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Abstract: The Harmony Search algorithm has attracted a lot of interest in the past years because

of its simplicity and efficiency. This led many scientists to develop various variants for many

applications. In this paper, four variants of the Harmony search algorithm were implemented and

tested to optimize the control design of the Proportional-Integral-derivative (PID) controller in a

proposed airflow control scheme. The airflow control strategy has been proposed to deal with

the undesired stalling phenomenon of the Wells turbine in an Oscillating Water Column (OWC).

To showcase the effectiveness of the Self-Adaptive Global Harmony Search (SGHS) algorithm over

traditional tuning methods, a comparative study has been carried out between the optimized PID,

the traditionally tuned PID and the uncontrolled OWC system. The results of optimization showed

that the Self-Adaptive Global Harmony Search (SGHS) algorithm adapted the best to the problem of

the airflow control within the wave energy converter. Moreover, the OWC performance is superior

when using the SGHS-tuned PID.

Keywords: airflow control; harmony search algorithm; optimization; oscillating water column;

power generation; stalling behavior; wave energy; Wells turbine

1. Introduction

Marine Renewable Energy (MRE) is trending after solar and wind energy in the R&D sector

and energy markets these years . This is due to the fact that solar and wind energy industries have

reached the point of maturity and reliability. Moreover, MRE is an abundant source of untapped

energy in many forms, in fact, it is estimated that harnessing merely 0.2% of the unused global ocean

energy may provide sufficient power to meet power demands [1]. Additionally, a 529 MW of MRE

installed capacity has been recorded as operational by the end of 2017 [2]. So, in the efforts of reducing

dependency on depleting fossil fuel resources and utilizing an environmentally friendly resource of

energy, it was inevitable to turn to ocean energy for countries with low solar and wind energy. This led

authorities and policymakers to assess and invest more in MRE in places like Hawaii, India, Thailand,

Brazil, and many others [3–6].

Wave energy is considered the most exploited resource of MRE thanks to its availability and

predictability. Many Wave Energy Converters (WECs) were developed, yet no particular concept has

reached the commercial maturity [7]. The three major obstacles of the industrialization of WECs are
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associated with reliability, efficiency, and economic viability, but extensive efforts are being spent on the

improvement of these aspects [8]. Reliability is achieved by refining the WEC designs and optimizing

control strategies [9,10], while economic viability and efficiency require the optimal selection of the

site, the system, and materials in order to reduce costs and environmental impact while guaranteeing

maximum energy absorption [11,12].

Many ideas were investigated in order to conquer some of the obstacles, such as WEC integration

in ongoing projects of maritime structure and breakwaters [13–15]. Other ideas proposed the

multiple-use of offshore platforms by combining different energies such as the wind and wave

energy converters in [16] or by combining different converters such as the Overtopping device and the

Oscillating Water Column (OWC) in [17].

This paper discusses the airflow control of an example of WEC integrated into a breakwater

which is the NEREIDA Multiple Oscillating Water Column (MOWC) [18]. This facility is installed

in the breakwater of Mutriku in the north of Spain and it is an OWC system based on Wells turbine

for wave energy conversion. The main drawback of Power-Take Off (PTO) systems equipped with

Wells turbine is their power-limitation due to the occurrence of the stall effect [19,20]. In this context,

an airflow control based on a Proportional-Integral-Derivative (PID) controller has been proposed and

the recourse to the Harmony Search algorithms and its variants has been proposed in order to facilitate

the control design of the parameters.

PID controller tuning is a delicate and complex task when lacking a systematic approach. To solve

the problem design of PID controllers, the optimization theory has been proven to be an effective

method to tune and optimize the controller parameters [21,22]. Numerous optimization algorithms

were investigated and tested with the PID controller in different applications, for instance, the Particle

Swarm Optimization (PSO) [23,24], the Water Cycle Algorithm (WCA) [21,24], and the Harmony

Search Algorithm (HSA) [22,24].

The remainder of the article has been arranged as the following: Section 2 introduces the modelling

section, describing all parts of the OWC system. Section 3 introduces the stalling behavior and the

problem formulation of the proposed airflow control. Section 4 presents variants of the Harmony

Search algorithm. Section 5 presents the Self-Adaptive Global-Best Harmony Search (SGHS) algorithm

adopted to optimally tune the parameters of the Proportional-Integral-Derivative (PID) controller.

Section 6 details the tests and simulations carried out to demonstrate the efficiency of the SGHS

algorithm, then the performance of the proposed SGHS-PID airflow control in two different wave

conditions versus the uncontrolled case. Finally, we finish the article with some concluding remarks in

Section 7.

2. Model Statement

This section describes the modelling of the different subsystems of the Oscillating Water Column

(OWC) shown in Figure 1, which includes would be including the mathematical models of the wave

input, capture chamber, Wells turbine and the Doubly-Fed Induction Generator (DFIG).
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Figure 1. Sketch of an Oscillating Water Column (OWC) system and the sea wave [25].

2.1. Wave Surface Dynamics

A monochromatic unidirectional wave has been considered as to be the input to the implemented

numerical model of the OWC system. There exists numerous wave theories in the literature to express

the surface dynamics of ocean wave like the Cnoidal wave theory, second- and higher -order Stokes

theory and Airy linear theory [26,27]. In this paper, the Airy wave theory has been adopted because

it presents the simplest description and it is the most widely used thanks to it neglecting turbulence,

friction losses and other energy losses [27].

The parameters of a wave are detailed in Figure 1, where SWL represents the “Still-Water-Level”

and h, called “sea depth”, represents the interval from the sea floor to SWL. H marks the interval from

wave trough to wave crest called “wave height”. A measures the distance between SWL and the wave

crest known as “wave amplitude” and λ representing the interval between successive crests known as

“wavelength” [27,28]. Therefore, the surface elevation for a sea wave is given as [29,30]:

z(x, t) = A sin (ωt − kxθ) = H/2 sin (ωt − kxθ) (1)

where ω is the wave frequency, x is the wave horizontal coordinate, θ marks the the angular opening

from the x-axis to waves’ direction and k represents the wave number linked to ω with relation (2) as

described in [29]:

k tanh(kh) = ω2/g, (2)

where g represents the acceleration gravity.

2.2. Capture Chamber Model

The volume of the air within the Oscillating Water Column’s chamber is defined in [23,28] as:

V(t) = Vc +
wc H

k
sin (klc/2) sin(ωt), (3)

where Vc, wc and lc represent the chamber’s volume, inner width and length, respectively.
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The volume flow rate in the chamber can be obtained from Equation (3) and defined as [23,28]:

Q(t) = wccH sin

(

klc
2

)

cos(ωt), (4)

where c = w/k.

Once the chamber’s geometry has been taken into account with Equation (4), the airflow velocity

can be described as [23,28]:

vx(t) =
Q(t)

S
=

8Acwc

πD2
sin

(

πlc
cTw

)

cos

(

2π

Tw
t

)

(5)

where Tw is the wave period and D is the duct diameter.

2.3. Wells Turbine Model

The OWC is fitted with a Wells turbine, shown in Figure 2, which is a self-rectifying axial-flow

air turbine [30,31]. Self-rectifying air-turbines possess blades with special geometry allowing a

unidirectional rotating motion regardless of the airflow direction [32–34].

Figure 2. Wells turbine and DFIG-based of OWC system [25].

The Wells turbine under study can be mathematically defined by the expressions (6)–(10) given

in [20,35]:

dp = CaK (1/a)
[

v2
x + (rωr)

2
]

(6)

K = ρlbn/2 (7)

Tt = rCtK
[

v2
x + (rωr)

2
]

(8)

φ = vx (rωr)
−1 (9)

Q = avx (10)

where dp represents the pressure drop; Ca and Ct represent the “power coefficients” and “torque

coefficient”, respectively; φ stands for the “flow coefficient”; Tt, K and r represent the turbine’s torque,

constant and mean radius, respectively; l, b, and n represent the blade’s chord length, height and

number, respectively; ωr represents the “angular velocity”; a stands for the “cross-sectional area”; and

ρ represents the air density.

The characteristic curves of the Wells turbine under study are formed by the power coefficient Ca

and the torque coefficient Ct versus the flow coefficient φ as shown in Figure 3.
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Figure 3. Wells turbine’s characteristic curves. (a) Power coefficient against flow coefficient. (b) Torque

coefficient against flow
.

2.4. Doubly-Fed Induction Generator Model

In the OWC system under study, the Wells turbine drives a Doubly Fed Induction Generator to

deliver electrical power to the grid. In a dq diphase frame, the DFIG generator can be defined with the

expression (11)–(16) given in [36,37]. Thus, the voltages of the stator and rotor in the dq frame can be

defined as:











vds = Rsids +
dψds

dt
− ωsψqs

vqs = Rsiqs +
dψqs

dt
+ ωsψds

(11)











vdr = Rridr +
dψdr

dt
− ωrψqr

vqr = Rriqr +
dψqr

dt
+ ωrψdr

(12)

where Rs and Rr represent the stator and rotor resistances, ωs and ωr represent the stator and rotor

angular velocity, and ids, iqs idr and iqr represent the d-q stator and rotor currents.

The flux linkage at the stator and the rotor can be described by:

{

ψds = Lssids + Lmidr

ψqs = Lssiqs + Lmiqr
(13)

{

ψdr = Lrridr + Lmids

ψqr = Lrriqr + Lmiqs
(14)

where Lss, Lrr and Lm represent the stator, rotor and magnetizing inductances, respectively.

The generated electromagnetic torque and its interaction with the turbine may be expressed as:

Te =
3

2
p
(

ψdsiqs − ψqsids

)

(15)

J

p

dωr

dt
= Te − Tt (16)

where p represents the pair pole number and J represents the inertia of the system.
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3. Control Statement

3.1. Stalling Behavior of the Wells Turbine

The stalling behavior in Wells turbines is a phenomenon that restricts the produced power.

It happens in the event that the airflow speed vx rises; however, the rotational velocity ωr is slow

because the generator is unable to spin quick enough to match the incoming airflow of strong waves.

This behavior is visible in Figure 3b which demonstrates when the flow coefficient φ surpasses a critical

value 0.3, the torque coefficient Ct declines considerably because the rotational speed ωr is unable to

match the airflow velocity vx.

The stall effect is explained by operating the uncontrolled OWC plant with different sea states.

The first sea condition examines waves with a 10-s period and 0.8-m wave amplitude (Figure 4a,b).

The second sea condition examines waves with a 10-s period and a 1.3-m wave amplitude (Figure 4c,d).

As shown in Figure 4, when the waves are low (i.e., A = 0.8 m) the Wells turbine will have a

low flow coefficient, which in this case does not exceed the threshold value 0.3 (see Figure 4a). Hence,

the resulting turbine torque is not affected by the stalling behavior (see Figure 4b). However, when

the waves are high (i.e., A = 1.3 m) the Wells turbine will have a higher flow coefficient that exceeds

the threshold value 0.3 (see Figure 4c). Hence, the resulting turbine torque is affected by the stalling

behavior (see Figure 4d).
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Figure 4. Uncontrolled OWC operation with two different sea conditions. (a) Flow coefficient for wave

amplitude 0.8 m. (b) Turbine torque for wave amplitude 0.8 m. (c) Flow coefficient for wave amplitude

1.3 m. (d) Turbine torque for wave amplitude 1.3 m.

The Wells turbine’s stalling behavior can be evaded if the flow coefficient is constantly

regulated [24,25]. From the expression (9), the flow coefficient relies on the airflow velocity in the

turbine duct. Thus, adjusting the airflow speed vx will aid in evading the stall effect; therefore,

an airflow control strategy has been suggested.

The implementation of the airflow control puts to use the air valve set to use within the capture

chamber, this device can be used to vary the pressure and airflow in the OWC system. The actuator of

the air valve is controlled using a PID controller, as explained by the scheme of Figure 5.
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Figure 5. Airflow control scheme strategy for OWC plant equipped with Wells turbine [24].

Tuning the PID controller in a complex system such as the OWC often is hard and tedious when

using conventional methods and lacking an appropriate systematic design approach. In order to tune

the PID controller, the use of optimization theory has been suggested as a promising recourse to easily

calculate and optimize all PID gains [21,22].

3.2. Airflow Control Problem Formulation

The PID tuning optimization problem for the airflow control scheme’s objective is to compute

the best control design parameters XXXB = (xB(1), xB(2), xB(3)) ∈ R
3 that represents the PID controller

gains, i.e., XXX =
(

Kp, Ki, Kd

)

∈ R
3
+. This is achieved while minimizing the cost function. The Integral of

Absolute Error (IAE) has been adapted as the cost function for this problem [23,24]:

f IAE (XXX) =
∫ +∞

0
|e (XXX, t)| dt, (17)

where e (.) is the error between the reference and the controlled variable, as detailed in Figure 6.

PID controller

Capture 

chamber

Wells 

turbine
DFIG

Φ*

Φ

+
-

e

Pg
T t

Vx

u

OWC Plant

Waves
V’x

Airflow control

Harmony Search 

algorithms

Kp Ki Kd

Thro�le 

valve

Figure 6. Airflow-control strategy for Wells-turbine-based OWC using Harmony Search algorithms.

The IAE cost function is minimized by considering some time-domain constraints, associated to

the rise and settling times (tr and ts), the steady-state error Ess, and the overshoot δ (%) criteria of the

closed-loop step response [23,24].
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The PID tuning problem formulation for the airflow control has been formulated as a constrained

and nonlinear optimization problem with expression (18). The tuning problem can be solved by the

PSO algorithm [23,24]:














































minimize f (XXX)

XXX =
(

Kp, Ki, Kd

)

∈ S ⊆ R
3
+

subject to:

g1 (XXX) = Ess − Emax
ss ≤ 0

g2 (XXX) = tr − tmax
r ≤ 0

g3 (XXX) = ts − tmax
s ≤ 0

(18)

where f : R3 → R represents the cost function, S =
{

XXX ∈ R
3
+, LB ≤ XXX ≤ UB

}

stands for the bounded

search space for the control variables, and gi: R
3 → R, (i = 1, 2, 3) represents the constraints.

4. Harmony Search Algorithm and Its Variants

Before introducing the Self-Adaptive Global-Best Harmony Search (SGHS) algorithm, we will

briefly introduce the developed variant algorithms leading up to it.

4.1. Harmony Search Algorithm

The Harmony Search (HS) algorithm was first introduced in early 2000 by Z.W. Geem et al. in [38].

The HS algorithm is inspired by the musical process of musicians in the search for a fantastic harmony

by aesthetic estimation. The variables x(j) are represented by musical instruments and the fantastic

harmony is the desired optimal solution, where x(j) ∈ [LB(j), UB(j)], j = 1, 2, ..., n and n is the number

of variables. Every musical practice represents another iteration limited to a maximum Number of

Improvisations (NI) and the quality of the results are evaluated based on the pitches of the instruments.

First an initial group of harmony vectors XXXi = {xi(1), xi(2), . . . , xi(n)} are randomly generated as:

xi(j) = (UB(j)− LB(j))× r + LB(j) (19)

where UB(j) and LB(j) are the upper and lower bonds for the jth variable and r is a random uniform

number between 0 and 1.

The harmony vectors are then combined to form the Harmony Memory (HM) with a total of

HMS vectors to store the best harmony improvisation vectors based on their cost function which is

stored in HM as well as:

HM =























XXX1

XXX2
...

XXXi
...

XXXHMS























=























x1(1) . . . x1(j) . . . x1(n)

x2(1) . . . x2(j) . . . x2(n)
...

...
...

...
...

xi(1) . . . xi(j) . . . xi(n)
...

...
...

. . .
...

xHMS(1) . . . xHMS(j) . . . xHMS(n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f (XXX1)

f (XXX2)
...

f (XXXi)
...

f (XXXHMS)























(20)

where HMS is the Harmony Memory Size.

To improvise new harmony vectors XXXnew, three rules are considered; the memory consideration,

the pitch adjustment, and the random selection. The new vector could be selected from the vectors of

the HM by testing a random number r1 for memory consideration based on the Harmony Memory

Consideration Rate (HMCR), and further will be pitch adjusted using a predefined Bandwidth (BW)

based on the Pitch Adjustment Rate (PAR), otherwise it is randomly selected as explained in Figure 7.
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Figure 7. Improvisation process of a new harmony vector in Harmony Search (HS) algorithm.

Once the new harmony vector XXXnew is generated, the harmony memory HM will be updated

based on the fitness of the new vector and the worst existing vector XXXw. The new vector XXXnew will then

replace the worst vector XXXw in HM if its fitness value is better.

Finally, the HS algorithm can be summarized by the steps detailed in the pseudocode of

Algorithm 1:

Algorithm 1: Harmony Search Algorithm

1. Define parameters of HS algorithm: n, HMS, HMCR, PAR, BW, NI.

2. Initialize HM with random harmony vectors using (19) and calculate the cost function of each vector.

3. Improvise a new Harmony vector XXXnew based on the three rules of Figure 7.

4. Update the HM with XXXnew if ( f (XXXnew) < f (XXXw)) as XXXw = XXXnew.

5. If the maximum number of improvisations NI is reached then stop the program and return the best

harmony vector XXXB. Otherwise, go back to step 3.

HMCR maintains the balance between the exploration and exploitation; on the other hand, PAR

is responsible for the refinement of the solutions by a distance BW. Therefore, the setting of these three

parameters greatly influences the efficiency of the algorithm.

4.2. Improved Harmony Search Algorithm

The Improved Harmony Search (IHS) algorithm was introduced in 2007 by M. Mahdavi et al.

in [39]. IHS was developed in an effort to improve the convergence of the solutions by dynamically

varying PAR and BW at every new improvisation k as explained by Figure 8.

Figure 8. Improvisation process in Improved Harmony search (IHS) algorithm.

The probability of pith adjustment is increased by increasing PAR linearly as:

PAR(k) = PARmin +

(

PARmax − PARmin

NI
× k

)

(21)
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where k is the iteration or the current improvisation and PARmax and PARmin are the maximum and

minimum adjustment rate, respectively.

At the same time, the degree of adjustment is decreased by decreasing BW exponentially as:

BW(k) = BWmax exp

(

1

NI
× ln

(

BWmin

BWmax

)

× k

)

(22)

where BWmax and BWmin are the maximum and minimum bandwidth, respectively.

Similarly to the HS algorithm, the IHS algorithm follows the same steps with the inclusion of the

calculation of PAR(k) and BW(k) as detailed in pseudocode of Algorithm 2:

Algorithm 2: Improved Harmony Search Algorithm

1. Define parameters of IHS algorithm: n, HMS, HMCR, PARmax, PARmin, BWmax, BWmin, NI.

2. Initialize HM with random harmony vectors using (19) and calculate the cost function of each vector.

3. Calculate the kth pitch adjustment rate PAR(k) and bandwidth distance BW(k).

4. Improvise a new Harmony vector XXXnew based on the three rules of Figure 8.

5. Update the HM with XXXnew if ( f (XXXnew) < f (XXXw)) as XXXw = XXXnew.

6. If the maximum number of improvisations NI is reached then stop the program and return the best

harmony vector XXXB. Otherwise, go back to step 3.

This method strongly enhances the capabilities of the IHS algorithm in terms of precision once the

algorithm has converged to an interesting region of the search space. However, this method introduces

the problem of bounds selection (i.e., PARmax, PARmin, BWmax and BWmin). Moreover, the fact that

the parameter PAR continues to increase without settling even when an interesting region is reached

made this method questionable.

4.3. Global-Best Harmony Search Algorithm

The Global-Best Harmony Search algorithm (GHS) has been developed and introduced in 2008 by

Omran and Mahdavi in [40] based on the concept of the Particle Swarm Optimization algorithm [41].

The GHS has been proposed to deal with the limitations of the HS algorithm as a neighborhood

metaheuristic which does not make use of its own past experience. The idea is to directly consider the

best harmony vector in HM and simplify the pitch adjustment process as explained in Figure 9.

Figure 9. Improvisation process in Global-best Harmony Search (GHS) algorithm.

The new pitch adjustment rule randomly selects the lth element xB(l) from the best harmony

vector XXXB to the jth decision variable xnew(j) in the new harmony vector XXXnew.

The GHS algorithm can be summarized by the steps of Algorithm 3:
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Algorithm 3: Global-Best Harmony Search Algorithm

1. Define parameters of GHS algorithm: n, HMS, HMCR, PAR, NI.

2. Initialize HM with random harmony vectors using (19) and calculate the cost function of each vector.

3. Improvise a new Harmony vector XXXnew based on the three rules of Figure 9.

4. Update the HM with XXXnew if ( f (XXXnew) < f (XXXw)) as XXXw = XXXnew.

5. If the maximum number of improvisations NI is reached then stop the program and return the best

harmony vector XXXB. Otherwise, go back to step 3.

This method eliminates the problem of BW selection unlike in previous variants.

5. Self-Adaptive Global-Best Harmony Search Algorithm

The Self-Adaptive Global-Best Harmony Search (SGHS) algorithm has been developed and

introduced in 2010 by Q.K. Pan et al. in [42]. The SGHS algorithm is based on the GHS algorithm with

a few modifications in an effort to enhance its capabilities. The SGHS presents three major changes

to the algorithm; (1) self-adaptation of HMCR and PAR, (2) dynamic evolution of BW and (3) new

improvisation scheme.

5.1. Self-Adaptation of HMCR and PAR

First of all, the parameters HMCR and PAR are no longer fixed values and are instead learned

to adapt to the problem and the evolution of the search process. In fact, a very large HMCR favors

local search which increases the convergence rate, whereas a small value will favor the exploration

which will diversify the HM. On the other hand, if PAR is big, it favors the exploitation of the best

harmony vector XXXB and passing it’s information to the next improvisation; but a small value will favor

the perturbation of the values in HM to diversify, hence increasing the exploration. Therefore, Q.K.

Pan et al. considered HMCR and PAR as normally distributed values in the interval [0.9, 1.0]([0.0, 1.0])

with mean values HMCRm(PARm) and a Standard Deviation of (SD) 0.01(0.05) [42]. HMCR and

PAR are then recalculated for every certain Learning Period of (LP) to adapt them at every phase of

the search process.

5.2. Dynamic Evolution of BW

Secondly, the bandwidth distance BW parameter was initially kept fixed in HS algorithm which

resulted in neighboring solutions to the actual optimal solution. This was than dynamically increased

right up to the end of the search in the IHS algorithm without settling down once the algorithm reaches

an interesting region that could diverge the search.

For the SGHS algorithm BW should be dynamically varying at the beginning but settles down in

mid search to favor local search once an interesting region is reached. Therefore BW is defined as:

BW(k) =

{

BWmax −
BWmax−BWmin

NI × 2k i f t < NI/2

BWmin i f t ≥ NI/2
(23)

where BWmin and BWmax are the minimum and maximum bandwidth distances.

5.3. New Improvisation Process

The improvisation process of the SGHS algorithm reinstates the use of bandwidth adjustment

BW but in the memory consideration rule. Moreover, the pitch adjustment rule is modified to assign

the elements xB(j) of the best harmony vector XXXB in the HM to the corresponding decision variable

xnew(j) of the new harmony vector XXXnew, unlike the GHS algorithm, which assigns them randomly.

This scheme ensures the use of the features of the best vector and offers the possibility to refine the

solutions through the bandwidth parameter, as explained by the scheme of Figure 10.
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Figure 10. Improvisation process in Self-adaptive Global-best Harmony Search (SGHS) algorithm.

5.4. SGHS Computational Procedure

The computational process SGHS algorithm combines all three new changes in the algorithm

which is summarized by the pseudocode of Algorithm 4.

Algorithm 4: Self-Adaptive Global-Best Harmony Search Algorithm

1. Define parameters of SGHS algorithm: n, HMS, HMCRmax, HMCRmin, PARmax, PARmin, SD, LP, NI.

2. Initialize BWmax, BWmin, HMCRm and PARm. Set learning counter lp to 1.

3. Initialize HM with random harmony vectors using (19) and calculate the cost function of each vector.

4. Self-adapt HMCR and PAR according to HMCRm and PARm. Calculate BW(k) from BWmax, BWmin.

5. Improvise a new Harmony vector XXXnew based on the three rules of Figure 10.

6. Update the HM with XXXnew if ( f (XXXnew) < f (XXXw)) as XXXw = XXXnew and record HMCR and PAR.

7. If (lp = LP) then recalculate HMCRm and PARm and reset lp to 1. Otherwise, increment lp by 1.

8. If the maximum number of improvisations NI is reached, then stop the program and return the best

harmony vector XXXB. Otherwise, go back to step 4.

6. Results and Discussion

The performance evaluation of the suggested optimization for the airflow control in the OWC has

been carried out by numerical simulations using a numerical wave-to-wire model on Matlab/Simulink.

The OWC wave-to-wire model is configured using the parameters of NEREIDA detailed in Table 1.

Table 1. OWC parameters from the NEREIDA wave power plant.

Capture Chamber Wells Turbine DFIG Generator

wc = 4.5 m n = 5 Rs = 0.5968 Ω Prated = 18.45 kW
lc = 4.3 m b = 0.21 m Rr = 0.6258 Ω Vsrated = 400 V
ρa = 1.19 kg/m3 l = 0.165 m Lss = 0.0003495 H frated = 50 Hz
ρw = 1029 kg/m3 r = 0.375 m Lrr = 0.324 H p = 2

a = 0.4417 m2 Lm = 0.324 H

6.1. Optimization and Computational Results

Due to the stochastic and irreproducible nature of optimization algorithms, validating their

performance is supposed to be via statistical analysis on the goodness of the found solutions of several

trials. Thus, the suggested particle swarm optimization algorithm has been simulated 20 times with a

maximum Number of Improvisations (iterations) NI = 100 and a Harmony Memory Size HMS = 20

while running on an Intel Core i5, 3.30 GHz CPU. Feasible solutions have been obtained in 80% of

trials and in acceptable CPU calculation time.
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Figure 11 illustrates the box-and-whisker plot of the results of the optimization of all four variants

of the Harmony Search algorithm (i.e., HS, IHS, GHS, SGHS) for Problem (18).

The figure shows that the obtained solutions from all four algorithms are in the same region of the

search space. From a statistical point of view, we focus on the average values which are 4.015, 3.575,

3.875, and 3.450 for HS, HIS, GHS and SGHS, respectively. However, in general, it is obvious that,

in terms of average value (red line) and of minimum value (bottom whisker), among 20 trials of every

algorithm the SGHS algorithm presents superiority over the previous variants. However, it is to be

noted that the box of the IHS algorithm is the narrowest which is thanks to its pitch adjustment rules

that favor exploitation and precision. On the other hand, the GHS show less favorable results with

wider box, meaning dispersed solutions, this may be due to the lack of solution refinement via the

BW parameter.

Algorithms
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4

4.5

5

Figure 11. Box-and-whisker plot of the optimization results using HS, IHS, GHS and SGHS algorithms.

The significant outcomes of the 20 trials using all four algorithms are detailed in Table 2.

The SGHS algorithm is the best in terms of average value but not significantly better. SGHS has

the lowest minimum, maximum, median and mean values and the HS algorithm has the lowest

standard deviation.

Table 2. Details of optimization results from 20 trials of Problem (18).

Algorithm Min Max Median Mean Standard Deviation

HS 3.900 4.900 4.015 4.400 0.530
IHS 3.100 4.500 3.575 3.800 0.540
GHS 3.402 4.950 3.875 4.176 0.825
SGHS 2.874 4.300 3.450 3.587 0.697

To further understand the behavior of the algorithms Figure 12 illustrates the most typical

convergence curves of HS, IHS, GHS and SGHS along with the curves of previously tested

algorithms—the Particle Swarm Optimization with decreasing inertia (PSO-In), the Fractional-Order

Particle Swarm Optimization Memetic Algorithm (FPSOMA) and the Water Cycle Algorithm (WCA).
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Figure 12. Convergence histories of the HS, IHS, GHS and SGHS algorithms for Problem (18).

From the convergence histories, it can be noticed that all algorithms successfully converge to the

same region of the search space (between 3 and 4) but the optimal is from the SGHS algorithm.

The other variants of the HS algorithm managed to enhance the exploration and exploitation

capabilities but with different outcomes. In the case of the IHS algorithm, the precision has been

improved thanks to the increase of the exploitation with the new pitch adjustment rules (21) and (22)

but because PAR continues to increase until the end, somehow IHS diverged from the optimal region.

In the case of the GHS algorithm, it converged quicker to the best solution thanks to the use of the best

vector in the improvisation process, however, the GHS failed to further converge because of the lack

of refinement rules using BW this behavior is known as the premature convergence. Finally, in the

case of the SGHS algorithm, it can be noticed that a gradual convergence took place thanks to the

self-adaptation of HMCR and PAR every LP = 10 improvisations. Moreover, the reinstatement of the

refinement rules using the bandwidth parameter BW allowed SGHS to obtain more precise solutions

than those of the IHS algorithm. The Water Cycle Algorithm presents close results to the HS algorithm,

but the new variants of the HS algorithm are better in comparison to other previous algorithms tested

on the OWC system.

The parameters obtained from the mean case of feasible results from 20 trials of optimization

using the HS, IHS, GHS and SGHS algorithms are given in Table 3. The Kp, Ki and Kd values are within

a close range, proving that the algorithms converge to the same interesting search region.

Table 3. PID parameters obtained by optimization algorithms.

Algorithm Proportional Gain (Kp) Integral Gain (Ki) Derivative Gain (Kd)

HS 2088 103.50 77.33
IHS 1806 112.87 66.88
GHS 2115 132.18 78.33
SGHS 2364 147.75 87.55

6.2. OWC Performance Evaluation

For the assessment of the performance of the suggested airflow-control on the OWC system, the

optimized PID controller using the parameters found of the mean case of the SGHS optimization results.

The evaluation compares the performance of the uncontrolled OWC, the OWC using a traditionally

tuned PID using the well known Ziegler–Nichols method (ZN-PID) and the OWC using the optimized

PID with SGHS algorithm (SGHS-PID) with the parameters given in Table 3.
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6.2.1. Performance With Regular Waves

During the simulations, two regular wave conditions were considered the first wave is weak

with a wave period T = 10 s and a wave amplitude A = 0.8 m from 0 s to 22.5 s. From 22.5 s to 50 s,

we considered a stronger wave with a wave period T = 10 s and a wave amplitude A = 1.3 m as shown

in Figure 13.
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Figure 13. Considered waves as input to the wave-to-wire model

The flow coefficients of the OWC in the uncontrolled case and with the airflow control using the

traditionally tuned PID (ZN-PID) and the optimized PID (SGHS-PID) are illustrated in Figure 14.
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Figure 14. Flow coefficients of the OWC in uncontrolled and controlled cases. (a) Flow coefficients

versus time. (b) Zoom-in section of the flow coefficients.

The figure shows that in the uncontrolled case the flow coefficient surpasses the threshold value

0.3 which will provoke the stall effect, whereas in both controlled cases the flow coefficients were

regulated below 0.3 thanks to both ZN-PID and SGHS-PID controllers. However, when zooming to the

curves it is observed that the SGHS-PID manages to provide a closer flow coefficient to the threshold

value than that of the ZN-PID.

Figure 15 shows that in the uncontrolled case, the airflow speed continues to increase; however,

in both controlled cases, the airflow speed decreased thanks to both ZN-PID and SGHS-PID controllers,

but with a slight superiority for the SGHS-PID.
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Figure 15. Airflow speed in uncontrolled and controlled cases.

The obtained turbine torques of the PTO in the uncontrolled case, ZN-PID controller and

SGHS-PID controller are shown in Figure 16a, Figure 16c,e, respectively. Furthermore, the generated

powers for the uncontrolled case, ZN-PID controller and SGHS-PID controller are shown in Figure 16b,

Figure 16d,f, respectively.

It may be observed that during the uncontrolled case the torque has been affected by the stall

effect which reduced it in terms of average value to 61.16 N.m. On the other hand, the airflow control

manages to avoid the stall effect and increase the torques in terms of average values to 64.22 N.m and

66.71 N.m for ZN-PID and SGHS-PID, respectively. As a result from the obtained torques, the generated

powers in the uncontrolled case is the lowest with −15.52 kW and the highest power is generated when

using the SGHS-PID with −17.38 kW followed by 18.55 kW when using a ZN-PID in the proposed

airflow control scheme.
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Figure 16. OWC torque and power outputs. (a) Torque in the uncontrolled case, (b) Power in the

uncontrolled case, (c) Torque with ZN-PID, (d) Power with ZN-PID, (e) Torque with SGHS-PID,

(f) Power with SGHS-PID.
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6.2.2. Performance With Real Wave Data

For this study case, real surface elevation measurements of waves in Mutriku obtained by the

Acoustic Doppler Current Profiler on 12 May 2014, from 00:00:00 a.m. to 00:00:50 a.m., shown in

Figure 17, were considered.

-1,000

-0,500

0,000

0,500

1,000

1,500

Wave Height (m)

Figure 17. Considered real wave data to the wave-to-wire model

The flow coefficients of the OWC with real measured wave data input in the uncontrolled case, and

with airflow control using the traditionally tuned PID (ZN-PID) and the optimized PID (SGHS-PID),

are illustrated in Figure 18.
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Figure 18. Flow coefficients of the OWC in uncontrolled and controlled cases.

Figure 18 shows that in the uncontrolled case, the flow coefficient exceeds the threshold value

0.3, which will provoke the stall effect in two time periods with strong waves. The first wave train is

from 2 s to 11 s and the second strong wave train is from 37 s to 50 s. In both controlled cases, the flow

coefficients were regulated below 0.3 thanks to both ZN-PID and SGHS-PID controllers, with a slight

superiority for SGHS-PID.

Figure 19 shows that in the uncontrolled case, the airflow speed continues to increase

uncontrollably in both periods of the strong waves; however, in both controlled cases, the airflow

speed was decreased thanks to both ZN-PID and SGHS-PID controllers, but with a slight superiority

for SGHS-PID.
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Figure 19. Airflow speed in uncontrolled and controlled cases with real wave data input.

The obtained turbine torques of the PTO in the uncontrolled case, ZN-PID controller and

SGHS-PID controller are shown in Figure 20a,c,e, respectively. And the generated powers for

the uncontrolled case, ZN-PID controller and SGHS-PID controller are shown in Figure 20b,

Figure 20d,f, respectively.

As with regular waves, it may be observed that during the uncontrolled case, the torque has been

affected by the stall effect, which reduces it in terms of average value. On the other hand, the airflow

control manages to avoid the stall effect and increase the torques in terms of average values in both

high wave regions. The resulting generated powers in the uncontrolled case is the lower than the

powers generated when using the SGHS-PID and the ZN-PID in the proposed airflow control scheme.
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Figure 20. OWC torque and power outputs with real wave data input. (a) Torque in the uncontrolled

case. (b) Power in the uncontrolled case. (c) Torque with ZN-PID. (d) Power with ZN-PID. (e) Torque

with SGHS-PID. (f) Power with SGHS-PID.

7. Conclusions

The paper proposes an airflow control strategy to deal with the undesired stalling phenomenon

of the Wells-turbine-based oscillating water columns. The proposed strategy takes into consideration



Appl. Sci. 2020, 10, 4628 19 of 21

the aerodynamic characteristics of the studied Wells turbine and implements a control using a PID

controller to govern an air valve situated within the capture chamber of the OWC system.

To efficiently tune the parameters of the PID with such a complex system, a recourse to

optimization theory has been proposed, specifically by using developed variants of the Harmony

Search algorithm. The algorithms were implemented and tested to get to the final variant (i.e., SGHS).

The parameters obtained by the SGHS algorithm were then used in the PID controller to simulate the

OWC system with the proposed airflow control scheme.

Finally, in order to show the effectiveness of the proposed strategy and tuning technique,

two comparative study cases have been carried out between the uncontrolled OWC and the

controlled OWC using the airflow control with a Zeigler–Nichols-tuned PID (ZN-PID) and a SGHS

algorithm-tuned PID (SGHS-PID). The first case study considers two different sea conditions of

regular waves, whereas the second case study considers real measured wave data. The results of the

studies demonstrate successful avoidance of the stall effect with both airflow control cases. However,

the control using the SGHS algorithm shows superior performance to the traditional tuning method.
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Nomenclature

The folowing symbols are used in this manuscript:

λ, A, H Wavelength, amplitude and height (m)

h, z Sea depth and wave surface elevation (m)

Tw, ω Wave period (s) and wave frequency (rad/s)

g Acceleration gravity (m/s2)

dP Pressure drop (Pa)

wc, lc Capture chamber inner width and length (m)

V, Q Capture chamber volume (m3) and flow rate (m3/s)

ρ, vx Atmospheric density (kg/m3) and airflow speed (m/s)

l, b, D Blade chord length, blade span and turbine diameter (m)

n, p, k, K Blade number, pole number, wave number and turbine constant

Te, Tt Electromagnetic and turbine torques (N.m)

J Turbo-generator inertia (kg.m2)

Ct, Ca, φ Torque, power and flow coefficients

Rs, Rr Stator and rotor resistances (Ω)

Ls, Lr Stator and rotor inductances (H)

is, ir Stator and rotor currents (A)

ψs, ψr Stator and rotor flux (Wb)

ωs, ωr Stator and rotor rotational speed (rad/s)

e Error between the reference variable and measured variable

u Control signal obtained from the PID controller

Kp, Ki, Kd Proportional, integral and derivative gains of the PID controller

xxx∗ Optimal solution for the problem

f Cost function
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