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ABSTRACT

Data center virtualization allows cost-effective server consol-
idation which can increase system throughput and reduce
power consumption. Resource management of virtualized
servers is an important and challenging task, especially when
dealing with fluctuating workloads and complex multi-tier
server applications. Recent results in control theory-based
resource management have shown the potential benefits of
adjusting allocations to match changing workloads.

This paper presents a new resource management scheme
that integrates the Kalman filter into feedback controllers
to dynamically allocate CPU resources to virtual machines
hosting server applications. The novelty of our approach is
the use of the Kalman filter—the optimal filtering technique
for state estimation in the sum of squares sense—to track

the CPU utilizations and update the allocations accordingly.
Our basic controllers continuously detect and self-adapt to
unforeseen workload intensity changes.

Our more advanced controller self-configures itself to any
workload condition without any a priori information. In-
dicatively, it results in within 4.8% of the performance of
workload-aware controllers under high intensity workload
changes, and performs equally well under medium inten-
sity traffic. In addition, our controllers are enhanced to deal
with multi-tier server applications: by using the pair-wise re-
source coupling between application components, they pro-
vide a 3% on average server performance improvement when
facing large unexpected workload increases when compared
to controllers with no such resource-coupling mechanism.
We evaluate our techniques by controlling a 3-tier Rubis
benchmark web site deployed on a prototype Xen-virtualized
cluster.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques,
Modeling techniques.
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1. INTRODUCTION
Recent advances in virtualizing commodity hardware (e.g. [4])
are changing the structure of the data center. A physi-
cal server is transformed into one or more virtual machines
(VMs) that dynamically share the underlying hardware re-
sources, and applications run within these isolated envi-
ronments. Each VM is subject to management operations
such as creation, deletion, and migration between physical
machines, as well as run-time resource allocation. These
features enable resource sharing in arbitrary combinations
between applications and physical servers and provide the
means for efficient server consolidation. However, to capi-
talize on this technology, it is essential to adaptively provi-
sion virtualized applications with resources commensurate
with their workload demands. These demands are difficult
to estimate since their characteristics typically change over
time.

Fluctuating workloads [2] cause diverse and changing re-
source demands on the system components. Adjustable re-
source allocations that follow the workload fluctuations for
virtualized applications are thus important to create a high
performance server consolidation environment. Indeed, if
each application is properly provisioned, additional resources
can be used otherwise, e.g., to run additional applications,
or to increase the throughput of existing ones.

In this paper we present an innovative control-based allo-
cation approach that integrates the Kalman filtering tech-
nique [7] into a set of feedback controllers to dynamically
provision CPU resources to multi-tier virtualized applica-
tions. Kalman filters have been used previously to estimate
the parameters of a queueing model in a simulation environ-
ment [17]; however, to our knowledge, this is the first time
that Kalman filters have been used directly to both track
the CPU utilization of virtualized servers and to guide their
resource allocations.

We formulate the allocation problem as a CPU utiliza-
tion tracking problem where a controller aims to track and
maintain the CPU allocation above the utilization within a
certain safety margin. This is an intuitive approach to re-
source provisioning in which each VM is allocated resources
as needed. Maintaining the CPU allocation to a reference
input has been adopted by commercial products (e.g. HP
Workload Manager), and other research prototypes [15, 11].
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However our controllers uniquely integrate a very powerful
filtering technique into linear feedback controllers.

The rest of this paper is organized as follows. Section 2
further motivates our approach to resource provisioning and
the use of Kalman filters. The application performance
model and the controllers are introduced in Section 3. Sec-
tion 4 describes the Rubis benchmark and the evaluation
platform as well as presenting our experimental results. Re-
lated work is discussed in Section 5. Finally, Section 6 con-
cludes and looks to future work.

2. MOTIVATION
Resource provisioning techniques for virtualized applica-

tions broadly belong to two main categories: (a) constraint-

free and (b) constraint-based. In constraint-free provisioning,
each application is able to use up to the maximum physical
capacity of the hosted server. This approach is administra-
tively simple and therefore easy to implement. However, it
does not provide any application performance guarantees,
especially under conditions of contention [11]. Any of the
applications could dominate resource use leaving the rest
starving. Furthermore, due to the constant changes of the
CPU utilizations by the hosted applications, it is very diffi-
cult to estimate the available free resources per physical ma-
chine, thus making any consolidation planning that respects
application performance guarantees hard to implement.

In constraint-based resource configuration, each applica-
tion is constrained to use a subset of the physical resources;
popular approaches include limit-based and adaptive upper-

bound thresholds configurations. For instance, the VMware
DRS resource management tool [1] bounds CPU resource
utilization between user-configured lower and upper lim-
its. The advantages of this approach are two-fold. Firstly,
a certain minimum application performance is guaranteed
due the use of the lower limit. Secondly, since the utiliza-
tion of all co-located VMs cannot pass beyond their aggre-
gate upper limit, it is possible to estimate the free avail-
able resources for hosting additional applications. Although
limit-based configuration is a simple and effective mecha-
nism for performance-assured consolidation, it can fail when
applications host diverse and frequently changing workloads.
Performance violations occur when an application demands
more resources than its upper limit, and resources are wasted
when an application requires even less than its lower limit.

Resource configuration based on adaptive upper-bound
thresholds addresses these shortcomings. In this case, a
VM is continuously updated with the maximum resources
it can use. The allocation for each application dynamically
adapts to workload demands so as to always meet applica-
tion performance guarantees. This mechanism enables other
applications to be consolidated based on the available free
resources. There have been several recent systems which use
this basic approach via control theory (e.g. [11]).

In this paper we present a new control theory-based re-
source allocation management system for VMs that uses a
simple performance model and the Kalman filter to track
noisy resource utilizations and update the allocations.1 The
key novelty of our approach is the integration of a filter-
ing technique into feedback controllers. We have chosen the

1We have introduced this approach in [8]. This is an ex-
tended version with an extensive experimental evaluation of
the controllers. In particular, it emphasizes the evaluation
of the self-configuring controller.

Kalman filter since it is the optimal linear filtering tech-
nique when certain conditions hold and has good perfor-
mance even when those conditions are relaxed. Using a
filtering approach makes our controllers operate smoothly
across different workloads. We have also extended our work
to use the pair-wise resource coupling between components
in multi-tier applications to adjust more rapidly to workload
changes. Finally, and most importantly, we present a zero-
configuration mechanism to detect and adapt to workload
conditions without any advance information.

3. SYSTEM
This paper presents 3 Kalman-based feedback controllers:

1. The Single Input Single Output (SISO) Kalman Basic
Controller, hereafter denoted as the KBC. This con-
troller dynamically allocates CPU resources to individ-
ual VMs which can either host independent server ap-
plications, or be part of a multi-tier application span-
ning several VMs.

2. The Multiple Input Multiple Output (MIMO) Pro-
cess Noise Covariance Controller, referred to as the
PNCC. This controller adjusts the allocations of all
the VMs of a multi-tier application, making use of the
pair-wise covariances between VM resource utilization
to capture the correlations between components. The
goal of the PNCC is to allocate resources rapidly to
multi-tier applications when compared to the KBC
controller.

3. The Adaptive MIMO PNCC, or APNNC. The AP-
NCC, like the PNCC, collectively allocates CPU re-
sources to all VMs of an application. However in ad-
dition it self-configures its parameters and self-adapts
to diverse workload conditions.

Each controller allocates CPU resources to VMs based solely
on resource utilization observations and the application per-
formance model. Each VM is regarded as a black-box which
can host an application tier or a whole application. The
terms tier, component, and VM are used interchangeably
throughout. The rest of this section presents the applica-
tion performance model and the controller designs.

3.1 Application Performance Model
The controllers use a simple and intuitive application per-

formance model enhanced with Kalman filtering to track the
CPU resource utilization of VMs.

Our performance model uses the well-known observation
that when a server application reaches its saturation point,
its performance—e.g., request-response times—degrades sub-
stantially. To maintain good performance the application
should be allocated more resources than its current utiliza-
tion; this excess of resources is usually referred to as head-

room. However, maintaining the resource capacity above
the demands is not trivial due to diverse workload condi-
tions that usually cause substantial variance in utilization.

We start by modelling the time-varying CPU usage as a
one-dimensional random walk. The system is therefore gov-
erned by the following linear stochastic difference equation:

vk+1 = vk + tk, (1)

where vk is the percentage of the total CPU capacity of a
physical machine actually used by a component during the
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interval indexed by k; and the independent random variable
tk represents the process noise and is assumed to be normally
distributed. Intuitively, in a server system the CPU usage
in interval vk+1 will generally depend on the usage of the
previous interval vk as modified by changes, tk, caused by
request processing, e.g. processes being added to or leaving
the system, additional computation by existing clients, lack
of computation due to I/O waiting, and so on.

If vk is known, the controllers should maintain the allo-
cation at a certain level of the usage in order to sustain
good application performance; this can be customized for
each server application or VM. Therefore, the purpose of
the controllers is to track the utilization vk and maintain
the allocation above the utilization by a certain threshold.
In what follows we present an integrated approach to appli-
cation performance modelling and controller design.

3.2 Controller Design
As mentioned previously, our controllers use the Kalman

filter to track the utilization and update the allocation ac-
cordingly. This approach essentially uses a filtering tech-
nique to eliminate the noise of the CPU utilization signal
coming from transient workload changes while still discov-
ering its main fluctuations.

The Kalman Filter [7] is a data processing method that
estimates the state of a linear stochastic system in a recur-
sive manner based on noisy measurements. The Kalman
filter is optimal in the sum square error sense under the fol-
lowing assumptions: (a) the system is described by a linear

model and (b) the process and measurement noise are white

and Gaussian. It is also computationally attractive, due to
its recursive computation, since the production of the next
estimate only requires the updated measurements and the
previous predictions.

3.2.1 KBC

The SISO KBC controller is a utilization tracking con-
troller for individual VMs. All metrics presented in this
subsection are scalar and refer to a single component. We
define a component’s CPU allocation a to be the percentage
of the total CPU capacity of a physical machine allocated
to a running VM; and u to be the measured/observed value
of the utilization v.

The purpose of the controller is to compute the allocation
of each VM using the application performance model that
is based on tracking the utilization. The allocation signal is
defined by:

ak+1 = ak + zk, (2)

and is related to the utilization measurement uk by:

uk = cak + wk, (3)

where c denotes the headroom resources and is customized
for each server application or VM. The independent ran-
dom variables zk and wk represent the process and mea-
surement noise respectively, and are assumed to be normally
distributed:

p(z) ∼ N(0, Q),

p(w) ∼ N(0, R).

The measurement noise variance R might change with each
time step or measurement, and the process noise variance Q

will almost certainly change, reflecting different system dy-
namics. However for the purposes of the KBC both are as-
sumed to be stationary during the filter operation. Another
approach which considers non-stationary noise is presented
later.

Equations (2) and (3) describe the system dynamics, and
hence the required allocation for the next interval is a di-
rect application of Kalman filter theory, used here to track
the utilization vk through the measurements uk and subse-
quently the allocation ak+1. This process proceeds as fol-
lows:

eak is defined as the a priori estimation of the CPU allo-
cation, that is the predicted estimation of the allocation for
the interval k based on previous measurements. bak is the
a posteriori estimation of the CPU allocation, that is the
corrected estimation of the allocation based on new mea-
surements. Similarly, the a priori estimation error variance

is ePk and the a posteriori estimation is bPk. The predicted a

priori allocation for the next interval k + 1 is given by:

eak+1 = bak, (4)

where the corrected a posteriori estimation over the previous
interval is:

bak = eak + Kk(uk − ceak). (5)

At the beginning of interval k + 1, the controller applies
the a priori eak+1 allocation. If the eak+1 estimation exceeds
the available physical resources, the controller allocates the
maximum available; hence the filter is active only in the
under-loaded situation where the dynamics of the system
are linear. The correction Kalman gain between the actual
and the predicted measurements is:

Kk = c ePk(c2
ePk + R)−1. (6)

The Kalman gain Kk stabilizes after several k iterations.
The a posteriori and a priori estimations of the error vari-
ance are respectively:

bPk = (1 − cKk) ePk, (7)

ePk+1 = bPk + Q. (8)

Kalman Gain:
The Kalman gain is important when computing the allo-
cation for the next interval eak+1. It is a function of the
variables Q and R which describe the dynamics of the sys-
tem. In general, Kk monotonically increases with Q and de-
creases with R. This is also explained intuitively: Consider
a system with large process noise Q. Its states experience
large variation, and this is observed in any measurements
taken also. The filter should then increase its confidence
in the new error (the difference between the predicted state
and the measurement), rather than the current prediction,
in order to keep up with the highly variable measurements.
Therefore the Kalman gain is relatively large. On the other
hand, when the
measurement noise variation R increases, the new measure-
ments are biased by the included measurement error. The
filter should then decrease its confidence in the new error and
in this case the Kalman gain values are relatively smaller.
In addition, by scaling the Q and R values, the Kalman
gain values can be tuned to make the controllers operate in
different filtering modes — this is verified by our results in
Section 4.
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3.2.2 PNCC

The MIMO PNCC controller further extends the KBC
controller to consider resource coupling between the compo-
nents utilizations in multi-tier applications. (The utilization
of the different components in multi-tier servers are corre-
lated since the components work together to serve incoming
requests).

Like the KBC, the PNCC adjusts the allocation of each
component based on its own error. However in addition, us-
ing the covariance process noise, it also adjusts based on the
errors caused by the other components. If n is the number
of application components, then the PNCC Kalman filter
equations for stationary process and measurement noise are:

ak+1 = ak + Wk, (9)

uk = Cak + Vk, (10)

bak = eak + Kk(uk − Ceak), (11)

Kk = CePk(CePkC
T + R)−1, (12)

bPk = (I− CKk)ePk, (13)

eak+1 = bak, (14)

ePk+1 = bPk + Q, (15)

where ak ∈ R
n×1 and uk ∈ R

n×1 are the allocation and us-
age vectors respectively and each row corresponds to a com-
ponent; Wk ∈ R

n×1 is the process noise matrix; Vk ∈ R
n×1

is the measurement noise matrix; C ∈ R
n×n is a diagonal

matrix with the target value c for each component along

the diagonal; ePk ∈ R
n×n and bPk ∈ R

n×n are the a priori

and a posteriori error covariance matrices; Kk ∈ R
n×n is

the Kalman gain matrix; and R ∈ R
n×n and Q ∈ R

n×n

are the covariance matrices of the stationary measurement
and process noises respectively. For matrices Q and R, the
diagonal elements correspond to the process and measure-
ment noise for each component. The non-diagonal elements
of the matrix Q correspond to the process noise covariance
between different components. Similarly, the non-diagonal
elements of the Kk matrix correspond to the gain between
different components. For a 3-tier application, for exam-
ple, the a posteriori bak(1) estimation of the allocation of
the first component at interval k is the result of the a priori

estimation eak(1) of the allocation plus the corrections from
all components’ innovations, given by:

bak(1) = eak(1) + Kk(1, 1)(uk(1) − C(1, 1)eak(1))

+ Kk(1, 2)(uk(2) − C(2, 2)eak(2))

+ Kk(1, 3)(uk(3) − C(3, 3)eak(3)).

The covariances in this case indicate the coupling of the
utilization changes between components.

3.2.3 Adaptive-PNCC (APNCC)

So far only stationary process and measurement noises
have been considered. Both controllers can be easily ex-
tended to adapt to operating conditions by considering non-
stationary noises. For example in the case of the PNCC
controller, all formulae are as before but instead of the sta-
tionary Q, the dynamic Qk is now used. In this case, Qk is
self-configured every several intervals with the latest compu-
tations of variances and covariances. Since our measurement
sensors are simple, the measurement noise variance is con-
sidered to always be stationary, i.e. Rk = R.

3.2.4 Modeling Variances and Covariances

The allocation is considered to be proportional to the us-
age. Hence we can estimate its process noise variance Q by
estimating the usage variance and then using the following
formula (var denotes variance):

var(a) ≃ var(
u

c
) =

1

c2
var(u). (16)

The usage process noise corresponds to the evolution of the
usage signal in successive time frames. Estimating its vari-
ance directly is difficult, since the usage signal itself is an
unknown signal, which does not correspond to any physical
process well described by a mathematical law. The usage
variance is calculated from measurements of the CPU uti-
lization.

Finally, the measurement noise variance R corresponds to
the confidence that the measured value is very close or not
to the real one. Once more it is difficult to compute the ex-

act amount of CPU usage. However, given the existence of
relatively accurate measurement tools, a small value (such
as R = 1.0) acts as a good approximation of possible mea-
surement errors.

Like the computation of the allocation variances, the co-
variances between the components’ allocations are computed
based on the usage covariances. If ui and uj are the mea-
sured usages between components i and j, then the covari-
ance between their allocations ai and aj is computed as (cov
denotes the covariance):

cov(ai, aj) ≃ cov(
ui

c
,
uj

c
) =

1

c2
cov(ui, uj). (17)

When the KBC or the PNCC controllers are used, the
stationary process variances or covariances are computed off-
line in advance and remain constant at run-time. In the case
of APNCC, they are computed on-line and their values are
updated every few controller intervals. Different approaches
will be compared in the evaluation.

4. EXPERIMENT EVALUATION
In this section we evaluate the controllers using a proto-

type virtualized cluster hosting a 3-tier Rubis [3] benchmark
auction web server subject to varying workload conditions.

4.1 Prototype Virtualized Cluster
Figure 1 illustrates the prototype virtualized cluster which

consists of three machines connected by Gigabit Ethernet
and each running the Xen 3.0.2 hypervisor [4] and hosting
the Rubis server application. Rubis is a prototype auction
web server which models eBay.com. Each one of the three
server components—Tomcat web server, JBoss application
server and MySQL DB server—is deployed in a separate VM
running on a separate physical machine. A fourth machine
hosts the Rubis Client Emulator used to generate requests.
In this paper we use two workload mixes available by the
Rubis distribution: the browsing mix (BR) contains read-
only requests and the bidding mix (BD) that includes 15%
read-write requests. BR is mostly used unless stated other-
wise. The Client Emulator also records the response times
of requests and is used to evaluate the performance of the
controllers.

We have built two modules to control the resource man-
agement process: the manager and the controller modules.
Periodically, the manager module submits the mean CPU
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Figure 1: Virtualized prototype and control system.
Solid lines between the controller modules and the
Rubis Server System depict the three KBC SISO
controllers. The MIMO controllers are shown by
the dashed rectangle.

usage for the VM under control over the last interval to the
controller module(s). The controller(s) compute the
allocations for the next interval and enforce the new allo-
cations for the specified VMs by using the CPU scheduler
interface exported by Xen. Our prototype uses the “simple
EDF” (SEDF) scheduler configured with the capped option
so that no VM can use any more CPU time that it has been
allocated. The controller modules run on the same ma-
chine as the Client Emulator.

This paper focuses on evaluating the performance of the
Kalman filters for controlling the CPU allocations for virtu-
alized server applications. To ensure that the server perfor-
mance depends solely on the controller(s) CPU allocations,
certain actions are taken. All machines have two CPUs, and
each one of the two VMs per physical machine is pinned on
a separate CPU. This simple setup enables us to study the
impact of the controller(s) allocations on server performance
without worrying about scheduling artifacts among running
VMs sharing the same CPU. Finally, for all the experiments
each VM is allocated memory as required when first created
and this allocation is kept constant throughout. The net-
work bandwidth is also measured and is never a bottleneck.

4.2 Preliminaries
This section describes the experimental methodology and

sets the values of those parameters (i.e. controller interval,
c, variances/covariances) that are kept the same in several
experiments. The evaluation mainly uses two workload ex-
periments:
Workload W0(t1,t2,t3): During this experiment, 300
clients issue requests for t3 intervals in total. At the t1th

interval, another 300 clients are added until the t2th inter-
val. All requests belong to the BR mix. This experiment
simulates a workload of medium intensity since there are
two workload changes and the number of clients remains
constant for the rest of the experiment.

Results of each experiment are illustrated by two graphs
(see, e.g., Figure 2 presented later). The first graph shows
the average Tomcat component utilization and the average
corresponding allocation for each interval (denoted as sam-

ple point in the graphs). Due to space limitations, graphs
of the JBoss and MySQL components are omitted, but they

give qualitatively similar results. The second graph presents
the server performance: mean response time (hereafter de-
noted as mRT) (in seconds) for each controller interval. The
mRT data are not used to control the allocations; rather they
are captured to provide a graphical representation of server
performance.

Each controller is evaluated for its ability to: (a) follow the
utilizations, and (b) maintain good server performance un-
der workload changes. When the server components are ad-
equately provisioned for any workload type the server main-
tains the mRT of requests ≤ 1 second (s).2 This is the perfor-
mance level the server is expected to achieve even when its
resources are dynamically provisioned by the controllers and
is used hereafter to evaluate the controllers performance.
Workload W1: During this experiment 200 clients issue
requests for 60 intervals in total. At the 30th interval, an-
other 600 are added for the next 30 intervals. All requests
belong to the BR mix. This experiment simulates an un-
expected large workload increase and is used to assess the
controller performance where components are most likely to
saturate. The performance of the controllers is examined
only for the duration of the change between the intervals 30
up to 50, until the server is settled down to the increased
workload. In this way, emphasis is given only to the actual
workload change.

We use three evaluation metrics, all of which are computed
over a period of several intervals.

1. CR is the total number of completed requests.

2. NR denotes the percentage of requests with response
time ≤ 1s over CR.

3. RMSE is the root mean squared error of the utiliza-

tion prediction given by

r

1
N

PN

i=1

“

l−predicted(l)
predicted(l)

”2

, where

l denotes a request response time and N is the total
number of requests.

The CR and NR metrics give aggregate numbers over re-
quest characteristics for some time duration. When the val-
ues of either NR or CR increase among experiments of the
same type and duration, the performance of the server has
improved. The RMSE metric provides a more detailed view
of the request response times. For its calculation the pre-
dicted value is the mRT for a specific number of clients. Since
the current system does not predict individual request re-
sponse times, the RMSE uses the mRT. Therefore, an error
will always be present between the model predictions (mRT)
and the measured response times.3 In general, the smaller
the RMSE values the closer the response times to the mRT

and the better the server performance. A combination of
the three metrics CR, NR, and RMSE provide enough in-
formation to compare the different controllers.

4.2.1 Controller Interval

Intervals of 5s and 10s were examined. These intervals
are chosen because if one takes the mean of the utilizations
sampled with these resolutions, then this is very close to the
actual long-term mean (e.g. 100s) of the system utilization.

2This was extensively measured under changing workloads.
Due to space limitations these results are not presented here.
3For example, the RMSE in the case of a stationary work-
load mix of 600 clients for 20 intervals was 2.17.
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Thus, these resolutions are not too coarse to describe the
mean system performance and still do not impose a signifi-
cant overhead due to system measurement. The evaluation
in this paper uses a 5s interval throughout.

4.2.2 Parameter c

The parameter c, which denotes the level of the CPU uti-
lization rate to the allocation, is set to 60%. Although 60%
might seem low and that resources are “wasted” and hence
less resources are left for another application to run on the
same host, this value enables us to study the controllers’
performance with few implications from saturated compo-
nents. We have found that when the allocation approaches
the utilization, the server performance degrades. A low uti-
lization rate is chosen, so as to avoid transient component
saturation as much as possible.

4.2.3 Variances and Covariances

The KBC and the PNCC controllers use off-line computed
process variances and covariances which are essential to the
computation of the Kalman gains.

Their values are computed based on Eq. (16) and (17) us-
ing utilization measurements coming from an experiment of
a stationary workload mix of 600 clients for 40 intervals,
repeated ten times for statistically confident results, and
where each component is allocated 100% of its CPU. The
allocation variances are: var(Tomcat, JBoss, MySQL)=(79,
13.19, 132). These values are hereafter referred to as Q0.
The allocation covariances are: cov(Tomcat, JBoss)= 6.5,
cov(Tomcat, MySQL)=14.05, and cov(JBoss, MySQL)=5.
The allocation covariance matrix that contains the above
values is denoted as Q0. Since it is very hard if not impos-
sible to compute all the Q0 and Q0 values for all possible
combinations of workload mixes, these numbers are used as
an approximation in the case of the KBC and PNCC con-
trollers for the different workloads.

Finally, the measurement noise variance is set to a small
value (e.g. R = 1.0) given the existence of relatively accurate
VM CPU measurement tools. This value acts as a good
approximation of possible measurement errors.

4.3 KBC
Figure 2 illustrates the KBC allocations and server per-

formance during a W0(20,40,60) experiment where the ini-
tial allocations are set to 100%. Each controller tracks the
usage fluctuations and adjusts the allocations accordingly,
therefore the first goal of the control system is achieved.
Figure 2(b) depicts the mRT for each interval which remains
well bellow 1s for the majority of the intervals and 87.92%
of requests have response times ≤ 1s. The second goal of
the system, that is to maintain good server performance,
is also achieved. The mRT exceeds 1s during the intervals
where one or more components are CPU saturated; this is
standard Rubis behavior.

Every KBC controller adjusts the allocations to match any
transient utilization changes. This is due to the high values
of the KBC Kalman gains (second column in Table 1) and
cause each controller to have an increased confidence in the
new observations and follow them rather than the old pre-
dictions. Although in this way the controllers react more
quickly to any workload change, they also make unneces-
sary allocation adjustments, which could cause temporary
component saturation.

tier Gains for KBC Q0 Gains for KBC Q0/400

Tomcat 1.61 0.38

JBoss 1.44 0.17

MySQL 1.63 0.48

Table 1: KBC Kalman gains.
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Figure 2: KBC Performance, Q0 Values.
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Figure 3: KBC Performance, Q0/400 Values.
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Figure 4: PNCC Performance, Q0/400 Values.

To alleviate this situation the KBC can be configured
to operate on different modes of workload noise filtering.
For example, Figure 3 illustrates a W0(20,40,60) experiment
where the Kalman gains (third column in Table 1) are con-
figured to smaller values (as explained later) than before. In
the latter experiment, the controllers have less confidence in
the new measurements and they follow the utilization pat-
terns in a less aggressive manner. The performance of the
server is now more stable with less mRT spikes. Overall, the
percentage of requests with mRT ≤ 1s has now increased to
89.6%.

The advantage of integrating the Kalman filtering into a
feedback controller is not only it operates under different
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Figure 5: PNCC and KBC Comparison for W1 Experiments. Percentages shown in each case represent the
absolute metric difference of the PNCC over the KBC with a 90% CI after a t-test is applied. For each x
value experiments are repeated 20 times.

filtering modes but in addition this is based on informa-
tion coming from the application resource utilization itself
rather than relying on ad-hoc methods or system identifica-
tion analysis. The KBC controller operates on different fil-
tering modes based on the gain which depends on the process
Q and measurement noise variance R. In Figure 3 the pro-
cess noise variances are set to Q0/400 and are smaller than
the R values. The controller considers the workload fluctu-
ations/noise to come from the measurements themselves, is
less confident in following the utilization changes and hence
operates in a smooth filtering mode. Therefore, by simply
scaling the initial Q0 values in respect to R, both of which
embody information regarding workload utilization, differ-
ent modes of filtering are achieved.

However, when configured to filter out the noise, the con-
trollers respond slowly to substantial workload increases;
there are more mRT spikes around the 20th interval in the
case of the KBC in Figure 3(b) than in case of the KBC
in Figure 2(b). A controller cannot distinguish between
a small workload fluctuation and a substantial workload
change. The PNCC controller evaluated next addresses this
issue.

4.4 PNCC
The PNCC controller is designed to react fast to workload

changes for multi-tier servers by considering the resource
coupling from all components, even when it operates under
a smooth filtering mode.

Figure 4 shows the PNCC controller allocations for a W0(
20,40,60) experiment with workload fluctuations; Q matrix
is set to the off-line computed values Q0 again divided by
400. The figures show that the PNCC not only tracks main
utilization fluctuations, but is also able to adapt to the work-
load increase faster than the previous KBC controllers. Fig-
ure 4(b) illustrates that the mRT stays below 1s for most of
the intervals of the workload increase.

The PNCC ability to adapt to workload changes faster
than the KBC controllers comes from the utilization re-
source covariance between components by using the ma-
trix Q. The final allocation of each component is the re-
sult of its own error plus the errors from the other compo-
nents. For instance, the Tomcat allocations are the result
of its own error (multiplied by the Tomcat gain) in addi-
tion to the control errors from JBoss (multiplied by the

Tomcat-JBoss gain) and MySQL (multiplied by the Tomcat-
MySQL). The Kalman gain values used by the Tomcat com-
ponent in Figure 4 are: (Tomcat, Tomcat-JBoss, Tomcat-
MySQL)= (0.38, 0.0012, 0.0025).

4.4.1 W1 Comparison

The performance of the PNCC controller in adjusting to
substantial workload changes is now examined for differ-
ent filtering modes. The covariance matrix Q is divided
by x, hereafter denoted as the damping factor, drawn from
X = (x ∈ {8, 10, 40, 80, 100, 400}). These values are se-
lected to exercise a wide range of Kalman gains from rela-
tively large to small values. Larger x values than those in
X do not significantly change the Kalman gain values, and
therefore are not used in the evaluation. Figure 5 shows the
performance differences between the PNCC and the KBC as
measured using all three metrics in an W1 experiment. The
performance of both controllers decrease (CR and NR drop
and the error RMSE increases) as the x damping factor in-
creases. This is because the Kalman gains decrease and all
controllers become less confident in their predictions than
the measured values and hence they are slower to adapt to
the increasing resource demands.

However, the PNCC controller equals or improves on the
performance of the KBC controllers when considering all
three metrics and all values of x. The average improvement
across configurations according to the CR metric is 3%. In
fact, the performance improvement of the PNCC over the
KBC increases as the x values increase. In these cases, where
the small Kalman gains make the controllers slow to react to
workload changes, the improvement of the PNCC over the
KBC is more apparent. In all cases, the PNCC reacts faster
to workload changes than the KBC controllers because it
incorporates all components errors.

4.5 APNCC
Both the KBC and the PNCC controllers use off-line com-

puted variances and covariances. This section evaluates the
Adaptive PNCC controller (APNCC) which estimates the
covariance matrix Q online from utilization measurements.
The advantage of this controller is that it self-configures its
parameters and adapts to workload dynamics as they hap-
pen.

The APNCC is initially evaluated using a similar experi-
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Figure 6: APNCC Performance, Q/40 Values.
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Figure 7: PNCC and APNCC Comparison for W0(40,80,120) Experiments. Percentages in each case show
the metric difference of the APNCC controller over the PNCC with a 95% CI after a t-test is applied. A
positive sign in the percentage indicates that the metric in the APNCC case has higher value than in the
case of the PNCC. A negative sign shows the opposite.

ment to W0 where the workload intensity and mix are varied
as shown in Figure 6. This experiment runs for longer than
before and the Kalman gains are updated based on a sliding
window mechanism that uses the utilization measurements
of the last 10 intervals. In all cases the controller uses Q/40
values. The controller tracks the utilization changes across
diverse workload conditions, i.e. different workload mixes
and number of clients; the mRT is ≤ 1s for the majority of
the intervals and 89.58% of the requests have response times
≤ 1s. The spikes in the response times (Figure 6(b)) are
due to transient JBoss CPU increases, caused by the Rubis
benchmark, which cause the JBoss component to saturate.4

The online computed Kalman gain values are shown in
Figure 6(c). The same figure also depicts the Kalman gains
when computed off-line for 600 clients (dashed line) for ref-
erence purposes. The figure shows an increase of the gain
values for the intervals 60 − 120 during which the number
of clients increases to 600. The adaptation mechanism cap-
tures the workload changes and the controller parameters
are updated accordingly.

4.5.1 W0 Comparison

We also compare the APNCC with the PNCC using W0
experiments for various filtering modes. For different values
of the damping factor x ∈ X and for each different controller,
a W0(40,80,120) experiment is repeated five times. In the

4Due to space limitation the JBoss graph is not shown here.

case of the APNCC, the covariance matrix Q is estimated
every 10 controller intervals from the utilization measure-
ments. Results are shown in Figure 7. According to the CR
and NR metrics, the self-adaptive APNCC performs equally
well as the workload-aware PNCC. Finally, in the RMSE
case, neither controller seems to perform better than the
other according to all x values.

4.5.2 W1 Comparison

Here we examine the way the APNCC adapts to a sub-
stantial workload increase. Figure 8 depicts the APNCC
Kalman gains for all three application components in an
W1 experiment with x = 8. For the first ten intervals the
APNCC gains are set to the PNCC off-line computed values.
For every subsequent interval the gains are updated based on
a sliding window mechanism that uses the utilization mea-
surements of the last 10 intervals. Figure 8 shows that the
APNCC adapts the gains to both workload conditions (viz.
200 clients during the first half of the experiment and 800
clients for the second half). In addition, during the work-
load transition, the gains increase because of the changes
in the utilization variances. During the transition, the AP-
NCC gains adapt to the workload increase without any a

priori knowledge, but simply using the utilization variations
as they happen.

We further evaluate the APNCC against different filter-
ing modes for x ∈ X. The results are shown in Figure 9
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Figure 9: PNCC and APNCC Comparison for W1 Experiments. Percentages in each case show the absolute
metric difference of the APNCC over the PNCC with a 95% confidence interval after a t-test is applied. For
each x value experiments are repeated 20 times.
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Figure 8: APNCC Kalman Gains for x = 8.

along with the PNCC performance for an equivalent exper-
iment for comparison purposes. As shown by all evaluation
metrics, the APNCC performance decreases with increasing
x. This is aligned with previous observations since, as x in-
creases, the APNCC operates in a smoother filtering mode
and therefore is slower to detect any changes.

It is interesting to observe that when comparing the PNCC
and the APNCC controllers for the same x values the AP-
NCC performance slightly decreases. This is because at the
time of the workload change, the PNCC off-line gain val-
ues are larger than the APNCC online estimated ones, as
shown in Figure 8. This makes the PNCC react faster to
the workload change. However, although the APNCC gains
are smaller at the time the workload increase starts, the
APNCC detects the change and adapts accordingly. Indica-
tively, its performance in terms of CR is on average only
4.8% worse than the PNCC across all configurations.

The PNCC off-line gains are computed for only a sin-
gle workload type and cannot capture the range of utiliza-
tion variability in a server application. The APNCC adapts
to substantial workload increases resulting in a consistent
good behavior, while the PNCC performance depends on
how close its off-line gains capture the workload variability.

The APNCC does not need any special mechanism to de-
tect a large workload increase. This controller, which treats
all workload changes the same, automatically adapts its
gains to depict the importance or not of the workload vari-

ation. Finally, when tuning the APNCC controller, one can
essentially choose an x value and the controller would still
adjust its gain to capture any subsequent workload changes.

5. RELATED WORK

5.1 Control-Centric Resource Provisioning
Single-Tier Applications: [15, 18] present feedback con-
trollers to allocate CPU resources of a single-tier Apache
server running on the HP-UX PRM resource container. These
include (a) a proportional-integral controller that regulates
the inverse mRT based on its linear relationship to the CPU
allocation identified by system analysis; (b) a non-linear con-
troller which regulates the relative utilization; and (c) com-
binations of the above. Compared to these methods, our
Kalman-based controllers are linear and are based on a sim-
ple yet widely applicable model of the CPU utilizations.
Multi-Tier Applications: The control of multi-tier server
applications has also gained attention. In [11] a two-layered
controller that regulates the relative utilization of two in-
stances of two-tier virtualized Rubis servers co-hosted on
two physical servers is presented. The authors use the first
layer controller from [15] to regulate the relative utilization
for each tier and a second layer controller to further adjust
the allocations using a QoS differentiation metric in cases of
CPU contention. Wang et al. [14] present a 3-layer nested
control design to control the CPU of a 3-tier Rubis appli-
cation. The two inner loops are similar to [18]. The outer
loop provides a better approximation of the corresponding
utilization per tier in respect to the reference mRT as com-
puted by a transaction mix performance model. Our MIMO
controllers track the utilization using a simple CPU resource
coupling performance model updated online rather than re-
lying on application-specific transaction mixes.

Liu et al. [10] address the problem of resource sharing
in cases of contention in shared virtualized clusters. Their
controller allocates CPU resources based on a QoS response
time ratio that exists in the overload region. Our MIMO
Kalman controllers use the online resource coupling model
of the (easily derived) metric of CPU utilization.

5.2 Other Approaches
In addition to control theory, other techniques have been

used to manage resources in virtualized environments. For
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instance, Xu et al. [16] present a 2-layer resource manage-
ment system to minimize the resources consumed for single-
tier applications to meet their SLAs, while maximizing the
profit of a utility function over the shared resources’ revenue
using fuzzy modelling. In [6], the authors use a hybrid ap-
proach with queueing models and optimization techniques
to decide component placement for consolidated virtualized
applications.

5.3 Non-Virtualized Clusters
Before virtualization became widely adopted, other sys-

tems were developed to manage resource multiplexing. Here
we briefly discuss some previous approaches to CPU resource
allocation.

In Sharc [12], an exponentially-weighted moving average
(EWMA) filter is used to estimate future CPU and network
bandwidth resources based on past observations. The fil-
ter uses statically assigned parameters and can operate in a
range of modes from being aggressively adaptive to changes
of the observed signal (agile filter), or to being smooth on
transient fluctuations (stable filter). However, this filter
works only in one mode at a time and therefore it is not
adaptive to different operating conditions.

To address the above limitations, Chase et al. [5] use a
flop-flip filter based on similar filters from [9]. The flop-flip
filter uses the moving average of the estimations over a 30s
window and, if that estimation fails outside one standard de-
viation, it switches to the new moving average. The authors
use this filter to smooth particularly bursty signals. The
Kalman controllers we propose adapt dynamically to oper-
ating conditions without using pre-set values. Thus, they are
much easier to deploy and require minimal configuration.

Urgaonkar et al. [13] use a profiling phase during which
the application is run under realistic workloads to derive its
resource utilization distribution. The authors also propose
online updating of the resource distributions periodically.
Our adaptive controller does not use off-line measurements
and instead operates solely on short-term observations to
make predictions of the workload utilizations.

6. CONCLUSIONS AND FUTUREWORK
High consolidation in virtualized clusters requires adap-

tive resource management of server applications. Control
theory has been used to adjust the CPU allocations based
on past utilization observations. This paper has presented
the integration of the Kalman filter into feedback controllers
for dynamically allocating the CPU resources of multi-tier
virtualized servers. Experimental evaluation shows that: (a)
filtering the utilization signal enables us to follow the work-
load changes without being strongly affected by transient
fluctuations, and (b) our adaptive controller configures its
parameters online using past utilization observations and
self-adapts to workload conditions. We plan to further eval-
uate our controllers for high performance consolidation.
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