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Abstract

In this paper, we introduce a new self-adaptive algorithm for segmenting human skin regions in color images. Skin
detection and segmentation is an active research topic, and many solutions have been proposed so far, especially
concerning skin tone modeling in various color spaces. Such models are used for pixel-based classification, but its
accuracy is limited due to high variance and low specificity of human skin color. In many works, skin model adaptation
and spatial analysis were reported to improve the final segmentation outcome; however, little attention has been
paid so far to the possibilities of combining these two improvement directions. Our contribution lies in learning a local
skin color model on the fly, which is subsequently applied to the image to determine the seeds for the spatial analysis.
Furthermore, we also take advantage of textural features for computing local propagation costs that are used in the
distance transform. The results of an extensive experimental study confirmed that the new method is highly
competitive, especially for extracting the hand regions in color images.
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1 Introduction
Detection and segmentation of human skin regions [1,2]
in color images is an active research topic, which receives
considerable attention from image and signal processing
community. Skin detection consists in taking a binary

decision whether an image, its region, or a particular

pixel presents the human skin. In case of the positive

answer, skin segmentation is applied to determine the

exact boundaries of the detected skin regions. Applica-

tions of skin detection and segmentation are of a wide

range and significance, and they include gesture recog-

nition for human-computer interaction [3], objectionable
content filtering [4], content-based image retrieval [5],
medical imaging [6,7], and image coding [8].

1.1 Overview of skin detection and segmentation

techniques

The existing methods are based on the premise that the

skin color can be effectively modeled in various color

spaces, which allows segmenting the skin regions in

color images. Using skin color models, every pixel may

be classified to the skin or non-skin class based on its
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position in the color space, independently from its neigh-

bors. Alternatively, the probability that each pixel presents

the skin can be determined, which transforms a color

image into a skin probability map (PS). The map may be

binarized using a certain acceptance threshold in order

to extract the skin regions. This problem has been widely

studied, and a large number of skin color models were

introduced over the years. The main difference between

them lies in their learning and generalization capabilities,

but given a sufficiently large training set, their effective-

ness is similar, and it is limited due to high variance and

low specificity of human skin color [2]. Basically, skin and

non-skin pixels overlap in color spaces; hence, they can-

not be separated relying exclusively on their color. The

pixel-wise classification may be improved by incorporat-

ing information extracted from the texture, as well as by

spatial analysis of the pixels that have high skin probability.

Also, global skin color models may be adapted to a par-

ticular scene or an individual who appears in the image,

which improves the classification accuracy, providing that

the adaptation is correct.

1.2 Contribution

In the work reported here, we introduce a new method

that consists in combining three important elements,
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namely, (i) skin color model adaptation, (ii) spatial anal-

ysis, and (iii) exploitation of the textural features. First,

a skin probability map is obtained from the input image

using a global model. The map is processed to extract skin

samples, used to create a local skin color model. Subse-

quently, the local model is applied to locate the seeds for

spatial analysis, which determines the final boundaries of

the skin regions. We perform the spatial analysis using the

discriminative skin-presence features (DSPF), introduced

in our earlier work [9], that rely on textural properties of

skin probability maps.

There have been a handful of methods proposed [10,11]

that combinemodel adaptivity with spatial analysis. These

techniques require a skin sample for the adaptation, deliv-

ered by a face detector, and they do not exploit textural

features. Naturally, these methods cannot perform the

adaptation when a face is not visible or if a face detector

fails.

In the proposed approach, the model is adapted based

on analysis of a skin probability map, without using

any additional information sources. The reported exper-

imental results clearly show that our algorithm achieves

better segmentation scores than alternative state-of-the-

art methods. Furthermore, the new method significantly

increases the detection precision, which is particularly

important when a hand region is to be segmented for the

hand pose estimation purposes.

1.3 Paper structure

The paper is organized as follows. In Section 2, the exist-

ing approaches to skin detection and segmentation are

outlined, with particular attention given to the adaptation

techniques. Spatial analysis methods used in our study are

described in Section 3, and the proposed skin detection

algorithm is presented in details in Section 4. Experi-

mental validation is reported and discussed in Section 5.

Section 6 concludes our study. Furthermore, the symbols

used in the paper are explained in Table 1.

2 Related literature
Skin detection and segmentation has been widely studied

over the last 20 years, and a lot of advancements emerged

so far. A large number of contributions address the prob-

lem of skin color modeling in various color spaces, and

they are well summarized in a survey published in 2007 by

Kakumanu et al. [1].

Skin color can be modeled using a set of rules and

thresholds defined in color spaces based on some obser-

vations [12-15]. Alternatively, given a representative train-

ing set, skin detection rules can be determined using

machine learning. Jones and Rehg [16] proposed to train

the Bayesian classifier in the RGB space. This requires a

training set containing pixels assigned to the skin (Cs) and

non-skin (Cns) classes. Color histograms are built for these

Table 1 The symbols used in the paper

Symbol Description

General symbols

I Input color image

Cs Skin class

Cns Non-skin class

P Probability

PS Skin probability map

H Histogram

� Covariance matrix

B A set of blobs

Nn×n(x) A set of pixels in the n × n kernel around the
pixel x

δfp False-positive rate

δmin Minimal error

Symbols related with
the DT-based spatial analysis
(including the DSPF space)

Ŵ Total path cost

γ Overall local cost

γp Destination-probability local cost component

γ� Local cost component related with the
difference in the propagation domain

T P
α High-probability seed extraction

threshold

T P
β Lower-bound propagation threshold

T P
0 Costless propagation threshold

TŴ Total path cost threshold

D Distance in the DSPF space

ν Feature vector in the DSPF space

r Reference pixel

Pr Reference skin probability (determined
in the neighborhood of r)

Symbols related

with the self-adaptive

seeds method

S0 Initial skin seeds

SE Expanded skin seeds

SA Adapted (final) skin seeds

tseed Dynamic initial binarization threshold

Rseed Ratio of pixels used to determine tseed

T P
A Binarization threshold used to extract SA

from the local skinprobability map

T P
seed Minimum acceptable value of tseed

T P
r Threshold for the reference skin probability

(in the dilated PS)

γ E
� Local difference costs (γ�) used for building

the expanded

γ F
� Local difference costs (γ�) used for final

‘skinness’ propagation
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two classes: P(v|Cs) and P(v|Cns), where v is the color, and
the probability that a given pixel presents the skin (i.e.,

P(Cs|v)) is determined from the Bayes rule. This is a robust

approach, provided that a sufficiently large training set is

available. In the majority of cases, it is beneficial to reduce

the number of histogram bins per channel to increase

the generalization capacity [2,17]. Analysis of color his-

tograms has also been applied to solve more general tasks

concerning extracting image regions [18].

Greenspan et al. [19] used Gaussian mixture models

(GMMs) for learning human skin color in the normalized

rg chromaticity space. GMMs offer better generalization

capabilities than the Bayesian classifier, and they were

later exploited in many approaches to skin color mod-

eling [20,21]. In our recent survey [2], we demonstrated

that GMMs outperform the Bayesian classifier for small

training sets; however, for larger sets, the latter was more

accurate.

Among other machine learning techniques applied to

skin detection, it is worth to mention artificial neural net-

works (ANNs) [22,23], support vector machines [24,25],

and random forests [10]. In general, the methods based on

machine learning achieve higher classification accuracy

than the rule-based approaches.

Skin detection and segmentation plays also an impor-

tant role in dermoscopy for skin lesions segmentation

and analysis. This is an active research topic of med-

ical imaging, and many methods have been developed

over time [6]. Segmentation of skin lesions may be

performed using a number of techniques, which take

advantage of the skin homogeneity in the domain of

color, luminance or texture, and they include statisti-

cal region merging [26,27], dynamic programming [28],

and wavelet-based texture analysis [7]. The segmenta-

tion phase is followed by shape analysis to investigate

the lesion type [29]. In general, these methods are spe-

cialized to deal with the dermoscopy images. It is there-

fore assumed that a given image presents human skin

with some lesions that should be segmented from the

background.

2.1 Adaptive skin color modeling

Accuracy of skin detection using color models is limited

due to the overlapping between skin and non-skin pix-

els, which may be observed in various color spaces. If

the model is created so that it omits the overlapping val-

ues, then many skin pixels are classified as background,

decreasing the recall. On the other hand, if the model

includes these overlapping values, then the number of

false-positives (FP) is increased. It is worth noting that the

overlap may be reduced, if a skin model is adapted to indi-

viduals who appear in a presented scene. Given constant

lighting conditions and a limited number of individuals in

the image, skin color specificity is definitely higher than in

the general case, and overall, the skin regions can be better

separated from the background.

Basically, the existing adaptation methods either require

a skin sample, from which the local skin model is learned

on the fly, or they use some features extracted from an

input image to fit the model. In the latter case, sev-

eral approaches exploit ANNs for the adaptation. Lee

et al. [4] used a multilayer perceptron to select the most

appropriate skin model from a collection of models, each

of which was trained earlier for specific lighting condi-

tions. ANNs were also used to tune the parameters of

the Gaussian intended to model the skin color, given an

image histogram [30], as well as to determine an optimal

acceptance threshold [31] for each skin probability map

obtained using a global model. Sun [32] applied a global

skin model to extract skin pixels, whose distribution was

subsequently modeled using GMM. Final skin probabil-

ity was determined relying on that locally learned GMM

combined with the global model. In this way, those pixels

preliminarily classified as skin, which do not form clusters

in the color space, are reclassified as background.

Skin models can also be effectively adapted given a

skin sample, acquired based on tracking skin-like objects

in video sequences [33], or relying on face [11,34] or

hand [3] detection. For such a skin sample, a local model

can be generated using the Bayesian classifier [35,36] or

GMMs [37] as they do not require time-consuming train-

ing. However, although the local model allows detecting

the skin with high precision, the recall is often low. To

address this problem, the local model is combined with

the global one. The final probability Pf (Cs|v) can be com-

puted as a weighted mean of the probabilities obtained

using the local Pl(Cs|v) and global Pg(Cs|v) models.

Another approach adopted here consists in using a

global skin color locus, which imposes a restriction on the

adaptation [37,38]. It is also possible to combine the local

and global models by incorporating them into a spatial

analysis framework, which is given more attention later in

this section.

Alternatively, a skin sample may be used to opti-

mize the value of the acceptance thresholds [3,39].

Recently, Yogarajah et al. [40] proposed to use skin sam-

ples for adapting the acceptance thresholds in a single-

dimensional error signal space (ESS) [14]. ESS is obtained

from RGB, and skin color can be modeled here using a

single Gaussian.

The Yogarajah’s method consists in analyzing the dis-

tribution of the error signal in a facial region to deter-

mine the decision thresholds from the obtained Gaussian

parameters.

2.2 Textural and spatial analysis

Although the color-based skin models can be adapted to a

given image, which reduces the false-positives, Zhu et al.
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[41] demonstrated that even for perfect adaptation, in

most situations, the skin cannot be completely separated

from the background in a given color space. The discrimi-

native power of skin classifiers may be increased, when the

pixels neighborhood is taken into account, for example,

exploiting textural features extracted from an input image.

Wang et al. [42] proposed to enhance the segmenta-

tion in the RGB and YCgCb color spaces by analyzing

various textural features, extracted using the gray-level

co-occurrence matrix. Moreover, simple textural features

were used to boost the performance of a number of skin

detection techniques and classifiers, including the ANNs

[43], non-parametric density estimation of skin and non-

skin classes [44], GMMs [45], and many more [46-49]. In

our earlier work [50], we found it beneficial to extract tex-

tural features from skin probability maps rather than from

the input images.

Skin detection accuracy may also be increased using the

region-growth operations, because skin pixels are usually

grouped, whereas the non-skin false-positives are scat-

tered in the spatial domain. Here, conventional image

segmentation algorithms can be applied, for example,

those based on combined Markov random fields [51], or

probabilistic bottom-up aggregation [52]. It may be ben-

eficial to extract and utilize some textural features, for

example, using wavelets [7,53]. Although this is a time-

consuming technique, it has been demonstrated that it

may be successfully optimized for DSP processors [54].

Overall, a number of specific methods devoted to seg-

menting skin regions have been developed. Kruppa et al.

[5] proposed to verify the potential skin regions assuming

that they should have an elliptical shape. In other works, a

threshold hysteresis in skin probability maps was applied

to accept those regions, which are connected with the

seeds of high skin probability [36,55]. Furthermore, spatial

properties of skin regions were analyzed using conditional

random fields [56] and cellular automata [49]. Del Solar

and Verschae proposed to analyze skin probability maps

using controlled diffusion [57]. At first, the diffusion seeds

are formed by those pixels, whose skin probability exceeds

the seed threshold (T P
α ). Then, the neighboring pixels are

iteratively adjoined to the skin region, if they meet the

diffusion process criteria, provided that their skin proba-

bility is larger than the lower-bound propagation threshold

(T P
β ).

In our earlier research [58], we introduced an energy-

based technique for skin blobs analysis. The skin regions

are expanded depending on the amount of energy, which

is spread over the image, according to the local skin prob-

ability. Recently, we proposed to use the distance trans-

form (DT) in a combined domain of hue, luminance, and

skin probability [59,60]. Furthermore, we elaborated on

the importance of seeds detection, from which the skin

probability (termed ‘skinness’) is propagated. This method

is exploited in the research reported here, and it is given

more attention in Section 3.

2.3 Hybrid methods

There are relatively few methods that combine the afore-

mentioned improvement strategies, and the research

reported in this paper also falls into this category.

Jiang et al. [61] proposed to take advantage of color, tex-

ture, and space analysis. At first, the skin regions are deter-

mined based on a skin probability map obtained from

color information. Subsequently, the regions are refined

to improve the precision, relying on the textural features

extracted using the Gabor wavelets. Finally, the regions

are grown with the watershed segmentation to exploit the

spatial information.

Combining textural features with spatial analysis was

also the key contribution of our recent work [9]. We intro-

duced the DSPF space, which is exploited to compute the

local costs for DT, instead of using the skin probability

map as in [59]. As we also use the DSPF domain in our

study, this method is given more attention in Section 3.

In our another work [11], we explored how to combine

a local skin color model with the global one using spatial

analysis. We applied the face-based local model to detect

the skin seeds, from which the ‘skinness’ is propagated

using DT to adjoin the skin pixels. A similar approach

was proposed by Khan et al. [62], where the local model

is learned from the facial region. The model is used to

obtain the foreground weights for the graph-cut image

segmentation, and the background weights are obtained

using the global skin color model. A potential drawback

of this method lies in using a generic image segmenta-

tion algorithm, whose parameters are difficult to tune.

Unfortunately, the implementation is not available, and

the paper does not include all the details necessary to

reproduce the results. The method was validated using

thousands of video frames. Although this is a huge data

set, the number of scenes and individuals is quite small,

as the images were extracted from only 25 videos and the

conditions within each single video are uniform. Also, the

authors claim to have used 8,991 images for validation,

while the entire data set contains 10,764 frames, and it is

unclear which images were excluded. Last, but not least,

the method is quite slow, as it requires 1.5 s to process a

small 100× 100 image.

3 Distance transform for spatial analysis
In the research reported here, we adopted the spatial

analysis framework, developed during our earlier study

[59]. The method consists of two general phases, namely,

(i) seeds extraction and (ii) propagation from the seeds

using DT. These phases are described in this section, along

with the texture analysis technique [9], which additionally

improves the results obtained using DT.
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3.1 Propagation seeds

The aim of the seeds extraction is to determine the ini-

tial skin regions, from which the ‘skinness’ is propagated.

The seeds are considered as skin, and neighboring pix-

els are subsequently adjoined to the skin region using DT.

In an ideal case, not only should the seeds contain no

false-positive pixels but also every ground-truth skin blob

(i.e., a region composed of the real skin pixels) should

include at least one detected seed inside. Otherwise, such

a region would not be adjoined to the skin class during the

propagation, increasing the false-negative (FN) rate.

The seeds can be extracted taking advantage of the

observation that if the skin probability map is binarized

using a high-probability threshold, then the precision is

rather high, because usually only true-positive (TP) skin

regions contain pixels with very high skin probability val-

ues. If the skin probability of an individual pixel is over

a high threshold T P
α , then the pixel is added to the seed.

Such an approach was adopted in many spatial analysis

methods [36,55,57].

Recently, we proposed to create an adaptive seed based

on detected facial regions [11]. Using the geometrical fea-

tures extracted from the luminance channel of the input

color image, the facial regions are detected. A local skin

model is learned using a single multivariate Gaussian, and

the model is applied to the input image to obtain a local

skin probability map, which is binarized to determine the

final seeds. Afterwards, the propagation is carried out

using the skin probability map obtained from a global skin

color model.

3.2 ‘Skinness’ propagation

In order to propagate the ‘skinness’ from the seeds, the

shortest routes from the seed to every pixel are deter-

mined at first. This is achieved by minimizing total path

costs from the set of seed pixels to each non-seed pixel in

the image. The total path cost for a pixel x is defined as

Ŵ(x) =
l−1
∑

i=0

γ (pi → pi+1) , (1)

where γ is a local propagation cost between two neigh-

boring pixels, p0 is a pixel that lies at the seed boundary,

pl = x, and l is the total path length. The minimization

is performed using the Dijkstra’s algorithm [63]. In addi-

tion, the threshold T P
β = 0.3 is used as proposed in [57],

which prevents propagating to the regions of very low skin

probability. Furthermore, mainly to decrease the execu-

tion time, the propagation is terminated if the total path

cost exceeds a certain boundary value TŴ .

The route optimization outcome heavily depends on

how the local costs γ are computed. For skin segmenta-

tion, we construct the local cost using two major compo-

nents, namely the difference in the propagation domain

γ� and the destination-probability cost γp. The local cost

from a pixel x to y, i.e., γ (x → y) is obtained as

γ (x → y) = γ� (x, y) ·
[

1 + γp (x → y)
]

, (2)

where

γp (x → y) =

⎧

⎨

⎩

−1 for P(y) > T P
0

1 − P(y) for T P
β < P(y) ≤ T P

0

∞ for P(y) ≤ T P
β

. (3)

P(y) is the skin probability of the pixel y and T P
0 is

the costless propagation threshold (if the skin probability

at pixel y exceeds T P
0 , then the total path cost does not

increase when moving from pixel x to y). The difference

cost γ� was originally defined using hue and luminance

values:

γ� (x, y) = αd ·
(
∣

∣Y (x) − Y (y)
∣

∣ +
∣

∣H(x) − H(y)
∣

∣

)

, (4)

where αd ∈ {1,
√
2} is the penalty for propagation in the

diagonal direction, Y (·) is the pixel luminance, andH(·) is
the hue in the HSV color model, both scaled to the range

from 0 to 255.

The total path cost obtained after the optimization is

inversely proportional to the ‘skinness’; hence, the final

skin probability map is obtained by scaling the costs from

0 (for the maximal cost) to 1 (for a zero cost, i.e., the seed

pixels). The pixels not adjoined during the propagation

process (i.e., those whose total path cost Ŵ is greater than

TŴ) are assigned with zeroes. Finally, the skin regions are

extracted using a fixed threshold in the distance domain.

In the research reported in this paper, we consider

alternative local difference costs (explained below), which

we found effective in various ‘skinness’ propagation

scenarios.

1. Restrictive hue-luminance difference cost:

γ
(HL)
� (x, y) = αd ·max

(
∣

∣Y (x) − Y (y)
∣

∣ ,
∣

∣H(x) − H(y)
∣

∣

)

.

(5)

2. Cost based on a difference in the RGB color space:

γ
(RGB)
� (x, y) = αd ·

(
∣

∣R(x) − R(y)
∣

∣ +
∣

∣G(x) − G(y)
∣

∣ +
∣

∣B(x) − B(y)
∣

∣

)

.

(6)

3. Skin probability difference cost:

γ
(SP)
� (x, y) = αd ·

∣

∣PS(x) − PS(y)
∣

∣ . (7)

3.3 Discriminative skin-presence features domain

For computing the destination-probability cost γp, the

skin probability map obtained with the global skin model

was originally used [59]. However, later, we proposed to

refine the skin probability relying on the textural features

[9] and to use the refined probability for computing the

local cost γp.
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The textural features are incorporated into the DSPF

space, later exploited to refine the skin probability. In

order to obtain the DSPF space, the basic image fea-

tures are first extracted from the skin probability map.

They consist of the following features: (i) the median and

(ii) minimal values, (iii) standard deviation, and (iv) the

difference between the maximum and minimum, com-

puted in three kernels: 5× 5, 9× 9, and 13× 13 pixels.

In addition, the raw skin probability value is appended

to this feature vector, as it is the principal source of the

discriminating information between skin and non-skin

pixels. We considered exploiting more advanced textural

descriptors, for example, local binary patterns [64]; how-

ever, it has not improved the results. The selected features

are aimed at extracting the roughness of the skin probabil-

ity map rather than finding a repeatable pattern, and this

can effectively be done using these simple statistics. Over-

all, every pixel x is transformed into an M-dimensional

basic feature vector ux, where M = 13. Using linear

discriminant analysis, the dimensionality of the basic

image feature space is reduced tom = 2 dimensions in the

DSPF space.

Subsequently, a pixel of maximum skin probability is

found in the skin probability map eroded using a large

(15× 15) kernel; it should be larger than the kernels used

for extracting basic image features. This pixel is termed

the reference pixel r, and the distance between r and every

pixel in the image is computed in the DSPF space:

D(x) =

[

m
∑

i=1

(

ν
(x)
i − ν

(r)
i

)2
]1/2

, (8)

where ν
(x)
i is the ith dimension of the DSPF vector

obtained for the pixel x. This operation converts the

input skin probability map into the DSPF skin map, which

is normalized and used for computing the destination-

probability cost γp.

Figure 1 Flowchart of the proposed skin segmentation process.
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4 Skin segmentation using self-adaptive seeds
In this section, we present the details of the proposed

approach. Compared with our earlier methods, here, our

main contribution lies in introducing a new technique

for extracting adaptive seeds, which does not require any

skin sample be given a priori for the adaptation. Instead

of exploiting a face detector to acquire the skin sam-

ple, we analyze the skin probability map PS obtained

from the input color image I using a global skin color

model. At first, our algorithm determines whether the

image presents any skin pixels at all, and subsequently,

it extracts the skin sample that is used to adapt the skin

model and to build the seeds. Furthermore, we elabo-

rate on the adaptation scheme we introduced in [11] and

apply new metrics to compute local costs for DT [59].

These metrics (Equations 5 to 7) are used for creating the

seeds, as well as they are utilized for the final ‘skinness’

propagation.

4.1 Algorithm outline

A flowchart of our method is presented in Figure 1, and

examples of outcomes obtained at subsequent stages of

the processing chain are demonstrated in Figure 2. First

of all, an input image (Figure 2(a)) is converted into a

skin probability map (Figure 2(b)) using a global skin

color model based on the Bayesian classifier (the darker

shade indicates higher skin probability). The obtained skin

probability map is processed to determine the initial skin

seeds (annotated as red pixels inside the black regions in

Figure 2(c)). Here, our goal is to extract a sample of skin

pixels with high precision, without including the non-skin

pixels. Although it is crucial that the seeds are detected

in every ground-truth skin blob, this is not critical at this

stage, as the seeds are transferred to other regions later.

An important problem here is to avoid finding the initial

skin seeds in the images which do not contain human skin

at all; otherwise, the algorithm may adapt the skin model

(a) (b) (c) (d) (e) (f) (g)

Figure 2 Outcomes obtained at subsequent steps of the adaptive skin segmentation process. The presented images (I to IV and VI) come
from the publicly available ECU benchmark data set [65]. The image V comes from the HGR data set [9].
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to some non-skin regions, increasing the false-positive

rate. The exact procedure on how the initial seeds are

determined is described later in Section 4.2.

Subsequently, the initial seeds are expanded using

DT to include more skin pixels (black regions in

Figure 2(c)). Again, the primary goal at this stage is

to keep the false-positive rate at the smallest pos-

sible level; hence, the conditions for adjoining the

pixels should be strict. From the expanded seeds, a

local skin color model is trained and applied to the

image in order to determine the final seeds for the

propagation (black regions in Figure 2(d)). Here, the aim

is to find at least a single seed in every ground-truth

skin region while keeping the false-positives low. It can be

seen from Figure 2(d) (images I to IV) that the adapted

seeds appear in the skin regions which were not cov-

ered by the initial skin seeds, while they are absent in

the background. For image V, the seeds are not trans-

ferred to new skin regions, but the adaptation allows the

seeds to be better distributed in the regions already cov-

ered by the expanded seeds. Also, an interesting case is

image VI; here, the adaptation almost does not modify the

(a) (b) (c) (d)

Figure 3 Subsequent steps of extracting initial skin seeds from skin probability maps. The presented images (I to IV and VI) come from the
publicly available ECU benchmark data set [65]. The image V comes from the HGR data set [9].
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position of the expanded seeds; however, eventually, the

initial seeds occur sufficient to propagate the ‘skinness’

over the entire skin area. The details of the seed transfer

are given in Section 4.3.

From the final seeds, the ‘skinness’ is propagated

over the image to obtain the final skin probability map

(Figure 2(e)), which is binarized to extract the skin regions

(see Figure 2(f ), where the red tone indicates false-positive

pixels, the blue tone false-negatives, and the green one

boundaries of the true-positive regions).

In Figure 2(g), we present the segmentation results

obtained from the global skin probability maps (from

Figure 2(b)). For several images (I to III), the adapta-

tion substantially reduced the false-positives (which were

caused by the background objects having skin-like color).

Both the false-positives and false-negatives were reduced

for the images III to V, and in the case of image VI, the

false-negative rate was decreased.

4.2 Extracting initial skin seeds

This stage consists in finding initial skin samples, from

which the proper seeds for propagation are later created.

In our method, this is achieved exclusively based on the

analysis of a skin probability map obtained using a global

skin color model (we utilize the Bayesian classifier here;

however, other skin color models may also be exploited for

this purpose). The initial skin seeds are extracted relying

on the skin probability histogram and by analyzing the

pixels in the spatial domain.

The algorithm for finding the initial seeds is out-

lined in Algorithm 1. First, we compute the integrated

histogram H (line 1) of the skin probability map PS

to find the value of a dynamic threshold tseed, which

selects Rseed = 5% pixels, whose probability is above

tseed (line 2). Afterwards, we determine the reference

pixel r that indicates the maximum probability value in

the eroded skin probability map Pmin
S (line 5). Subse-

quently, we compute the reference skin probability Pr
(line 6) as the minimum probability value in the dilated

skin probability map Pmax
S within the 15 × 15 neigh-

borhood of the reference pixel (N15×15(r)). Basically, if

the reference pixel presents the skin indeed, then the

value of the reference skin probability Pr should be

high.

Based on the values of Pr and tseed, we take the decision

(Algorithm 1, line 8) whether an image contains skin pix-

els at all (hence, we detect skin at the image level). This

is an important step of our algorithm, as false-positive

detection would lead to adapting the skin color model to

non-skin pixels, significantly decreasing the overall seg-

mentation precision. On the other hand, false-negative

detection would mean that the entire skin area in the

incorrectly classified image is rejected. We apply fairly

simple rules here that consist in checking whether the Pr
and tseed values are above the thresholds T P

r = 0.24 and

T P
seed = 0.12, respectively. Efficacy of this technique is

discussed later in Section 5.

If the image-level skin detection is positive, then the

seeds are extracted by binarizing the skin probability map

using the tseed threshold (Algorithm 1, line 9). We have

observed that the false-positive pixels are scattered in the

binarized image, while the true-positive pixels are orga-

nized in spatially consistent groups. Following this obser-

vation, we use only 10% of the largest blobs (line 11). These

blobs are additionally subject to the erosion (line 13) to

eliminate the blobs having small area. Finally, the seeds

are subject to the morphological skeletonization (line 14),

which further reduces the false-positives. The results

obtained in subsequent steps of the initial skin seeds

extraction are presented in Figure 3.

Algorithm 1 Initial skin seeds generation

Require: PS ⊲ Skin probability map obtained using a global model

1: H ← FindIntegratedHistogram(PS);

2: tseed ← FindThreshold(H,Rseed); ⊲ Rseed (%) pixels in PS have skin probability over tseed
3: Pmin

S ← Erode(PS, 15); ⊲ Erosion using a 15× 15 kernel

4: Pmax
S ← Dilate(PS, 15); ⊲ Dilation using a 15× 15 kernel

5: r ← FindMaximum
(

Pmin
S

)

; ⊲ Reference pixel r found in the eroded PS

6: Pr ← FindMinimum
(

Pmax
S ,N15×15(r)

)

; ⊲ Reference skin probability Pr found in the dilated PS

7: S0 ← {0}; ⊲ Mask of the initial seeds (zeroed at this step)

8: if tseed ≥ T P
seed and Pr ≥ T P

r then ⊲ Skin detection at the image level

9: S0 ← Binarize(PS, tseed); ⊲ PS is binarized with a threshold tseed to get the seeds

10: B ← FindBlobs(S0); ⊲ The seeds S0 are represented as a set of blobs B

11: B ← FilterBlobs(B); ⊲ 10% of the largest blobs are selected

12: S0 ← Render(B); ⊲ S0 gets a mask of the filtered blobs

13: S0 ← Erode(S0, 11); ⊲ Isolated small blobs are removed

14: S0 ← MorphologicalSkeleton(S0); ⊲ S0 presents a mask of the initial seeds

15: end if
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4.3 Seed expansion and adaptation

The initial skin seeds are characterized with two gen-

eral properties (confirmed experimentally): (i) the seeds

indicate skin regions with very high precision (i.e.,

they contain very few false-positives), and (ii) they

are not present in every ground-truth skin blob (see

Figure 2(c)). The first property makes the seeds appro-

priate to initiate DT in order to determine the bound-

aries of those skin regions, in which the seeds appear.

However, the second property means that the ‘skinness’

cannot be propagated in the spatial domain to non-

covered skin blobs; hence, the color space must be used

for transferring the ‘skinness’. This transfer is achieved

by creating a local skin color model from the ini-

tial skin seeds and applying it to the entire image.

After this operation, the seeds are expected to appear

in every skin blob, and they are used for the final

propagation.

Overall, the skin segmentation algorithm, including the

detailed procedure for extracting the final seeds, is given

in Algorithm 2. After obtaining the initial seeds, they are

expanded using DT (line 3) to include more skin pix-

els (this forms the expanded skin seeds SE). Without the

expansion, the model built from the initial seeds would

not be sufficiently representative and the seeds would not

be correctly transferred in the color space. However, the

expansion must be done carefully to avoid including non-

skin pixels, which could eventually lead to transferring the

seeds also into the background. We investigated various

local costs for obtaining SE
(

termed γ E
�

)

; however, in all

the cases, we impose the cost boundary TŴ = 3·γ E
�, where

γ E
� is the average local cost computed within the image.

Furthermore, we do not use the costless propagation here
(

i.e., T P
0 = 0

)

. This limits DT to the very neighborhood of

the initial seeds, and the expanded seeds SE are formed of

the pixels, whose total path cost Ŵ is a finite number (see

Figure 2(c)).

After expanding the initial seeds, they are transferred

to other image regions in the color space domain. This

is performed as follows. First, a local skin color model is

learned from the pixels that lie within the expanded seeds

(Algorithm 2, line 4). Subsequently, this model is used

to detect skin in the entire image (line 5), and the local

skin probability map Pl(Cs|v) is obtained. We have investi-

gated two techniques for creating the local model, namely

(i) from the color histogram and (ii) using a single mul-

tivariate Gaussian. The histogram-based approach takes

into account only the skin color distribution, from which

the skin probability P(v|Cs) is directly obtained. As sug-

gested in many works [2,17], we decrease the number of

histogram bins per channel to achieve higher generaliza-

tion. Following the second technique, the skin probability

for a color v is obtained as

P(v) =
1

√

(2π)3|�|
exp

[

−0.5(v − v)T�−1(v − v)
]

, (9)

where � is a 3× 3 covariance matrix and v is the mean

color in the RGB color space, obtained for the skin pixels

within the expanded seeds.

Finally, the local skin probability map Pl(Cs|v) is bina-

rized using the threshold T P
A to obtain the adapted skin

seeds SA (Algorithm 2, line 6), which completes the seed

transfer stage. The local model is trained using the skin

pixels from the expanded seeds, characterized by low rate

of false-positive pixels. This implies very high skin detec-

tion precision, and there are few false-positives among the

pixels with non-zero skin probability in Pl(Cs|v). There-
fore, we apply a fairly low binarization threshold of T P

A =
0.02 (we have found that the algorithm is little sensitive

to this value within the range 0 < T P
A < 0.1). After

binarization, the seeds are eroded with a small 5× 5 ker-

nel (line 7), which eliminates isolated positive pixels and

shrinks the larger seeds. The shrinking is beneficial as the

adapted seeds may be located at the boundaries of the

Algorithm 2 Proposed self-adaptive skin segmentation

Require: I , Pg(Cs|v) ⊲ Input color image and global skin color model

1: P
(global)
S ← DetectSkin(I , Pg(Cs|v)); ⊲ Skin detection using global skin color model

2: S0 ← FindInitialSeeds
(

P
(global)
S

)

; ⊲ Initial skin seeds determined using Algorithm 1

3: SE ← SeedsDistanceTransform
(

S0, I ,P
(global)
S

)

; ⊲ The initial seeds are expanded

4: Pl(Cs|v) ← LearnSkinModel(I , SE); ⊲ Local skin color model is build within SE

5: P
(local)
S ← DetectSkin(I , Pl(Cs|v)) ⊲ Skin detection using local skin color model

6: SA ← Binarize
(

P
(local)
S ,T P

A

)

; ⊲ Adapted skin seeds

7: SA ← Erode(SA, 5); ⊲ SA are slightly shrunk

8: PS ← FinalDistanceTransform
(

SA,I ,P
(local)
S

)

; ⊲ The final skin probability map is obtained
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skin regions. If the propagation is initiated from them,

then some background pixels could be misclassified. Nat-

urally, the shrinking eliminates some true-positive skin

pixels, but then they are correctly adjoined back during

the propagation.

Finally, the ‘skinness’ is propagated from the adapted

seeds in the image using the local difference costs γ F
�

(Algorithm 2, line 8), and the final skin probability is

obtained from the normalized map of distances as out-

lined earlier in Section 3.2. Depending on how the

destination-probability cost γp is computed for expanding

the seeds and for propagating the ‘skinness’, we consider

two variants of our method. This cost may be computed

using the raw skin probability obtained from the global

model (termed raw probability (RP)-based propagation)

or alternatively, the DSPF skin map may be used for this

purpose as outlined in Section 3.3 (termed DSPF-based

propagation).

5 Experimental validation
We have validated the proposed algorithm using two data

sets, namely (i) the ECU benchmark database [65] and (ii)

our hand gesture recognition (HGR) set of hand images

(available at http://sun.aei.polsl.pl/~mkawulok/gestures).

Both data sets encompass ground-truth skin-presence

binary masks. Four thousand images from the ECU set

were acquired in uncontrolled lighting conditions, and

skin-color objects often appear in the background, which

makes the skin segmentation more difficult. The HGR

data set contains 1,293 images of gestures presented by 30

individuals. The data were acquired in both controlled and

uncontrolled conditions.

All the algorithms were implemented in C++. The

experiments were conducted using a computer equipped

with an Intel Core i7-3740QM 2.7 GHz (16 GB RAM)

processor.

Two thousand images from the ECU set were used to

train the Bayesian classifier and to determine the DSPF

space. The remaining 2,000 images from the ECU set and

all of the images from the HGR set were used as the test

set. The test set consists of the images, in which the faces

were detected with the method described in [66], so that

our method can be compared with face-based adaptation

schemes. The lists of images used for training and testing

are available in Additional file 1.

We have compared our technique with several state-of-

the-art methods, namely with (i) several global pixel-wise

skin detectors [14-16], (ii) withmethods that utilize spatial

analysis and textural features [9,59,61], and (iii) with face-

based adaptation schemes [11,40].

5.1 Evaluation metrics

The obtained results were compared with the ground-

truth data to determine the number of correctly classified

pixels (i.e., TP and true-negatives (TN)) as well as the

number of misclassified pixels (i.e., FN and FP). From

these values, we use the following ratios to indicate the

detection accuracy:

1. Recall : rec = TP/(FN + TP), i.e., the percentage of

the ground-truth skin pixels correctly classified as

skin.

2. Precision : prec = TP/(TP + FP), i.e., the percentage

of correctly classified pixels out of all the pixels

classified as skin.

3. F-measure : the harmonic mean of precision and

recall. Here, the acceptance threshold was set to a

value, for which the F -measure was maximal

(precision and recall values are also quoted using the

same threshold). Naturally, the same value of the

threshold is applied to all of the images in the test set

within a single experiment.

4. False-positive rate : δfp = FP/(FP + TN), i.e., the

percentage of background pixels misclassified as skin.

5. Minimal error : δmin = 0.5 ·
(

δfp + (1 − rec)
)

. Here,

the acceptance threshold was set to a value, for which

δmin is minimal for the test set.

It is worth noting that the F-measure and the minimal

error δmin are usually obtained using different accep-

tance thresholds, and they represent different properties

of the detector. The minimal error is determined at a

higher recall obtained at a cost of larger false-positive rate.

Hence, these two values are quoted in the paper in order

to provide better evaluation.

The precision, recall, and false-positive rate depend on

the acceptance threshold. Their mutual dependence can

be rendered in a form of precision-recall and receiver

operating characteristic (ROC) curves [67,68], which are

also presented to evaluate the investigated skin detectors.

In order to assess the performance for the images that

do not contain human skin at all, we excluded the skin

regions from the images in the ECU and HGR sets.

These data sets include the ground-truth skin presence

masks, and based on them, it was possible to exclude the

skin regions from processing. We subjected these images

to skin detection and measured the false-positive rate

(termed δnsfp ).

In the case of the seed detection, the recall is usually

very low, while the precision is expected to be high. How-

ever, as it was explained earlier, it is crucial that the seeds

appear in every ground-truth skin region. Otherwise, a

region without a seed will not be adjoined to the skin

class during the propagation (unless the ‘skinness’ is prop-

agated through the background, which in general should

be avoided). In order to measure whether the seeds are

correctly located, we measure the potential recall (recseed);

we assume that if at least a single seed is positioned inside

http://sun.aei.polsl.pl/~mkawulok/gestures
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Table 2 F-measure and δmin obtained using the DSPF-based propagation with different thresholds
(

T P
seed

and T P
r

)

ECU data set HGR data set

T P
seed

T P
r F-measure (δmin) δns

fp
F-measure (δmin) δns

fp

0.00 0.00 0.8415 (7.19%) 12.81% 0.9564 (2.49%) 76.73%

0.00 0.12 0.8415 (7.19%) 12.80% 0.9564 (2.49%) 33.32%

0.00 0.24 0.8411 (7.22%) 12.79% 0.9564 (2.49%) 20.97%

0.00 0.36 0.8408 (7.24%) 12.72% 0.9550 (2.63%) 8.85%

0.12 0.00 0.8415 (7.19%) 12.68% 0.9562 (2.52%) 13.35%

0.12 0.12 0.8415 (7.19%) 12.68% 0.9562 (2.52%) 13.35%

0.12 0.24 0.8411 (7.22%) 12.67% 0.9562 (2.52%) 10.51%

0.12 0.36 0.8408 (7.24%) 12.61% 0.9547 (2.67%) 5.79%

0.24 0.00 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 7.03%

0.24 0.12 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 7.03%

0.24 0.24 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 6.88%

0.24 0.36 0.8405 (7.26%) 12.42% 0.9452 (3.66%) 4.90%

0.36 0.00 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.12 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.24 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.36 0.8402 (7.28%) 11.92% 0.9280 (5.22%) 3.10%

Italicized values indicate the selected configuration.

a certain ground-truth skin region, then the whole region

is correctly classified as skin. For the seeds, we do not

quote the false-positive rate, as it is usually close to zero

due to the small number of seed pixels compared to the

number of all the pixels in an image. The precision ismuch

a better measure here.

5.2 Parameter tuning and sensitivity analysis

In this section, we report how we selected the parame-

ters and models used in our method, and we analyze their

influence on the obtained scores.

First of all, we focused on the image-level skin detection

(as shown in Algorithm 1, line 8), which is controlled with

two thresholds: T P
seed

and T P
r . In Table 2, we demonstrate

the F-measure and the minimal error δmin (given in the

brackets) for images that contain skin, and we show the

false-positive rate δns
fp

for the images without skin. It can

be seen that in general δnsfp decreases if the thresholds are

high (and more restrictive), but obviously this affects the

detection scores for the images that contain human skin. It

is worth noting that δnsfp for the ECU set is much less sensi-

tive to the thresholds than for the HGR set. If it is assumed

(a) (b)

Figure 4 Skin segmentation scores obtained with different ratios of the pixelsRseed used to build the initial seeds.
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Table 3 F-measure andminimal error δmin (given in brackets) obtained using different local propagation costs

γp ↓ ECU data set HGR data set

γ E
�

↓ γ F
�

→ γ
(HL)
�

γ
(RGB)
�

γ
(SP)
�

γ
(HL)
�

γ
(RGB)
�

γ
(SP)
�

Gaussian

RP γ
(HL)
� 0.8511 (8.20%) 0.8547 (7.71%) 0.8460 (8.05%) 0.9132 (6.75%) 0.9130 (6.75%) 0.9157 (6.55%)

γ
(RGB)
� 0.8469 (8.58%) 0.8511 (8.00%) 0.8440 (8.28%) 0.9136 (6.73%) 0.9134 (6.73%) 0.9159 (6.55%)

γ
(SP)
� 0.8499 (8.43%) 0.8535 (7.96%) 0.8419 (8.44%) 0.9136 (6.73%) 0.9135 (6.74%) 0.9155 (6.57%)

DSPF γ
(HL)
� 0.8411 (7.22%) 0.8409 (7.10%) 0.8339 (7.77%) 0.9562 (2.52%) 0.9538 (2.79%) 0.9545 (2.55%)

γ
(RGB)
� 0.8425 (7.32%) 0.8420 (7.26%) 0.8355 (7.79%) 0.9564 (2.50%) 0.9540 (2.78%) 0.9548 (2.56%)

γ
(SP)
� 0.8388 (7.34%) 0.8387 (7.22%) 0.8360 (8.04%) 0.9566 (2.49%) 0.9541 (2.76%) 0.9301 (5.70%)

Histogram

RP γ
(HL)
� 0.8330 (9.55%) 0.8389 (8.83%) 0.8341 (9.08%) 0.9204 (5.99%) 0.9204 (5.98%) 0.9220 (5.84%)

γ
(RGB)
� 0.8286 (9.71%) 0.8320 (9.14%) 0.8283 (9.39%) 0.9221 (5.84%) 0.9220 (5.84%) 0.9226 (5.78%)

γ
(SP)
� 0.8313 (9.69%) 0.8348 (9.20%) 0.8266 (9.60%) 0.9221 (5.78%) 0.9220 (5.78%) 0.9215 (5.82%)

DSPF γ
(HL)
� 0.8353 (7.84%) 0.8347 (7.81%) 0.8295 (8.28%) 0.9555 (2.50%) 0.9539 (2.74%) 0.9520 (2.97%)

γ
(RGB)
� 0.8363 (8.01%) 0.8355 (8.01%) 0.8305 (8.35%) 0.9550 (2.56%) 0.9537 (2.79%) 0.9517 (3.04%)

γ
(SP)
� 0.8350 (7.85%) 0.8342 (7.82%) 0.8322 (8.70%) 0.9544 (2.57%) 0.9530 (2.78%) 0.9372 (4.70%)

The arrows indicate the column or row. Italicized values indicate the configuration used in the remaining experiments.

that every image contains the skin (i.e., both thresholds

are set to zero), then δnsfp for the HGR set is extremely high,

while for ECU it is at a moderate level. This is because the

images in the ECU set contain uncontrolled multi-colored

background, while the background in many images from

the HGR set is uniform. In such cases, after adaptation,

the entire background is classified as skin, while for ECU

only some objects in the background are misclassified.

Overall, we use T P
seed

= 0.12 and T P
r = 0.24 (italicized

in Table 2), which does not decrease the scores for skin

images significantly, while δnsfp is at an acceptable level.

The scores obtained depending on the Rseed ratio are
presented in Figure 4. It can be seen from the plots that

the algorithm is quite sensitive to this parameter; however,

in case of both data sets, the optimal value is around

Rseed = 0.05 (marked with a vertical dashed line), and

this value has been used in our experiments. In the case

of the HGR set, the scores for the DSPF-based propaga-

tion deteriorate when Rseed surpasses 0.05, but then (at

about 0.15) they start improving again. In order to inves-

tigate this, we measured the precision and potential recall

in the seeds (the plots are presented in Additional file 2).

We have found that for the HGR set, the potential recall

in the initial and expanded seeds temporarily decreases

(for Rseed ∈ [0.1; 0.15]), because the true-positive blobs

are eliminated due to the size-based filtering. However,

for smaller values of Rseed, the size-based filtering helps
achieve higher precision in the initial seeds.

(a) (b)

Figure 5 Skin segmentation scores obtained with different total path cost thresholds TŴ used to build the expanded seeds.
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Table 4 F-measure andminimal error δmin (given in brackets) obtained using different local skin color models

γp → RP-based DSPF-based

↓ Local skin color model ECU data set HGR data set ECU data set HGR data set

Gaussian 0.8535 (7.96%) 0.9135 (6.74%) 0.8411 (7.22%) 0.9562 (2.52%)

Histogram, 256 bins 0.8308 (9.42%) 0.9215 (5.80%) 0.8347 (8.00%) 0.9556 (2.51%)

Histogram, 128 bins 0.8348 (9.20%) 0.9220 (5.78%) 0.8353 (7.84%) 0.9555 (2.50%)

Histogram, 64 bins 0.8400 (8.82%) 0.9217 (5.86%) 0.8348 (7.56%) 0.9563 (2.43%)

Histogram, 32 bins 0.8328 (9.01%) 0.9145 (6.59%) 0.8257 (7.90%) 0.9559 (2.49%)

Histogram, 16 bins 0.8107 (9.95%) 0.9134 (6.67%) 0.8125 (8.62%) 0.9533 (2.69%)

Histogram, 8 bins 0.7906 (10.96%) 0.9138 (6.67%) 0.7982 (9.62%) 0.9481 (3.06%)

The arrows indicate the column or row. Italicized values indicate the selected configuration.

In Table 3, we present the scores obtained using differ-

ent local costs utilized to build the expanded seeds
(

γ E
�

)

and to propagate the final ‘skinness’
(

γ F
�

)

. The local skin
color model was trained using either a single multivari-

ate Gaussian, or using the color histogram with 128 bins

per channel. It may be seen from the table that the RP-

based propagation is more sensitive to the costs used, and

different settings are optimal for the ECU and HGR sets.

In some cases, the F-measure for the ECU set is higher

using RP, but overall it is the DSPF-based propagation

which delivers high scores for both the ECU and HGR

sets. The italicized values indicate the configuration used
in the remaining experiments.

The seeds are expanded depending on the total path

cost boundary TŴ , and the sensitiveness to this parame-

ter is demonstrated in Figure 5. It may be observed that

the scores are little dependent on this value, and we used

TŴ = 3 in our experiments (marked with a vertical dashed

line in the plots).

We have trained the local skin color model using a

single multivariate Gaussian as well as using the color

histogram with different numbers of bins per channel.

Table 5 Skin detection scores computed in the seeds at subsequent processing steps

ECU data set HGR data set

F-measure prec recseed F-measure prec recseed

Initial seeds 0.9233 90.64% 94.08% 0.9943 99.22% 99.65%

Seeds expanded using the RP domain
and γ

(SP)
� local costs to expand the seeds

Expanded seeds 0.9279 90.10% 95.64% 0.9961 99.49% 99.73%

Adapted seeds (Gaussian) 0.9536 91.63% 99.41% 0.9967 99.72% 99.63%

Adapted seeds (H-256) 0.9511 92.32% 98.08% 0.9828 99.85% 96.76%

Adapted seeds (H-128) 0.9527 92.24% 98.50% 0.9845 99.83% 97.11%

Adapted seeds (H-64) 0.9518 91.49% 99.18% 0.9881 99.64% 98.00%

Adapted seeds (H-32) 0.9419 89.35% 99.58% 0.9954 99.35% 99.73%

Adapted seeds (H-16) 0.9153 84.56% 99.76% 0.9936 98.83% 99.90%

Adapted seeds (H-8) 0.8834 79.18% 99.88% 0.9918 98.38% 99.98%

Seeds expanded using the DSPF domain
and γ

(HL)
� local costs to expand the seeds

Expanded seeds 0.9337 91.41% 95.41% 0.9957 99.42% 99.73%

Adapted seeds (Gaussian) 0.9539 91.78% 99.29% 0.9958 99.43% 99.73%

Adapted seeds (H-256) 0.9515 92.91% 97.52% 0.9882 99.79% 97.87%

Adapted seeds (H-128) 0.9533 92.81% 98.00% 0.9888 99.74% 98.04%

Adapted seeds (H-64) 0.9546 92.06% 99.12% 0.9923 99.54% 98.92%

Adapted seeds (H-32) 0.9455 89.97% 99.62% 0.9959 99.29% 99.89%

Adapted seeds (H-16) 0.9246 86.13% 99.80% 0.9944 98.92% 99.97%

Adapted seeds (H-8) 0.8960 81.26% 99.85% 0.9919 98.42% 99.98%

H-n is the color histogram with n bins per channel.
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Table 6 Skin detection scores obtained using different methods for the ECU data set

Acceptance threshold Acceptance threshold

Method set to maximize F-measure set to minimize δmin

F-measure prec rec δns
fp

δmin rec δfp δns
fp

Global Bayesian classifier [16] 0.7772 73.15% 82.89% 9.13% 12.13% 89.27% 13.52% 13.52%

Global model in ESS [14] 0.7434 68.07% 81.88% 11.79% 14.13% 87.76% 16.03% 16.03%

Chen’s global model [15] 0.6896 55.30% 91.61% 23.11% 15.75% 91.61% 23.11% 23.11%

Wavelet-based hybrid detector [61] 0.7894 76.34% 81.73% 9.01% 12.28% 88.74% 13.31% 13.78%

Face-based adaptation in ESS [40] 0.7672 69.67% 85.35% - 13.95% 89.85% 17.74% -

Spatial analysis using RP [59] 0.8177 75.79% 88.78% 8.45% 9.87% 92.32% 12.06% 10.32%

Spatial analysis using DSPFs [9] 0.8303 78.09% 88.65% 9.06% 7.68% 93.28% 8.64% 12.08%

Face-based adaptive seeds [11] 0.8661 82.70% 90.92% - 7.17% 94.06% 8.39% -

Proposed method (RP-based) 0.8348 81.07% 86.04% 8.40% 9.20% 90.85% 9.25% 10.44%

Proposed method (DSPF-based) 0.8411 79.10% 89.79% 12.67% 7.22% 94.14% 8.57% 16.57%

Italicized values indicate the best score.

The obtained scores are presented in Table 4 (the itali-

cized values indicate the selected configuration). For the

ECU set, both RP-based and DSPF-based propagations

deliver the best scores when the local model is learned

with a Gaussian; however, in the case of RP, the scores

for the HGR set are much worse than when using the

histogram-based model. Also, analysis of the plots in

Additional file 2 allows us to conclude that the Gaus-

sian offers higher generalization than the histogram-based

model.

Finally, in Table 5, we present the scores computed in

the seeds at subsequent steps of their extraction. Here,

we show the results for RP- and DSPF-based propagation,

using different local costs γ E
�. It may be seen that for the

ECU set, the potential recall and the F-measure increase

substantially between the initial and adapted seeds. In the

case of the HGR set, the potential recall is high already in

the initial seeds; as in many cases, there is a single skin

blob in these images, and it is already covered by the initial

seeds. Overall, it is clear that the scores improve during

the seed extraction process, which justifies its subsequent

steps.

5.3 Quantitative comparison

The scores obtained using a number of alternative state-

of-the-art methods are presented in Tables 6 and 7. ROC

and precision-recall curves are rendered in Figures 6

and 7. In the case of the ECU set, we have included two

face-based adaptation methods [11,40]. Naturally, they

were omitted for the HGR images as they do not present

human faces. In the tables, we demonstrate the scores

for two values of the acceptance threshold, for which

the F-measure is maximal and the error δmin is minimal,

respectively.

The methods operating in the ESS [14,40] offer binary

skin classification, but we extended them so that they pro-

duce the continuous response. In the plots in Figures 6

and 7, each result for the original binary decision is indi-

cated with a cross (obviously, it is positioned on the ROC

or precision-recall curve).

Table 7 Skin detection scores obtained using different methods for the HGR data set

Acceptance threshold Acceptance threshold

Method set to maximize F-measure set to minimize δmin

F-measure prec rec δns
fp

δmin rec δfp δns
fp

Global Bayesian classifier [16] 0.9031 89.72% 90.92% 5.11% 7.05% 91.53% 5.63% 5.63%

Global model in ESS [14] 0.9090 90.76% 91.04% 4.31% 6.56% 91.81% 4.92% 4.92%

Chen’s global model [15] 0.8607 89.33% 83.03% 7.26% 12.11% 83.03% 7.26% 7.26%

Wavelet-based hybrid detector [61] 0.8991 91.38% 88.49% 3.91% 7.50% 90.24% 5.25% 5.38%

Spatial analysis using RP [59] 0.9086 87.77% 94.17% 29.83% 5.91% 94.49% 6.30% 43.18%

Spatial analysis using DSPF [9] 0.9391 92.90% 94.94% 8.39% 3.06% 96.24% 2.37% 8.94%

Proposed method (RP-based) 0.9220 92.66% 91.74% 26.52% 5.78% 91.85% 3.41% 31.88%

Proposed method (DSPF-based) 0.9562 95.32% 95.92% 10.51% 2.52% 96.92% 1.96% 11.71%

Italicized values indicate the best score.
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(a) (b)

Figure 6 ROC (a) and precision-recall (b) curves for the ECU data set. The most relevant part is magnified in the bottom row.
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(a) (b)

Figure 7 ROC (a) and precision-recall (b) curves for the HGR data set. The most relevant part is magnified in the bottom row.
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The method utilizing the face-based adaptive seeds [11]

delivers the best scores for the ECU set, especially in

terms of the precision-recall and the F-measure. The

ROC curve and minimal error δmin are virtually identi-

cal with those obtained with our DSPF-based approach.

However, it must be noted that this method requires addi-

tional information delivered by a face detector. Here, we

carefully selected those images, in which the faces are

correctly detected, in order to demonstrate the maxi-

mal advantage that can be achieved using the face-based

adaptation over the proposed self-adaptive method. The

second face-based adaptation technique, which operates

in ESS, improves the global skin color model in ESS, but

it is not competitive compared with other techniques. For

the HGR set, our adaptation scheme with DSPF-based

propagation outperforms other methods, offering very

high skin segmentation accuracy (F-measure is 0.9562 and

δmin = 2.52%).

We have also measured the false-positive rate (δnsfp ) for

images that do not present human skin. As it was already

mentioned, we used the same ECU and HGR images,

in which the skin regions were excluded from process-

ing, and we applied the same values of the acceptance

threshold as in the case of the original images. In this

way, we investigated whether and how the absence of skin

regions influences the false-positive rate. This experiment

was not executed for the face-based adaptation schemes,

because after excluding the skin regions, the faces should

not be detected at all. Obviously, for pixel-wise classifica-

tion schemes, the false-positive rate is identical regardless

of whether the skin is present in the image. For other

methods, the false-positive rate is generally higher, as each

of them adapts to some extent to the image. Overall, using

the self-adaptive seeds with the DSPF-based propagation

domain (the RP-based domain is more sensitive here), δnsfp
is from 3.05% (ECU, δmin) to 6.08% (HGR, δmin) higher
than obtained with the Bayesian classifier. This shows that

the incorrect adaptation is a potential problem; however,

we managed to limit its impact using a simple image-

level skin detector. Also, this problem is common to all

the adaptive methods, including the face-based schemes

in case of false-positive face detection. Last, but not least,

there are many applications, including hand pose estima-

tion, where efficient skin segmentation is critical, and such

errors can be mitigated at further processing stages (e.g., a

hand shape would be unlikely to be matched, if the entire

detected skin region is falsely-positive).
The average processing times required to process a

512× 512 image are quoted in Table 8. It may be observed

that almost half of the computation time (i.e., 216.6 ms)

is consumed to create the adaptive seeds. When a video

stream is processed, the adaptation does not have to be

performed for every frame as the scene usually does not

change with a high frequency rate. This means that the

Table 8 Average processing times for a 512 × 512 image

Method Time (ms)

Global Bayesian classifier [16] 5.2

Global model in ESS [14] 4.8

Chen’s global model [15] 0.8

Wavelet-based hybrid detector [61] 4,952.5

Face-based adaptation in ESS [40] 24.1

Spatial analysis using RP [59] 92.9

Spatial analysis using DSPF [9] 361.1

Face-based adaptive seeds [11] 130.5

Proposed method (RP-based) 232.9

Skin detection using global model 5.29

Skin seeds initialization 56.34

Expansion of the seeds 77.97

Adaptation of the seeds 19.49

Final spatial analysis 73.81

Proposed method (DSPF-based) 548.2

Skin detection using global model 5.34

Generation of the DSPF skin map 192.43

Skin seeds initialization 46.18

Expansion of the seeds 79.30

Adaptation of the seeds 91.17

Final spatial analysis 133.78

skin model can be adapted once for a given scene and
then the stream can be processed at ca. three frames per

second. Also, it may be seen that the RP-based propaga-

tion is much faster, because (i) the DSPF skin map does

not have to be computed and (ii) the histogram-based

adaptation is much faster than using a Gaussian model.

Excluding the adaptation phase, the RP-based approach

requires 79.1 ms, which allows processing over 12 frames

per second. Overall, there are two time-consuming oper-

ations which could potentially be optimized, namely

(i) generation of the DSPF skin map and (ii) the distance

transform. The former includes a number of independent

operations (the basic features are computed in several ker-

nels), which may be executed in parallel to reduce the

processing time. The main problem with the distance

transform lies in non-linear access to the memory while

processing the pixels popped from the priority queue used

in the Dijkstra algorithm. Possibly, this may be improved

by including the neighborhood criteria into the priority

measure to avoid referring to the pixels far from each

other in the memory, but this needs to be investigated.

5.4 Qualitative comparison

In Figures 8 and 9, we present several examples of skin

detection in ECU and HGR images, respectively. For

images I to VIII in Figure 8, our method segments the
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8 Examples of skin segmentation for the ECU data set obtained using different methods. The presented images come from the
publicly available ECU benchmark data set [65].

skin regions with high precision. Images IX and X are the

examples of incorrect adaptation. Here, the background

has a skin-like color, and the seeds are detected both in

the skin, and in the background, resulting in very high

false-positive errors. However, it is worth mentioning that

the alternative detectors fail in these cases as well, except

for two face-based adaptation methods [11,40]. We also

present several cases, in which the face-based adapta-

tion is incorrect. In image VI, the face is rotated, and the

facial region includes some background pixels, resulting

in high false-positives. Also, images VII and VIII are

quite interesting as the beard VII and the soother VIII
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(a) (b) (c) (d) (e) (f)

Figure 9 Examples of skin segmentation for the HGR data set obtained using different methods. The presented images come from the HGR
data set [9].

appear inside the facial region, leading to incorrect adap-

tation. Naturally, this problem does not appear in our

self-adaptive approach.

For the HGR images presented in Figure 9, our DSPF-

based method offers almost perfect skin segmentation,

and it clearly outperforms all the alternative algorithms.

Also, comparing the results with [9], it is evident that

using the adaptive seeds is more effective than the

threshold-based seeds extraction.

6 Conclusions
In this paper, we proposed a newmethod for creating self-

adaptive seeds for spatial-based skin segmentation. From

the seeds, the ‘skinness’ is propagated either using the raw

skin probability obtained from a global skin color model

or using the probability computed in the DSPF space. Our

extensive experimental study demonstrated that the DSPF

domain is less sensitive to the method’s parameters and

outperforms all of the investigated methods both for the

ECU and HGR data sets, except for our earlier face-based

adaptation [11]. The raw probability domain is muchmore

sensitive, which makes it difficult to tune; however, in

some cases (for the ECU set), it delivered better results

than the DSPF and also it is much less time consuming.

Overall, we found it worth being reported as well.

Our main contribution consists in providing the adap-

tiveness without making the method dependent on any

other information sources. This is the main advantage
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over the face-based adaptation schemes, and we demon-

strated that using the self-adaptive seeds, it is possible to

obtain results comparable with the face-based adaptation.

The benefits in case of images that do not present human

faces are obvious, while there are also many examples

presented in the paper, when the proposed adaptation

method outperforms the face-based ones.

Our current research plans include combining the intro-

duced adaptation technique with the face-based schemes,

which may help in cases when the background pixels

appear in the detected facial regions. Furthermore, we

intend to improve the image-level skin detection; we have

demonstrated in our experimental study that this is an

important, while often disregarded, problem in adaptive

skin color modeling. Last, but not least, the algorithm

should be parallelized and optimized in order to make it

suitable for processing video sequences.
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