

DRO

Deakin Research Online,

Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B

Self-adaptive K-means based on a covering algorithm

Citation:

Zhang, Yiwen, Zhou, Yuanyuan, Guo, Xing, Wu, Jintao, He, Qiang, Liu, Xiao and Yang, Yun

2018, Self-adaptive k-means based on a covering algorithm, Complexity, vol. 2018, article

ID: 7698274, pp. 1-16.

DOI: http://www.dx.doi.org/10.1155/2018/7698274

©2018, The Authors

Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence

Downloaded from DRO:

http://hdl.handle.net/10536/DRO/DU:30113774

http://www.dx.doi.org/10.1155/2018/7698274
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10536/DRO/DU:30113774

Research Article

Self-Adaptive K-Means Based on a Covering Algorithm

Yiwen Zhang ,1 Yuanyuan Zhou ,1 Xing Guo ,1 Jintao Wu,1 Qiang He,2 Xiao Liu ,3

and Yun Yang2

1School of Computer Science and Technology, Anhui University, Hefei 230601, China
2School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
3School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia

Correspondence should be addressed to Xing Guo; guoxingahu@qq.com

Received 29 December 2017; Accepted 26 March 2018; Published 1 August 2018

Academic Editor: Xiuzhen Zhang

Copyright © 2018 Yiwen Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The K-means algorithm is one of the ten classic algorithms in the area of data mining and has been studied by researchers in
numerous fields for a long time. However, the value of the clustering number k in the K-means algorithm is not always easy to
be determined, and the selection of the initial centers is vulnerable to outliers. This paper proposes an improved K-means
clustering algorithm called the covering K-means algorithm (C-K-means). The C-K-means algorithm can not only acquire
efficient and accurate clustering results but also self-adaptively provide a reasonable numbers of clusters based on the data
features. It includes two phases: the initialization of the covering algorithm (CA) and the Lloyd iteration of the K-means. The
first phase executes the CA. CA self-organizes and recognizes the number of clusters k based on the similarities in the data, and
it requires neither the number of clusters to be prespecified nor the initial centers to be manually selected. Therefore, it has a
“blind” feature, that is, k is not preselected. The second phase performs the Lloyd iteration based on the results of the first
phase. The C-K-means algorithm combines the advantages of CA and K-means. Experiments are carried out on the Spark
platform, and the results verify the good scalability of the C-K-means algorithm. This algorithm can effectively solve the
problem of large-scale data clustering. Extensive experiments on real data sets show that the accuracy and efficiency of the
C-K-means algorithm outperforms the existing algorithms under both sequential and parallel conditions.

1. Introduction

The development of big data technologies, cloud comput-
ing, and the proliferation of data sources (social networks,
Internet of Things, e-commerce, mobile apps, biological
sequence databases, etc.) enables machines to handle more
input data than human being could. Due to this dramatic
increase in data, business organizations and researchers
have become aware of the tremendous value the data con-
tain. Researchers in the field of information technology
have also recognized the enormous challenges these data
bring. New technologies to handle these data, called big
data, are required. Therefore, it is vital for researchers to
choose suitable approaches to deal with big data and obtain
valuable information from them. Recognizing valuable
information in data requires the use of ideas from machine
learning algorithms. Thus, big data analysis must combine

the techniques of data mining with those of machine learn-
ing. Clustering is one such method that is used in both
fields. Clustering is a classic data mining method, and its
goal is to divide datasets into multiple classes to maximize
the similarities of the data points in each class and mini-
mize the similarities between the classes. The cluster analy-
sis method has been widely used in many fields of science
and technology, such as modern statistics, bioinformatics,
and social media analytics [1–5]. For example, clustering
algorithms can be applied to social events to analyze big
data to determine peoples’ opinions, such as predicting
the winner of an election.

Based on the characteristics of different fields, researchers
have proposed a variety of clustering types, which can be
divided into several general categories, including hierarchy
clustering, density-based clustering, graph theory-based clus-
tering, grid-based clustering, model-based clustering, and

Hindawi
Complexity
Volume 2018, Article ID 7698274, 16 pages
https://doi.org/10.1155/2018/7698274

http://orcid.org/0000-0001-8709-1088
http://orcid.org/0000-0001-8378-6296
http://orcid.org/0000-0003-3022-178X
http://orcid.org/0000-0002-4151-8522
https://doi.org/10.1155/2018/7698274

partitional clustering [1]. Each clustering type has its own
style and optimization approaches. We focus on parti-
tional clustering algorithms. The most popular algorithm
is K-means [2, 3, 6, 7], which is one of the top ten clustering
algorithms in data mining. The advantages of the K-means
algorithm are its easy implementation and understanding,
whereas its disadvantages are that the number of clusters k
cannot be easily determined and the selection of the initial
centers is easily disturbed by outliers, which has a significant
impact on the final results [6]. Due to the simple iteration of
the K-means algorithm, it has good scalability when dealing
with big data and is easy to implement in parallel execution
[8–10]. Researchers have proposed improved K-means algo-
rithms to address the drawbacks of the K-means algorithm,
and most of the improvements were made by optimizing
the selection of the initial K-means centers [11–13]. Good
initial centers can significantly affect the performance of the
Lloyd iterations in terms of quality and convergence and
eventually help the K-means algorithm to obtain the nearly
optimal clustering results.

However, K-means and its improved algorithms still
need to ascertain the number of clusters in advance and then
determine the best data partitioning based on this parameter.
However, the obtained results do not always represent the
best data partitioning. To address these problems, this paper
proposes a K-means clustering algorithm that is combined
with an improved covering algorithm, which is called the
C-K-means algorithm. Our improved covering-initialized
algorithm has “blind” features. Without determining the
number of clusters in advance, the algorithm can automat-
ically identify the number of clusters based on the charac-
teristics of the data and is independent of the initial
centers. The C-K-means algorithm combines the advan-
tages of the CA and K-means algorithms; it has both the
“blind” characteristics of the CA and the advantages of
fast, efficient, and accurate clustering of high dimensional
data of the K-means algorithm. Moreover, CA is easy to
implement in parallel and has good scalability. We imple-
mented the parallel C-K-means clustering algorithm and
baseline algorithms in the Spark environment. The experi-
mental results showed that the proposed algorithm is suitable
for solving the problems of large-scale and high-dimensional
data clustering.

In particular, the major contributions of this paper are
as follows:

(1) We propose a covering-based initialization algorithm
based on the quotient space theory with “blind” fea-
tures. The initialization algorithm requires neither
the number of clusters to be prespecified nor the ini-
tial centers to be manually selected. CA determines
the appropriate number of clusters k and the k-spe-
cific initial centers quickly and adaptively.

(2) The convergence algebra of the Lloyd iterations of the
C-K-means clustering algorithm is much simpler
than that of baseline algorithms.

(3) The parallel implementation of C-K-means is much
faster than parallel baseline algorithms.

(4) Extensive experiments on real datasets show that the
proposed C-K-means algorithm outperforms exist-
ing algorithms in both accuracy and efficiency under
sequential and parallel conditions.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work. Sec-
tion 3 gives an introduction to baseline algorithms and
details of the C-K-means algorithm under both sequential
and parallel conditions. Section 4 presents the experimen-
tal results and analysis, and Section 5 concludes the paper
with future work identified.

2. Related Work

As a classic clustering algorithm, the K-means algorithm is
widely used in the fields of database and data anomaly
detection. Ordonez [14] implemented efficient K-means
clustering algorithms at the top of a relational database
management system (DBMS) for efficient SQL. They also
implemented an efficient disk-based K-means application
that takes into account the needs of the relational DBMS
[15]. Efficient parallel clustering algorithms and implementa-
tion techniques are key to meet the scalability and perfor-
mance requirements for scientific data analysis. Therefore,
other researchers have proposed parallel implementation
and applications of the K-means algorithm. Dhillon and
Modha [16] proposed a parallel K-means clustering algo-
rithm based on a message passing model, which utilized
the inherence of the K-means algorithm. Due to data par-
allelism, as the amount of data increases, the speedup and
extendibility of the algorithm improve. Zhao et al. [8]
implemented a K-means clustering algorithm based on
MapReduce, which significantly improved the efficiency
of the K-means algorithm. Jiang et al. [17] proposed a
two-stage clustering algorithm to detect outliers. In the
first stage, the algorithm used improves K-means to cluster
the data. In the second stage, while searching for outliers in
the clustering results of the first stage, it identifies the final
outlier. Malkomes et al. [18] used the k-center clustering var-
iant to handle noisy data, and the algorithms used are highly
parallel. However, the selection of the initial center point of
the K-means algorithm is easily disturbed by abnormal
points, which has a significant impact on the final results.
However, efficient methods to solve the issue in which the
K-means algorithm is influenced by the initial centers have
not been proposed.

Recently, scholars have focused on research into the issue
that the selection of the initial centers of the K-means algo-
rithm is easily disturbed by outlier points and have proposed
several improved algorithms to help the K-means algorithm
select the initial centers. The most classic improved algo-
rithms are the K-means++ algorithm and the K-means||
algorithm. The K-means++ algorithm, which was proposed
by Arthur and Vassilvitskii [12], helps the K-means algo-
rithm to obtain the initial centers prior to the Lloyd iteration.
It randomly selects a data point as the first cluster center,
which is followed by selection based on the probability of
the number of data points constituting the center point of

2 Complexity

the initial set of k. The probability of selecting each successive
center point is dependent on the previously selected cluster
centers. However, due to the inherent sequential execution
characteristics of K-means++, the k clustering centers must
traverse the datasets k times and the current clustering center
calculation depends on all of the previously obtained clus-
tering centers, which makes the K-means++ initialization
algorithm difficult to implement in parallel. Inspired by
the K-means++ algorithm, Bahmani et al. [13] proposed
the K-means|| algorithm to improve the performance of the
parallelization and initialization phases. The K-means||
initialization algorithm introduces oversampling factors,
obtains initial centers that are much larger than the value of
k after a constant number of iterations, and assigns the
weights to the center points. It then reclusters these weighted
center points using the known clustering algorithm to obtain
the final initial centers containing k points. K-means|| initial-
ization has the advantages of the K-means++ algorithm and
also addresses the drawback of K-means++ being difficult to
extend. In follow-up research, researchers have proposed
more improved algorithms of K-means and most are com-
pared to these two classic improved algorithms. Cui et al.
[10] proposed a new method of optimizing K-means based
on MapReduce to process large-scale data, which eliminated
the iterative dependence and reduced the computational
complexity. Wei [19] improved the K-means++ algorithm
by selecting the cluster centers using the sampling method
in the K-means++ algorithm and then producing k centers
with the expectation of having an approximately constant
factor for the best clustering result. Newling and Fleuret
[20] used the CLARANS to help K-means solve the problem
of selecting k initial centers.

However, the number of clusters k in the K-means algo-
rithm and its variations must be known in advance, and the
best data division based on this parameter is then defined.
The data division defined in this way is actually based on
an imaginary model; it is not necessarily suitable for the best
data division. In addition, the final clustering result is based
on clustering under a hypothetical parameter without con-
sidering the actual structural relationship of the data.

In response to the problems described above, this paper
presents a novel clustering algorithm called C-K-means that
has both the “blind” feature of the CA and the fast, efficient
clustering advantage of the K-means algorithm. It can be
applied to high-dimensional data clustering with strong
scalability. We implement the parallelized C-K-means algo-
rithm on the Spark cloud platform. Extensive experimental
results show that the C-K-means clustering algorithm is
more accurate and efficient than the baseline algorithms.

3. The Algorithms

In this section, we first introduce the K-means clustering,
K-means++ clustering, and K-means|| clustering algorithms.
The motivation for using the CA as the initialization
algorithm of the C-K-means clustering algorithm is then
introduced, and the reason that the CA initialization can
obtain clustering results that are approximately optimal is
explained. Finally, we implement the parallel C-K-means

algorithm. Before explaining these questions, we summarize
the notions used throughout this paper in Table 1.

3.1. State-of-the-Art Algorithms

3.1.1. K-Means. The K-means algorithm is one of the most
classic clustering algorithms, because of its simple and fast
performance, leading it to be widely-used. The description
of the K-means algorithm is shown in Algorithm 1. First,
we randomly select k data points from the original dataset
X as the initial k cluster centers denoted by C, and we then
calculate the distance between each data point xi in X and
each center in the initial centers C. Each data point can inde-
pendently determine which center is closest to it, given an
assignment of data points to clusters, the closest center is
denoted by cj. Then, the center of each cluster is updated,

and each data point is repeatedly assigned to the cluster of
the nearest center until the new set of cluster centers is equal
to or less than the set of former cluster centers. This local
search is called Lloyd iteration. The simple iteration of the
K-means algorithm gives it good flexibility and can work
effectively even with today’s big data. Algorithm 1 presents
the pseudocode for the K-means algorithm [6, 12, 13].

3.1.2. K-Means++. Because the selection of the initial centers
has a significant influence on the K-means clustering results,

Table 1: Mathematical notations.

Symbol Explanation

X = x1,… , xn
Denotes a set of points in the
d-dimensional Euclidean space

m = ∣X∣
Denotes that there are m data

points in dataset X

k
Denotes a positive integer specifying

the number of clusters

C = c1,… , ck Denotes the set of cluster centers

xi − x j
Denotes the Euclidean distance

between xi and x j

Y ⊆ X Denotes that Y is a subset of X

d x, Y
Denotes the minimum Euclidean
distance between x and set Y

centroid(Y) Denotes the centroid of set Y

miny∈Y x − y
Denotes the minimum Euclidean
distance between x and y in set Y

ϕY C Denotes the cost of Y with respect to C

〠
y∈Y

d2 y, C
Denotes the sum of the squares of
the minimum Euclidean distance
between y in set Y and set C

〠
y∈Y

min
i=1,…,k

y − c1
2 Denotes the sum of the minimum

Euclidean distances between y in
set Y and set C ci ∈ C

ϕ∗
Denotes the cost of optimal

clustering algorithms

σi = σ1i, σ2i,… , σni
T Denotes the standard deviation

vector of a cluster

3Complexity

the K-means algorithm can only find a local optimal solution.
To obtain the global optimal solution, it may be necessary
to select the initial centers several times and then acquire
the final values by constantly choosing these initial centers.

To overcome the disadvantages of K-means, researchers
have proposed improved methods to help K-means find suit-
able initialization centers. K-means++, which was proposed
by Arthur and Vassilvitskii [12], is a typical representative
algorithm (shown in Algorithm 2). The main idea of this
algorithm is to select the initial centers one by one in a con-
trolled way, and the calculation of the current cluster centers
depends on all of the previously obtained cluster centers.
Intuitively, the initialization algorithm selects relatively
decentralized initial center points for K-means clustering,
and the K-means++ initialization algorithm prioritizes the
data points away from the previously selected centers when
selecting a new clustering center. However, from the scalabil-
ity point of view, the main disadvantage of K-means++ ini-
tialization is its inherent sequential execution properties.
The acquisition of k centers must traverse the entire dataset
k times, and the calculation of the current cluster center relies
on all of the previously obtained clustering centers, which
makes the algorithm not scalable in parallel and therefore
greatly limits the applications of the algorithm to large-
scale datasets. Algorithm 2 presents the pseudocode for the
K-means++ algorithm [12].

3.1.3. K-Means||. Based on the advantages and disadvantages
of the two initialization algorithms described above,
researchers have proposed a new initialization algorithm
called K-means|| [13] (see Algorithm 3 for details). The main
idea of this algorithm is to change the sampling strategy dur-
ing each traverse and propose an oversampling factor l =Ω

k . Each time the sample points are traversed in a nonuni-
form way and the sampling process is repeated for approxi-
mately O log ψ iterations, O log ψ is the clustering cost
of the selected centers. We can then obtain the centers of
lO log ψ sample points with repeated sampling. The num-
ber of intermediate centers is larger than k and much smaller
than the original data size. Line 7 of Algorithm 3 shows that
the center points in the set of center points C are assigned
weights, and the center points of these weights are then
reclustered in line 8, that is, the clustered k centers obtain
the final k centers. Finally, these k points are fed into the
Lloyd iteration as the initial centers. Algorithm 3 presents
the pseudocode for the K-means|| algorithm [13].

3.2. Intuition behind the Proposed Algorithm. The traditional
K-means random initialization method requires only one
iteration and selects k centers uniformly and randomly. The
K-means++ initialization method improves the method by
randomly selecting the center point by selecting the initial
center in a nonuniform way, but it requires k iterations. Only
one data point is selected for each iteration to join the set of
center points. Moreover, the selection of the current center
point depends on the previously selected center. K-means++,
which is a constantly updated nonuniform selection opera-
tion, increases the accuracy of K-means++ over random ini-
tialization, but it makes the K-means++ algorithm difficult to
expand on a big dataset. Therefore, researchers proposed the
K-means|| algorithm to improve the shortcomings of ran-
dom initialization and K-means++ initialization and to
choose k initial centers in a nonuniform manner with fewer
iterations. However, both the K-means algorithm and its var-
iant algorithms require the input of the clustering parameter
k in advance and must define the best data partitioning for
this parameter. However, the defined division of data is

Input: X, θ
Output: A set of clusters C1, C2,…

Begin
1: C ← sample k points uniformly at random from dataset X
2: C_new← C, C_old← ϕ
3: while ∣C_new - C_old∣ ≤ θ do:
4: C_old← C_ new
5: calculate all of the distances between xi and C_oldj:

get_distance (xi, C_oldj), xiϵX, C old jϵ C_old

6: assign xi to the nearest C_oldj
7: calculate new centroid C_new:

C newi =
1

C oldi
〠C oldi

i=1
xi

8: end while
End

Algorithm 1: (K-means algorithm).

Input: X
Output: Initial center set C
Begin

1: C ← sample a point uniformly at random from dataset X
2: while ∣C∣ < k do:

3: sample x ∈ X with probability
d2 x, C

ϕX C
4: C ← C ∪ x
5: end while
End

Algorithm 2: (K-means++ initialization).

4 Complexity

actually based on a hypothetical value of k and may not be
suitable for the best division of data, so the actual accuracy
of the clustering results cannot be guaranteed.

Based on the geometric meaning of neural networks
and the M-P neuron model, the covering algorithm was
proposed by Zhang and Zhang [21]. It obtains a rule based
on field covering and does not require the numbers of clus-
ters and initial centroids to be prespecified. However, the
traditional covering algorithm may face a problem in which
some data points of the existing clusters are too large in the
clustering process, which results in unreasonable clustering
results. Therefore, based on the quotient space theory, we
propose a covering algorithm called CA. The concept of
granularity was first proposed by Zadeh in the 1970s [22],
and Zhang and Zhang proposed the theory of quotient
space [23]. This theory provided a reasonable formal model
for mankind’s ability to analyze and synthesize problems
on a macroscopic and granular scale. Different granular-
ities describe information at different levels. When the
granularity is too small, all of the data points are self-
formed and the inner knowledge cannot be mined. When
the granularity is too coarse, all of the data are aggregated
into a cluster, so some properties of the problems are
obscured. Granularity is introduced to scientifically accom-
plish the task of covering clustering and obtain the optimal
clustering results.

The CA requires neither the number of clusters to be pre-
specified nor the initial centers to be manually selected, and it
automatically finds a set of fields that can separate samples
with low similarity and merge samples with high similarity.
The center of the set constitutes the initial clustering centers.
Therefore, the CA has the beneficial feature of being “blind”.
Without knowing the number of clusters a priori, based on
the relationships of the data, the CA can automatically iden-
tify the number of clusters and has no dependence on the
initial clustering centers as well as fast computational speed.
The CA also has good scalability. It is easy to implement in
parallel, which is suitable for data processing in a big data
environment. Therefore, this paper uses the improved CA
as a K-means initialization algorithm to obtain the set of
initial center points.

3.3. Overview of the C-K-Means Algorithm. In this section,
we introduce the realization of the C-K-means clustering
algorithm in detail. Figure 1 depicts the entire process of
the C-K-means algorithm. The C-K-means algorithm is
divided into two main phases: phase 1 and phase 2. Phase 1
performs the CA initialization, and phase 2 performs the
Lloyd iterations. Next, we describe both phases in detail.

3.3.1. Phase 1: Overall Procedure of the CA. Algorithm 4
presents the pseudocode for the CA initialization. Below,
we introduce the implementation process of CA in detail.

(1). Find the center of gravity of all of the sample sets X
that have not been clustered (covered) and then take
the point denoted by center that is closest to the
gravity as the initial center of the first cluster; this
process is get_center (Cu) in Algorithm 4.

(2). Find the distance rx between each data point xϵX
and center that has not been clustered separately
and obtain the sum of all of the distances
denoted by rX→center. Next, wx = rx/rX→center /
∑xϵX rx/rX→center we set the weight wx = rx/
rX→center / ∑xϵX rx/rX→center on all data points.
Finally, we use rx and wx to calculate the cover-
ing radius, radius =∑xϵXrxwx, which is introduced
in get_weight_radius(c,Cu) in Algorithm 4.

(3). Find the centroids of the current spheres continually
according to the obtained center and radius and
obtain new clusters until the number of clusters in
the data points does not increase. We can then
determine the spheres (covering or clustering),
which is introduced in get_covering (c, r, Cu) and
lines 10 to 15 in Algorithm 4.

(4). Repeat steps (1), (2), and (3) until all of the data
points have been completely covered. This is
introduced in lines 3 to 16 in Algorithm 4.

During the data clustering process, we can also automat-
ically adjust the inner class and interclass relationships based

Input: X
Output: Initial center set C

Begin
1: C ← sample a point uniformly at random from dataset X
2: ψ← ϕX C
3: for O log ψ times do:

4: C′← sample each point x ∈ X independently with probability px =
l ⋅ d2 x, C

ϕX C
5: C← C ∪ x
6: end for
7: For x ∈ C, set wx as the number of points in X that are closer to x than any other

point in C
8: Recluster the weighted points in C into k clusters

End

Algorithm 3: (K-means|| initialization).

5Complexity

Input data

Initialize CA

�e suitable cluster number:
k

�e best set of centroids:
{C1, C2, …, Ck}

Partitioning

Seeds

Candidate
cluster 1

Candidate
cluster k…

Updating centroid Updating centroid

Centroid kCentroid 1

…

…

…

Partitioning

Final clustering
result

Until satisfy the termination condition:
|old_centroids–new_centroid| < �

Candidate clusters: {C1, C2, …, Cn1}

Splitting clusters

Merging clusters

Candidate clusters: {C1, C2, …, Cn2}

Phase 1 Phase 2

Figure 1: Overall procedure of the C-K-means algorithm.

Input: X
Output: Results of parallel covering with granularity analysis–A set of clusters
C = C1, C2,…
Begin

1: center c = null
2: Set Cu = X
3: do
4: center c← get_center(Cu)
5: radius r← get_weight_radius(c,Cu)
6: Covering Cform=get_covering(c,r,Cu)
7: c← get_centroid(Cform)
8: r← get_weight_radius(c,Cu)
9: Covering Clast=get_covering(c,r,Cu)
10: while Clast.subtractByKey(Cform)>0
11: Cform← Clast

12: c← get_centroid(Cform)
13: r← get_radius_centroid(c,Cu)
14: Clast=get_covering(c,r,Cu)
15: end while
16: while (Cu ≠∅)
17: Do Split Operation
18: Do Merge Operation
19: return C = C1, C2,…
End

Algorithm 4: (CA initialization).

6 Complexity

on the actual demand or the relationship between the data
in the dataset. For a covering with fewer sample points, the
single linkage method (using the Euclidean distance) in the
hierarchical clustering algorithm [24, 25] is adopted to
merge them to form an ellipsoidal domain, which means
combing the most similar pair of clusters into a new cluster.
Then, the similarities between the new cluster and the other
clusters are updated, and the two most similar clusters are
again merged. Based on the relationship between the data
in the dataset or the actual demand, we can decide whether
to continue merging the clusters with fewer data points or
to split the spheres with more data points. Finally, we can
obtain reasonable covering divisions with all of the similar
data points that are distributed in one area (spherical or

ellipsoidal), which is introduced in lines 17 and 18 in
Algorithm 4.

Figure 2 presents an illustrative example to intuitively
demonstrate the clustering process of Algorithm 4. To clus-
ter the data points, Algorithm 4 goes through five iterations
to identify five clusters (covering or fields), C1,… , C5. We
then compute the relationship between the inner class and
the interclasses and find that clusters C4 and C5 are very
similar. Therefore, the sixth iteration merges them into one
cluster and then updates the similarities between each clus-
ter, where c1,… , c5 are the centers and r1,… , r5 are the
radii, respectively.

When we study a dataset, we can divide it in differ-
ent ways. Each division is a quotient space of different

C1

C1

r1

(a) Iteration number 1

C1

C1

r1 C2
C2

r2

(b) Iteration number 2

C3
C3
r3

C1

C1

r1
C2

C2 r2

(c) Iteration number 3

C3

r3

C3

r4 C4

C4

C1

C1

r1
C2

C2

r2

(d) Iteration number 4

C4

C4

r4

C5
C5

C1

C1

r1
C2

C2

r2

C3

C3
r3

(e) Iteration number 5

C4

C4

r4

C1

C1

r1

C3
C3

r3

C2
C2

r2

(f) Iteration number 6

Figure 2: An example of clustering.

7Complexity

granularities. We observe and analyze this dataset from dif-
ferent granularities. Based on the different granularities of
the observation and analysis datasets, we can solve the prob-
lem in different granular worlds and can jump quickly from
one granular world to another. This ability to handle differ-
ent worlds of granularity is a powerful manifestation of the
solution of human problems [26]. When we study the prob-
lem of reasonably clustered datasets, we can put the problem
in the quotient space with different granularities for analysis.
We can then obtain the solution to the clustering problem
synthetically. In a different granularity quotient space, we
can observe the different nature of the dataset and then find
the properties of interest to the user, which can be main-
tained in different granular worlds or preserved to a certain
extent. However, not every arbitrary division can achieve
this goal. Therefore, the dataset division and its choice of
granularity must be studied, that is, we need to select the
appropriate dataset division. Based on the above, we propose
the split-operation and merge-operation mechanisms in the
C-K-means algorithm to help the datasets determine the
appropriate partitioning and granularity. The C-K-means
algorithm automatically adjusts the number of clusters dur-
ing the iteration by merging similar clusters and splitting
clusters with larger standard deviations. Finally, after a small
number of constant iterations, C-K-means helps the dataset
find the appropriate number of clusters k and k initial cen-
ters, and it then feeds the clustering centers into the Lloyd
iteration to complete the final clustering process and deter-
mine the reasonable quotient space for the original dataset.

Adjustment Mechanism 1: Split Operation. First, we cal-
culate the vector of the standard deviations for all of the sam-
ples in the cluster to the center of the cluster in all of the

clusters: σi = σ1i, σ2i,… , σni
T , i = 1, 2,… ,Nc, where Nc is

the number of existing classes and n is the dimension of the
samples. We then calculate the maximum component on
σi max of the standard deviation vector σi of each class and
determine the threshold value σs. For cluster Cu, we consider
the following conditions: (1) the maximum component-wise
standard deviation in the cluster, that is, maxj=1,…,nσuj > σs;

(2) the average distance between the samples in the cluster

is greater than the overall average distance, that is, di > d,

where di and d represent the average inner class distance of
the i cluster (i.e., the average distance from the sample to
the centroid in the calculation cluster) and the overall average
distance (i.e., the overall average distance of each sample to
its inner class centers), respectively; (3) the number of sam-
ples in the cluster is greater than θN , that is, Cu > θN , where
θN is the threshold cluster number, θN is the minimum num-
ber of samples allowed in each cluster (if less than this num-
ber, it cannot form a cluster), and Cu denotes the number of
samples in the ith cluster; and (4) the number of clusters is
greater than k/2. If all of these conditions are satisfied, then
split cluster Cu into two clusters with two cluster centers
Cu+ and Cu− and delete the original class Ci. The current
number of clusters will increase by 1. The values of Cu+ and
Cu− are the components corresponding to σi max in the orig-
inal Cu that to σi max are added to and subtracted from,
respectively, while their components remain unchanged.

Adjustment Mechanism 2: Merge Operation. To sort the
numbers of points contained in all clusters that have been
formed, for clusters with fewer points, we calculate the simi-
larity values between all other clusters and them: Sij = 1/1 +

dij, i = 1, 2,… ,Nc−1 and j = 1, 2,… ,Nc. To sort all of the

obtained Sij, values according to the value of the final number

of clusters k; we merge the two clusters with the largest Sij
values and update the merged cluster centers. The current
number of clusters will decrease by 1.

3.3.2. Phase 2: Overall Procedure of Lloyd’s Iterations. Phase
1 determines the suitable value of k and k specific initial
centers by performing the CA initialization. In phase 2,
we assign the data points in the dataset to the cluster
whose center is closest to the data point according to the
cluster centers obtained in phase 1. We then update the
class centers until the convergence condition is satisfied.
All of the data are distributed to the cluster when the data
point is closest to the cluster center, that is, the Lloyd iter-
ation of the K-means clustering algorithm is completed,
and the clustering results near the optimal clustering solution
are obtained to complete the proposed C-K-means algo-
rithm. Our CA initialization and final C-K-means algorithm
can be easily parallelized, and we can rapidly complete the
clustering operations.

3.4. Computational Complexity Analysis. This section dis-
cusses the computational complexity of the C-K-means algo-
rithm with two phases. First, we analyze the computational
complexity of the forming phase of C-K-means (i.e., CA ini-
tialization). In Algorithm 4, the computational complexity of
line 5 is O m because dataset X contains a maximum of m
points. Similarly, the computational complexities of lines 5
and 6 are also O m , and those of lines 7, 8, and 9 are also
O m because the number of clusters is smaller thanm. Lines
10–15 will be repeated until the data points in the cluster do
not change. Lines 3–15 must also be repeated until all of the
data points in X are covered, and the number of repeti-
tions num_C is much smaller than m. In line 3, the radius
of a cluster is the average distance between the center of
the cluster and all of the data points that are not covered
by any clusters. On average, each newly created cluster
covers half of the uncovered data points, and the compu-
tational complexity is O log m . In line 17, the computa-
tional complexity is O p because there is a maximum of
p clusters after the initial covering process. Similarly, the
computational complexity of line 18 is O p because there
is a maximum of p clusters. The number of clusters is
much smaller than m. Thus, the computational complexity
of Algorithm 4 is O m ×O log m +O p =O m log m .
We then introduce the second phase’s computational com-
plexity, which is the Lloyd iterations. The second phase
performs num_iter iterations until the cluster centers do
not change, so its computational complexity is O k ∗m ∗ n
um iter . The numbers of clusters k and iterations num_iter
are much smaller thanm. Therefore, the computational com-
plexity of the C-K-means algorithm is O m ×O log m +
O p +O k ∗m ∗ num iter =O m log m .

8 Complexity

3.5. A Parallel Implementation. In this section, we discuss the
proposed CA initialization and the parallel implementation
of the C-K-means algorithm on Spark.

Spark is the de facto distributed computing platform
for large data processing and is particularly suitable for
iterative calculations. A main component of Spark is the
resilient distributed dataset (RDD), which represents a
read-only collection of objects partitioned across multiple
machines that can be rebuilt if a partition is lost. Users
can explicitly cache an RDD in memory across multiple
machines and reuse it in multiple parallel operations. The
RDD is the main reason that Spark is able to process big data
efficiently. Due to the performance of memory computing,
data locality, and transport optimization of Spark, it is
particularly suitable for performing recursive operations
on big data [27]. However, not all large-scale data can
be efficiently processed via parallel implementation. Parti-
tional clustering algorithms require an exponential number
of iterations [28]. Simultaneously, exponential job creation
time and time of large-scale data shuffling are difficult to
accept, especially for large amounts of data, so mere paral-
lelism is not sufficient. High performance can be reached
only by eliminating the partitional clustering algorithm’s
dependence on the iteration.

The parallel implementation principle of the C-K-means
clustering algorithm in Spark is illustrated in Figure 3. As
demonstrated, C-K-means consists of three main stages.
Stage 1 performs the parallel CA on Spark, and stage 2
analyzes the results of the initial covering clustering
obtained from Stage 1 and splits or merges the clustering
results through self-organization to determine the number
of clusters k and the specific initial center set. Together, stages
1 and 2 constitute the parallel CA initialization process.

Stage 3 is the Lloyd iteration phase, in which Lloyd itera-
tion is conducted on k initial centers to obtain the optimal
clustering results.

The covering algorithm implemented on Spark is illus-
trated in stages 1 and 2 in Figure 3. The distributed files are
read from Hadoop Distributed File System (HDFS) and
transformed into IndexedRDD [29]. The parallel covering
process in stage 1 consists of many covering processes. Each
covering process comprises three processes, which obtain the
cluster and its center, radius, and the cluster, respectively.
Stage 1 describes the process for obtaining all of the clusters.
We obtain the first cluster center c1 through the reduce oper-
ation on Spark. This operation obtains the data point that is
nearest to the centroid of all of the data in parallel. Next,
we obtain the radius r1 of the cluster through the map and
reduce operations on Spark. Specifically, an intermediate var-
iable IndexedRDD Buf is obtained through the map opera-
tion on Spark. The map operation calculates the distance
between the cluster center c1 and each uncovered data point
and forms IndexedRDD Buf . Then, the radius r1 is obtained
through the reduce operation. This operation produces the
radius r1 by calculating IndexedRDD Buf in parallel. Finally,
we obtain cluster_1 through the filter operation on Spark.
Simultaneously, the filter operation filters the data points,
where the distances between center c1 and each uncovered
data point are less than the radius r1. The radius and center
are acquired using the process introduced above. The
remaining clusters are obtained in a manner similar to the
first cluster. These processes are repeated until no more data
points can be identified, which indicates that all of the
data points have been included in these clusters. This is
the end of the covering process, which also indicates that
stage 1 is complete. After the covering process, C-K-means

Input data

HDFS

L
o

ad
 d

at
a

in
to

 I
n

d
ex

ed
R

D
D

S

Load data into RDDs

RDD1 RDD2 …… RDDn

Initializing
centroids

Distance
computation

Distance
computation

Distance
computation……

Updating centroids

Final clustering
results

Lloyd’s iteration

Indexed RDD1

Part (k, v)

Part (k, v)

Map

r1

Reduce
Part (k, v)

Part (k, v)

Indexed RDD_Buf

Part(k, v)

Part (k, v)

Map

...

c1

Reduce
Part (k, v)

Part (k, v)

IndexedRDD_BufIndexed RDD1

Parallel CA initialization

IndexedRDD k

Part (k, v)

Part (k, v)

Map

r
k

Reduce
Part (k, v)

Part (k, v)

IndexedRDD_Buf

Part (k, v)

Part (k, v)

Map

c
k

Reduce
Part (k, v)

Part (k, v)

IndexedRDD_BufIndexedRDD k IndexedRDD

Part (k, v)

Part (k, v)

Filter

Part (k, v)

Part (k, v)

IndexedRDD_result

c
m & r

m

Stage 1

Indexed RDD

Part (k, v)

Part (k, v)

Filter

Part (k, v)

Part (k, v)

Indexed RDD_result

c1 & r1

Merge

Split

Stage 2

Initial clustering
results

Clustering
results_Buf

Clustering results

Stage 3

...

... ...

... ...

... ...

...
...

...
...

Figure 3: Overall procedure of the parallel C-K-means algorithm.

9Complexity

performs the split and merge operations in stage 2 to obtain
the final initialization centers. Through the CA initialization
process, the initialization centers are adaptively obtained
and then fed into Lloyd’s iteration in stage 3. As described
earlier, Lloyd’s iteration can also be easily parallelized on
Spark. Therefore, it is imperative that we implement an
efficient CA initialization and C-K-means algorithm on
the Spark platform.

4. Experimental Results

This section presents a detailed analysis and comparison
of the experimental results, including sequential and paral-
lel versions of the algorithm to confirm the merits of our
C-K-means algorithm, which include the following: (1)
the C-K-means algorithm can adaptively determine the
number of clusters k and obtain a set of k cluster center
points according to the similarity between the data, which
then allows the C-K-means algorithm to obtain high-
precision clustering results, (2) the C-K-means algorithm
can obtain a clustering result that is near the optimal value
which outperforms K-means in terms of its cost and is
very similar to k-means++ and k-means||, and (3) com-
pared with k-means++ and k-means||, the number of
Lloyd’s iterations in the C-K-means algorithm is relatively
small which converges quickly when accuracy and cost are
ensured, meaning that the proposed C-K-means algorithm
is accurate and efficient under parallel conditions.

In this paper, the C-K-means clustering algorithm and its
counterparts are implemented sequentially and in parallel.
The sequential implementation is evaluated on a stand-
alone computer with a 6-core 3.60GHz processor and
20GB of memory. All of the parallel algorithms are imple-
mented on a cluster of Spark 1.6 with Hadoop 2.6. The cluster
has 16 nodes, each of which is an 8-core 3.60GHz processor
with 20GB memory.

4.1. Datasets. We used 7 datasets in our experiments to
evaluate the performance of the C-K-means algorithm. The
summary statistics and information about these 7 datasets
are shown in Table 2.

The question marks in Table 2 indicate that the number
of clusters in the dataset is unknown.

Some of the datasets, such as Gauss, are synthetic, and the
others are from real-world settings and are publicly available
from the University of California Irvine (UCI) machine

learning datasets [30]. The Iris dataset [31–33] is a well-
known database in clustering algorithm comparisons. It con-
sists of three types of Iris plants (setosa, versicolor, and virgi-
nica) with 50 instances, each of which was measured with
four features. The Wine dataset [31–33] is the result of a
chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. It contains 178
instances measured with 13 continuous features. The Aba-
lone dataset [34, 35] contains physical measurements of
abalone shellfish. It contains 4177 instances with 9 features
each (1 cluster label and 8 numeric and we apply 8 primary
features), which are divided into 29 clusters. The age of an
abalone can be determined by cutting the shell through
the cone, staining it, and counting the number of rings
with a microscope. In practice, measurements are used to
estimate the age. The SPAM dataset [13] consists of 4601
instances with 57 dimensions and represents features avail-
able to an e-mail spam detection system. The Cloud dataset
[12] consists of 1024 instances in 10 dimensions and repre-
sents the 1st cloud cover database. The individual house-
hold electric power consumption dataset [10] contains
2,049,280 instances with 9 features, 7 of which are applied
in this paper because the other 2 are related to time, which
are not applicable.

To effectively evaluate the experimental performance of
the algorithm, we normalized the datasets. All of the algo-
rithms use datasets that are normalized to frequent cases.
When the dimension of the data points in a dataset is too
high, it reduces the discrimination of the other dimensions
with lower values during the clustering process. We normal-
ized the datasets in an operation by

x ji =

xmax
i − x

j
i ori

xmax
i − xmin

i

, if xmax
i ≠ xmin

i ,

1, otherwise,

1

where x
j
i ori and xii represent the jth dimension values of the

ith data point in the dataset before and after normalization,
respectively, and xmax

i and xmin
i are the maximum and mini-

mum values of the jth dimension of all data points in the
dataset, respectively.

4.2. Baselines. In the remainder of this paper, we assume that
both the k-means++ and k-means|| initialization algorithms
implicitly follow the Lloyd iteration process. The proposed
C-K-means clustering algorithm outperforms the baseline
algorithms as described below:

(i) Traditional K-means algorithm (or K-means algo-
rithm): this algorithm is based on random initializa-
tion and is often applied to randomly select k sample
points as the initial centers for Lloyd’s iteration and
complete the final clustering process accordingly
(see Algorithm 1) [6].

(ii) K-means++ algorithm: this method selects k centers
as the initial centers for Lloyd’s iteration through
multiple iterative processes. Based on the probabil-
ity of each sample point, each iteration selects 1

Table 2: Description of seven datasets.

Dataset
Number of
attributes

Number of
instances

Number of
clusters (k)

Iris 4 150 3

Wine 13 178 3

Abalone 8 4177 29

Gauss 3 10,000 ?

SPAM 57 4601 ?

Cloud 10 1024 ?

Individual household 7 2,049,280 ?

10 Complexity

sample point from the dataset to join the center set
and completes the final clustering process (see Algo-
rithm 2) [12].

(iii) K-means|| algorithm: this method selects k centers
as the initial centers for Lloyd’s iteration through a
constant number of processes. Based on the proba-
bility of each sample point, each iteration selects l
sample points from the dataset to join the center
set. It then reclusters the initial center set to obtain
the final center set and feeds the final initial center
point into Lloyd’s iteration. The final clustering pro-
cess is then completed (see Algorithm 3) [13].

4.3. Evaluation Metrics. The effectiveness of clustering is
evaluated by numerous factors that determine the optimal
number of clusters and the granularity of checking the clus-
tering results. The evaluation of clustering results is often
referred to as cluster validation, and researchers have pro-
posed many measures of cluster validity. In this paper, we
choose six standard validity measures to examine the sound-
ness of the clustering algorithms, including Davies-Bouldins
index (DBI) [10, 35, 36], the Dunn validity index (DVI)
[36, 37], normalized mutual information (NMI) [38–40],
the clustering cost function (ϕ), the Silhouette index (SI)
[41, 42], and the SD index (SDI) [42]. These measures are
described as follows:

DBI =
1

k
〠
k

i=1

max
j≠i

Ci + C j

wi −wj 2

,

DVI =

min
0<m≠n≤k

min
∀xi∈Ωm ,x j∈Ωn

xi − x j

max
0<m≤k

max
∀xi ,x j∈Ωm

xi − x j

,

NMI =
I X, Y

H X H Y
,

ϕY C = 〠
y∈Y

d2 y, C = 〠
y∈Y

min
i=1,…,k

y − ci ,

SI = 〠
0<i≤k

b i − a i

max a i , b i
,

SDI k = a ⋅ Scatt k +Dis k ,

2

where

Scatt k =
1

k
〠
0<i≤k

σ vi
σ X

,

Dis k =
Dmax

Dmin

〠
0<i≤k

〠
0<j≤k

vi − v j

−1 3

In the DBI validation measure, k denotes the number of
clusters, Ci denotes the average distance within the ith clus-
ter, and wi −wj denotes the distance between the ith clus-

ter and the jth cluster. In the DVI validation measure, k
denotes the number of clusters and xi, x j denotes the

distance between two data points. In the NMI validation
measure, X and Y denote the obtained cluster and true clas-
ses, respectively, where I X, Y is the mutual information
between X and Y and H X and H Y are the Shannon
entropies of X and Y , respectively. The variables in the cost
function ϕ are described in Table 1. In the SI validation mea-
sure, k denotes the number of clusters, a i denotes the aver-

age distance from the ith object to all of the objects in the
same cluster, and b i denotes the minimum average distance

from the ith object to all of the objects in a different cluster. In
the SDI validation measure, k denotes the number of clusters,
Scatt k denotes the average scattering of the clusters, where
σ vi denotes the variance of cluster i, σ X denotes the var-
iance of data set X, and Dis k denotes the total separation
between the clusters, where Dmax =max vi − v j denotes

the maximum distance between the cluster centers, Dmin =

min vi − v j denotes the minimum distance between clus-

ter centers, and a denotes the weighting factor that is equal to
Dis cmax , where cmax is the maximum number of input clus-
ters. DBI is a function of the ratio of the sum of the inner
cluster distribution to the intercluster separation. The
lower the DBI value is, the better the clustering perfor-
mance will be because the distance within the clusters is
small, but the distance among the clusters is large. DVI
is a function of the ratio of the intercluster distribution
separation to the sum of the inner cluster distributions.
The larger the DVI value is, the better the clustering per-
formance will be because the distance among the clusters
is large and the distance within the clusters is small.
NMI indicates the difference between the actual data type
of the original data and the data type calculated by the
clustering algorithm. Therefore, the NMI validation mea-
sure requires that the actual data type and the calculated
data have the same number of class elements. The NMI
values are in the interval [0, 1], and a larger value means
that the two clusters are very similar and also indicates a bet-
ter clustering result. The value of the cost function ϕ indicates
the sum of the distances from each data point to the nearest
cluster center. Therefore, the lower the cost function ϕ is,
the better the clustering performance will be. The purpose
of SI is to calculate the average dissimilarity between points
in the same cluster and a different cluster to describe the
structure of the data. The SI values are in the interval
[−1, 1], and a larger SI value indicates a more optimal num-
ber of clusters in the dataset. The SDI is based on the average
scattering of the clustering and the total separation of clus-
ters. The minimum SDI value indicates that k is the optimal
cluster number.

4.4. Determination of an Optimal Value of k in C-K-Means.
CA self-organizes and recognizes the number of clusters k
based on the similarities in the data without prior knowledge.
By executing the CA algorithm, we can initially obtain the
approximate number of clusters k. Next, we will conduct
the split-operation and merge-operation mechanisms (see
Section 3.3) to help the datasets determine the appropriate
partitioning and granularity. To evaluate the resultant clus-
ters for finding the optimal number of clusters, properties

11Complexity

such as the cluster density, size, shape, and separability are
typically examined by such as the DBI, DVI, SI, and SDI clus-
ter validation indices. The clustering validity approach uses
internal criteria to evaluate the results with respect to the fea-
tures and quantities inherited from the data to determine
how close the objects within the clusters are and the distances
among the clusters.

Performing the CA on datasets Iris and Wine, the num-
bers of clusters are known (see Table 2). We initially obtain
the approximate number of clusters 6 for the Iris dataset
and 7 for the Wine dataset. We then conduct the split-
operation and merge-operation mechanisms to get several
numbers of clusters that close to 6 for the Iris dataset and
7 for the Wine dataset, respectively. The numbers of split
operations are between 1 and 5 for both the Iris and Wine
datasets. The numbers of merge operations need not be preg-
iven because they are determined by the numbers of clusters
and split operations. To further evaluate the results, we
choose the Cloud and Gauss datasets to execute the CA, in
which the numbers of clusters are unknown (see Table 2).
We initially obtain the approximate number of clusters 7
for the Cloud dataset and 13 for the Gauss dataset, respec-
tively. Similarly, we then conduct the split-operation and
merge-operation mechanisms to get several numbers of clus-
ters that close to 7 for the Cloud dataset and 13 for the Gauss
dataset, respectively. The numbers of split operations are
between 0 and 6 for both the Cloud and Gauss datasets.

Table 3 shows a comparative analysis of the Iris andWine
datasets, using four validity measures. Because the numbers
of clusters in the datasets are known, we can intuitively deter-
mine that the finite number k is obtained by our CA when
most of the clustering indexes obtain the optimal value.
Table 3 shows that 3 clusters are optimal on both datasets,
which exactly match the actual numbers of clusters in the
datasets. We used the results of the clusters from CA to check
the performance of C-K-means in the Cloud and Gauss data-
sets and compared them to four existing validation indices.
As shown in Table 4, the optimal validation indicators for
the Cloud dataset are obtained with 10 clusters, thus the opti-
mal cluster value is 10. For the Gauss dataset, each index
shows that the optimal value is 13. The CA combined with
split-operation and merge-operation mechanisms self-
organizes and recognizes the reasonable number of clusters
k based on the similarities in the data for any dataset.

4.5. Clustering Validation. Clustering validation is generally
concerned with determining the optimal number of clusters
and checking the suitability of the clustering results [10].
The evaluation of the clustering results is commonly referred
to as cluster validation [10, 35, 43]. The accuracies of the
baseline approaches and the C-K-means algorithm are mea-
sured in terms of three standard validity measures, namely
DBI, DVI, and NMI, on datasets of different sizes. Other than
the individual household dataset, the other datasets are small

Table 3: The value of k is known (Iris and Wine; ∗ denotes the optimal value).

C-K-means
Iris Wine

DBI DVI SI SDI DBI DVI SI SDI

3 0.8280∗ 0.4958∗ 0.5043∗ 6.0402∗ 1.3702∗ 0.3683∗ 0.3013∗ 3.0225∗

4 0.9792 0.3490 0.4435 6.8549 1.8091 0.2139 0.2313 3.7947

5 1.0775 0.2503 0.4100 9.4341 2.0714 0.2601 0.2055 4.0299

6 1.0612 0.2365 0.4304 10.3641 2.0543 0.2611 0.1996 4.2521

7 1.1013 0.4223 0.3416 10.1253 2.1805 0.2219 0.1259 4.7275

8 1.0926 0.4286 0.3281 10.2710 2.0461 0.2402 0.1284 5.0283

9 1.0649 0.4286 0.3200 11.1102 1.8996 0.2402 0.1337 5.1846

Table 4: The value of k is unknown (Cloud and Gauss; ∗ denotes the optimal value).

C-K-means
Cloud Gauss

DBI DVI SI SDI DBI DVI SI SDI

5 1.0479 0.2893 0.3611∗ 4.5859 9 1.1869 0.2672 0.2070 5.5891

6 1.0746 0.3469 0.3580 4.1325 10 1.1484 0.2945 0.2159 5.4769

7 1.0967 0.2935 0.3295 5.1985 11 1.1492 0.3121 0.2177 5.4715

8 1.0364 0.2748 0.3184 4.6350 12 1.1539 0.3375 0.2181 5.4793

9 1.0099 0.3428 0.3182 4.4439 13 1.1058∗ 0.3396∗ 0.2233∗ 5.4130∗

10 0.9868 0.3516∗ 0.3160 4.0679∗ 14 1.1704 0.2788 0.2139 6.0448

11 1.0542 0.2739 0.2921 4.6985 15 1.1595 0.2230 0.2102 6.5191

12 1.0285 0.2708 0.2982 4.6481 16 1.2001 0.2535 0.2092 6.5085

13 1.0745 0.2482 0.2866 4.7405 17 1.1883 0.2697 0.2073 6.3310

14 0.9614∗ 0.2905 0.3036 4.4374 18 1.1653 0.2823 0.2080 6.3249

12 Complexity

enough to be evaluated on a single machine. We compare
the accuracies of C-K-means and the baseline approaches
on the Iris, Wine, and Abalone datasets because the numbers
of clusters and the labels to which the data belong are known
in those datasets. The value of k is kept constant to effec-
tively compare the C-K-means algorithm and the baseline
algorithms. Using the split- and merge-operation mecha-
nisms, the number of clusters of C-K-means is adjusted to
be consistent with the number of clusters in the baseline algo-
rithms. Table 5 shows a comparative analysis of the different
approaches on the three datasets and the three validity mea-
sures. For the Iris and Wine datasets, the numbers of split
operations are both 1. And for the Abalone dataset, the num-
ber of split operations is 8. To better verify the performance
of the algorithms, we also choose the Gauss, SPAM, and
Cloud datasets, the class categories of which are unknown
for the experiments. To examine the soundness of our clus-
ters, we discuss the DBI and DVI values of these three
unknown data label datasets to those of C-K-means for mod-
erate values of k ∈ 10, 20, 50 . For the Gauss dataset with
different values of k, the numbers of split operations are
32, 4, and 10, respectively. For the SPAM dataset, the num-
bers of split operations are 10, 30, and 50, respectively. And
for the Cloud datasets, the numbers of split operations are 6,
8, and 8, respectively. We also use other values of k and
obtain similar results. The clustering results for C-K-means
and the baseline approaches are listed in Table 6 for the
Gauss dataset, Table 7 for the SPAM dataset, and Table 8
for the Cloud dataset. Obviously, the three tables show that
the accuracies of proposed C-K-means are better than base-
line approaches.

4.6. Cost. To evaluate the clustering cost of C-K-means, we
compare it to the baseline approaches. We compare the cost
of the SPAM and Gauss datasets to that of C-K-means for
moderate values of k ∈ 20, 40, 50 . For the Gauss dataset

with different values of k, the numbers of split operations
are 4, 5, and 10, respectively. For the SPAM dataset, the num-
bers of split operations are 5, 4, and 4, respectively. The
results of the Gauss and SPAM datasets are presented in
Tables 9 and 10, respectively. For each algorithm, we list
the cost of the solution at the end of the initialization step
before Lloyd’s iteration as well as the final cost. In Tables 9
and 10, “seed” represents the cost after the initialization step
and “final” represents the cost after the final Lloyd iteration.
The initialization cost of C-K-means is similar to that of
K-means|| and lower than that of K-means++. These
results suggest that the centers produced by C-K-means,
like those produced by K-means||, are able to avoid out-
liers. In addition, C-K-means guarantees high precision
with high efficiency because CA runs very fast.

4.7. Computational Time. The individual household dataset
is sufficiently large for large values of k ∈ 100, 200, 500 .
We now consider the parallel algorithms for the individual
household dataset. For the household dataset with corre-
sponding values of k, the numbers of split operations are 6,
9, and 7, respectively. C-K-means is faster than K-means,
K-means++, and K-means|| when implemented in parallel.
The running time of C-K-means consists of two compo-
nents: the time required to generate the initial solution
and the time required for Lloyd’s iteration to converge.
The former is proportional to k. The latter is considered,
and C-K-means is compared to the baseline approaches.
Table 11 shows the total running time of the clustering
algorithms. For some values of k, C-K-means runs much
faster than K-means and K-means++. C-K-means runs
much faster than K-means|| when k ∈ 100, 200 . However,
when k is 500, the total running time of C-K-means is similar
to that of K-means|| because C-K-means needs to split and
merge many times to obtain the number of clusters, which
means that the initialization occupied a large proportion of
the total running time.

Next, an expected advantage of C-K-means is dem-
onstrated; the initial solution discovered by C-K-means
contributed to a faster convergence of Lloyd’s iteration.
Table 12 shows the number of iterations required to reach
convergence of Lloyd’s iteration for the Cloud dataset with
different initializations. C-K-means typically requires fewer
iterations than the baseline approaches to converge to a local
optimal solution. The convergence times of the iteration for
datasets of different dimensions are also evaluated, and the
Gauss and SPAM datasets are selected to verify the perfor-
mance of the proposed C-K-means algorithm. The graphical
representations of the number of iterations required to reach

Table 5: Accuracy comparison (Iris, Wine, and Abalone).

Algorithms
Dataset

Iris Wine Abalone

K-means

DBI 0.9503 1.3970 1.1342

DVI 0.0381 0.1378 0.0094

NMI 0.656 0.8088 0.1697

K-means++

DBI 0.9220 1.3909 1.1309

DVI 0.0577 0.1407 0.0106

NMI 0.6737 0.8230 0.1706

K-means||

DBI 0.8571 1.3903 1.1278

DVI 0.0481 0.1393 0.0118

NMI 0.7208 0.8268 0.1692

Covering

DBI 0.9608 1.4864 1.6721

DVI 0.0860 0.1336 0.0073

NMI 0.8342 0.7237 0.1594

C-K-means

DBI 0.8280 1.3702 1.1170

DVI 0.0693 0.1893 0.0105

NMI 0.7419 0.8529 0.1739

Table 6: Accuracy comparison (Gauss).

Gauss
k = 10 k = 20 k = 50

DBI DVI DBI DVI DBI DVI

K-means 1.1511 0.0037 1.1620 0.0045 1.1121 0.0056

K-means++ 1.1507 0.0051 1.1593 0.0056 1.1079 0.0061

K-means|| 1.1439 0.0049 1.1593 0.0055 1.1093 0.0065

C-K-means 1.1350 0.0061 1.1412 0.0053 1.1070 0.0081

13Complexity

Table 7: Accuracy comparison (SPAM).

SPAM
k = 10 k = 20 k = 50

DBI DVI DBI DVI DBI DVI

K-means 2.3282 0.0010 2.0349 0.0007 1.7914 1.3874e-5

K-means++ 2.2716 0.0020 1.8876 0.0044 1.5760 0.0042

K-means|| 1.9924 0.0023 1.7733 0.0031 1.5152 6.7375 e-4

C-K-means 1.8906 0.0034 1.6713 0.0085 1.2744 0.0076

Table 8: Accuracy comparison (Cloud).

Cloud
k = 10 k = 20 k = 50

DBI DVI DBI DVI DBI DVI

K-means 1.1736 0.0207 1.23 0.02 1.3303 0.0186

K-means++ 1.1644 0.0258 1.1946 0.0288 1.1973 0.0325

K-means|| 1.1474 0.0233 1.1888 0.029 1.2163 0.0386

C-K-means 0.9863 0.0369 0.9592 0.0484 1.1637 0.0582

Table 9: Median cost (over 10 runs) on the Gauss dataset.

Gauss
k = 20 k = 40 k = 50

Seed Final Seed Final Seed Final

K-means — 0.0108 — 0.007 — 0.006

K-means++ 0.0124 0.0107 0.0082 0.007 0.0071 0.006

K-means|| 0.0118 0.0107 0.0078 0.007 0.0067 0.006

C-K-means 0.0119 0.0108 0.0076 0.007 0.0067 0.006

Table 10: Median cost (over 10 runs) on the SPAM dataset.

SPAM
k = 20 k = 40 k = 50

Seed Final Seed Final Seed Final

K-means — 0.1036 — 0.0771 — 0.071

K-means++ 0.1136 0.0987 0.0886 0.076 0.08 0.0688

K-means|| 0.1098 0.0968 0.0846 0.0752 0.0765 0.0692

C-K-means 0.1022 0.0939 0.0861 0.0744 0.0788 0.0692

Table 11: Times (in minutes) for SPAM.

SPAM k = 100 k = 200 k = 500

K-means 24.12 77.66 605.19

K-means++ 31.66 63.64 153.00

K-means|| 28.11 41.96 94.98

C-K-means 16.38 24.78 99.42

Table 12: Numbers of Lloyd’s iterations until convergence
(averaged over 10 runs) for the Cloud dataset.

Cloud k = 10 k = 20 k = 50

K-means 49 25.2 24.2

K-means++ 30.4 23.2 19

K-means|| 28.2 21.8 18.6

C-K-means 13 16 12

C-K-means
K-Means
K-Means++

K-Means||

40 5020

Value of k

0

10

20

30

40

50

60

70

80

L
lo

yd
 it

er
at

io
n

s
n

u
m

b
er

s
(c

lo
u

d
)

(a) Gauss

C-K-means
K-Means
K-Means++

K-Means||

0

20

40

60

80

100

L
lo

yd
 it

er
at

io
n

s
n

u
m

b
er

s
(c

lo
u

d
)

40 5020

Value of k

(b) SPAM

Figure 4: Numbers of Lloyd’s iterations until convergence
(averaged over 10 runs).

14 Complexity

convergence of Lloyd’s iteration for datasets of several differ-
ent dimensions with different initializations are shown in
Figure 4(a) for the Gauss dataset (3 dimensions) and
Figure 4(b) for the SPAM dataset (57 dimensions).

5. Conclusions and Future Work

This paper presents a covered K-means algorithm (C-
K-means) that uses an improved covering algorithm (CA).
First, based on the similarity between the data, the C-
K-means algorithm uses the CA initialization to determine
the number of clusters k and the specific cluster centers
through self-organization. Because it is independent of the
initial cluster centers, the CA is characterized as being “blind”
without the need to have k prespecified. The K-means algo-
rithm is then used to perform Lloyd’s iteration on the k initial
cluster centers determined by the CA until the cluster centers
do not change, which means that the C-K-means clustering
is complete, and the clustering results are close to optimal.
In addition, a parallel implementation of C-K-means is per-
formed on the Spark platform. Parallel computing is used
to solve a large-scale data clustering problem and improve
the efficiency of the C-K-means algorithm. A large number
of experiments on real large-scale datasets demonstrated that
the C-K-means algorithm significantly outperforms its coun-
terparts under both sequential and parallel conditions. In
future, we will optimize C-K-means and focus on the param-
eters that increase its speed and parallelism.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Key Technol-
ogy R&D Program (no. 2015BAK24B01), the Natural
Science Foundation of Anhui Province of China (no.
1808085MF197), and a Key Project of Nature Science
Research for Universities of Anhui Province of China
(no. KJ2016A038).

References

[1] T. S. Madhulatha, “An overview on clustering methods,” IOSR
Journal of Engineering, vol. 2, no. 4, pp. 719–725, 2012.

[2] M. Shindler, A. Wong, and A. W. Meyerson, “Fast and accu-
rate k-means for large datasets,” in Proceedings of the 24th
International Conference on Neural Information Processing
Systems (NIPS’11), pp. 2375–2383, Granada, Spain, 2011.

[3] M. Hajjar, G. Aldabbagh, N. Dimitriou, and M. Z. Win,
“Hybrid clustering scheme for relaying in multi-cell LTE high
user density networks,” IEEE Access, vol. 5, pp. 4431–4438,
2017.

[4] Q. Chen, X. Zhang, Y. Wan, J. Zobel, and K. Verspoor,
“Sequence clustering methods and completeness of biological
database search,” in Proceedings of the Workshop on Advances
in Bioinformatics and Artificial Intelligence: Bridging the Gap,
pp. 8–14, Melbourne, VIC, Australia, 2017.

[5] Q. Chen, Y. Wan, X. Zhang, Y. Lei, J. Zobel, and K. Verspoor,
“Comparative analysis of sequence clustering methods for
deduplication of biological databases,” Journal of Data and
Information Quality, vol. 9, no. 3, pp. 1–27, 2018.

[6] L. Bottou and Y. Bengio, “Convergence properties of the
k-means algorithms,” in Proceedings of the 7th Interna-
tional Conference on Neural Information Processing Systems
(NIPS’94), pp. 585–592, Denver, CO, USA, 1995.

[7] B. Castellani, R. Rajaram, J. Gunn, and F. Griffiths, “Cases,
clusters, densities: modeling the nonlinear dynamics of com-
plex health trajectories,” Complexity, vol. 21, Supplement 1,
p. 180, 2016.

[8] W. Zhao, H.Ma, andQ.He, “ParallelK-means clustering based
on MapReduce,” in Cloud Computing, vol. 5931 of Lecture
Notes in Computer Science, pp. 674–679, Springer, 2009.

[9] Z. Tang, K. Liu, J. Xiao, L. Yang, and Z. Xiao, “A parallel K-
means clustering algorithm based on redundance elimination
and extreme points optimization employing MapReduce,”
Concurrency and Computation: Practice and Experience,
vol. 29, no. 20, 2017.

[10] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, “Optimized big
data K-means clustering using MapReduce,” The Journal of
Supercomputing, vol. 70, no. 3, pp. 1249–1259, 2014.

[11] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, “The
effectiveness of Lloyd-type methods for the k-means problem,”
Journal of the ACM, vol. 59, no. 6, pp. 1–22, 2012.

[12] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of
careful seeding,” in Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ‘07),
pp. 1027–1035, New Orleans, LA, USA, 2007.

[13] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and
S. Vassilvitskii, “Scalable k-means++,” Proceedings of the
VLDB Endowment, vol. 5, no. 7, pp. 622–633, 2012.

[14] C. Ordonez, “Programming the K-means clustering algorithm
in SQL,” in Proceedings of the 2004 ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining -
KDD ‘04, pp. 823–828, Seattle, WA, USA, 2004.

[15] C. Ordonez and E. Omiecinski, “Efficient disk-based k-means
clustering for relational databases,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 8, pp. 909–921,
2004.

[16] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on
distributed memory multiprocessors,” in Large-Scale Parallel
Data Mining, vol. 1759 of Lecture Notes in Computer Science,
pp. 245–260, Springer, Berlin, Heidelberg, 2002.

[17] M. F. Jiang, S. S. Tseng, and C. M. Su, “Two-phase clustering
process for outliers detection,” Pattern Recognition Letters,
vol. 22, no. 6-7, pp. 691–700, 2001.

[18] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and
B. Moseley, “Fast distributed k-center clustering with outliers
on massive data,” in Proceedings of the 28th International Con-
ference on Neural Information Processing Systems (NIPS’15),
pp. 1063–1071, Montreal, QC, Canada, 2015.

[19] D. Wei, “A constant-factor bi-criteria approximation guar-
antee for k-means++,” in Proceedings of the 30th Interna-
tional Conference on Neural Information Processing
Systems (NIPS’16), pp. 604–612, Barcelona, Spain, 2016.

[20] J. Newling and F. Fleuret, “K-medoids for k-means seeding,”
in Proceedings of the International Conference on Neural
Information Processing Systems (NIPS’17), pp. 5201–5209,
Long Beach, CA, USA, 2017.

15Complexity

[21] L. Zhang and B. Zhang, “A geometrical representation of
McCulloch-Pitts neural model and its applications,” IEEE
Transactions on Neural Networks, vol. 10, no. 4, pp. 925–
929, 1999.

[22] L. A. Zadeh, “Some reflections on soft computing, granular
computing and their roles in the conception, design and utili-
zation of information/intelligent systems,” Soft Computing,
vol. 2, no. 1, pp. 23–25, 1998.

[23] L. Zhang and B. Zhang, “The quotient space theory of problem
solving,” Fundamenta Informaticae, vol. 59, no. 2-3, pp. 287–
298, 2004.

[24] A. Roy and S. Pokutta, “Hierarchical clustering via
spreading metrics,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems
(NIPS’16), pp. 2316–2324, Barcelona, Spain, 2016.

[25] R. Greenlaw and S. Kantabutra, “On the parallel complexity of
hierarchical clustering and CC-complete problems,” Complex-
ity, vol. 14, no. 2, p. 28, 2008.

[26] Y. Yao, “A triarchic theory of granular computing,” Granular
Computing, vol. 1, no. 2, pp. 145–157, 2016.

[27] A. G. Shoro and T. R. Soomro, “Big data analysis: Apache
Spark perspective,” Global Journal of Computer Science and
Technology, vol. 15, no. 1, pp. 9–14, 2015.

[28] A. Vattani, “k-means requires exponentially many iterations
even in the plane,” Discrete & Computational Geometry,
vol. 45, no. 4, pp. 596–616, 2011.

[29] S. Peng, J. Sankaranarayanan, and H. Samet, “SPDO: high-
throughput road distance computations on Spark using
distance oracles,” in 2016 IEEE 32nd International Confer-
ence on Data Engineering (ICDE), pp. 1239–1250, Helsinki,
Finland, 2016.

[30] A. Asuncion and D. Newman, “UCI machine learning reposi-
tory,” 2007, http://www.ics.uci.edu/~mlearn/MLRepository.
html.

[31] P. Zhong and M. Fukushima, “Regularized nonsmooth
Newton method for multi-class support vector machines,”
Optimization Methods and Software, vol. 22, no. 1, pp. 225–
236, 2007.

[32] B. Jia, B. Yu, Q. Wu et al., “Hybrid local diffusion maps and
improved cuckoo search algorithm for multiclass dataset
analysis,” Neurocomputing, vol. 189, pp. 106–116, 2016.

[33] Y. Wang, X. Duan, X. Liu, C. Wang, and Z. Li, “A spectral
clustering method with semantic interpretation based on
axiomatic fuzzy set theory,” Applied Soft Computing, vol. 64,
pp. 59–74, 2018.

[34] N. Nouaouria and M. Boukadoum, “Improved global-best
particle swarm optimization algorithm with mixed-attribute
data classification capability,” Applied Soft Computing,
vol. 21, pp. 554–567, 2014.

[35] N. Nouaouria, M. Boukadoum, and R. Proulx, “Particle swarm
classification: a survey and positioning,” Pattern Recognition,
vol. 46, no. 7, pp. 2028–2044, 2013.

[36] D. L. Davies and D. W. Bouldin, “A cluster separation mea-
sure,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-1, no. 2, pp. 224–227, 1979.

[37] X. Ru, Z. Liu, Z. Huang, and W. Jiang, “Class discovery based
on k-means clustering and perturbation analysis,” in 2015 8th
International Congress on Image and Signal Processing (CISP),
pp. 1236–1240, Shenyang, China, 2015.

[38] B. Wang, J. Yin, Q. Hua, Z. Wu, and J. Cao, “Parallelizing
k-means-based clustering on Spark,” in 2016 International

Conference on Advanced Cloud and Big Data (CBD),
pp. 31–36, Chengdu, China, 2016.

[39] D. Lai and C. Nardini, “A corrected normalized mutual infor-
mation for performance evaluation of community detection,”
Journal of Statistical Mechanics: Theory and Experiment,
vol. 2016, no. 9, 2016.

[40] A. Amelio and C. Pizzuti, “Correction for closeness: adjusting
normalized mutual information measure for clustering com-
parison,” Computational Intelligence, vol. 33, no. 3, pp. 579–
601, 2017.

[41] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis,” Journal of Computa-
tional and Applied Mathematics, vol. 20, pp. 53–65, 1987.

[42] M. Hassani and T. Seidl, “Internal clustering evaluation of data
streams,” in Trends and Applications in Knowledge Discovery
and Data Mining, vol. 9441 of Lecture Notes in Computer
Science, pp. 198–209, Springer, 2015.

[43] B. K. Mishra, A. Rath, N. R. Nayak, and S. Swain, “Far efficient
k-means clustering algorithm,” in Proceedings of the Interna-
tional Conference on Advances in Computing, Communica-
tions and Informatics - ICACCI ‘12, pp. 106–110, Chennai,
India, 2012.

16 Complexity

http://www.ics.uci.edu/<mlearn/MLRepository.html
http://www.ics.uci.edu/<mlearn/MLRepository.html

	coversheet
	liu-selfadaptivek-2018

