
Self-Adaptation Techniques for Complex Service-oriented Systems

Schahram Dustdar, Karl M. Goeschka, Hong-Linh Truong, and Uwe Zdun

Distributed Systems Group

Vienna University of Technology

Vienna, Austria

{dustdar,goeschka,truong,zdun}@infosys.tuwien.ac.at

Abstract—Complex service-oriented systems comprise hu-
mans and software services spanning multiple organizations.
These systems are highly dynamic, because services, processes,
and teams are not only diverse but they also constantly evolve.
Therefore, these systems introduce a variety of challenges
on how to adapt services, processes, and teams to changing
situations. We contribute with our approach to address these
challenges, comprising model-driven compliance support, run-
time interaction mining, run-time management of require-
ments, and an explicit control-loop architecture. We conclude
with remaining issues the software and service engineering
research community should address.

Keywords-self-adaptation; service-oriented architectures;
interaction-mining; model-driven compliance;

I. INTRODUCTION

By utilizing service computing principles, heterogeneous

applications and services provided by diverse organizations

can be composed into loosely coupled service-oriented sys-

tems. In many such systems, humans are involved, either act-

ing as participants of the systems or utilizing the components

of the systems. Such systems are highly dynamic and they do

evolve. Services, processes, humans, and teams of humans

often have to adapt to constantly changing requirements and

environments. Therefore, such systems have high demands

with regard to designing and adapting services and processes

to changing situations.

In this paper, we consider complex service-oriented sys-

tems comprising humans and software services and spanning

multiple organizations. Examples are networked enterprise

collaboration, e-science, and disaster management systems.

Humans not only use services but can also provide ser-

vices (so-called human-provided services, HPS). Software

services and humans consequently establish resources which

can be accessed through well-defined interfaces. Various

types of processes can be built by utilizing such resources

while processes are constructed to fulfill requirements from

humans and teams of humans. Many research questions

arise, such as (i) how to ensure compliance to changing

requirements, (ii) how to manage changing requirements for

achieving system assurance, and (iii) how to adapt resources

suitably to the evolution of processes and teams.

Clearly, we cannot solely rely on modeling or runtime

techniques. Rather, our approach aims at combining both,

modeling and runtime management and adaptation, to build

such evolvable systems. First, model-driven development

(MDD) techniques are adopted and adapted to support

the modeling and design of compliant Web services and

processes at design time. Next, a Web service information

model is developed to provide a holistic view of require-

ments associated with services. Service and process models

and requirements from the MDD process are captured and

stored in the service information model. This information

model also includes runtime service information which is

captured using runtime monitoring of services. All design-

time and runtime requirements are managed by a Web

Service Evolution Management Framework (SEMF). Then,

based on service requirements managed by SEMF, explicit

feedback-control techniques are used to perform adaptation

strategies.

This paper analyzes research challenges for complex

service-oriented systems and describes our solution approach

from various research and industry projects. We discuss

our experiences and achievements so far as well as open

challenges that need to be addressed. The rest of this paper

is organized as follows: Section II discusses the related

work. Section III presents our generic application scenario.

The most important research challenges are presented in

Section IV. We describe our our techniques for self-adaptive,

complex, and service-oriented systems in Section V. Section

VI summarizes the paper and outlines future work.

II. RELATED WORK

Self-adaptation techniques in the context of service-

oriented systems have been addressed in many research

efforts. While we focus only on a few representative ap-

proaches in this section, further related work is mentioned

in the following sections, where appropriate.

Autonomic service-oriented systems are typically realized

using monitoring information to adapt service composition

and execution. For example, Reich et al. [1] present an au-

tonomic peer-to-peer system of stateful service containers to

self-adapt the service execution. Their adaptation techniques

rely on performance information, SLA management, and

service migration. This approach is related to our work in

using control loops and Web services information. However,

they typically rely only on performance measures and Web



service interface information. They do not support the full

life-cycle of developing complex, service-oriented systems.

MDD can be applied to model services and to associate

information required for service adaptation and configura-

tion with the services model. For example, Gronmo et al.

present a model-driven methodology for specifying QoS

requirements together with service models [2]. They utilize

UML activity models and a UML profile for QoS modeling,

and, based on QoS requirements, QoS-optimized service

compositions can be built. Whereas our work on MDD

focuses on the whole SOA stack and lifecycle, this work

focuses only on one specific SOA requirement, the QoS

specification.

Self-adaptation techniques can also be supported by com-

bining design-time and runtime approaches to address the

full life-cycle of developing and executing adaptive, service-

oriented systems. Only a few frameworks support adaptive,

service-oriented systems at both design-time and runtime.

For example, the PAWS [3] addresses the adaptation of

BPEL processes. Runtime adaptation relies on information

specified at the design time and using QoS metrics. PAWS,

however, does not apply MDD techniques and focuses only

on BPEL processes.

Furthermore, the above-mentioned approaches do not aim

at supporting complex service-oriented systems in which

humans, services, and teams constitute the system. Their

either consider only software services or processes and

workflows. Furthermore, compared to our framework, they

lack a rich support of capturing and managing design-

time and runtime information associated with services in

an integrated way.

Part of our research on service management requirements

is presented in [4]. While existing approaches such as such

as WSOL [5], SLA [6], [7], [8], and licensing information

[9], address just a small fraction of the requirements for

complex service-oriented systems, we have developed a

model that integrates various requirements from different

perspectives. Our work is based on the assumption that there

are diverse types of information that originate from various

sources and different perspectives on Web services [10].

III. APPLICATION SCENARIOS AND MODEL

We consider complex service-oriented systems comprising

humans and software services, and spanning multiple organi-

zations. Such systems are required for many purposes, such

as enterprise collaborations within networked enterprises, e-

science research between different research labs, and crisis

management. Those systems are complex and dynamic, thus

services and processes need to be prepared for change and

evolution.

Figure 1 depicts a sketch of our model of a complex SOA-

based system which includes resources as services, dynamic

processes, and teams. Teams conduct their collaborative

works by using services and processes. Processes, which can

Figure 1. The complex service-oriented system including resources as
services, dynamic processes, and teams

be well-defined or established on demand, include several

activities which are mapped to resources. Resources can be

humans or software services. They can be monitored and

accessed via well-defined interfaces. In case of software

services, a resource is a Web service, while a human as a re-

source is integrated into the system by different means, such

as human-provided services (HPS) [11] or BPEL4People.

Resources, typically, do not belong to a single organization,

rather they span various organizations.

In such systems, services, processes, and teams change

and evolve continuously. A number of research challenges

that arose from analyzing such systems are described in the

following section.

IV. RESEARCH CHALLENGES

This section presents the major research challenges ad-

dressed in our approach.

1) Challenge 1: Compliance in self-adaptive SOAs.:

Compliance to specific design rules is an omnipresent con-

cern for software design in general, even more so for self-

adaptive systems, as it is important to check that all design

rules still hold, once an adaptation has been performed. In

many cases, the compliance can be checked statically, but

some technical concerns, such as performance, dependabil-

ity, and security concerns, can only be reasonably checked

at runtime.

The traditional way to enforce compliance by informally

documenting the design rules in requirements specifications

and hard-coding these requirements in the source code has

a number of serious disadvantages: (i) Some of the design

rules are not even encoded at all and are just documented

as practices that must be obeyed either during software



development or the use of the software. (ii) The encoded

design rules are scattered throughout the source code and

there is no traceability between requirements, models, and

code. Clearly, this impairs changeability and maintainability,

as well as usability: Users cannot simply specify changes to

design rules, but have to resort to programmers.

Even more important for adaptive systems is that there

is no integrated support for specifying or validating design

rules which affect both the design time and runtime of

a system. Consequently, we propose to use the model-

driven software development paradigm to enable developers

to rapidly develop and then stably evolve and maintain a

customized self-adaptive framework that complies to the

design rules that were specified for it. This infrastructure

is described in detail in Section V-A.

2) Challenge 2: Integrated run-time management of di-

verse and heterogeneous requirements.: As discussed in

[12], services are bound to diverse types of requirements,

and it is a challenge to identify and monitor requirements

and their changes for self-adaptive systems in an integrated

and evolvable way. As indicated in [10], service-related

requirements can originate from different perspectives, such

as service providers, service developers, service customers,

and hosting environments. These requirements include infor-

mation for the design, such as pre- and post-condition and

service interface, but also for runtime (QoS), user feedback,

and licensing.

In order to support explicit runtime management of re-

quirements for complex service-oriented systems, we need

to capture and manage the above-mentioned information.

In SOA-based environments, there is no standard or well-

agreed way yet to gather Web services-related information

which reflects the requirements. Although there are different

ways of capturing Web services-related information such as

WSOL [5], SLA [6], [7], [8], and licensing information [9],

they support only a fraction of the possible requirements.

The two main challenges for the management of require-

ments are (i) how to integrate diverse types of requirements

(modeled by different models), and (ii) how to manage these

requirements in an evolvable fashion during the whole life-

time of services and processes. We discuss our approach’s

contribution to address this challenge in Section V-B.

3) Challenge 3: Runtime SOA Assurance.: Assurance for

complex service-oriented systems is far from trivial [12] as

it includes monitoring the service status, checking it against

evolving requirements and adapting the service accordingly.

While existing research has been focused on defining and

detecting metrics and patterns for services and processes

[13], [14], [15], the runtime monitoring of the interaction

between people and software services has not yet been

well addressed. We show our contribution to address this

challenge in Section V-C

4) Challenge 4: Making the Control Loop Explicit.:

To address changes of context, system, or users’ needs, as

well as imprecise or contradictory requirements or emerging

behavior, many researchers have suggested to borrow theo-

ries from control engineering and apply them to software-

intensive systems. These so-called autonomous or self-

adaptive systems have in common the need to address

change and uncertainty during run-time, so they generally

move into run-time what previously had to be performed

during design-time. Four key activities are described in [16]:

Collect, analyze, decide, and act. In this paper the focus is

on the collection (which requires monitoring) and on the

action (which requires a way to re-compose, re-order, or

re-configure running software).

In particular we support the argument that the con-

trol loop, although implicitly contained in many existing

software systems, has to be made explicit and become a

first-class citizen of architecture, design, and infrastructure

support [17]. Moreover, we argue that one explicit loop is not

enough: Real systems need different nested loops in order

to address different ways and paces of change. Section V-D

details our solution approach to address this challenge.

V. TECHNIQUES FOR SELF-ADAPTIVE SYSTEMS

A. Model-driven Approach to Support Compliant Self-

adaptive SOAs

Our framework uses the model-driven approach [18] to

compose business processes and services – as a foundational

layer, and has the main task to express and validate all

design rules related to these processes and services. De-

sign rules can be based on the process specifications, the

service specifications, collaboration specifications, human

task specifications, information/data specifications, etc., and

all these specifications can use multiple specification types

(such as BPEL process definitions or UML activity diagrams

for the process specifications). We express each concern in

its own model. This, however, imposes the challenge how

to integrate the various models.

In our current prototype implemented using the openAr-

chitectureWare (oAW) generator [19], we have solved this

problem using a view-based approach (this is explained in

detail in [20]). In our work, a view is a representation of a

process from the perspective of related concerns. The view

is specified using an adequate view model. Each view model

is a (semi)-formalized representation of a particular business

process concern. Therefore, the view model specifies entities

and their relationships that can appear in the corresponding

view.

In particular, there is a Core View from which each view

model is derived. The main task of the Core View is to pro-

vide integration points for the various view models defined

as part of our view-based modeling framework (VbMF),

as well as extension points for enabling the extension with

view for other concerns or more specific view models, such

as those for specific technologies. Example foundational

view models that we have derived from the Core specify



the following Views: Collaboration, Information, Control-

Flow, etc. In addition, to these central concerns, many other

concerns can be defined. We focus in these additional views

for instances on models expressing compliance concerns,

such as compliance to business rules and regulations. That

is, we define view models for compliance concerns such

as service composition policies, service deployment poli-

cies, service sequencing or ordering policies, information

sharing/exchange policies, security policies, QoS policies,

business policies, jurisdictional policies, preference rules,

intellectual property and licenses. Each of these view models

is either extending the core model or one of the other view

models.

In addition, we define also a second level of extension

models from these foundational models: For specific tech-

nologies, such as BPEL and WSDL we provide extension

models, which add details to the general models that are

required to depict the specifics of these technologies. Hence,

we can use the distinction of Core View, generic views, and

extension views to depict different abstraction levels, such

as business-level concerns and technical concerns.

The separation of view abstraction levels helps in en-

hancing the adaptability of the process-driven SOA models.

For instance, the domain experts analyze and modify the

abstract views to meet the requirements of adaptations.

Then, these modifications can be transformed into code

in executable languages. The technical experts work with

platform-specific views to define necessary configurations

such that the generated code can be deployed into the

corresponding runtime (i.e., process engines and Web service

frameworks). An overview of these concepts can be found

in Figure 2.

From the view models, the SOA runtime is generated.

Model validator components are used to validate the com-

pliance concerns that can be checked statically. Support

for eventing and validating compliance to design rules at

runtime can be generated into the SOA runtime, too. To

make this work, it necessarily needs to be supported by

a runtime infrastructure components: Online and/or offline

monitoring components must be introduced to monitor the

events and trigger the validation of compliance to design

rules upon certain events happening in the SOA. Also, it

makes sense to introduce tools such as a dashboard to allow

the human users to observe the system and react on problems

and critical situations.

B. Explicit Runtime Management of Requirements

To manage explicit requirements during runtime, we have

developed an integrated information model that is capable of

capturing requirements described in heterogeneous represen-

tations. We have further developed a management framework

called SEMF (Service Evolution Management Framework)

[4] that monitors the captured requirements and provides

them to any party interested.

Figure 3 describes our Web Service Information Model

that links to various other models, each of which describes

a different type of requirements. Currently, the model can as-

sociate with SLA, QoS, Pre-conditions, License, Interaction

Patterns, Post-condition, Interface, Taxonomy, Folksonomy,

and Documentation.

Web

Service

Information 

Model Interaction 

Patterns

Taxonomy 

QoS

Post

Conditions
Interface

Pre

Conditions

Folk-sonomy

SLA

Data-sourceprovides information

Docu-

metation
Licencse

Figure 3. Data sources of the Web service information model[4]

The key feature of our model is that it can link to any

type of requirements, described in any format, without any

enforcement on data representation, e.g., in XML or an

ontology. A type of requirements can further be described

as metadata or as an external source of information. By

utilizing this rich source of requirements information at

runtime, services can publish their monitoring requirements

as well as check whether their requirements are fulfilled.

Services can also perform adaptation based on runtime

manageable requirements.

C. Runtime Interaction Mining

To support the assurance for complex service-oriented

systems, we have developed an online interaction mining

framework which is capable of analyzing various metrics and

interaction patterns [21]. We studied and categorized three

kinds of interactions: service-to-service, human-to-service

and human-to-human. For each kind of interaction, various

metrics and interaction patterns are defined, providing a

foundation for runtime analysis of the interactions. The

metrics and interaction patterns are defined at three levels:

individual (for individual human or service), group (a team

or a set of services), and collaboration (all available services

and humans within a collaboration).

In our prototype, several pattern specifications and tem-

plates are defined to specify the metrics and interaction

patterns. Using event monitoring, we provided support for

online monitoring of the metrics and interaction patterns.

The metrics and interaction patterns detected can be queried



Core View

Meta-Model

instance-of

Schematic 
Recurring Code

BPEL/WSDL 
Collaboration 

View

extends

View Instance

generated from

M2

M1

M0

BPEL/WSDL
Information 

View

BPEL/WSDL
Control-Flow 

View

BPEL/WSDL
Transaction 

View

BPEL4People/
WS-HumanTask

Human View

Hibernate/WSDL 
Data View

Compliance 
Concern 

Extension View

Collaboration 
View

Information 
View

Control-Flow 
View

Transaction 
View

Human 
View

Data 
View

Compliance 
Concern 

View

extends extends extends extends extends extends

extends extends
extendsextendsextends extends extends

instance-of instance-of instance-of
instance-of

instance-of instance-of instance-of

Figure 2. View-based modeling framework

at runtime. Hence, we provide valuable input for runtime

compliance checking and system assurances. We also sup-

port the customized analysis of the monitored system events.

D. Nested control loop approach

In this section, we describe two nested loops, as an

example to address the challenges of supporting explicit and

configurable control loops.

1) Adaptive coupling: First, large and dynamic systems

can benefit from short-term adaptivity to react to observed,

or act upon expected (temporary) changes of the context/en-

vironment (e.g., resource variability or failure scenarios) or

users’ needs (e.g., day/night setting). As this kind of adaptiv-

ity should be provided without explicit user intervention, it is

also termed autonomous behavior or self-properties, and of-

ten involves monitoring, diagnosis (analysis, interpretation),

and reconfiguration (repair) [22].

One of the main reasons, why many approaches fell

short in the past, lies in the major focus on the system’s

components (e.g., by focusing on recompilation, reconfigu-

ration, and redeployment of components), while complexity

theory [23] on the other hand clearly shows that the overall

properties of large and complex software system are largely

determined by the internal structure and interaction of its

parts and less by the function of its individual components.

SOA already address this perception by putting a strong

focus on structure completely separated from the implemen-

tation of individual constituents. Even more so, the overall

system properties are determined not only by the structure

but also by the strength of coupling of its relationships. Thus

the inner control loop has to adaptively control the structure

and strength of coupling between the system’s constituents

as the most promising approach to influence/control its

overall properties and behavior.

To provide the desirable degree of adaptivity, competing

properties of the overall system, such as dependability and

security, have to be explicitly balanced according to the

respective situation (context, failure scenarios, current user

needs). This balancing should flexibly be performed via the

interaction of infrastructure and application (or even the

end user). It should be supported by an explicit control of

adaptive coupling mechanisms between software services,

for instance, through run-time selection and reconfiguration

of dependability protocols, such as consistency of replication

protocols.

2) Run-time software engineering: As not all possible

evolution requirements can be foreseen for long-running

software, long-term evolution has to be supported to regulate

the emerging behavior of large and dynamic systems, again,

with respect to the evolution of requirements and user

expectations, but also in response to long-term changes in

the context.

This will be performed by changing the system’s design

during run-time, which in turn requires run-time process-

able requirements and design-views in the form of con-

straints [24], models, or (partial) architectural configurations.



The idea here is to move aspects of the system into the run-

time that previously have been modified only at design time.

These run-time accessible and processable requirements

have to be managed as shown in Section V-B. The vi-

sion here is a convergence of software development tools

with middleware (including traditional dependability, fault

tolerance, and adaptivity concepts), to provide for run-

time software development tools to support the envisaged

adaptivity. Yet, in turn, this introduces new challenges for

engineering, requiring methods for run-time verification and

testing, for example.

Figure 4 shows the outer control loop: The properties of

the system are measured (“software sensors”) and compared

to the users’ current needs. During a negotiation process, it

is decided which properties are traded against each other

according to the current system state, context, and users’

needs. Finally, the system is changed via adjustment of

run-time managed requirements, in order to achieve the

properties as intended. Short-term adaptivity and long-term

evolution can accordingly be differentiated as a combination

of two nested control loops, where the inner loop represents

adaptivity and the outer loop (as depicted in Figure 4)

represents software evolution.

Regardless of the pace of change, both approaches address

the imprecise, emerging, and ever-changing nature of large

and long-running software systems and introduce iterative

steps of adaptation and evolution during run-time. Both

approaches are needed in practice and will need different

solutions, but have in common the need for reconfigura-

tion of structure and coupling, for service monitoring and

run-time interaction mining, and for the explicit run-time

management of requirements.

VI. CONCLUSION

This paper presented research challenges in software and

service engineering with regard to building self-adaptation

techniques for complex service-oriented systems. The pre-

sented contributions are based on the assumption that in-

creasingly complex service-oriented systems are built utiliz-

ing humans as well as software services as an ensemble.

The trend to build self-adaptation capabilities into software

requires a model-driven approach to support compliance,

explicit run-time management of requirements, run-time

interaction mining, and an explicit and potentially nested

control loop as architectural model.

Certainly, the presented contributions do not solve all

problems at hand but can be viewed as one next step to

address the manifold challenges the software and service

engineering community faces in the area of self-adaptive

systems.

ACKNOWLEDGEMENTS

This research is partially supported by the EU-funded

projects inContext, DeDiSys, COMPAS, COIN, and S-

CUBE. We thank Christoph Dorn, Lorenz Froihofer, Ta’id

Holmes, Daniel Schall, Huy Tran, and Martin Treiber for

their contribution to the development of the techniques

mentioned in this paper.

REFERENCES

[1] C. Reich, K. Bubendorfer, and R. Buyya, “An autonomic
peer-to-peer architecture for hosting stateful web services,”
in CCGRID ’08: Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid
(CCGRID). Washington, DC, USA: IEEE Computer Society,
2008, pp. 250–257.

[2] R. Grønmo and M. C. Jaeger, “Model-driven methodology for
building qos-optimised web service compositions,” in DAIS,
ser. Lecture Notes in Computer Science, L. Kutvonen and
N. Alonistioti, Eds., vol. 3543. Springer, 2005, pp. 68–82.

[3] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Ple-
bani, “Paws: A framework for executing adaptive web-service
processes,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[4] M. Treiber, H.-L. Truong, and S. Dustdar, “SEMF - Service
Evolution Management Framework,” in 34th EUROMICRO
Conference on Software Engineering andAdvanced Appli-
cations (SEAA), Special session on Quality and Service-
Oriented Applications. IEEE Computer Society, 2008.

[5] V. Tosic, K. Patel, and B. Pagurek, “Wsol - web service
offerings language,” in CAiSE ’02/ WES ’02: Revised Papers
from the International Workshop on Web Services, E-Business,
and the Semantic Web. London, UK: Springer-Verlag, 2002,
pp. 57–67.

[6] A. Keller and H. Ludwig, “The wsla framework: Specifying
and monitoring service level agreements for web services,” J.
Network Syst. Manage., vol. 11, no. 1, 2003.

[7] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and
W. Ma, “Management applications of the web service
offerings language (wsol),” Advanced Information Systems
Engineering, pp. 1029–1029, 2003. [Online]. Available:
http://www.springerlink.com/content/8bjl2jgucqb0dprr

[8] D. D. Lamanna, J. Skene, and W. Emmerich, “Slang: A
language for defining service level agreements,” in FTDCS
’03: Proceedings of the The Ninth IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS’03).
Washington, DC, USA: IEEE Computer Society, 2003, p. 100.

[9] G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella,
“Service license composition and compatibility analysis,”
in ICSOC, ser. Lecture Notes in Computer Science, B. J.
Krämer, K.-J. Lin, and P. Narasimhan, Eds., vol. 4749.
Springer, 2007, pp. 257–269.

[10] G. Canfora and M. D. Penta, “Testing services and service-
centric systems: Challenges and opportunities,” IT Profes-
sional, vol. 8, no. 2, pp. 10–17, 2006.

[11] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human
and software services in web-scale collaborations,” IEEE
Internet Computing, vol. 12, no. 3, pp. 62–68, 2008.



����������

�����������

	��
	���

	��
���������
�

��
���	�����

�����������


�
���

���
�
���


����	�������
�����
��
��
��

��	

�������	�
�
���

���
��������������������


	��
	���	�
�


����
��������

���������



��������

�
������

 �

��
�
��	���

	�������	������

���������������������
�

�����
����

�����
��� 

Figure 4. Control loop of dependable evolution through run-time model-/constraint-change.

[12] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and
R. de Lemos, “08031 – software engineering for self-adaptive
systems: A research road map,” in Software Engineering for
Self-Adaptive Systems, ser. Dagstuhl Seminar Proceedings,
B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, Eds., vol. 08031. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2008.

[13] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Ser-
vice interaction patterns,” in Business Process Management,
W. M. P. van der Aalst, B. Benatallah, F. Casati, and
F. Curbera, Eds., vol. 3649, 2005, pp. 302–318.

[14] W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther,
R. S. Mans, A. K. A. de Medeiros, A. Rozinat, V. Rubin,
M. Song, H. M. W. E. Verbeek, and A. J. M. M. Weijters,
“Prom 4.0: Comprehensive support for eal process analysis,”
in ICATPN, ser. Lecture Notes in Computer Science, J. Kleijn
and A. Yakovlev, Eds., vol. 4546. Springer, 2007, pp. 484–
494.

[15] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros, “Workflow patterns,” Distributed
and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[16] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli, “A survey of autonomic communications,”
ACM Trans. Auton. Adapt. Syst., vol. 1, no. 2, pp. 223–259,
2006.

[17] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control
in adaptive systems,” in ULSSIS ’08: Proceedings of the
2nd international workshop on Ultra-large-scale software-
intensive systems. New York, NY, USA: ACM, 2008, pp.
23–26.

[18] T. Stahl and M. Voelter, Model-Driven Software Development.
J. Wiley and Sons Ltd., 2006.

[19] oAW, “openArchitectureWare,” http://
www.openarchitectureware.org/, 2008.

[20] H. Tran, U. Zdun, and S. Dustdar, “View-based and model-
driven approach for reducing the development complexity in
process-driven SOA,” in BPSC, ser. LNI, W. Abramowicz and
L. A. Maciaszek, Eds., vol. 116. GI, 2007, pp. 105–124.

[21] H. L. Truong and S. Dustdar, “Online interaction analysis
framework for ad-hoc collaborative processes in soa-based
environments,” T. Petri Nets and Other Models of Concur-
rency, vol. 2, pp. 260–277, 2009.

[22] D. Garlan and B. Schmerl, “Model-based adaptation for self-
healing systems,” in WOSS ’02: Proceedings of the first
workshop on Self-healing systems. New York, NY, USA:
ACM Press, 2002, pp. 27–32.

[23] S. M. Manson, “Simplifying complexity: a review of com-
plexity theory,” Geoforum, vol. 32, no. 3, pp. 405–414, 2001.

[24] L. Froihofer, K. M. Goeschka, and J. Osrael, “Middleware
support for adaptive dependability,” in Middleware 2007—
Proc. of the ACM/IFIP/USENIX 8th International Middleware
Conference. Springer, 2007, pp. 308–327.


