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Abstract—Cloud providers aim at guaranteeing Service Level
Agreements (SLAs) in a resource-efficient way. This, amongst
others, means that resources of virtual (VMs) and physical
machines (PMs) have to be autonomically allocated responding
to external influences as workload or environmental changes.
Thereby, workload volatility (WV) is one of the crucial factors
that influence the quality of suggested allocations. In this paper
we devise a novel approach for self-adaptive and resource-
efficient decision-making considering the three conflicting goals
of minimizing the number of SLA violations, maximizing re-
source utilization, and minimizing the number of necessary
time- and energy-consuming reconfiguration actions. We propose
self-adaptive rule-based knowledge management for autonomic
VM reconfiguration considering the rapidness of changes in the
workload, i.e., WV. We introduce a novel WV categorization
and present cost and volatility based methods for self-tuning.
We evaluate these methods by a large variety of synthetically
generated workloads, and by real-world measurements gathered
from an image rendering application and a scientific workflow
for RNA sequencing. Evaluation shows that in most cases the
self-adaptive approach outperforms the static approach.

Index Terms—Cloud Computing, Autonomic Computing,
Self-Adaptation, Service Level Agreement, Rule-based System,
Knowledge Management, Resource Management.

I. INTRODUCTION

The vision of Cloud computing is to provide computing

power as a utility like electricity, gas, or water to a broad

variety of customers [6]. To make Cloud computing a reliable

means of computing, customers agree on so-called Service

Level Agreements (SLAs) for certain non-functional QoS

goals, the service price, and the penalty in case the provider

violates the agreement. Cloud providers can offer their infras-

tructure as a service (IaaS), where the customer’s application

runs inside a virtual machine (VM). Governing such an infras-

tructure should happen autonomically to foster high scalability

and to be able to react promptly and without human interaction

to unforeseen external influences as workload changes.
Moreover, as energy costs of data centers are already very

high [14], IaaS Cloud providers have a high incentive to

minimize their energy consumption. As Cloud infrastructures

are designed to host a large number of VMs, even slightly

downsizing each of them – without causing SLA violations

– might result into a big resource gain. This lower amount

of provided resources can then be mitigated to reduce energy

consumption, e.g., by powering off PMs that become unused.

Related work has observed the initial placement of VMs

quite well, and some works also deal with the impact mi-

grations have [26], [18]. However, VM sizes are normally

assumed to be static (on Amazon, e.g., there exist only three

types of VM sizes, which are not designed to change during

runtime [1]) and changing their configuration has only been

observed by few, as in [17]. The authors present a rule-based

knowledge management (KM) approach that triggers actions

to avoid under- and over-utilization of every resource based

on threat thresholds (TTs). However, as with many approaches

presented in related work, also this one depends on important

parameters, i.e., TTs, that heavily influence performance, but

neglects the configuration thereof. To achieve real autonomic

governance of a Cloud infrastructure, it is crucial for any

proposed approach to self-adapt its parameters to changing

conditions in application usage, SLAs, and similar factors.

In this paper our prime focus is to investigate methods to au-

tonomically set and adapt the TTs of the rule-based approach.

We analyze several different methodologies. Whereas some

methods set the TTs based on past performance, others rely

on knowledge gathered from monitoring the workload itself.

To achieve the latter, we introduce the notion of workload

volatility (WV) and determine a way to calculate it and

dynamically classify workload into WV classes. Furthermore,

we investigate synthetically generating wide-spread workloads

for Cloud applications. We use these and real-world workloads

from an image rendering software, as well as a bioinformatics

workflow for RNA sequencing [8], to evaluate our approach.

With this work we ultimately present a prototype for an

autonomic SLA enactment and resource management tool for

Cloud computing infrastructures on the level of VMs, whose

advantages are manifold. Practically no a-priori learning is

necessary and adaptation happens on the fly during execution.

The approach automatically takes the different characteristics

of various resource types into account. Finally, it is general

in the sense that it does not only handle specific types of

workload. It does not require specific domain knowledge nor

is it specialized on only some domains like medical services

or image rendering software. With its self-adaptability it is

independent of any important parameters to be tuned.

The remainder of this paper is organized as follows: Section

2 describes related work. Section 3 gives background informa-
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tion about the autonomic loop and the rule-based approach.

Thereafter, Section 4 details the autonomic parameter adap-

tation methods, and Section 5 evaluates them using various

workloads. Finally, Section 6 concludes the paper.

II. RELATED WORK

We have determined two different aspects to compare

our work with: SLA and resource allocation management in

Clouds, also related to KM; and self-adaptive algorithms in

large-scale distributed systems.

Firstly, there has been some considerable work on optimiz-

ing resource usage while keeping QoS goals. These papers,

however, concentrate on specific subsystems of Large Scale

Distributed Systems, as [13] on the performance of memory

systems. Furthermore, Petrucci [20] and Bichler [4] investigate

only one general resource constraint. A quite similar approach

to our concept is provided by the Sandpiper framework [25],

which offers black-box and gray-box resource management for

VMs. Contrary to our approach, though, it plans reactions just

after violations have occurred. The VCONF model [22] also

pursues similar goals as presented in Section I, but depends on

specific parameters, can only execute one action per iteration

and neglects the energy consumption of executed actions. As

to KM, Bahati et al. [3] also use rules to achieve autonomic

management. They provide a system architecture including a

KB and a learning component, and divide all possible states of

the system into so called regions, which they assign a certain

benefit for being in this region. This is quite similar to the rule-

based approach we base our work upon. However, their actions

are not structured, but are mixed together into a single rule,

which makes the rules very hard to manage and to determine

a salience concept behind them. Additionally, the regions are

statically set and it is not investigated how to adapt them.

Hoyer et al. [10] also undertake a speculative approach as in

our work by overbooking PM resources. They assign VMs to

PMs that would exceed their maximum resource capacities,

because VMs hardly ever use all their assigned resources.

Computing this allocation they also take into consideration

workload correlation of different VMs. Borgetto et al. [5]

tackle the trade-off between consolidating VMs on PMs and

turning off PMs on the one hand, and attaining SLAs for CPU

and memory on the other. However, the authors assume a static

setting and do not consider dynamically changing workloads.

Summarizing, there has been a great deal of work on the

different escalation levels, whereas VM configuration has not

been observed yet neither its self-adaptation.

Secondly, Dutreilh et al. [7] investigate horizontal scaling,

i.e., adding and removing VMs running an application server

by using a load balancer, using a threshold-based and a

reinforcement learning technique. However, the authors do

not consider adapting the thresholds themselves via learning.

Moreover, the authors determine problems with static thresh-

olds as well as with determining good tuning for the rein-

forcement algorithms. The authors also state the importance

of understanding the workload variation, but do not present

a method how to deal with it. Kalyvianaki et al. [12] use

Kalman filters for CPU resource provisioning for virtualized

servers. They self-adapt their approach by using variances and

covariances. Padala et al. [19] develop self-tuning controllers

for multi-tier applications using control theory. Song et al.

[23] use self-adaptation in the field of Cloud federations. Their

algorithm selects tasks and allocates them by finding a trade-

off between SLA adherence and resource utilization. This

trade-off is represented by a parameter, which is optimized

using a similar principle as the bisection method. For the

optimization the benefit of a specific threshold is estimated

by simulation. This estimation is executed several times until

an adequate value is found. [21] apply genetic algorithms for

decision making and self-reconfiguration, but on the network

topology of remote data mirrors.

III. BACKGROUND

In this section we describe the autonomic loop together with

the rule-based knowledge management approach.

The presented management tool is an essential building

block of the FoSII project [2], whose goal is to autonomically

govern Cloud computing infrastructures. The management of

the FoSII infrastructure relies on the autonomic control loop,

which consists of the following phases: first, it monitors

(M) the managed infrastructure with the help of sensors;

second, it analyses the monitored data (A); third, it plans

actions to execute (P); fourth, it executes them (E). The full

loop is known as MAPE. The MAPE loop enhanced with

a knowledge base (MAPE-K) [11] is the design paradigm

for our approach. The monitoring information is gathered by

the hardly intrusive and highly scalable Lom2His framework

[9] and the execution of the actions is simulated by a KM-

technique agnostic simulation engine [16].

In order to reduce the complexity of the NP-hard resource

management problem in a Cloud, we hierarchically struc-

ture the problem into several so-called “escalation levels”

[17]. This work is about the two lowest escalation levels,

i.e., doing nothing and VM configuration. It is important

to determine when to do nothing, since every reallocation

action consumes time and energy. Thus, reallocation actions

should only be recommended when necessary. Reallocation

actions reset VM parameters like provided CPU power, stor-

age, memory, or incoming/outgoing bandwidth. The rule-based

approach achieves this and works as follows: The utilization

of a resource is divided into three regions with the help of

two threat thresholds (TTs), TT r
low and TT r

high. Region +1
(utr < TT r

low) signifies a region, where the resource is over-

provisioned. In region −1 (utr > TT r
high) the resource is in

danger of under-provisioning, or is already under-provisioned.

In region 0 (TT r
low ≤ utr ≤ TT r

high) the resource is well

provisioned. The central idea behind this design is that the

ideal value called target value tv(r) for the utilization of a

certain resource is exactly in the center of region 0.

If the utilization value after some measurement leaves this

region by using more (Region −1) or less resources (Region

+1), we set the utilization back to the target value, i.e., we

increase or decrease allocated resources so that the utilization

369369



is again at

tv(r) =
TT r

low + TT r
high

2
%.

As long as the utilization value stays in region 0, no action

will be recommended. A more detailed description of the rule-

based approach can be found in [17].

All in all, we take a speculative approach: We try to allocate

less than agreed as upper bound, but more than utilized

without running into an SLA violation. Setting and adapting

the mentioned TTs is the main focus of the remaining paper.

IV. AUTONOMIC PARAMETER ADAPTATION

In this section we will explain how the autonomic adaptation

and configuration of the autonomic manager works. Since the

autonomic manager as presented in Section III is configured

by threat thresholds, we will present their autonomic adapta-

tion in this section. We will describe two basically different

approaches: The first approach (cf. Section IV-A) is based on

changes within a cost function, whereas the second approach

(cf. Section IV-B) relies on changes in the workload.

A. Approaches based on the cost function

In this approach the autonomic adaptation of the TTs is

based on the definition of the cost function in [17]. The general

idea is that if cost has increased for some time, TTs should be

adapted. Then two different subproblems have to be solved:

1) Determine the most appropriate TT(s) to adapt.

2) Determine for how much the chosen TT(s) should be

adapted.

The used cost function is defined as

c(p, w, c) =
∑

r

pr(pr) + wr(wr) + ar(ar), (1)

where, for a certain resource r, pr(pr) : [0, 100] → R
+ defines

the costs due to the penalties that have to be paid according

to the relative number of SLA violations (as compared to

all possible SLA violations) pr; wr(wr) : [0, 100] → R
+

defines the costs due to unutilized resources wr; and ar(ar) :
[0, 100] → R

+ the costs due to the executed number of actions

ar (as compared to the number of all possible actions).

During the Analysis phase the KB does not only observe

the cost for one resource r, which naturally is defined as

cr(p, w, c) = pr(pr) + wr(wr) + ar(ar), but also each

individual component pr, wr, and ar for each resource. If the

cost has increased for a resource over a certain period of time

(called look-back horizon k and defined later in this section),

the KB starts to investigate which of the components caused

this increase.

Subproblem 1 (Selecting TTs). To solve subproblem 1, at

first the most problematic cost factor has to be determined.

From this, we can relate to a specific TT increase/decrease

action. To achieve this one can basically imagine two different

methodologies: Either, the maximum cost parameter of the

current iteration, or the parameter with the maximum increase

in the last k iterations is chosen.

Since our cost function cr works by relative and not total

costs, the first method would yield the following problem:

Suppose that no violation has occurred for 10 iterations. Thus,

pr = 0 at iteration 10. At iteration 11, though, a violation

occurs which makes pr = 1/11. In the following iterations,

where pr = 1/12, 1/13, 1/14, . . . (if no further violations

occurs) pr could be easily greater than wr and ar as violations

are usually punished more severely than wastage or actions.

Thus, for these iterations the algorithm would always decide

to act based on violations, even though violations are not

occurring any more in the same time.

Let pr,t signify the relative amount of violations at iteration

t, and let wr,t ar,t be defined similarly. Then, since an increase

in, e.g., violations pr,t occurs iff pr,t is strongly monotonically

increasing, we choose to opt for the second methodology.

According to a look-back horizon k we calculate the difference

between the current cost and the minimum cost of the last k
iterations. The maximum of these differences then points to

the cost summand (arg) that needs attention:

arg max(pr,t − min
1≤j≤k

(pr,t−j), wr,t − min
1≤j≤k

(wr,t−j),

ar,t − min
1≤j≤k

(ar,t−j)). (2)

This results into three different cases, where either the p, w,

or a terms yield the maximum. (We omit cases where some

arguments of the maximum function are equal. In such a case,

the order to choose the arg max is p over w over a. We

prioritize like this, because we assume that penalties incur

higher costs than wastage, and wastage incurs higher costs

than reconfiguration actions.) We define three options which

TT(s) to increase or decrease.

• Option A:
1) pr,t−min1≤j≤k(pr,t−j) is maximal: Decrease TT r

high

and TT r
low.

2) wr,t−min1≤j≤k(wr,t−j) is maximal: Increase TT r
low.

3) ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT r
low

and increase TT r
high.

• Option B:
1) pr,t−min1≤j≤k(pr,t−j) is maximal: Decrease TT r

high

and TT r
low.

2) wr,t−min1≤j≤k(wr,t−j) is maximal: Increase TT r
high

and TT r
low.

3) ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT r
low

and increase TT r
high.

• Option C:
1) pr,t−min1≤j≤k(pr,t−j) is maximal: Decrease TT r

high.

2) wr,t−min1≤j≤k(wr,t−j) is maximal: Increase TT r
low.

3) ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT r
low

and increase TT r
high.

The difference between options A and B is that if the w term

causes the maximum, it will increase both low and high TTs

in option B, whereas it will only increase TTlow in option A.

The main feature of option C is that it only decreases TThigh

(instead of also decreasing TTlow). So option B and even more
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option A could be seen as more cautious as far penalties for

SLA violations are concerned than option C.
Moreover, we present a fourth methodology, option D,

differing from the former three ones. This methodology does

not only consider the maximum cost summand increase, but

handles all cost parameters that show an increase, but only for

the recent iteration. This may promise that the actual situation

of which parameter needs to be adapted is assessed more

precisely. Thus, one can distinguish seven different cases:

1) pr increased: Decrease TT r
high.

2) wr increased: Increase TT r
low.

3) ar increased: Decrease TT r
low, increase TT r

high.

4) pr and wr increased: Increase TT r
low, decrease TT r

high.

5) pr and ar increased: Decrease TT r
low.

6) wr and ar increased: Increase TT r
high.

7) pr and wr and ar increased: Choose the two factors with

the highest increase and act according to the cases 4-6.

Subproblem 2 (Adapting TTs). After subproblem 1 has

been solved, for subproblem 2 it is important to determine the

value by how much the respective TT(s) should be moved.

Again, one could imagine several techniques to determine a

good value for the TTs as Case Based Reasoning (adapting

the approach as described in [16]), or using fixed or random

increasing/decreasing steps. Observing that for the TTs the

following inequalities must hold

0% < TTlow < TThigh < 100%, (3)

we choose to use the following approach. If we need to

decrease TTlow or increase TThigh, we set it to a certain

fraction 1/α < 1 of the distance from TTlow to 0, and from

TThigh to 100, respectively, expressed as

TT r,t+1
low = TT r,t

low −
TT r,t

low

α
(4)

TT r,t+1
high = TT r,t

high +
100− TT r,t

high

α
. (5)

(Superindex t indicates the time iteration for which the respec-

tive TT is valid. It is omitted, if not relevant.) If we need to

increase TTlow or decrease TThigh, we shrink the distance d

between TTlow and TThigh to
d(α−1)

α by moving the TT in

question towards the other, i.e.,

TT r,t+1
low = TT r,t

low +
TT r,t

high − TT r,t
low

α
(6)

TT r,t+1
high = TT r,t

high −
TT r,t

high − TT r,t
low

α
. (7)

This especially makes sure that Eq. (3) also holds in this

situation. When both TTlow and TThigh are to be increased

and decreased, respectively, simultaneously (cf. case 4 in

option D), we have to set α > 2 in order not to violate Eq.(3).
Summarizing both subproblems, the graphs in Figure 1

show how the TTs behave for the different options A-C

according to the following scenario: All options start with

TTlow = 50%, TThigh = 75%. At iteration 2 we encounter a

maximum in penalties, at iteration 4 a maximum in wastage

and at iteration 6 a maximum in actions.

B. Approach based on workload volatility

As an alternative to the cost function dependent approach,

we investigate an approach depending on the change in the

workload, i.e., the workload volatility.

We define workload volatility φ as the intensity of change

in the measured workload traces of a certain resource. We

calculate this intensity as the percentage relating the current

value of the workload mr,t to the previous one mr,t−1, i.e.,

φr,t(mr,t, mr,t−1) = |( max(mr,t, rmin)
max(mr,t−1, rmin)

− 1) · 100|

for t ≥ 1 and rmin > 0. The variable rmin stands for the lower

bound for a certain resource stated in the Service Level Objec-

tive (SLO). E.g., we have rmin = 10 for the SLO “10GB ≤
storage ≤ 1000GB”. This amount will always be provided,

even if an application uses less. So measurements below this

value should not influence the behavior of the system, neither

the classification into a WV class. To give an example for

r = storage, let us assume that mr,t = 20, mr,t−1 = 15. We

would get φr,t(mr,t, mr,t−1) = 33.3̇%. If at the next iteration

we have mr,t+1 = 18, then φr,t+1(mr,t+1, mr,t) = 10%.

This is useful, because a problem inherent in options A-

C is that the new parameter k to be tuned is introduced.

Its relevance to WV is the following: When WV is low, a

long look-back horizon is helpful, because a short one would

trigger more TT adaptation situations, which in reality are just

insignificant changes in workload. On the opposite, when WV

is high, changes can get very fast very significant, and thus a

short look-back horizon should be favored.

For this methodology, we introduce WV classes, into which

we automatically categorize workload on the fly. We define the

following WV classes: LOW, MEDIUM, MEDIUM HIGH,

and HIGH. Algorithm 1 dynamically decides to which WV

class a specific workload trace belongs. Dynamically means

that the classification might change at every iteration, if the

workload behavior changes significantly. Significant in this

context means that the current value for WV is compared to

the recent behavior of the workload. Only if the maximum

value for the WV from recent and current behavior falls

into a different category, the classification is altered. From

the second iteration on, the algorithm first calculates φ and

determines the maximum value in φQ, which is a queue of

size φQ maxsize (lines 2-7). The method addLast() adds the

input element as last element to the queue, whereas the method

remove() removes the first element of the queue. Lines 9-

18 classify the workload according to the found maximum

element of the queue. An ε is added to this comparison in

order to hinder small statistical outliers from altering the

classification outcome. Table I summarizes all constants used

for the evaluation.

Based on this classification the following two options E

and F alter their behavior accordingly. Option E chooses a

“good” set of TTs from a-priori evaluation for different WV

classes. This can be tested offline, and altered if specified in

the SLA. E.g., for high-risk applications both TTs could be

lowered, whereas for energy-aware applications, the TTs could
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(a) TT example for option A (b) TT example for option B (c) TT example for option C

Figure 1: TT examples for options A - C

Algorithm 1 On-the-fly Classifying of Workload into its

Workload Volatility Class

Input: r, mr,t, mr,t−1, φQr

Output: Workload volatility class
1: if t ≥ 1 then
2: {Calculate φ and determine maximum in φQr}
3: φQr.addLast(φr,t(mr,t, mr,t−1))
4: if φQr.size() > φQ maxsize then
5: φQr.remove()
6: end if
7: φQr

max ← max(φQr)
8:

9: {Classify workload volatility}
10: if φQr

max ≤ LOW THRESHOLD + ε then
11: return LOW
12: else if φQr

max ≤ MEDIUM THRESHOLD + ε then
13: return MEDIUM
14: else if φQr

max ≤ MEDIUM HIGH THRESHOLD + ε then
15: return MEDIUM HIGH
16: else if φQr

max ≤ HIGH THRESHOLD + ε then
17: return HIGH
18: end if
19: end if

Parameter Value

LOW THRESHOLD 10
MEDIUM THRESHOLD 50
MEDIUM HIGH THRESHOLD 75
HIGH THRESHOLD 100
φQ maxsize 10
ε 4

Table I: Parameters used for Algorithm 1

be increased for all workloads. For our case, Table II shows

the TTs for the mentioned volatility classes.

Also from a-priori experience, option F chooses the best

option with its best k according to the best result in the

corresponding WV class. As will be seen in Section V, the

best results for every WV class can be achieved by the options

captured in the right-hand side of Table II.

V. EVALUATION

In this section we evaluate the presented methods for

autonomic TT configuration. We will first describe the used

synthetic and real-world workloads, and then present their in-

depth evaluation.

Option E) Option F)
WV TTlow TThigh Choose Option

LOW 70% 90% C), k = 5
MEDIUM 45% 70% A), k = 20
MEDIUM HIGH 30% 60% A), k = 5
HIGH 20% 50% A), k = 2

Table II: A-priori defined TTs and options based on workload

volatility classes for options E) and F)

A. Workloads

In this subsection we shortly describe the used workloads.

We will first present the synthetic workload and then two real-

world workloads. All of them show static behavior, as well as

rapid, and also continuous changes.

The workload generator originally developed in [16] is in-

tended to generate very general workloads for IaaS platforms.

For one parameter, the workload generation is briefly sketched

as follows: After the initial value is drawn from a Gaussian

distribution an up- or down-trend is randomly drawn, as well

as a duration of this trend, both with equal probability. For

every iteration, as long as the trend lasts, the current measured

value is increased or decreased (depending on the trend) by

a percentage evenly drawn from the interval [iBegin, iEnd].
After the trend is over, a new trend is drawn and the iterations

continue as described before.

Clearly, the values for iBegin and iEnd determine the diffi-

culty for handling the workload. A workload that operates with

low iBegin and iEnd values exhibits only very slight changes

and does, consequently, not need a lot of dynamic adaptations.

Large iEnd values, on the contrary, need the enforcement

mechanisms to be very elastically tuned. For the evaluation

we defined and tested LOW, MEDIUM, MEDIUM HIGH

and HIGH WV scenarios with iEnd = 10%, 50%, 75%, and

100%, respectively. As a minimum change we set iBegin =
2% for all scenarios.

Additionally, we tested real monitoring data gathered using

the mentioned Cloud monitoring framework Lom2His. First,

we measured some execution runs of the image-rendering

application PovRay [9]. The workloads for PovRay contain

13 independent measurements from two categories. Due to

the lack of space, we will present the most interesting three

results from each of the categories. Measurements from the

first category stem from rendering a fish jumping out of and
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into water. We will tag these workloads POV F1 to POV F3.

The workloads of the second category stem from rendering

frames for a zoom-up on a box with other boxes inside, which

we will call POV B1 to POV B3. The different runs within

a category just differ in the image resolution.

Second, we evaluated our approach with measurements

gained from the execution of a bioinformatics scientific work-

flow application. We measured utilized resources of TopHat

[24], a typical bioinformatics workflow application analyzing

RNA-Seq data [15], for a duration of about three hours [8].

B. TT adaptation using synthetic workloads

In this subsection we evaluate the six options A-F presented

in Section IV using synthetic workload. As a quality measure,

we will use the cost function defined by Eq.(1) with pr(p) =
100p, wr(w) = 5w, and ar(a) = a for all r, and for all

adaptation options we set α = 4 as used in Eqs. (4)-(7).

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Mbit/s ≤ incoming bandwidth ≤ 20 Mbit/s
1 Mbit/s ≤ outgoing bandwidth ≤ 50 Mbit/s
1 MIPS ≤ CPU power ≤ 100 MIPS
8 MB ≤ memory ≤ 512 MB

Table III: SLA for synthetic workloads

Every simulation run consists of 100 iterations. The SLA for

the synthetic workloads is presented in Table III. Results of the

simulation runs can be seen in Figures 2 - 4. In all Subfigures

2-5(a) we present p, 100−w, a for every simulation run. The

specifics of each run are explained below each group of three

bars: At first the adaptation option is stated, or “off”, if none

is used. Adaptation options also show k where applicable.

All autonomic TT experiments have been conducted with

TTlow = 50% and TThigh = 75% initially set (we will refer

to this as the standard case), unless stated otherwise. This

was chosen based on the evaluation in [17], as this setting

brought best results for a LOW MEDIUM WV class with

iEnd = 18%. For compact notation a TT pair is written as

[TTlow, TThigh]. In all Subfigures 2-5(b) we show the cost

c(p, w, c) with the parameters as defined above.

The first three (group of) bars in Figure 2 represent static

TT configurations evaluated in [17]. The goal of the autonomic

TT management is to achieve costs that are as low or lower

than the costs resulting from a static TT configuration. We

see that the best static result in terms of costs can be achieved

setting TTs = [70%, 90%], and the cost for the standard case

is 159. This value is beaten (or attained) by evaluated options

A for k ≤ 25, C for k = 2, 5 with the standard TT pair, C for

all evaluated k with the best (a-priori unknown) TT pair, and

options E and F. The best case is attained by options C with

the best TT pair, and by option E.

For the MEDIUM WV class we deduce from Figure 3 that

options A for k ≥ 15, E and F beat the static TT scenario. On

the contrary, option C achieves the worst results by far.

Due to space limitations, we omit the graphs of the

MEDIUM HIGH WV class, which are quite similar to those

of the HIGH WV class. Evaluation shows that all options

except option C beat the results from the standard case. Option

E achieves the best result.

As far as the HIGH WV class is concerned (cf. Figure 4), all

options beat the results from the “standard case”. From these,

again option C still achieves the worst results, and again option

E results into lowest costs.

(a) Violations p, utilization 100− w, actions a

(b) Cost c(p, w, a)

Figure 4: Evaluation results for HIGH WV class

Generally, autonomic adaptation works best for workloads

with higher volatility and quite acceptable for workloads with

lower volatility. We also see that option C for k = 5 generally

achieves worst results except for low WV. This is explained by

the fact as stated in Section IV that option C is less cautious

than other options with respect to SLA violations. These

violations, naturally, have a higher impact with higher WV.

Option B for k = 5 achieves the worst result for LOW WV,

and only outperforms the standard case for MEDIUM HIGH

and HIGH WV classes. Nevertheless, options E and F always

outperform the standard case, and achieve best or very good

results, and there is always a k for option A such that it also

outperforms the standard case. The best cases for each WV

class have been resembled in option F.

C. TT adaption using real-world workloads

This section presents the evaluation of two real-world work-

loads categories. One important point to observe with these

workloads is that they do no longer fall into the same WV

class for all the resources.

The SLA for the POVRay application is depicted in Table

IV. As we have seen that in the previous subsection options

E and F always outperform the standard case, we chose

only these options for further evaluation. As can be seen

in Table V (AM describes whether the autonomic manager

is turned on or off), we remark that for POV F* options

E and F always outperform the standard case with partially

big cost improvements up to 48% (for POV F9), while the

better option is not clearly the one or the other. For POV B*
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(a) Violations p, utilization 100− w, actions a (b) Cost c(p, w, a)

Figure 2: Evaluation results for LOW workload volatility class

(a) Violations p, utilization 100− w, actions a (b) Cost c(p, w, a)

Figure 3: Evaluation results for MEDIUM workload volatility class

workloads there is one case, where neither option outperforms

the standard case, whereas in the other cases either option E

or option F outperform the standard case.

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Kbit/s ≤ incoming bandwidth ≤ 80000 Kbit/s
1 Kbit/s ≤ outgoing bandwidth ≤ 8000 Kbit/s
1 MIPS ≤ CPU power ≤ 100000 MIPS
8 MB ≤ memory ≤ 512 MB

Table IV: PovRay SLA

p 100− w a c(p, w, c) WV AM Details

5.56 63.8 17.0 754 POV F1 off [50%, 75%]
3.0 56.34 14.2 533 POV F1 on E)
3.0 53.44 11.7 544 POV F1 on F)

1.34 72.0 7.7 282 POV F3 off [50%, 75%]
1.12 71.7 7.8 261 POV F3 on E)
0.45 68.9 6.5 207 POV F3 on F)

3.24 72.9 15.8 475 POV F9 off [50%, 75%]
0.78 68.7 12.1 247 POV F9 on E)
1.34 70.1 18.4 302 POV F9 on F)

0.45 72.2 6.1 190 POV B1 off [50%, 75%]
0.44 73.0 6.0 186 POV B1 on E)
0.56 72.3 9.2 204 POV B1 on F)

0.11 71.2 10.1 161 POV B2 off [50%, 75%]
0.11 71.8 6.9 159 POV B2 on E)
0.22 72.5 10.8 171 POV B2 on F)

0.22 72.5 10.3 170 POV B3 off [50%, 75%]
0.45 71.8 8.8 194 POV B3 on E)
0.34 69.7 6.0 191 POV B3 on F)

Table V: Results for PovRay workloads

The SLA of the bionformatics workflow is defined as

follows: 1 MB ≤ storage ≤ 19456 MB, 1 MIPS ≤ CPU Power

≤ 20000 MIPS, and 768 MB ≤ memory ≤ 8192 MB. Figure

5 reveals that all evaluated autonomic options outperform the

standard case with option E achieving by far the best result.

For option A we have also experimented with varying k for

different resources and could achieve the second best result

(tied with option F) by setting k = 10 for storage, k = 2 for

CPU, and k = 5 for memory.

(a) Violations p, utilization 100− w, actions a

(b) Cost c(p, w, a)

Figure 5: Evaluation results for the bioinformatics workflow

Concluding we find that for 11 out of 14 real-world work-
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loads both options E and F of the self-adaptive approach

achieve better results than the static approach for at least 7%

(workload POV F2) and at most 48% (workload POV F9).

From the remaining workloads, for two of them (POV B1

and POV B2) only option E performs better, and for only one

workload the static approach outperforms both self-adaptive

ones by 11% (POV B3).

VI. CONCLUSION

In this paper we have devised several methodologies for

autonomically adapting parameters of a Cloud resource man-

agement framework on the level of VM reconfiguration. The

goal of the approach is to reduce SLA violations, increase

resource utilization and achieve both by a low number of

reconfiguration actions.

We have devised two groups of strategies: the first one is

based on a cost function that reflects the goal of the approach.

The other strategy is based on classifying the workload into

workload volatility classes. It acts according to this classi-

fication by either applying the substrategy of pre-configured

parameters or the substrategy of applying the most appropriate

strategy from the first group. In most cases we have seen

that strategies from the latter group achieve better results for

both substrategies, and outperform the strategies not taking

workload volatility into account. Thus, we can deduce that

workload volatility is an important aspect for governing Cloud

infrastructures. Corresponding research is still at its beginning.

For future work we want to prove the benefit regarding the

energy consumption of this approach. We will be able to not

only capture the improvement in costs of the self-adaption,

but also the reduction in energy consumption as compared

to a non-self-adapting approach. Furthermore, we plan to

investigate if we can generalize the findings for autonomically

adapting approaches for other levels of governing Cloud

infrastructures, e.g., VM migration or PM power management.
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