
Self Adaptation of Mutation Rates in a Steady
State Genetic Algorithm

1: Abstract
This paper investigates the use of genetically encoded

mutation rates within a “steady state” genetic algorithm in
order to provide a self-adapting mutation mechanism for
incremental evolution.

One of the outcomes of this work will be a reduction in the
number of parameters required to be set by the operator, thus
facilitating the transfer of evolutionary computing techniques
into an industrial setting.

The NK family of landscapes is used to provide a variety
of different problems with known statistical features in order
to examine the effects of changing various parameters on the
performance of the search. A number of policies are consid-
ered for the replacement of members of the population with
newly created individuals and recombination of material
between parents, and a number of methods of encoding for
mutation rate are investigated.

Empirical comparisons (using the “best-of current-popula-
tion” metric) over a range of test problems show that a genetic
algorithm incorporating the best “flavour” of the adaptive
mutation operator outperformed the same algorithm when
using any one of a variety of “standard” fixed mutation rates
suggested by other authors.

2: Introduction
Mutation has long been regarded as a vital ingredient in

evolutionary algorithms, and some paradigms e.g. Evolution-
ary Strategies [Rechenberg 1973], [Schwefel 1981] use it as
their principal search mechanism. Within the field of Genetic
Algorithms (GA’s) [Holland 1975] there has been much work,
both practical e.g. [Schaffer et al. 1989] and theoretical e.g.
[Spears 1992] on the relative merits of mutation as a search
mechanism. Much of the work has been concerned with find-
ing suitable values for the rate of mutation to apply as a global
constant during the search. There is, however, an increasing
body of evidence, both empirical e.g. [Fogarty 1989] for
learning control rules, and theoretical e.g. [Bäck 1992] that
the optimal rate of mutation is not only different for every
problem encoding but will vary with evolutionary time
according to the state of the search and the nature of the land-
scape being searched.

This issue has been tackled successfully within Evolution-
ary Strategies by encoding the mutation step applied within
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the representation of each solution. This approach also means
that the mutation rate is now governed by a distributed rather
than a global rule (see [Hoffmeister & Bäck, 1991] for a good
overview of the issues tackled and approaches taken). These
ideas have been applied to a generational GA by adding a fur-
ther 20 bits to the problem genotype, which were used to
encode for the mutation rate [Bäck 1991]. The results showed
that in a generational setting the mechanism proved competi-
tive with a genetic algorithm using a fixed (optimal) mutation
rate provided that a high selection pressure was maintained
(this is referred to as “extinctive” selection).

In this paper an investigation is made of the issues con-
fronted when this paradigm is implemented within the setting
of a “steady state” genetic algorithm [Whitley & Kauth1988]
where the methods used in Evolutionary Strategies for manag-
ing the population are not suitable. The class of landscapes
chosen to investigate the behaviour of the algorithm is the
well-studied NK family of landscapes which provide a tuna-
ble set of landscapes with increasing numbers of optima and
decreasing fitness correlations as K is increased. The reader is
referred to [Kauffman 1993] for a full description. Since these
landscapes are randomly created, the fitness of the global opti-
mum of each landscape is not known, and so the measure cho-
sen to study the performance of the algorithm in various
flavours is the current best in a population averaged over a
number of runs (each with a different landscape).

3: Implementation Details
The steady state genetic algorithm is different to the gener-

ational models used in the work discussed above in that there
is typically a single new member inserted to the population at
any one time, which according to the standard nomenclature
would correspond to a (µ+1) strategy. However it has been
shown empirically (and theoretically for certain simple prob-
lems [Schwefel 1981]) that there is an optimal “acceptance”
ratio of approximately 1:5. i.e. one individual should be incor-
porated into the population for every five created. This can be
explained by considering that although repeated mutation of a
single individual corresponds to a form of local search, which
can be shown to enhance the performance of Genetic Algo-
rithms e.g. [Bull & Fogarty 1994], there is a trade off between
this local search and global search (either via recombination
or simply by considering other members of the population)



which will affect both the convergence velocity and (possibly)
the quality of the final solution.

The approach taken is to create a single individual via
recombination from two parents and then “clone” that individ-
ual a number of times. Each of these offspring then undergoes
the mutation process and is evaluated before one is selected
according to some policy and inserted into the population
according to the deletion strategy used. Effectively this inner
loop can be thought of as a (1, CLUTCHSIZE) generational
GA.

The algorithm used can be summarised as follows.
WHILE (evals_done < MAX_EVALS)

{ Select two parents
Create a new individual via recombination.
Repeat (CLUTCHSIZE) times

{ Copy new individual
Read genetically encoded Mutation rate
Use this value to mutate the mut.encoding
Get new mutation rate.
Apply mutation problem encoding.
Evaluate this individual }

Select one individual from the offspring.
Replace one individual from the population
evals_done = evals_done + CLUTCHSIZE }

It can be seen from the above that the following parame-
ters will affect the algorithm:

1) Deletion Policy: Two standard policies are frequently
used with steady state GA’s, namely Delete-Worst and Delete-
Oldest. In addition there is the issue of whether a member of
the population should be replaced only if it is less fit than the
offspring which would replace it (Conditional Replacement)
or always (Unconditional Replacement).

2) Selection Policy: Parental selection is Fitness Propor-
tionate (“Roulette Wheel”). Selection of an individual from
the “clutch” to enter the population can use the same mecha-
nism or be deterministic, i.e. the best offspring is always
picked.

3) Recombination Policy: What type of crossover is used,
and should the mutation encoding be subject to crossover?

4) Mutation Encoding: The genotypically encoded muta-
tion rate must be decoded and then scaled onto the range 0-
100%. Three types of encoding are used, namely binary, gray
and exponential. In the latter (suggested by [Kaneko & Ike-
gami 1992]) the mutation encoding is first binary decoded to
give a value j and then the mutation rate µ is given by µj =
maxposs * 2(j - jmax) (where jmax is the largest number
allowed by the binary encoding).

5) Clutchsize: i.e. the number of offspring cloned in a sin-
gle iteration of the algorithm.This will affect the balance
between local search and global search in the early stages of
the run before the population has converged.

In order to test the effects of the above factors a set of

“standard” values had to be adopted which could be kept con-
stant during the testing of other factors. Since empirically
derived “standards” (e.g. the 1/5 rule) existed for some of the
factors, and previous work in a “Generational setting” [Bäck
1991] had shown that the selection pressure was probably the
most important factor, experiments were run in the order
shown above, with the optimal (or most robust) combination
of parameters from one set of experiments being carried
through to the next set.

All experiments were run using a population of 100 on 16
bit NK (i.e. N = 16) landscapes with values of K of 0, 4, 8 and
15 to represent a spread of landscapes with increasing com-
plexity from a simple uni-modal hill (K = 0) to a randomly
coupled landscape (K = 15). All experiments were averaged
over fifty runs, each run being on a different landscape. For
equivalence the same fifty seeds and landscapes were used
with each of the alternatives under comparison.

4: Results
4.1: Selection/Deletion policies

A variety of policies for determining the insertion of new
individuals into the population were tested, using one point
crossover (at 70% probability), 16 bit gray encoding for the
mutation rates and a “clutch” size of 5.

The results of the more successful methods are shown in
Figure 1. Not shown are the curves for the combination of a
delete-oldest policy with unconditional acceptance of an off-
spring, which showed very erratic behaviour and failed to
reach optima on any but the simplest problem (K = 0). The
following observations can be drawn from the plots:

1The combination of “delete-worst” with deterministic
offspring selection (WC-B / WU-Best) performs well on the
simpler problems, and there seems to be little effect whether
the offspring is accepted conditionally or unconditionally.

2 The combination of “delete-worst” with stochastic off-
spring selection (WC-FP) performs less well than the deter-
ministic selection policy. The use of stochastic offspring
selection will reduce the selection pressure in the algorithm,
which explains the relatively slower growth curves, but
noticeably the runs also converge to lower optima as the com-
plexity of the search space increases (i.e. as K increases),
which suggest that although the rate of approaching optima is
decreased this is not counter balanced by an increase in diver-
sity which might have lead to a reduced likelihood of becom-
ing trapped in sub-optima.

3The use of a “delete-oldest” policy is only successful if
the insertion of an individual is conditional on its being better
than the member it replaces. Even with the conditional accept-
ance policy, the overall selection pressure in the algorithm is
much less than for the “delete-worst” policy, and this is
reflected in reduced growth curves. The relaxation of the
selection pressure also highlights the difference between the
stochastic (OC-FP) and deterministic (OC-Best) selection pol-
icies, with the former showing very slow improvements,



although the searches do not appear to “stagnate” on the more
complex problems as the algorithms with “delete-worst” poli-
cies do.

4 Overall the best policy would appear to be the replace-
ment of the oldest of the population with the fittest of the off-
spring, conditional on the latter being the fitter of the two (OC-
B). This policy shows growth curves comparable with the
other policies on the simpler problems (K = 0,4,8), but on the
most complex problem it significantly outperforms all others,
reaching much higher optima.

4.2: Recombination Policy
The “standard” algorithm above, (with OC-Best replace-

ment) was run with a variety of recombination policies,
namely every combination of 1point/uniform crossover,
applied at 70% / 100% to the whole chromosome / the genome
only. The results obtained showed very slight differences in
performance compared to the large differences found above,
and no significant pattern emerged, suggesting that either the
algorithm is highly tolerant of crossover mechanism, or that
the nature of the selection pressure is such that the algorithm
proceeds via mutation - based search. In order to test this a set
of experiments was run using no crossover. These results
showed that for the simple problems the growth curves were
very similar, but for the more complex curves e.g K = 8, the
performance was significantly degraded if crossover was not
employed, indicating that although the type of crossover used
is not important, it does have a value in enabling the popula-
tion to reach different optima.

3.3. Mutation Encoding
Of the three different encodings investigated, the Gray cod-

ing and Binary encoding showed similar performance, both
substantially outperforming the “exponential” encoding. The
use of 16 bits as opposed to 8 for the representation provides a
slight advantage which is more noticeable on the more rugged
landscapes, but the difference is small - for K = 15, the mean
maximum values reached are shown in the table below

Also tested was the importance of the maximum value
which the mutation rate can take once decoded.

Overall there is a trade-off between retaining the ability to
learn large mutation rates which enable faster search on less
correlated landscapes, and the time taken to “learn” to low
mutation rates on smooth landscapes. However these effects
are small compared to those of selection and “clutchsize”.

.It would appear from these results that if nothing is known
about the landscape to which the mechanism is to be applied,
initialising the population at random over the range of 0-25%
represents a good compromise.

3.4. Clutchsize
A full investigation of the effects of changing the number

of individuals cloned from which one is selected for inclusion
into the population appeared to offer strong empirical evidence

Mutation
Encoding

Mean fitness

8 Bit 16 Bit

Binary 767.82 770.08

Gray 767.74 770.92

Exp. 735.54 736.26
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Figure 1: Replacement policy comparison



for the 1:5 “acceptance ratio” referred to above. A single land-
scape and fifty populations were created for each value of K.
Experiments were run using “clutch” sizes of 1,2 5 and 10,
and on all but the simple problem (where all variants reached
the same mean optimum) the mean fitness achieved at the end
of the run by the variant with 5 offspring was higher than the
mean fitness reached by all others. These results are summa-
rised in the table below. Starred values are significantly differ-

ent using Student’s t-test at the 5% confidence level
Although the results in this format do not show a signifi-

cant difference between the performance as the amount of
local search is doubled from 5 to 10 offspring, this can be
demonstrated by considering the time taken to achieve the
optimum for the simple problem, K = 0.

This was a mean of 5800 evaluations with 5 offspring and
9900 with 10. This near doubling of time to converge is also
reflected in the time taken to reach lesser values such as 99%
of the maximum (1300 evaluations vs. 2000) and 95% of the
optimum (200 evaluations vs. 400)

4: Comparison with Standard Fixed Mutation
Rates

The optimal set of parameters and policies identified
above were tested against a steady state genetic algorithm
using a “normal” mutation mechanism with the same recom-
bination parameters, population size and parent selection
mechanism as the adaptive algorithm. The replacement policy
was also to delete the oldest member of the population if its
fitness was worse than that of the new individual. Again given
that the value of the global optimum was unknown (and dif-
ferent) for every problem, the algorithms were measured in
terms of the performance of the best of the current population,
tested every 200 evaluations. A variety of authors have
attempted to determine fixed values for the mutation rate
which will yield good results across a range of problems. A
number of these common settings were tested including pm =
0.001 [DeJong 1975], pm = 0.01 [Grefenstette 1986], pm = 1/l
(where l is the length of the string) and pm = 1.75 / (l * pop-
size) (this comes from [Bäck 1991] as an empirical formula-
tion of a result from [Schaffer et al. 1989]). These
experiments were run 50 times and the mean results are
shown in Figure 2. Also shown in this figure are the results for

the adaptive mutation mechanism with a single offspring for
comparison.

As can be seen, for the simplest problem the added over-
head of learning mutation rates slows down the rate of evolu-
tion to the optimum, however the mean best value attained is
the same for this algorithm as for the fixed rate flavours. Com-
parison of the curves for the adaptive mechanism with a single
offspring suggests that most of the degradation in speed is due
to the overheads of the local search, possibly because only a
single new offspring is inserted into the population from each
clutch

As the amount of epistasis in the problem increases the
adaptive policy shows a markedly improved ability to con-
tinue to improve the fitness of the population compared with
the fixed rate versions. This is true for both sizes of offspring
although the single offspring is much slower to learn as noted
above. The fixed mutation rate algorithms frequently show
curves which either stagnate or show very slow improve-
ments, suggesting that on most if not all of the 50 runs the
search had become trapped in a local optimum. In contrast the
adaptive mutation algorithms always shows continuing
improvement. One reason for this may be that whether the
encoding is binary or Gray coded there is always a chance that
mutation of a single bit in a low mutation rate encoding will
create an individual with a high mutation rate, providing a
means of escaping local optima.

After noting that the version of the algorithm with 5 off-
spring is noticably better on the more complex problems than
the single offspring version, further experiments were run in
order to determine whether the improvements noted above
were the result of adaptive mutation rates or simply the result
of adding a form of local search to the GA via the use of a
“clutch” of offspring. These experiments used the same suite
of fixed mutation rates as above, but this time in exactly the
same algorithm as the adaptive mechanism. The results are
shown in Figure 3.

As can be seen the fixed rate algorithms are all improved
by the addition of local search in that the problem of prema-
ture convergence to a local optimum is ameliorated (to some
extent), and the setting of pm = 1/ l is more competitive, but
the adaptive mechanism still discovers higher optima in both
of the more complex landscape families (K = 8 and K = 15).

In order to test the statistical significance of these results,
as further set of experiments were run. For each value of K in
the range (4 8 15) a landscape and fifty random populations
were created. Each algorithm in turn was allowed to run for
20,000 evaluations, and the best value in the final population
noted. The adaptive algorithm had the highest mean value on
all three landscapes.

Using these fifty samples of each algorithm’s perform-
ance, Student’s t-test at the 5% confidence level was used to
test the significance of the differences in performance. This
showed that the adaptive algorithm was significantly better
than all of the fixed algorithms other than that using pm = 1.75

Number of
Offspring

Mean Maximum Fitness

K = 4 K = 8 K = 15

1 791.48* 755.28* 751.18*

2 796.12* 754.84* 763.14

5 798.42 763.6 764.8

10 799.26 767.2 766.68



/ (l * popsize) on the landscapes with K =8 and K = 15. ForK
= 4, the results with pm = 1/l were also not significantly worse
than those of the adaptive algorithm.

These results confirm the trends shown in figure 3
although the order of the fixed algorithms changes slightly.
One explanation for this could be that the significance tests
were conducted using a single landscape for each value of K
which may have been more suited to certain values of pm. In
fact it could well be argued that the changes in relative for-
tunes of the fixed rate algorithms demonstrates the “brittle-
ness” of the approach of using fixed rate operators which are
unable to adapt to their environment.

Finally it should be noted that testing binary vs. gray cod-
ing for the adaptive mutation rate showed that with K = 15,
the gray coding was significantly better using this metric.

5: Conclusions
A mechanism has been presented which allows the incor-

poration within the “Steady State” genetic algorithm of a Self-
Adaptive mutation rate. This mechanism also incorporates
some local search as a by-product of the means whereby it
“learns” good mutation rates. The nature of the mechanism is
such that it provides a form of distributed control for the
genetic algorithm whereby individuals in different parts of the
search space may have different mutation rates.

Experiments with a variety of parameters have shown that
the mechanism is robust in the face of major changes such as
choice of crossover, mutation rate encoding, etc. The most
sensitive choice appears to be that of which member of the
population to replace, and with which offspring. The combi-
nation of a “Delete-Worst” policy with selection of the fittest
offspring works well on all but the most complex problems,
but overall the best performance came from using a “Delete-
oldest” policy which also has the advantage of being compu-
tationally simpler as it does not require the re-ordering of the
population after every insertion. Further investigation is
needed on the sensitivity of the mechanism to the parental
selection technique.

On the most complex, uncorrelated landscapes, gray cod-
ing worked significantly better than binary coding. This is not
surprising as Gray coding provides a much smoother land-
scape for the system to learn mutation rates, and as the land-
scapes become less correlated, so mutation becomes more
important to the search process.

This reason is why differences in performance generally
become more noticable at higher values of K.

The comparisons with GA’s using fixed rate operators with
or without local learning showed two results. Firstly, for all
non-trivial problems the inclusion of a form of local search
can improve performance. Secondly the addition of the adap-
tive mutation mechanism significantly improves the perform-
ance of the Genetic Algorithm, as well as making it more
suitable for application in industry via the removal of a
parameter from the set of decisions faced by the operator.
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Figure 2: Comparison of Adaptive GA with “Standard GA’s”.

Figure 3: Comparison of Adaptive GA with “Hybrid” GA’s.
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