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Abstract—On-line, on-board evolution of robot controllers
implies an inherent need for adjusting the parameters of
the evolutionary algorithm on-the-fly. In this paper we argue
that the most influential factor to govern evolution in our
application is the mutation operator. To address the problem
of adjusting its parameter(s) we identify different on-line
parameter control mechanisms and perform an experimental
comparison among them. The experiments are carried out in
a high quality simulator, Webots, for three different tasks
for the robots. The results are not fully consistent over the
tasks considered, yet they support a preference for the de-
randomised self-adaptive mutation step size control.

I. BACKGROUND AND OBJECTIVES

The work presented in this paper is grounded in a
European research project, called SYMBRION: Symbiotic
Evolutionary Robot Organisms1. SYMBRION embraces per-
vasive adaptation through evolution: individual robots are
fully autonomous and viable, evolving their controllers on-
the-fly to adapt autonomously to their environments and
tasks. To particularise the type of evolution we need here,
we use the terms on-line and on-board, where “on-line”
indicates that robots’ controllers are evolving during (and
not before) their operational period, while “on-board” shows
that the computational processes behind evolution all take
place inside (and not outside) the robots.

In our previous work [3] we have discussed on-line,
on-board evolution in detail, positioning it with respect to
mainstream evolutionary robotics [14]. To this end, we set
up a classification scheme based on a set of three features
concerning the evolution of controllers from temporal, spa-
tial, and procedural perspective. That is, we distinguish types
of evolution considering when it happens, where it happens,
and how it happens, cf. [3]:

1) off-line or design time vs. on-line or run time (when),
2) on-board or intrinsic vs. off-board or extrinsic (where),
3) in an encapsulated or centralised vs. distributed man-

ner (how).

Note, that we do not include embodiedness (of fitness
evaluations) in this classification scheme. The reason is
that the system we have in mind is one with real robots,
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where fitness evaluation always happens in reality. In other
words, our whole scheme falls in the category of embodied
evolution in terms of the classification scheme offered by
Watson et al. in [21].

The traditional approach to evolutionary robotics (ER)
is to use a conventional evolutionary algorithm (EA) for
finding good controllers in a fashion that can be identified as
off-line, off-board (extrinsic), and centralised (encapsulated
in an external computer). The population of genotypes that
encode for robot controllers is evolved on a computer that
executes the evolutionary operators (variation and selection),
managed in a centralised fashion. As for fitness evaluation,
the computer can invoke a simulator or send the genotype
to be evaluated to a robot to test it (embodied evaluation).
Evaluation of genotypes can happen in parallel or one by
one. At the end of the evolutionary process the controller
encoded by the best genotype is deployed in the robot(s).

The encapsulated evolution approach is on-line, on-
board (intrinsic), and centralised. Each robot has an evo-
lutionary algorithm implemented on-board, maintaining a
population of genotypes inside itself. The robots run these
(possibly different) evolutionary algorithms locally and per-
form the fitness evaluations autonomously. This is typically
done in a time-sharing system, where one member of the
inner population is activated (i.e., decoded into a controller)
at a time and is used for a while to gather feedback on
its quality. Here, the iterative improvement (optimisation)
of controllers is the result of the evolutionary algorithms
running in parallel on the individual robots [20].

The distributed evolution approach can be described
as on-line, on-board (intrinsic), and distributed. Each robot
has a single genotype and is controlled by the correspond-
ing phenotype. Robots can reproduce autonomously and
asynchronously and create offspring controllers by recom-
bining and/or mutating their genotypes. Here, the iterative
improvement (optimisation) of controllers is the result of
the evolutionary process that emerges from the exchange of
genetic information among the robots [21].

The latter two approaches can be combined, resulting
in a set-up akin to an island model as used in parallel
genetic algorithms. In such a combined system, each robot
is an island and genetic information is exchanged through
intra-island variation (i.e., within the population of the



encapsulated evolutionary algorithm in one robot) and inter-
island migration (between two or more robots) [13], [19],
[22], [16], [6], [8].

The present paper is concerned with the encapsulated
evolution approach, where each robot autonomously runs its
own evolutionary algorithm inside itself. In principle, this
EA can be of any type, as long as it matches the repre-
sentation of the robot controllers. To clarify this, consider
the difference between a robot controller and the evolvable
code that represents that controller. In general, a robot
controller is a structurally and procedurally complex entity
that directly determines the robots behaviour. When using
evolutionary methods for controller design, controllers are
perceived as phenotypes that are represented by relatively
simple pieces of code, called genotypes. A formal definition
of the representation requires a possibly complex mapping
from genotype to phenotype. The fitness of a robot controller
(typically: task performance) is then determined by the
phenotype. Meanwhile, –conforming to the principles of
biological evolution– it is only the genotypes that undergo
evolutionary operators, mutation and/or crossover, not the
phenotypes. In general, a robot can contain more than one
genotype, but at all times only one of these can be active,
i.e., decoded into a working phenotype/controller. Figure 1
illustrates this matter.

Phenotype = actual
robot controller

One genotype
decoded for 
phenotype

Genotype = code of a
possible robot controller

Figure 1. Encapsulated evolution, where each robot is running its own
(centralised) evolutionary algorithm on-board.

It is obvious that using encapsulated evolution in an
autonomous fashion, where no human intervention is possi-
ble, the evolutionary algorithm in the robots must be able
to optimise under unforeseen and possibly very different
conditions. Unfortunately, the performance of evolutionary
algorithms is, in general, quite dependent on their settings.
Hence, such a system requires an evolutionary algorithm that
is capable of calibrating itself on-the-fly. In usual evolution-
ary computing terms this means that we need evolutionary
algorithms with good parameter control mechanisms [4].

Let us note that changing the value of some parameter X
in an EA, e.g., population size or mutation rate, can have
a much bigger impact on EA behaviour than changing the
value of another parameter Y , making parameter X more
relevant for the EA behaviour than parameter Y . Thus, in
general, the relevance of the parameters of an EA can vary
considerably [12], [18]. Moderately relevant parameters need

not be calibrated very carefully: an educated guess for a
good value is likely to work under many circumstances.
For our on-line, on-board evolutionary robotics application
this means that moderately relevant parameters can be used
with fixed settings, but we need good parameter control
mechanisms for the most relevant parameters. Of course,
the relevance of a parameter depends on the given EA
and the problem to be solved. However, over the history
of the evolutionary computing field there are numerous
indications that parameters related to the mutation operator
are the most relevant, which led to powerful mutation control
mechanisms within evolution strategies [1], [11], [17].

The main objective of this paper is to investigate two
mechanisms to control mutation in an on-line, on-board evo-
lutionary application, based on the encapsulated approach.
One of them is the standard self-adaptation mechanism
within evolution strategies that has known problems with
very small populations that we have here [10]. The other
one is the de-randomised self-adaptation mechanism that has
been offered to circumvent these problems [15].

II. THE (μ + 1) ON-LINE EVOLUTIONARY ALGORITHM

AND ITS PARAMETERS

In previous publications we have introduced an encap-
sulated EA to be used for on-line, on-board evolution of
robot controllers, where a population of μ individuals is
maintained within each robot [2]. This algorithm is mo-
tivated by a number of considerations regarding the type
of application we face here. First, the very noisy character
of fitness calculations, caused by the fact that “newborn”
controllers start at different positions – in fact, where the
previous controller left the robot. Second, the very low
computational budget in terms of search steps, where a
search step is the creation and evaluation of a new controller.
This budget is low, because a robot cannot permit wasting
time on bad controllers and has to achieve a satisfactory
level of performance in real-time. To cope with noisy fitness
we use re-evaluations. To prevent wasting too much time
on poor candidate solutions we limit the number of child
controllers to one in each cycle and use “pushy” evolutionary
operators. The main outlines of the resulting algorithm can
be listed as follows:

• In every evolutionary cycle two things can happen:
either an existing individual is re-evaluated by re-
activating it for τ time steps (with probability ρ),
or a new individual is generated and evaluated (with
probability 1 − ρ).

• When a new child controller needs to be created,
two parents are chosen based on their fitness in a
nondeterministic way.

• A new child controller is created by recombining the
two parents and mutating the result.

• A new controller is immediately activated and evaluated
as follows:



– Before the real evaluation period starts, the robot
can spend some time (the recovery period) without
its fitness being measured.

– During the evaluation period (τ time steps) the
robot is active and its fitness is being measured.

• After the new controller is evaluated it has to compete
with the existing ones for a place in the population,
based on its fitness.

This algorithmic core has been adjusted for a case study
where controllers were represented by real-valued vectors
[2]. With this addition we can specify crossover and mu-
tation operators (that are always representation-dependent).
We have chosen to use arithmetic averaging recombination
and mutation by adding noise from a Gaussian distribution
with zero mean. Furthermore, we use binary tournaments for
selecting good parents. For a full description of the resulting
algorithm, we refer to [7].

There are four main parameters of this algorithm:
ρ The re-evaluation rate;
τ The duration of controller evaluation;
μ The population size;
σ The mutation step-size.
In a previous study we have investigated these parameters,

in particular, we looked into their relevance, i.e., their impact
on the performance of the EA [7]. There we concluded
that the mutation step-size σ is by far the most influential
one. The values of the other parameters did not seem to
matter that much (on the problem considered there). It
should be noted that the (μ + 1) ON-LINE algorithm is
new and so is the on-line, on-board evolutionary robotics
system it is implemented in. Therefore, there are not many
(empirical) results showing its behavior. Hence, it is too
early to formulate generic statements about it, but we are
confident that the main finding in [7] regarding the mutation
step-size is generally valid.

III. TASKS AND ROBOT DESCRIPTION

In this section we describe the robot setup and the test
problems we used in our experiments. The tasks used in
the experiments are fast forward, phototaxis, and resource
gathering. The details are given below.

Fast forward: The first task is frequently used in evo-
lutionary robotics and requires the robot to move fast and
straight-ahead but also avoid obstacles, implying a trade-off
between forward movement and obstacle avoidance [14].
For this task the robot uses 8 proximity sensors. Task
performance, the fitness measure used in the evolutionary
algorithm, is given by Eq. 1. The arena in which the robot
moves is shown in Figure 2(a).

f =
τ∑

t=0

(vt · (1 − vr) · (1 − d)) (1)

where vt and vr are the translational and the rotational
speed, respectively. vt is normalised between −1 (full speed

(a) The arena for the fast forward
task. The circle represents the e-puck
robot to scale.

(b) The arena for the resource gath-
ering task. The small circle repre-
sents the e-puck robot to scale. The
larger circles represent the chargers’
active areas to scale: once the robot
enters the area of a charger (that is
currently full) it instantly collects the
energy.

Figure 2. The tasks.

reverse) and 1 (full speed forward), vr between 0 (movement
in a straight line) and 1 (maximum rotation); d indicates the
distance to the nearest obstacle and is normalised between
0 (no obstacle in sight) and 1 (touching an obstacle).

Phototaxis: For this task the robot has to move towards
a stationary light source and remain close to it. The input
to the neural net is the set of 8 light sensors of the e-puck.
The fitness function is given by Eq. 2. The arena is simply
an empty square with a light source in the centre.

f =
τ∑

t=0

maxSensorV alue; (2)

Resource gathering: In this task the robot has to move
around in an empty square arena and collect ”resources”,
i.e. energy from chargers. Each charger is indicated with
a light above it. When the robot moves to the charger it
collects the energy and the light is turned off. The charger
slowly replenishes and, when full again, its light is turned
on. For this task, the robot’s eight light sensors are used.
The fitness function is given in Eq. 3. The arena with the
chargers’ positions is shown in Figure 2(b).

f =
τ∑

t=0

collectedEnergy; (3)

The experiments were performed with a simulated e-
puck2 robot using the Webots3 environment. As for the robot
controller, we use a straightforward perceptron neural net
with hyperbolic tangent activation function. The neural net
has 9 input nodes (8 sensor inputs and a bias node), no
hidden nodes and 2 output nodes (the left and right motor
values), resulting in a total of 18 weights.

2http://www.e-puck.org/
3http://www.cyberbotics.com/



IV. ALGORITHM SETUP

Here we describe the setup of the (μ + 1) ON-LINE algo-
rithm for our experiments. To represent the robot controllers
(phenotypes) we have chosen real-valued vectors with 18
variables with the obvious mapping: each variable corre-
sponds to one of the 18 weights of the neural net. This
implies that the (μ + 1) ON-LINE evolutionary algorithm
needs to optimise real-valued vectors of length 18. To this
end we use the variation operators arithmetic averaging
recombination and mutation by adding a random number
drawn from a Gaussian distribution with zero mean and
standard deviation σ, where σ is called the mutation step-
size.

The main objective of this paper is to compare differ-
ent control strategies for regulating mutation on-the-fly. In
particular, we use self-adaptation of mutation step-sizes, as
usual in evolution strategies [1], [10], [17]. The essence
of this method is to encode mutation step-sizes into the
genotypes and co-evolve their values together with the
ones encoding for the ’real’ solution – here: the weights
of the neural nets. We have chosen to use an individual
mutation step-size σi for each variable xi and have ex-
tended the representation accordingly. This means that the
evolutionary algorithm works on vectors of 36 variables
〈x1, . . . , x18, σ1, . . . , σ18〉, instead of vectors of the form
〈x1, . . . , x18〉. The recombination operator works the same
on both the x̄-part and the σ̄-part. However, mutating the
x̄-part and the σ̄-part is different. The x̄-part is mutated by
the usual x′

i = xi + N(0, σ), where N(0, σ) stands for a
random number drawn from the normal distribution.

As for mutating the mutation step-sizes we use the fol-
lowing two methods.

1) Multi-step Self-Adaptation: This is pretty much the
standard in evolution strategies, where the individual
σs are updated as follows:

σ′
i = σi · eN(0,τ ′)+Ni(0,τ)

where τ ′ = 1/
√

2n , and τ = 1/
√

2
√

n.

This scheme has a parameter of its own, i.e. the initial
step sizes. We chose to set σi = 0.8 since this value
has been suggested as good in [1].

2) De-randomised Self-Adaptation: Ostermeier et al. pro-
posed an alternative self-adaptive control scheme,
labelled “de-randomised,” specifically to alleviate
problems with standard self-adaptation that occur
with small population settings [15]. Applying de-
randomised self-adaptation to (μ + 1) ON-LINE , up-
dates are performed as follows:

ξi = α; 1/α with equal probability and α = 1.4
zi = N(0, σi)

x′
i = xi + ξi · zi

σ′
i = σi · ξ

√
1/n

i · e
|zi|−

√
2/π

n

Notice that de-randomised self-adaptation has no pa-
rameters.

The remaining three parameters of the (μ + 1) ON-
LINE evolutionary algorithm are set to values that we have
previously found to be good enough [7], i.e. μ = 6, ρ = 0.4
and τ = 15s. The only exception is the evaluation length
for the gathering task where we chose to set τ = 120s due
to the nature of the task and the form of the fitness function
so as to allow controllers to reach more charger locations
within the time limit.

V. EXPERIMENTAL RESULTS

To compare the two σ control schemes on each of the
three tasks we conducted six experiments. Each experiment
consists of 100 independent runs with the same settings,
using a different random seed. In each run we have a
single robot running its own autonomous (μ + 1) ON-
LINE evolutionary algorithm instance for a period of 10.000
(simulated) seconds.

To explain the plots showing the outcomes we must note
that on-line evolution of controllers faces the complication
that the actual performance of the robot matters. When a
robot spends a lot of time evaluating poor controllers, it
will perform very poorly on its actual task, even if the best
individual archived in the population of its EA is of very
good quality. Therefore, performance is measured over a
sequence of activated controllers, not as the fitness of the
best individual in the population at any moment.

The results of the experiments are presented in two ways.
The mean performance during the final eight minutes of
the evolution is shown in the usual boxplots. These show
the end quality that has been achieved over the whole run.
Additionally, we present curves exhibiting the development
of performance over time. These provide information on the
process of evolution.

The results for the fast forward task are shown in Figure 3.
Performance of the de-randomised scheme is much higher
when summarised over the last minutes of the evolution.
Difference is statistically significant (t-test with 95% con-
fidence). Evolution of performance over time shows that,
though both strategies start evenly, standard self-adaptation
stops improving at only 20% performance.

Results are similar for the phototaxis task (Figure 4). de-
randomised self-adaptation performs better in average and
has minimal spread (final performance is almost always
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Figure 3. Results for the fast forward task over 100 runs for the two σ
control strategies.

close to 100%). Standard self-adaptation has a lower median
and a large spread. Difference is again statistically significant
according to a t-test with 95% confidence. As for the
previous task, evolution of performance over time shows
that, although the two schemes start comparatively, standard
self-adaptation performance stops improving at an earlier
point.

The results of the resource gathering task show a different
situation. The end results for the two control strategies have
very close medians around the performance level of 0.1, cf.
Figure 5, left. This indicates that none of the strategies could
consistently solve the given task. Data regarding the evolu-
tion over time (Figure 5, right) adds some nuance to this
picture, showing a better average progress of the standard
self-adaptation mechanism. However, this does not change
the essence of our findings: both strategies fail to solve the
task. The reason of this deviating algorithm behaviour lies
most likely in the different problem characteristics. The first
two problems have a quasi-continuous scale of evaluation
and the actual value of the fitness function changes after
each time instance (measurement). For the fitness values in
the resource gathering task this is not true. The values are
discrete and fitness values may remain constant over long
periods, if the robot does not find any “food”.
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Figure 4. Results for the phototaxis task over 100 runs for the two σ
control strategies.
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Figure 5. Results for the resource gathering task over 100 runs for the
two σ control strategies.

VI. CONCLUSIONS

In this paper we identified on-line, on-board evolutionary
robotics as an area where self-adaptation is crucial. Based
on common knowledge in evolutionary computing and our
previous work in such robotic systems we argued that
the parameters that require self-adaptation most are those
associated with mutation. The question then is: what self-
adaptation mechanism would be well-suited for the purposes
of the kind of applications we have in mind, i.e., encap-
sulated evolution in autonomous robots (as envisioned in
the SYMBRION project). To this end we implemented two
self-adaptation schemes that have been previously offered in
evolution strategies and performed an experimental compar-
ison between them. This comparison was based on three
different problems and we found that the de-randomised
self-adaptation of mutation steps size clearly outperformed
the standard self-adaptation mechanism on two problems.
On the third problem, both mechanisms failed with equally
bad median end results and slightly better average progress
curves for the standard mechanism. Drawing general con-
clusions from these results is therefore not straightforward.

To this end, let us remark that generalising empirical
results in evolutionary computing or, more generally, for
heuristic algorithms is never straightforward [5], [9], but
discussing methodological issues goes beyond the scope of
this paper. For our present study we note that the choice of
the three test problems is unbiased, that is, no attempt has
been made to select tasks that would favour either of the
self-adaptation schemes. In this sense, we have a fair sample.
The sample size (three) is rather small, but comparing it to
the rest of the literature it is not too small. All in all, we
dare to articulate a slight preference for the de-randomised
self-adaptation scheme, based on our results and the generic
argument that it works better for small populations.

Future research is directed towards increasing our present
sample size, that is, performing experiments on more prob-
lems. Furthermore, we will address the issue of selecting
representative, or otherwise well-motivated test problems in
order to facilitate generalisation of experimental results.
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