a normally distributed random variable ǫ with
zero mean and standard deviation σǫ. The observed fitness Q̃ = F + ǫ has
therefore the pdf

pǫ(Q̃|F ) =
1

σǫ
√

2π
e
−

(Q̃−F )2

2σ2
ǫ (55)

given the actual fitness F . Recall that the actual fitness value is a function
of the distance to the optimum r. Let r = y(g) − ŷ be the distance vector
of the parent. The distance vector R of an offspring is created by adding
a mutation vector z such that R = r + z. To continue, we will decompose
the mutation vector such that z = −xer + h, with −xer pointing in the
direction of the optimum and hTer = 0. Thus, F = f(R) can be expressed
by

F = f
(

r
√

(1 − x/r)2 + ‖h‖2/r2
)

. (56)

This decomposition can be used to derive the pdf of Q̃.
Re-ordering the terms in the square root to 1 + 2[−x/r(1 − x/r) +

‖h‖2/(2r)2)] := 1 + δ enables us to substitute
√

1 + δ with its Taylor series
at δ = 0, leading to

√
1 + δ = 1 + δ/2 + O(δ2). Provided that x ≪ r and

‖h‖2 ≪ r, all higher order terms can be neglected and F (56) be approxi-
mated with

F = f

(

r + r
(

− x

r
+

‖h‖2

2r2

)

)

. (57)

The function f can in turn be substituted by its Taylor series at r, i. e.,

F = f(r) − f ′(r)x+
f ′(r)

2r
‖h‖2 + . . . . (58)

Inserting the approximation for F (58) into the pdf of Q̃ (55) gives

pǫ(Q̃|x, ‖h‖2) =
1

σǫ
√

2π
exp

[

(Q̃− f(r) − f ′(r)x+ f ′(r)
2r ‖h‖2)2

2σ2
ǫ

]

(59)

which still depends on x and u = ‖h‖2. Their densities can be obtained
easily. Since x can be assumed w.l.o.g. to be the first component of the mu-
tation vector, it is simply a normally distributed random variable with zero
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mean and standard deviation ς. The variable u = ‖h‖2 =
∑N
i=2 h

2
i follows

a χ2-distribution which can be modeled using a normal distribution with
mean Nς2 and standard deviation

√
2Nς2 provided that N is sufficiently

large.
Let us now consider Q̃ ≤ q̃. Since Q̃ = f(R) + ǫ, this equals ǫ− f ′(r)x+

f ′(r)/(2r)u ≤ q̃ − f(r) if (58) is taken into account. Since all random vari-
ables on the left hand side are normally distributed, their sum is also nor-

mally distributed with mean f ′(r)N/(2r)ς2 and variance σ2
ǫ +
(

f ′(r)
)2
ς2[1+

N/(2r2)ς2]. Thus, we arrive at

pǫ(Q̃|σ, r) =
1

√

σ2
ǫ +

(

f ′(r)
)2
ς2
(

1 + N
2r2 ς

2
)√

2π

×exp



− (Q̃− f(r) − f ′(r)N
2r ς2)2

2
(

σ2
ǫ +

(

f ′(r)
)2
ς2
(

1 + N
2r2 ς

2
))



 . (60)

If the usual normalizations are introduced, that is, ς∗ = ςN/r, and σ∗
ǫ =

σǫN/(rf
′(r)), the density becomes

pǫ(Q̃|ς∗) =
1

√

σ2
ǫ +

(

f ′(r)
)2
r2

N2 ς∗2
(

1 + ς∗2

2N

)√
2π

×exp



− (Q̃− f(r) − f ′(r)r
2N ς∗2)2

2
(

σ2
ǫ + (f ′(r))2r2

N2 ς∗2
(

1 + ς∗2

2N

)

)



 (61)

and finally

p(Q̃|ς∗, σ∗
ǫ , r) =

1√
2π

1
√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2
(

1 + (ς∗)2

2N

)

×exp









−1

2









Q̃− F (g) − σǫ
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ǫ
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√

σ2
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(

σǫ
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ǫ

)2

ς∗2
(

1 + (ς∗)2

2N

)









2







. (62)

Since we will consider N → ∞ in this paper, the density can be simplified
to

p(Q̃|ς∗, σ∗
ǫ , r) =

1
√

2π
(

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2
)

×exp









−1

2









Q̃− F (g) − σǫ
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ǫ
ς∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2









2







. (63)
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B The SAR

To simplify the notations, let σ∗ := ς∗(g) and σ∗
ǫ := σ∗

ǫ
(g). We will now

consider the first order self-adaptation response function

ψ(σ∗, σ∗
ǫ , r

(g)) = λ

∫ ∞

0

∫ ∞

−∞

(

ς∗ − σ∗

σ∗

)

p∗σ(ς
∗|σ∗)

×exp









−1

2









Q̃− F (g) − σǫ

2σ∗

ǫ
ς∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2









2







× 1

√
2π

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2

dς∗

×
(

1 − P (Q̃|σ∗, σ∗
ǫ , r

(g))
)λ−1

dQ̃ (64)

where the cumulative distribution function P (Q̃|σ∗, r(g)) (see Appendix A)
is given by

P (Q̃|σ∗, σ∗
ǫ
(g), r(g)) =

∫ ∞

0

Φ









Q̃− F (g) − σǫ

2σ∗

ǫ
ς∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2









p∗σ(ς
∗|σ∗) dς∗. (65)

It has been shown in [4] that in the limit case τ → 0, the distribution
function (65) can be approximated by

P (Q̃|σ∗, σ∗
ǫ , r

(g)) = Φ
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ǫ
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√
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(
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ǫ

)2
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(66)

if log-normal or two-point distributions are considered. Provided that τ ≪ 1,
(64) simplifies to

ψ(σ∗, σ∗
ǫ , r

(g)) = λ

∫ ∞
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∫ ∞
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× 1

√
2π

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2

dQ̃dς∗ (67)

At first, we simplify the expression inside the Φ-function. Substituting

−t =
Q̃− F (g) − σǫ

2σ∗

ǫ
σ∗2

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

σ∗2

, (68)

it follows

Q̃ = −t
√

σ2
ǫ +

( σǫ
σ∗
ǫ

)2

σ∗2 + F (g) +
σǫ
2σ∗

ǫ

σ∗2 (69)

leading to
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∫ ∞
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∫ ∞
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√

√
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×Φ(t)λ−1 dtdς∗

:=
λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − σ∗

σ∗

)k

p∗σ(ς
∗|σ∗)

×g(ς∗)h(ς∗, t)Φ(t)λ−1 dtdς∗. (70)

Note, (70) does not depend on r(g). To derive an expression for the SAR, we
need to integrate over ς∗ and t. In general, the terms of (70) still do not allow
for a analytical solution, so further simplifications have to be introduced.

Basically, we will expand the more complicated functions of ς∗ into Tay-
lor series about σ∗. Since we consider the limit case τ → 0, it can be assumed
that |ς∗ − σ∗| ≪ 1 holds with an overwhelming probability. The Taylor se-
ries can soon be broken off without introducing larger errors. Let us first
consider the function

g(ς∗) =

√

√

√

√

√

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

σ∗2

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2

. (71)

The first derivations are given by

∂

∂ς∗
g(ς∗) = −

√

(σ∗
ǫ )

2 + σ∗2

[

(σ∗
ǫ )

2 + ς∗2
]3 ς

∗ (72)
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and

∂2

∂ς∗2 g(ς
∗) =

√

(σ∗
ǫ )

2 + σ∗2

[

(σ∗
ǫ )

2 + ς∗2
]3

[

3ς∗2

(σ∗
ǫ )

2 + ς∗2 − 1

]

. (73)

The Taylor series around σ∗ reads

Tg(ς
∗) = 1 − σ∗

(σ∗
ǫ )

2 + σ∗2

(
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)

+
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ς∗ − σ∗
)2

2
(

(σ∗
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)

×
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3σ∗2
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+ O
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+ O
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. (74)

Let h denote the exponential function

h(ς∗, t) = exp











−1

2









√

√

√

√

√

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

σ∗2

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2

t−
σǫ

2σ∗

ǫ

(

σ∗2 − ς∗2
)

√

σ2
ǫ +

(

σǫ

σ∗

ǫ

)2

ς∗2









2










.

The function h(ς∗, t) will also be expanded into a Taylor series around σ∗.
The calculations are rather lengthy. The use of a computer algebra system
is recommended. One obtains

h(σ∗, t) = e−
t2

2 (75)

∂

∂ς∗
h(σ∗, t) =

e−
t2

2 σ∗

√

(σ∗
ǫ )

2 + σ∗2

[

t2
√

(σ∗
ǫ )

2 + σ∗2
− t

]

(76)

∂2

∂ς∗2h(σ
∗, t) = e−

t2

2

[

−σ∗2

(σ∗
ǫ )

2 + σ∗2

− t
√

(σ∗
ǫ )

2 + σ∗2

[

1 − 4σ∗2

(σ∗
ǫ )

2 + σ∗2

]

+
t2

(σ∗
ǫ )

2 + σ∗2

[

1 + σ∗2 − 4σ∗2

(σ∗
ǫ )

2 + σ∗2

]

− 2σ∗2

√

(σ∗
ǫ )

2 + σ∗2
3 t

3 +
σ∗2

[

(σ∗
ǫ )

2 + σ∗2
]2 t

4

]

. (77)

If we regroup the Taylor series Th(ς
∗, t) into terms of tk, we get

Th(ς
∗, t) = e−

t2

2

{

1 −
(

ς∗ − σ∗
)2

2

σ∗2

(σ∗
ǫ )

2 + σ∗2
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+

[

(

ς∗ − σ∗
)

(

− σ∗

√

(σ∗
ǫ )

2 + σ∗2

)

−
(

ς∗ − σ∗
)2

2

(

1
√

(σ∗
ǫ )

2 + σ∗2

(

1 − 4σ∗2

(σ∗
ǫ )

2 + σ∗2

)

)]

t

+

[

(

ς∗ − σ∗
)

(

σ∗

(σ∗
ǫ )

2 + σ∗2

)

+

(

ς∗ − σ∗
)2

2

(

1 + σ∗2

(σ∗
ǫ )

2 + σ∗2 − 4σ∗2

[

(σ∗
ǫ )

2 + σ∗2
]2

)]

t2

−
(

ς∗ − σ∗
)2

2

[

2σ∗2

√

(σ∗
ǫ )

2 + σ∗2
3

]

t3

+

(

ς∗ − σ∗

)2

2

[

σ∗2

[

(σ∗
ǫ )

2 + σ∗2
]2

]

t4 + . . .

}

:= e−
t2

2

[

h0 + h1t+ h2t
2 + h3t

3 + h4t
4 + . . .

]

. (78)

The neglected terms stem from higher-order terms of the Taylor series and
are of order O([ς∗ −σ∗]3). Substituting functions g and h in (70) with their
Taylor series (74) and (78) leads to the SAR

ψ(σ∗, σ∗
ǫ ) =

λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − σ∗

σ∗

)

p∗σ(ς
∗|σ∗)

×g(ς∗)h(ς∗, t)Φ(t)λ−1 dtdς∗

=

∫ ∞

0

(

ς∗ − σ∗

σ∗

)k
[

1 −Ag
(

ς∗ − σ∗
)

+
Bg
2

(

ς∗ − σ∗
)2
]

p∗σ(ς
∗|σ∗)

× λ√
2π

∫ ∞

−∞

e−
t2

2 Φ(t)λ−1
[

h0 + h1t

+h2t
2 + h3t

3 + h4t
4 + . . .

]

dtdς∗. (79)

Performing the integration over t and taking the definition of the progress

coefficients d
(k)
1,λ, Eq. (26), into account leads to

It =
λ√
2π

∫ ∞

−∞

e−
t2

2 Φ(t)λ−1

×
[

h0 + h1t+ h2t
2 + h3t

3 + h4t
4 + . . .

]

dt

= h0 + h1c1,λ + h2d
(2)
1,λ + h3d

(3)
1,λ + h4d

(4)
1,λ + . . . . (80)
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The coefficient c1,λ := d
(1)
1,λ denotes a special case of the progress coefficients.

The integration over ς∗ remains to be done. To this end, It will be re-ordered
into terms of (ς∗ − σ∗)k

T (ς∗) = 1 +
(

ς∗ − σ∗
)

[

d
(2)
1,λσ

∗

(σ∗
ǫ )

2 + σ∗2 − c1,λσ
∗

√

(σ∗
ǫ )

2 + σ∗2

]

+

(

ς∗ − σ∗
)2

2

[

− σ∗2

(σ∗
ǫ )

2 + σ∗2

− c1,λ
√

(σ∗
ǫ )

2 + σ∗2

(

1 − 4σ∗2

(σ∗
ǫ )

2 + σ∗2

)

+d
(2)
1,λ

(

1 + σ∗2

(σ∗
ǫ )

2 + σ∗2 − 4σ∗2

[

(σ∗
ǫ )

2 + σ∗2
]2

)

−
2d

(3)
1,λσ

∗2

√

(σ∗
ǫ )

2 + σ∗2
3 +

d
(4)
1,λσ

∗2

[

(σ∗
ǫ )

2 + σ∗2
]2

]

+ O
(

(ς∗ − σ∗)3
)

:= 1 +At(ς
∗ − σ∗) +Bt

(ς∗ − σ∗)2

2
+ O

(

(ς∗ − σ∗)3
)

. (81)

Using the Taylor series of g (74) and the result (81) for the integral (79),
the SAR (70) changes to

ψ(σ∗, σ∗
ǫ ) =

λ√
2π

∫ ∞

0

∫ ∞

−∞

(

ς∗ − σ∗

σ∗

)

p∗σ(ς
∗|σ∗)

= ×g(ς∗)h(ς∗, t)Φ(t)λ−1 dtdς∗

=

∫ ∞

0

( ς∗ − σ∗

σ∗

)

(

[

1 −Ag
(

ς∗ − σ∗
)

+
Bg
2

(

ς∗ − σ∗
)2
]

×
[

1 +At
(

ς∗ − σ∗
)

+
Bt
2

(

ς∗ − σ∗
)2
]

+O
(

(ς∗ − σ∗)3
)

)

p∗σ(ς
∗|σ∗) dς∗

=

∫ ∞

0

(

ς∗ − σ∗

σ∗

)

(

1 + (At −Ag)
(

ς∗ − σ∗
)

+
(Bt +Bg

2
−AtAg

)

(

ς∗ − σ∗
)2

+O
(

(ς∗ − σ∗)3
)

)

p∗σ(ς
∗|σ∗) dς∗

=

∫ ∞

0

(

(

ς∗ − σ∗

σ∗

)

+ σ∗(At −Ag)

(

ς∗ − σ∗

σ∗

)2
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+σ∗2
(Bt +Bg

2
−AtAg

)

(

ς∗ − σ∗

σ∗

)3

+O
(

(ς∗ − σ∗)4
)

)

p∗σ(ς
∗|σ∗) dς∗

=

(

ς∗ − σ∗

σ∗

)

+ σ∗(At −Ag)

(

ς∗ − σ∗

σ∗

)2

+σ∗2
(Bt +Bg

2
−AtAg

)

(

ς∗ − σ∗

σ∗

)3

+O
(

(ς∗ − σ∗)4
)

. (82)

In the following, we will concentrate on the log-normal operator. Its ex-

pectation ς∗k is given by ς∗k = σ∗kexp(τ2k2/2). The expected values of
(

ς∗−σ∗

σ∗

)k

can be easily computed (see Appendix C). Using the Taylor ex-

pansion of the resulting exponential function up to the fourth power of τ ,
(82) becomes

ψ(σ∗, σ∗
ǫ ) =

(τ2

2
+
τ4

8

)

+ σ∗(At −Ag)
(

τ2 +
7τ4

4

)

+σ∗2
(Bt +Bg

2
−AtAg

)(9τ4

2

)

+ O
(

τ4
)

. (83)

Considering τ → 0, all terms with τ4 are neglected. The coefficients Ag and
At are given in (74) and (81). The SAR is finally obtained as

ψ(σ∗, σ∗
ǫ ) ≃

τ2

2
+ σ∗(At −Ag)τ

2

= τ2
(1

2
+
(

d
(2)
1,λ − 1

) σ∗2

(σ∗
ǫ )

2 + σ∗2 − c1,λσ
∗2

√

(σ∗
ǫ )

2 + σ∗2

)

. (84)

To derive the first order self-adaptation response function, several simpli-
fications were introduced mainly considering N → ∞ and τ → 0. The
eligibility of this approach depends on the consideration of τ → 0. This
allows the truncation of several Taylor series without introducing too large
errors.

C Calculation of the expected values of
(

ς∗

−ς∗(g)

ς∗(g)

)k

The raw moments of a log-normal distribution with parameter τ are given by

(ς∗)k=(ς∗(g))kexp
(

k2τ2/2
)

. We need to derive expression for
(

ς∗−ς∗(g)

ς∗(g)

)k

.

Since

( ς∗ − ς∗(g)

ς∗(g)

)k

=

k
∑

l=0

(

k

l

)

(ς∗)l(−1)k−l(ς∗(g))−l, (85)
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the expectation is given by

( ς∗ − ς∗(g)

ς∗(g)

)k

= (−1)k
k
∑

l=0

(

k

l

)

(−1)le
l2τ2

2 . (86)

Since e
l2τ2

2 =
∑∞

n=0
l2n

n!2n τ
2n we have to consider

( ς∗ − ς∗(g)

ς∗(g)

)k

= (−1)k
∞
∑

n=0

τ2n

n!2n

k
∑

l=0

(

k

l

)

(−1)ll2n

= (−1)k
∞
∑

n=1

τ2n

n!2n

k
∑

l=0

(

k

l

)

(−1)ll2n. (87)

As can be easily shown, we have
∑k
l=0

(

k
l

)

(−1)ll2n = 0 if k ≥ 2n + 1. The
expected values are therefore given by

( ς∗ − ς∗(g)

ς∗(g)

)k

=



















(−1)k
∑∞

n=k/2
τ2n

n!2n

×∑k
l=0

(

k
l

)

(−1)ll2n if k = 2j

(−1)k
∑∞

n=(k+1)/2
τ2n

n!2n

×∑k
l=0

(

k
l

)

(−1)ll2n if k = 2j + 1

. (88)

As a result, if we consider the limit case of τ → 0 and do therefore break

off the Taylor series after n = n0, the expected values of
(

ς∗−ς∗(g)

ς∗(g)

)k

for

k ≥ 2n0 + 1 do not have to be taken into account.

k = 1 ⇒
( ς∗ − ς∗(g)

ς∗(g)

)1

= −
∞
∑

n=1

τ2n

n!2n

1
∑

l=1

(

1

l

)

(−1)ll2n =

∞
∑

n=1

τ2n

n!2n

=
τ2

2
+
τ4

8
+ . . .

k = 2 ⇒
( ς∗ − ς∗(g)

ς∗(g)

)2

=
∞
∑

n=1

τ2n

n!2n

2
∑

l=1

(

2

l

)

(−1)ll2n

=
∞
∑

n=1

[2n − 21−n]
τ2n

n!
= τ2 +

7τ4

4
+ . . .

k = 3 ⇒
( ς∗ − ς∗(g)

ς∗(g)

)3

= −
∞
∑

n=2

τ2n

n!2n

3
∑

l=1

(

3

l

)

(−1)ll2n

=
∞
∑

n=2

3[32n−1 + 1 − 22n]
τ2n

2nn!
=

9τ4

2
+ . . .

k = 4 ⇒
( ς∗ − ς∗(g)

ς∗(g)

)4

=

∞
∑

n=2

τ2n

n!2n

4
∑

l=1

(

4

l

)

(−1)ll2n
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=

∞
∑

n=2

[(6)22n + 24n − 4(1 + 32n)]
τ2n

2nn!

= 3τ4 + . . .

k = 5 ⇒
( ς∗ − ς∗(g)

ς∗(g)

)5

= −
∞
∑

n=3

τ2n

n!2n

5
∑

l=1

(

5

l

)

(−1)ll2n

=

∞
∑

n=3

[1 + 2(32n) + 52n−1 − 22n+1 − 24n]

×5τ2n

2nn!
=

15τ6

2
+ . . . . (89)

We now show
∑k
l=0

(

k
l

)

(−1)ll2n = 0 if k ≥ 2n + 1. Let m = 2n and start
with m = 0. Splitting the sum into even and uneven terms and considering
Pascal’s triangle

k
∑

l=0

(

k

l

)

(−1)l =

{

∑(k)/2
l=0

(

k
2l

)

−∑k/2−1
l=0

(

k
2l+1

)

if k = 2j
∑(k−1)/2
l=0

(

k
2l

)

−∑(k−1)/2−1
l=0

(

k
2l+1

)

if k = 2j + 1

= 2k−1 − 2k−1 = 0. (90)

Let now m = 1

k
∑

l=0

(

k

l

)

(−1)ll = k

k
∑

l=1

(

k − 1

l − 1

)

(−1)l

= −k
k−1
∑

l=0

(

k − 1

l

)

(−1)l = 0. (91)

Finally form→ m+1, recall that lm is of the form lm =
∑m
j=0 cm,j

∏j−1
i=0 (l−

i) leading to

k
∑

l=0

(

k

l

)

(−1)llm+1 =
k
∑

l=1

(

k

l

)

(−1)l(l −m)lm +m
k
∑

l=1

(

k

l

)

(−1)llm

=

k
∑

l=1

(

k

l

)

(−1)l(l −m)

m
∑

j=0

cm,j

j−1
∏

i=0

(l − i)

=
k
∑

l=1

(

k

l

)

(−1)l
m
∑

j=0

cm,j(l − j)

j−1
∏

i=0

(l − i)

−
k
∑

l=1

(

k

l

)

(−1)l
m
∑

j=0

cm,j(m− j)

j−1
∏

i=0

(l − i)

=
m
∑

j=0

cm,j

j
∏

i=0

(k − i)
k
∑

l=j+1

(−1)l
(

k − j − 1

l − j − 1

)
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−
m
∑

j=0

cm,j(m− j)

j−1
∏

i=0

(k − i)

×
k
∑

l=j

(−1)l
(

k − j

l − j

)

= 0. (92)

D Solutions of x3 − ax2 − bx + c = 0

The solutions of the polynomial are given by

x1 =
a

3

+
3
√

2(a2 + 3b)

3
3
√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2

+
1

3 3
√

2

× 3

√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2

x2 =
a

3
+

1 + i
√

3

3 3
√

4

× −a2 − 3b
3
√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2

−1 − i
√

3

6 3
√

2

× 3

√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2

x3 =
a

3
+

1 − i
√

3

3 3
√

4

× −a2 − 3b
3
√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2

−1 + i
√

3

6 3
√

2

× 3

√

2a3 + 9ab− 27c+ 3
√

3
√

27c2 − 18abc− 4a3c− 4b3 − a2b2.

(93)

In the cases considered here, the positive real solution of the equation is
given by x1. Let us first give the parameters in the case of the zero of the
SAR characterized by

0 = ς∗6 −
(2d

(2)
1,λ − 1)2 − 4c21,λσ

∗
ǫ
2

4c21,λ
ς∗4
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−σ∗
ǫ
2 2d

(2)
1,λ − 1

2c21,λ
ς∗2 − σ∗

ǫ
4

4c21,λ
. (94)

Here, we have a = [(2d
(2)
1,λ−1)2−4c21,λσ

∗
ǫ
2]/[4c21,λ], b = σ∗

ǫ
2(2d

(2)
1,λ−1)/(2c21,λ),

and c = −σ∗
ǫ
4/(2c21,λ).

The maximum point ς∗max 6= 0 of the progress rate has to fulfill

1 =
2c1,λ

√

ς∗2 + σ∗
ǫ
2
− c1,λς

∗2

√

ς∗2 + σ∗
ǫ
2
3

⇒
√

ς∗2 + σ∗
ǫ
2
3

= c1,λ(ς
∗2 + 2σ∗

ǫ
2) (95)

leading to a = c21,λ − 3σ∗
ǫ
2, b = 4c21,λσ

∗
ǫ
2 − 3σ∗

ǫ
4, and c = σ∗

ǫ
6 − 4c21,λσ

∗
ǫ
4.
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