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Abstract— Differential Evolution (DE) has been shown to be
a powerful evolutionary algorithm for global optimization in
many real problems. Self-adaptation has been found to be high
beneficial for adjusting control parameters during evolutionary
process, especially when done without any user interaction. In
this paper we investigate a self-adaptive differential evolution
algorithm where more DE strategies are used and control
parameters � and �� are self-adapted. The performance of
the self-adaptive differential evolution algorithm is evaluated on
the set of 24 benchmark functions provided for the CEC2006
special session on constrained real parameter optimization.

I. INTRODUCTION

The general nonlinear programming problem an optimiza-
tion algorithm is concerned with is to find �� so as to
optimize ������ �� � ���� ��� ���� ���. � is the dimensionality
of the function. Domains of the variables are defined by their
lower and upper bounds: ������� ������� � � ��� ���� ��. The
feasible region is defined by a set of � additional constraints
(� � �):

������ � �� ��� 	 � �� ���� 
� 	
�

������ � �� ��� � � 
 � �� �����

Differential Evolution (DE) is a floating-point encoding
evolutionary algorithm for global optimization over contin-
uous spaces [20], [18], [11], [12], [10], [22]. Although the
DE algorithm has been shown to be a simple yet powerful
evolutionary algorithm for optimizing continuous functions,
users are still faced with the problem of preliminary testing
and hand-tuning of the evolutionary parameters prior to
commencing the actual optimization process [22]. As a
solution, self-adaptation has been found to be highly benefi-
cial in automatically and dynamically adjusting evolutionary
parameters such as crossover rates and mutation rates. Self-
adaptation allows an evolution strategy to adapt itself to any
general class of problems by reconfiguring itself accordingly,
and to do this without any user interaction [2], [3], [6]. In
literature, self-adaptation is usually applied to the � and �

control parameters. The efficiency and robustness of the DE
algorithm are much more sensitive to the setting of � and
� control parameters than to the setting of the third DE
parameter, that is �� .

Teo in [22] proposed an attempt at self-adapting the popu-
lation size parameter in addition to self-adapting crossover
and mutation rates.
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The main objective of this paper is a performance eval-
uation of our self-adaptive jDE-2 [4] algorithm, which uses
self-adapting control parameter mechanism on the control
parameters � and �. The performance of the algorithm
is evaluated on the set of 24 benchmark functions provided
for the CEC2006 special session on real parameter optimiza-
tion [9].

The article is structured as follows. Section II gives an
overview of work dealt with the DE. Section III shortly
summarize the differential evolution. Section IV describes
constrain-handling differential evolution. In Section V dif-
ferential evolution jDE-2 algorithm, which use self-adaptive
adjusting control parameters, is described. We conclude
this section by proposing some improvements of our self-
adapting jDE algorithm. In Section VI experimental results
our self-adaptive jDE-2 algorithm on CEC 2006 benchmark
functions are presented. Detailed performance analysis of the
algorithm is given. Section VII concludes the paper with
some final remarks.

II. WORK RELATED WITH THE DIFFERENTIAL

EVOLUTION

The DE [20], [19] algorithm was proposed by Storn and
Price, and since then the DE algorithm has been used in many
practical cases. The original DE was modified, and many new
versions proposed. Liu and Lampinen [11] reported that the
effectiveness, efficiency and robustness of the DE algorithm
are sensitive to the settings of the control parameters. The
best settings for the control parameters depends on the func-
tion and requirements for consumption time and accuracy.
Quite different conclusions were reported about the rules for
choosing the control parameters of DE. In [15] it is stated
that the control parameters of DE are not difficult to choose.
On the other hand, Gämperle et al. [7] reported that choosing
the proper control parameters for DE is more difficult than
expected.

Ali and Törn in [1] proposed new versions of the DE
algorithm, and also suggested some modifications to the
classical DE in order to improve its efficiency and robustness.
They introduced an auxiliary population of �� individuals
alongside the original population (noted in [1], a notation
using sets is used – population set-based methods). Next
they proposed a rule for calculating the control parameter
� automatically.

Sun et al. [21] proposed a combination of the DE algo-
rithm and the estimation of distribution algorithm (EDA),
which tries to guide its search towards a promising area
by sampling new solutions from a probability model. Based
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on experimental results it has been demonstrated that the
DE/EDA algorithm outperforms both the DE and the EDA
algorithms.

Qin and Suganthan in [17] proposed Self-adaptive Dif-
ferential Evolution algorithm (SaDE), where the choice of
learning strategy and the two control parameters � and
� are not required to be pre-defined. During evolution,
the suitable learning strategy and parameter settings are
gradually self-adapted according to the learning experience.

J. Brest et al. [4] compared version of a self-adaptive
jDE algorithm with others adaptive and self-adaptive algo-
rithms: FADE [12], DESAP [22], SaDE [17], and jDE [5].
The reported results show, that the jDE algorithm performs
better than FADE and DESAP algorithms and self-adaptive
jDE-2 algorithm gives comparable results on benchmark
functions as the SaDE algorithm, which uses local search
procedure, additionally. The comparison of jDE and jDE-2
algorithms was shown, the jDE-2 algorithm, which uses two
DE strategies, performed better than jDE algorithm, which
uses only one strategy. Comparative study exposed the jDE-2
as prospective algorithm for a global optimization.

III. THE DIFFERENTIAL EVOLUTION ALGORITHM

DE creates new candidate solutions by combining the
parent individual and several other individuals of the same
population. A candidate replaces the parent only if it has
better fitness value. DE has three parameters: amplification
factor of the difference vector – � , crossover control para-
meter – � and population size – ���

Original DE algorithm keeps all three control parameters
fixed during the optimization process. However, there still
exists a lack of knowledge of how to find reasonably good
values for the control parameters of DE for a given function
[12].

The population of the original DE algorithm [19], [20],
[18] contains �� �-dimensional vectors:

����	 � ������	� �����	� ���� �����	�� 	 � �� � ���� ��

� denotes the generation. During one generation for each
vector, DE employs the mutation and crossover operations
to produce a trial vector:

����	 � ������	� �����	� ���� �����	�� 	 � �� � ���� ��

Then a selection operation is used to choose vectors for the
next generation (�� �).

The initial population is selected uniformly randomly
between the lower (������) and upper (������) bounds defined
for each variable �� . These bounds are specified by the user
according to the nature of the problem. After initialization,
DE performs several vector transforms (operations), in a
process called evolution.

A. Mutation operation

Mutation for each population vector creates a mutant
vector:

����	 � ����	 � ������	� �����	� ���� �����	�� 	 � �� � ���� ��

Mutant vector can be created by using one of the mutation
strategies. The most useful strategies are:

� ”rand/1”: ����	 � ��
��	 � � � ���
��	 � ��
��	�

� ”best/1”: ����	 � ������	 � � � ���
��	 � ��
��	�

� ”current to best/1”:
����	 � ����	�� � �������	�����	��� � ���
��	���
��	�

� ”best/2”:
����	 � ������	�� ����
��	���
��	��� ����
��	���
��	�

� ”rand/2”:
����	 � ��
��	�� � ���
��	���
��	��� � ���
��	���
��	�

where the indexes ��� ��� ��� ��� �� represent the ran-
dom and mutually different integers generated within range
��� �� � and also different from index 	. � is a mutation scale
factor within the range ��� �, usually less than �. ������	 is
the best vector in generation �.

B. Crossover operation

After mutation, a ”binary” crossover operation forms the
final trial vector, according to the 	-th population vector and
its corresponding mutant vector.

�����	 �

�
�����	 if ������� �� � � or � � �
����

�����	 otherwise

	 � �� � ���� �� 	
� � � �� � ���� �

� is a crossover parameter or factor within the range ��� ��
and presents the probability of creating parameters for trial
vector from a mutant vector. Index �
��� is a randomly
chosen integer within the range ��� �� �. It is responsible
for the trial vector containing at least one parameter from
the mutant vector.

If the control parameters from the trial vector are out of
bounds, the proposed solutions in literature [20], [19], [18],
[16] are: they are reflected into bounds, set on bounds or
used as they are (out of bounds).

C. Selection operation

The selection operation selects according to the fitness
value of the population vector and its corresponding trial
vector, which vector will survive to be a member of the next
generation. For example, if we have a minimization problem,
we will use the following selection rule:

����	�� �

�
����	 if ������	� � ������	��

����	 otherwise�

IV. CONSTRAINT-HANDLING

During the last few years several methods were proposed
for handling constraints by genetic algorithms for parameter
optimization problems. These methods were grouped by
Michalewicz et al. [14], [8] into four categories:

� methods based on preserving feasibility of solutions.
The idea behind the method is based on specialized
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operators which transform feasible individuals into fea-
sible individuals. The method assumes linear constrains
only and a feasible starting point on feasible initial
population.

� methods based on penalty functions. Many evolutionary
algorithms incorporate a constraint-handling method
based on the concept of exterior penalty functions which
penalize infeasible solutions. These methods differ in
important details, how the penalty function is designed
and applied to infeasible solutions.

� methods, which make a clear distinction between fea-
sible and infeasible solutions. There are few methods
which emphasize the distinction between feasible and
infeasible solutions in the search space. One of those
method distinguishes between feasible and infeasible
individuals: for any feasible individual �� and any in-
feasible individually ��: ����� � �����, i.e. any feasible
solution is better than any infeasible one.

� other hybrid methods. These methods combine evolu-
tionary computation techniques with deterministic pro-
cedures for numerical optimization problems.

No special extensions of the DE algorithm are necessary to
make it suitable for handling constraints [23]. Most constraint
problems can be handled by the penalty method. A measure
of the constraint violation is often useful when handling
constraints. A solution �� is regarded as feasible if

������ � �� ��� 	 � �� ���� 
� 	
�

�������� � � � �� ��� � � 
 � �� ������

where equality constraints are transformed into inequalities.
In CEC2006 [9] special section � is set to ������. Mean
violations � is defined:

� �
�
��

��������� �
��

������������

�
� �����

������ �

�
������ �� ������ � �

� �� ������ � �

������ �

�
�������� �� �������� � � � �

� �� �������� � � � �

The sum of all constraint violations is zero for feasible
solutions and positive when at least one constraint is violated.
An obvious application of the constraint violation is to use
it to guide the search towards feasible areas of the search
space. There was quite a lot of work on such ideas and
other constraint techniques in the EA-community during the
1990’s. A summary of these techniques can be found in
Michalewicz’s and Fogel’s book [13], which also contains
information on many other stochastic techniques.

V. THE SELF-ADAPTIVE DIFFERENTIAL EVOLUTION

ALGORITHMS

Let us first describe self-adaptive jDE algorithm [5], [4].
It uses self-adapting mechanism on the control parameters �
and �.

In [5] the self-adapting control parameter mechanism of
”rand/1/bin” strategy was used. This strategy is the most
often used in practice [20], [21], [7], [11].

In [5] a self-adaptive control mechanism was used to
change the control parameters � and � during the run.
The third control parameter �� was not changed during
the run. Each individual in population was extended with
parameter values. The control parameters that were adjusted
by means of evolution are � and � (see Figure 1). Both of
them were applied at individual levels. The better values of
these (encoded) control parameters lead to better individuals
which, in turn, are more likely to survive and produce
offspring and, hence, propagate these better parameter values.
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x
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Fig. 1. Self-adapting: encoding aspect.

New control parameters ���	�� and ���	�� were calcu-
lated as follows:

���	�� �

�
�� � ����� 	 �� �� ����� � ���

���	 ����������

���	�� �

�
����� �� ����� � ���

���	 ����������

and they produce control parameters � and � in a new par-
ent vector. ����� � � � ��� � �� �� are uniform random values
within the range ��� ��. �� and �� represent probabilities to ad-
just control parameters � and �, respectively. ��� ��� ��� ��
were taken fixed values ���� ���� ���� ���, respectively. The
new � takes a value from ����� ����, and the new �

from ��� �� in a random manner. ���	�� and ���	�� are
obtained before the mutation is performed. So they influence
the mutation, crossover and selection operations of the new
vector ����	��.
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Fig. 2. Self-adapting: encoding aspect of two strategies.

Some ideas, how to improve jDE algorithm, are reported
in [4]. In the rest of this section we will outline them.

To keep solution of bound-constrained problems feasible,
trial parameters that volatile boundary constraints are set to
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TABLE I

ERROR VALUES ACHIEVED WHEN FES= �� ��� , FES= �� ��� , FES= �� ��� FOR PROBLEMS 1-6.

FES ��� ��� ��� ��� ��� ���

Best 2.0505 (0) 0.4070 (0) 0.7406 (0) 20.9966 (0) 15.1226 (7) 60.7180 (0)
Median 5.1047 (0) 0.5030 (0) 0.9976 (0) 63.3410 (0) 201.3292 (8) 251.4440 (0)
Worst 7.2914 (0) 0.5411 (0) 0.9932 (0) 161.2217 (0) 976.1121 (9) 831.1240 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 2, 3, 3 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 1.0834 0.0000
Mean 5.3034 4.9680e-01 9.4358e-01 6.3542e+01 3.0997e+02 2.8087e+02
Std 1.0670 3.0675e-02 7.4900e-02 2.8478e+01 3.3878e+02 1.7917e+02

Best 4.7410e-05 (0) 0.0262 (0) 0.4738 (0) 6.5150e-07 (0) 9.0323 (0) 2.3646e-11 (0)
Median 0.0001 (0) 0.0834 (0) 0.7231 (0) 4.6348e-06 (0) 155.0791 (0) 2.3101e-10 (0)
Worst 0.0005 (0) 0.1560 (0) 0.9155 (0) 1.4717e-05 (0) 5.4202 (2) 1.0268e-09 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 1.2610e-04 8.5485e-02 7.1313e-01 5.2805e-06 1.8287e+02 2.7077e-10
Std 9.3563e-05 2.8747e-02 1.3929e-01 3.0574e-06 1.3900e+02 2.0464e-10

Best 0 (0) 7.7521e-11 (0) 0.0890 (0) 0 (0) 0 (0) 1.1823e-11 (0)
Median 0 (0) 3.3051e-09 (0) 0.3481 (0) 0 (0) 0 (0) 1.1823e-11 (0)
Worst 0 (0) 0.0110 (0) 0.5117 (0) 0 (0) 9.0697 (0) 1.1823e-11 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0000 8.8089e-04 3.3808e-01 0.0000 1.0756 1.1823e-11
Std 0.0000 3.0488e-03 1.0140e-01 0.0000 2.4193 0.0000

TABLE II

ERROR VALUES ACHIEVED WHEN FES= �� ��� , FES= �� ��� , FES= �� ��� FOR PROBLEMS 7-12.

FES ��� ��	 ��
 ��� ��� ���

Best 47.0147 (0) 6.5370e-08 (0) 13.3137 (0) 2711.5904 (0) 0.0022 (0) 2.5178e-05 (0)
Median 92.1652 (0) 2.5660e-06 (0) 43.1004 (0) 7322.9075 (0) 0.1346 (0) 0.0002 (0)
Worst 170.4361 (0) 1.7141e-05 (0) 67.6963 (0) 13759.8095 (0) 0.2501 (0) 0.0081 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 9.2682e+01 4.8370e-06 4.1988e+01 7.8258e+03 1.3221e-01 1.0618e-03
Std 3.4874e+01 5.1240e-06 1.2917e+01 2.7236e+03 8.8471e-02 2.2902e-03

Best 0.0454 (0) 4.1633e-17 (0) 9.7979e-05 (0) 6.6643 (0) 0 (0) 0 (0)
Median 0.0810 (0) 5.5511e-17 (0) 0.0002 (0) 14.5927 (0) 2.6639e-11 (0) 0 (0)
Worst 0.1195 (0) 5.5511e-17 (0) 0.0004 (0) 79.4762 (0) 0.1004 (0) 0 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 8.0109e-02 4.8850e-17 2.8265e-04 1.7685e+01 4.1403e-03 0.0000
Std 2.0492e-02 7.0763e-18 9.2069e-05 1.3857e+01 2.0074e-02 0.0000

Best -1.8829e-13 (0) 4.1633e-17 (0) 1.1368e-13 (0) -1.8189e-12 (0) 0 (0) 0 (0)
Median -1.8829e-13 (0) 4.1633e-17 (0) 2.2737e-13 (0) -9.0949e-13 (0) 0 (0) 0 (0)
Worst -1.8474e-13 (0) 4.1633e-17 (0) 2.2737e-13 (0) 4.5274e-07 (0) 0.0022 (0) 0 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean -1.8701e-13 4.1633e-17 2.0918e-13 2.1288e-08 9.1079e-05 0.0000
Std 1.7405e-15 1.2580e-32 4.2538e-14 9.1279e-08 4.5540e-04 0.0000

bound values by jDE algorithm [5]. Rönkönen, Kukkonen
and Price [18] suggest the solution that volatile boundary
constraints should be reflected back from the bound by the
amount of violation:

�����	 �

�
 � ������ � ������ �� ������ � �������

 � ������ � ������ �� ������ � �������

The jDE-2 [4] algorithm uses both solutions for volatile
boundary constraints with equal probability in a random

manner:
� � ������� ��� �� � ����

�����	 �

�����
����
������ �� �� � ��� 
 ������� � ��������

������ �� �� � ��� 
 ������� � ��������

 � ������ � ������ �� �� � ��� 
 ������� � ��������

 � ������ � ������ �� �� � ��� 
 ������� � ��������

Strategy ”rand/1/bin” is used in jDE algorithm and control
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TABLE III

ERROR VALUES ACHIEVED WHEN FES= �� ��� , FES= �� ��� , FES= �� ��� FOR PROBLEMS 13-18.

FES ��� ��� ��� ��� ��� ��	

Best 0.9279 (5) 5.7028 (6) 1.2410 (2) 0.0800 (0) 133.6529 (11) 0.6759 (0)
Median 0.9472 (6) 4.2986 (6) 0.3196 (4) 0.1233 (0) 103.6969 (12) 0.8548 (4)
Worst 0.6896 (5) -10.0665 (6) 0.2469 (4) 0.2275 (0) 77.6164 (12) 1.1177 (13)

�� ��
� � 0, 3, 3 0, 3, 3 0, 2, 2 0, 0, 0 4, 4, 4 0, 2, 2

� 0.1420 0.1655 0.0431 0.0000 2.5360 0.0236
Mean 1.0686 2.7371 2.2858 1.3856e-01 1.1166e+02 8.3581e-01
Std 9.4822e-01 5.4970 2.1405 4.3618e-02 7.3462e+01 1.8863e-01

Best 0.8635 (0) 0.2289 (0) 0.0001 (0) 7.6055e-07 (0) 30.9149 (0) 0.0020 (0)
Median 0.9450 (2) 1.0538 (0) 0.8793 (0) 1.6831e-06 (0) 330.3851 (1) 0.0043 (0)
Worst 0.9458 (4) 2.1280 (0) 4.3730 (0) 3.6573e-06 (0) 27.2941 (4) 0.0189 (0)

�� ��
� � 0, 0, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0

� 0.0006 0.0000 0.0000 0.0000 0.0002 0.0000
Mean 9.3799e-01 1.1351 1.2074 1.8758e-06 1.0019e+02 5.2779e-03
Std 6.8257e-02 5.1352e-01 1.2471 6.9733e-07 8.4818e+01 3.2909e-03

Best 0.2970 (0) 1.4210e-14 (0) 0 (0) 5.1070e-15 (0) 1.2732e-11 (0) 3.3306e-16 (0)
Median 0.6800 (0) 2.1316e-14 (0) 0 (0) 5.1070e-15 (0) 10.4896 (0) 4.4408e-16 (0)
Worst 0.9449 (0) 2.1316e-14 (0) 0.1100 (0) 5.1070e-15 (0) 86.7535 (0) 4.4408e-16 (0)

�� ��
� � 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 6.9148e-01 1.8758e-14 4.4040e-03 5.1070e-15 3.9906e+01 4.3077e-16
Std 2.2376e-01 3.4809e-15 2.2020e-02 0.0000 3.8319e+01 3.6822e-17

TABLE IV

ERROR VALUES ACHIEVED WHEN FES= �� ��� , FES= �� ��� , FES= �� ��� FOR PROBLEMS 19-24.

FES ��
 ��� ��� ��� ��� ���

Best 197.9016 (0) 3.1215 (38) 396.3713 (8) 8137.0973 (57) 400.0551 (0) 0.0006 (0)
Median 294.2522 (0) 5.1358 (40) 431.0758 (7) 8756.7611 (55) -249.9385 (10) 0.0066 (0)
Worst 537.2860 (0) 8.1603 (42) 317.5561 (9) 19763.5690 (51) -411.0136 (16) 0.0142 (0)

�� ��
� � 0, 0, 0 2, 18, 20 0, 3, 4 17, 19, 19 0, 5, 5 0, 0, 0

� 0.0000 2.0017 0.2702 2429365.3684 0.3974 0.0000
Mean 3.1332e+02 4.3551 4.7242e+02 1.3564e+04 4.4412e+01 6.6979e-03
Std 7.0448e+01 1.3059 1.5794e+02 5.0437e+03 3.4592e+02 3.3507e-03

Best 0.6191 (0) 0.0795 (21) 0.0498 (0) 6300.6825 (58) 223.7870 (0) 5.5067e-14 (0)
Median 1.1097 (0) 0.0792 (24) 0.0823 (0) 14782.0213 (57) 475.3514 (0) 5.5067e-14 (0)
Worst 2.6947 (0) 0.0491 (26) 582.6489 (0) 5627.0472 (57) 422.4294 (1) 6.0396e-14 (0)

�� ��
� � 0, 0, 0 0, 4, 20 0, 0, 0 19, 19, 19 0, 0, 0 0, 0, 0

� 0.0000 0.0203 0.0000 30001.6677 0.0000 0.0000
Mean 1.2044 7.9528e-02 2.8678e+01 1.0550e+04 4.4242e+02 5.5778e-14
Std 4.4409e-01 1.7970e-02 1.1840e+02 4.4761e+03 1.0704e+02 1.4950e-15

Best 2.8421e-14 (0) 0.0506 (0) -1.7053e-13 (0) 9151.6956 (8) 0 (0) 5.5067e-14 (0)
Median 4.2632e-14 (0) 0.1082 (2) -2.8421e-14 (0) 8033.6537 (8) 2.2737e-13 (0) 5.5067e-14 (0)
Worst 5.4711e-13 (0) 0.1068 (5) 130.9783 (0) 19337.2039 (16) 300.0085 (0) 5.5067e-14 (0)

�� ��
� � 0, 0, 0 0, 1, 1 0, 0, 0 2, 3, 3 0, 0, 0 0, 0, 0

� 0.0000 0.0072 0.0000 3.5107 0.0000 0.0000
Mean 7.5033e-14 1.0591e-01 1.0478e+01 9.6221e+03 1.2102e+01 5.5067e-14
Std 1.0531e-13 1.1510e-02 3.6266e+01 5.1748e+03 5.9983e+01 1.9323e-29

parameters � and � are encoded in each individual.
In [17] authors proposed self-adapting SaDE algorithm which
uses two of five original DE’s strategies to be applied to
individuals in the current population.

Figure 2 shows a new solution how the control param-
eters of two original DE’s strategies are encoded in each
individual. Each strategy uses its own control parameters.
The solution to apply more strategies into our algorithm is

straight-forward.
In experiments in this paper, the proposed jDE-2 algorithm

uses three strategies ”rand/1/bin”, ”current to best/1/bin” and
”rand2/bin”, and the first pair of self-adaptive control param-
eters � and � belongs to the ”rand/1/bin” strategy and the
second pair belongs to ”current to best/1/bin” strategy, etc.
The population size �� was set to 200.

The jDE-2 algorithm replaces  worst individuals at every
!-th generation with parameter values distributed uniformly

923



TABLE V

NUMBER OF FES TO ACHIEVE THE FIXED ACCURACY LEVEL (������� ������� � ������), SUCCESS RATE, FEASIBLE RATE AND SUCCESS

PERFORMANCE.

Prob. Best Median Worst Mean Std Feasible Rate Success Rate Success Performance
g01 46559 50354 56968 5.0386e+04 1.9651e+03 100% 100% 50386

g02 101201 138102 173964 1.2349e+05 4.0592e+04 100% 92% 145899

g03 100% 0%

g04 38288 40958 42880 4.0728e+04 1.2670e+03 100% 100% 40728

g05 133340 328023 482304 2.0662e+05 1.7274e+05 100% 68% 446839

g06 26830 29844 31299 2.9488e+04 1.2772e+03 100% 100% 29488

g07 114899 126637 141847 1.2774e+05 6.4762e+03 100% 100% 127744
g08 1567 3564 4485 3.2364e+03 7.4535e+02 100% 100% 3236

g09 49118 55515 58230 5.4919e+04 2.2551e+03 100% 100% 54919

g10 139095 144247 165498 1.4615e+05 6.6675e+03 100% 100% 146150

g11 17834 36343 432169 4.9700e+04 8.0409e+04 100% 96% 53928

g12 1820 6684 9693 6.3556e+03 2.1567e+03 100% 100% 6356

g13 100% 0%

g14 88954 98135 107951 9.7845e+04 5.0348e+03 100% 100% 97845

g15 51321 261549 432766 2.2246e+05 1.1398e+05 100% 96% 241383

g16 28230 31753 34182 3.1695e+04 1.3132e+03 100% 100% 31695

g17 449306 449306 449306 1.7971e+04 8.9861e+04 100% 4% 11232650

g18 91049 101076 142674 1.0446e+05 1.2062e+04 100% 100% 104462

g19 170950 197319 234038 1.9985e+05 1.5735e+04 100% 100% 199850

g20 4% 0%

g21 96552 113883 147030 1.0708e+05 3.4592e+04 100% 92% 126507

g22 0% 0%

g23 205404 319611 495721 3.0255e+05 1.2447e+05 100% 92% 357452

g24 7587 10354 11550 1.0196e+04 9.2836e+02 100% 100% 10196

randomly between lower and upper bounds without evaluat-
ing those  individuals. In this paper we set ! � ���� and
 � ��.

The jDE-2 algorithm emphasizes constrains as follows.
It compare two solutions, say 	 and �, during selection
operation (see section III-C):

����	�� �

���
��
����	 �� ����	 � ���	��

����	 ���� �� ����	 � �� 
 �������	� � ������	���

����	 ����������

The algorithm distinguishes between feasible (� � �) and
infeasible individuals: any feasible solution is better than any
infeasible one.

VI. EXPERIMENTAL RESULTS

The jDE-2 algorithm was tested on 24 CEC2006 special
session benchmark functions. The obtained results are pre-
sented in Tables I– IV. For 22 functions the jDE-2 algorithm
was successfully found feasible solution. For �� function
one feasible solution was found, and for � function any
feasible solution was not found.

Table V shows number of FES to achieve the fixed
accuracy level (������ � ����	�� � ������), success rate,
feasible rate and success performance performed by jDE-
2 algorithm. Our algorithm has found at least one successful
run for 20 benchmark functions. The success rate is more
than ��� for 17 benchmark functions. The overall success
rate for all 24 benchmark functions was ���. Our algorithm

did not achieve the fixed accuracy for ���, ���, ��, and
� functions. It can be noticed that our algorithms has dif-
ficulties to solve problems with (many) equality constraints.

Convergence graphs are presented in Figures 3–6.
Algorithm complexity is presented in Table VI.

PC Configure:
System: GNU/Linux CPU: 2.4 GHz RAM: 1 GB
Language: C/C++ Algorithm: jDE-2 – self-adaptive DE

TABLE VI

COMPUTATIONAL COMPLEXITY

�� �� ���� ������

0.39 � 1.30 � 2.33

VII. CONCLUSIONS

In this paper the performance of the self-adaptive differen-
tial evolution jDE-2 algorithm was evaluated on the set of 24
benchmark functions provided by CEC2006 special session
on constrained real parameter optimization.

The best settings for the control parameters highly depends
on the benchmark function. A self-adaptive control mecha-
nism is used by jDE-2 algorithm to change the (DE strategy)
control parameters � and � during the run.

The results of this paper give evidence that the jDE-2 algo-
rithm with the self-adaptive � and � control parameters on
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Fig. 3. Convergence Graph for Problems 1-6
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Fig. 4. Convergence Graph for Problems 7-12
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Fig. 5. Convergence Graph for Problems 13-18

three different DE strategies: ”rand/1/bin”, ”rand/2/bin” and
”current to best/1/bin” strategies is competitive algorithm for
non-linear, non-separable constrained global optimization.
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