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Sdf-Adaptive Partial Discharge Signal De-noising Based on
Ensemble Empirical Mode Decomposition and Automatic
Morphological Thresholding

Jeffery C. Chan, Hui Ma, Tapan K. Saha and Chandima Ekanayake
School of Information Technology and Electrical Ewgring
The University of Queensland, Australia

ABSTRACT

This paper proposes a self-adaptive technique for partial discharge (PD) signal de-
noising with automatic threshold determination based on ensemble empirical mode
decomposition (EEM D) and mathematical morphology. By introducing extra noise in
the decomposition process, EEMD can effectively separate the original signal into
different intrinsc mode functions (IM Fs) with distinctive frequency scales. Through the
kurtosis-based selection criterion, the IMFs embedded with PD impulses can be
extracted for reconstruction. On the basis of mathematical morphology, an automatic
mor phological thresholding (AMT) technique is developed to form upper and lower
thresholds for automatically eliminating the residual noise while maintaining the PD
signals. The results on both simulated and real PD signals show that the above PD de-
noising technique is superior to wavelet transform (WT) and conventional EM D-based
PD de-noising techniques.

Index Terms — De-noising, ensemble empirical mode decomposition (EEM D), high
voltage (HV) equipment, mathematical morphology, partial discharge (PD), wavelet
transform (WT).

1 INTRODUCTION Recently, Tang et al applied EMD to PD de-nosirgj.[However,
the inherent limitations of EMD such as mode mixamgl end

PARTIAL discharge (PD) measurement provides an effecti@r .+ were not considered in [12]. Due to theselhmitations, an
and convenient means for on-line monitoring of latsn systems |\1e may consist of more than one frequency compbnen

of high voltage (HV) equipment. However, environ®n ,mpining hoth real signals and noise. Also, redmudMFs

interference and noise may jeopardizé PD measuteam&h ., pe generated. If these IMFs are selected 6angtruction,
cause difficulties in PD data analysis. Therefogessary de- o qe-noised PD signals can be distorted.

nosing techniques need to be implemented to extrdzt

signals from original noise-corrupted signals. Otle past
several decades, a variety of PD signal de-notsictgniques have
been proposed in the literature [1, 2]. Recentlyuaber of

researchers [3-10] applied wavelet transform (WONHPD de-

noising. Through the signal decomposition by WTise@nd real
PD signals can be separated into different coefftsi By

applying thresholds to the coefficients, noiseissatded and the
PD signals are kept for reconstructing the de-doBB signals.
However, due to the needs of manually determinirghen

wavelets and decomposition levels, WT is not aasdptive and
automatic decomposition technique.

To provide a fully automatic decomposition techeigu
especially for non-stationary and nonlinear sigraispirical mode
decomposition (EMD) has been proposed [11]. EMDsdoat
require the pre-selection of mother wavelets. &ubteit

To address the above issues in applying WT and EWvD
PD de-noising, this paper proposes a hybrid methdtch
adopts ensemble EMD (EEMD) for signal decompositiol
utilizes mathematical morphology for automatic s$hidd
determination. The key aspects of formulation, eng@ntation,
and verification of the hybrid method will be pretss in the
remainder of this paper. They are: (1) EEMD foreeffely
overcoming mode mixing in EMD by decomposing owmdjimoise-
corrupted PD signals into IMFs for separating feBl signals
from noise; (2) kurtosis-based selection method efiracting
IMFs with PD impulses for reconstruction to avoittieffect in
EMD; (3) automatic morphological thresholding (AMTsing
mathematical morphology for automatically creatimgsholds to
eliminate the noise with the same frequency scateshe PD
impulses in the reconstruction process; and (4)luatian
measures for comparing the de-noising performandegVT,

decomposes the original signal into a number of ORONEMD, and the proposed hybrid method. Since theee rar

component signals called intrinsic mode functioidF&) by
using the local characteristic time scale of thgnai itself.

Manuscript received on XX Month 2012, in final form XX Month 2012.

requirements of pre-selecting mother wavelets hrestolds for
different types of PD signals in the proposed nektliibocan be



applied to the real situations, in which the typedefects of HV
insulation systems and the properties of PD sigmalsinknown.

2 BRIEF REVIEW OF SIGNAL
DECOMPOSITION TECHNIQUES AND
MORPHOLOGICAL FILTER

2.1 BRIEF REVIEW OF WT

In WT, signals are decomposed into a series of cowpts
called coefficients ranging from the highest to tloavest
frequencies scales. Such decomposition is perfoitmasdd on
convolution between original signal and the sekbateother
wavelets, which shifts along the time scale usiramdlation
and scale factors. In PD de-noising, discrete vedvteansform
(DWT) is widely adopted [3, 4]. The operation of DWan
be represented by a filter band consisting of l@sspfilters
(LPFs) and high pass filters (HPFs) with the decositipn on
the low passed signals [13].

One of the major limitations of WT is mother wavele

selection. The authors of this paper addressedithiistion in

[14]. Basically, better de-noising performance banachieved
if the selected mother wavelets have high corfatiith real
signals. However, it was found that (1) for thensig with low
signal-to-noise ratios (SNRs), mother wavelets magy
selected for matching the noise rather than thiesigaals; and
(2) fixed mother wavelets cannot match all typdbf signals
for different PD defects [14].

2.2 BRIEF REVIEW OF EMD

achieved by a linear combination:

N-1
Xe® = D I +ry )

n=1

1)

whereN is the total number of IMFs amdis the last IMF or
residue.

However, due to the problem of mode mixing in thewe
sifting process, an IMF often embraces signal camepts with
dramatically disparate frequencies scales. The akign
components with similar frequency scales may atside in
different IMFs [16]. Another limitation of EMD ishe end
effect that may generate meaningless low frequdivtlys.
This is due to the excessive decomposition of EMDyhich
swings that generated from both ends of signalpamgate
toward the whole signal span and finally corrups tMFs.
This paper adopts EEMD to deal with the above muoiéng
problem and proposes a kurtosis-based IMF selectitgrion
to solve the end effect problem (refer to Sectipn 4

2.3 BRIEF REVIEW OF EEMD

Through adding white noise to the original sigrieEMD
forces the sifting process to make different frempyescales
collating in the proper IMFs dictated by dyadid¢dil bank [16].

After adding white noise on the original signal, B
extracts IMFs as normal EMD does. Once the extaaif the
first ensemble is completed, a set of IMFs withseois
generated. Then a new white noise with the sammdatd
deviation on the amplitude as the previously addei$e is
injected into the original signal again and EMD qass is

EMD is an adaptive decomposition technique. WithoWtgntinued on this new noisy signal. The amplitudevbite

specifying any mother wavelet, EMD decomposes @aasigto
a series of IMFs of different frequency scales [1The
decomposed signal can later be precisely reconstu&EMD
uses a sifting process to eliminate riding waved samooth

noise and ensemble number are defined as:

A

Ine+—INnN,=0

2 )

uneven amplitudes that might be embedded in IMFghere A, is the amplitude of the added white noide, is the

Therefore, an IMF can be treated as a mono-compaigamal,
which satisfies (1) the number of extrema mustegitie equal
to or, at most, differ by one from the number afozerossings;
and (2) the mean value of both envelopes definethéyocal
maxima and local minima is zero at any point indaéa [15].

ensemble number, and is the final standard deviation of
error. The resulting IMFs after all the ensembles the
average value of the ensembles on each IMF. Siruée w
noise is a zero mean random signal, the average wadn
cancel the errors produced by the white noise.

It is assumedk(t) is a signal being extracted in the sifting

process. Firstly, local extrema aft) are defined. Then, cubic

2.4 MATHEMATICAL MORPHOLOGY-BASED
MORPHOLOGICAL FILTER

spline interpolations are performed on both maxiarad ] )
minima to get the upper envelopg, (t) , and lower envelope, "€ purpose of using mathematical morphology-based
morphological filter is to extract PD impulses iret

x (1) . The mean of the above two envelopes is denoted &onstructed signals from EEMD. Mathematical molpdy is
m(t) = (x, (t) +x_(t))/2. The iteration of deciding IMF is originally designed for image processing. Later aipplication
[ () = x(t) —my; (t) , wherel ,;(t) is then-th IMF at thei-th hf':\s begn extended to feature extraction land mad’a'mje
iteration. | ; (t) is the first IMF if it satisfies the conditions of diagnosis [17-20]. The theory of mathematical mofpdy is

) ) ] i ) based on mathematical operators, which are appledeen
mono-component. Otherwise, the iteration will bettwied  gjgnals and structure element. Structure elemeatpisedefined
on I, (t) . After extracting the first IMF, which embracesth shape, such as flat and triangular, with finitegtén The

highest frequency component in the original signidle extraction of impulses is defined as the extractidnlocal
iteration will be continued on the residug(t) = x(t)—1,;(t). morphological features through the intersectionwsen

Replacingx(t) by r,(t) and repeating the above process unttructure element and signals.
the last IMF is obtained. A precise reconstructiqt), can be ~ TWo basic operators in mathematical morphologyeaiosion



and dilation, which can be expressed by Minkowskevaluate de-noising performances of different dgmusition
subtraction and addition respectively. By combinihgse two techniques, two types of simulated PD signals which
operators, other two operators, opening and clpsiag be damped exponential pulse (DEP) and damped oscifigtdse
created. Assumingx, is an one-dimensional signal with (DOP) were adopted. The duration of DEP and DCdtasind
discrete function over domaiX = (012,...,N-1) ands, is a 0.1 ps and the oscillatory frequency is around 14zMDEP

structure element with discrete function over

defined as [17]:

(X©S), =min(X(n,m ~Sy), Me 012,..,M -1 3)

(X®9), =maxXp-m +Sy), me 012,..M -1 (4)
(X09),=(X0S®9), ®)
(Xe9),=(X®S0S9), 6)

where®, @, o, ande denote erosion, dilation, opening, anc

closing operators respectively. It can be seen fRigure 1
that erosion operator suppresses maxima and esldtge
minima, dilation operator enlarges maxima and segg®Es
minima, opening operator cuts the maxima and mastte
shape of minima, and closing operator maintainsstiepe of
maxima and cuts the minima. By selecting properratpes,
PD impulses can be extracted.
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Figure 1. Results of mathematical morphology (red dots) wgiral signal
(blue lines). (a) Erosion, (b) Dilation, (c) Opegirand (d) Closing

3 COMPARATIVE STUDY OF
DECOMPOSITION TECHNIQUES ON
SIMULATED SIGNALS

3.1 SIMULATED PD SIGNALS

PD signals are impulsive-type signals and theie times
can be as short as 1-2 ns at their discharge tosatnside a
HV apparatus [21]. However, the PD signals can iseoded
and attenuated when they propagate from their oispe
discharge locations to PD detectors. Their riseesinand
durations can also be distorted. Therefore, thatthurs of PD
signals acquired by PD detectors can be signifigatitferent
from the durations of PD signals at their occureelurations.
Chen and Czaszejko investigated influence of Pl2dien
circuits with different circuit parameters on theacacteristics
of acquired PD signals [22]. Their results provettfD
impulses with oscillatory frequencies ranging fraaveral
Megahertz to several tens of Megahertz can be tete@o

damaiand DOP are defined as [5]:
S=(012...M -1) [18], then the four operators can bepgp(t)= A(e /" -e/1?)

)
DOP(t) = A*sin@f t)(e/" —e'/'2) (8)

whereA is the signal amplitudd; is the oscillatory frequency
of DOP, and is the time constant of damping coefficients for
controlling PD parameters such as rise time, pwisih, and
decay time. Figure 2 shows these two types of gbais.

) . . ‘ .
2 q0r (a) (b) 1
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Figure 2. Simulated PD signals (a) DEP and (b) DOP
3.2 COMPARISON OF EEMD AND DWT

To compare EEMD with DWT, five simulated PD impuse
with different amplitudes and SNR = -1dB were ergphh
SNR is calculated by using amplitudes of a sigAssuming
Sg be an original PD signal andoi be the noise. SNR is

defined aSLOIoglO(ZLISig(i)Z / ziLleoi(i)Z), whereL is

length (i.e. number of samples) of PD signal andend~igure

3 shows decomposition results of EEMD on DOP andDE
type PD signals. The decomposition was construeitd 300
ensembles and the amplitudes of the injected wiuige were
0.2 standard deviation of original signals. Figureshows
approximation  coefficients generated from five-leve
decomposition of DWT. Three commonly used mother
wavelets, i.e. db2, db5, and biorl.5, were adopted
comparison [4-6].

It can be seen from Figure 3 that noise (IMFsih-BOP
and IMFs 1-4 in DEP) and PD impulses (IMFs 4-5 iO®
and IMFs 5-6 in DEP) can be separated distinctividiywever,
decomposition performances in DWT (Figure 4) highly
depend on the mother wavelets. Choosing inapprpria
mother wavelets in DWT may incur distortion of daised
signals. In Figure 4, db5 attained better de-nop&rormance
compared with db2 and biorl.5. This is due to sinty
between the approximation coefficients generatedtha
decomposition process using db5 and the origigalads.

3.3 COMPARISON OF EEMD AND EMD

EMD decompositions on the above simulated signeds a
shown in Figure 5. It can be seen that some PD Igepuare
merged with noise as indicated by the red arrows/ir 3 for
DOP and IMF 4 for DEP. If these IMFs are discarthefbre
signal reconstruction, the de-noised signals wélldistorted.
On the other hand, preserving these IMFs will idtrce
significant noise in the de-noised signals.

If thresholds are applied to the IMFs, it mightgmssible to
filter the noise. However, if the amplitude of a RBpulse is



similar to that of the noise in an IMF, this PD uge may

also be treated as noise and discarded. Moredwesholds IMFL ' e FRORTIOR
are the same values at both positive and negaties.sThus it , H .
is not feasible to apply the thresholds to PD dignanhich M 2 s \ sttt
consists of positive and negative impulses of diffie el ' ]
amoli : 2| IMF3
plitudes. Therefore, this paper proposes a ngroaph for s Do -
thresholding using mathematical morphology in Pgnal de- < — i
noising. L e A Y N |
EEMD
: | IMF 5
Original signal ‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘
~ A /\/\ M /\ﬁ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
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Figure 5. Decompositions of EMD on simulated signals.

Original signal

IMF 1
(a) DOP (5 levels) and (b) DEP (6 levels)
_IMFZ |
i wrs e 4 A PD SIGNAL DE-NOISING METHOD

! ] BASED ON EEMD WITH AUTOMATIC
| IMF 4 | THRESHOLDING
[ This section presents a PD signal de-noising metivbith

adopts EEMD for signal decomposition and matheatic
morphology-based  morphological filter for automatic

| IMF 5 |
NN e e A e e e

LIMF 6 ] o) IR .
-—— ] thresholding in signal reconstruction.
o T e T 4.1 AUTOMATIC THRESHOLDING USING
Figure 3. Decompositions of EEMD on simulated signals. MORPHOLOGICAL FILTER
(2) DOP (5 levels) and (b) DEP (6 levels) Since amplitudes of positive and negative PD imgailmay
. owr not be the same, the mathematical morphology-based
|Approx. oot from db2 e A ] morphological filter calculates the threshold valseparately
£ | Approx. coeff. from db5 in both positive and negative sides of PD signale major
NN 1 [T P i i
g : S difficulties of applying mathematical morphology earthe
<C | Approx. coeff. from biorl.5 .
IR U — selections of shape and length of structure element
0 03 o1 08 08 1 12 11 185 18 Inappropriate selection of these two parameterslead to
(@ Time (3) x10° excessive suppression of extrema and consequehtly t
S 4L — distorted signals.
| Approx.coeff. fromdb2 . ] A number of structure element selection schemes haen
| Approx. coeft. from dbs proposed in the literature [17-20]. In [17, 20Jatflstructure
e~
£
<

element was adopted for extracting impulsive pecisibnals.

LA 4 ff. f biorl.5 4 .
itk b ST S S The lengths of structure element were decided basethe

2 04 08 08 1 12 12 18 1 repetition periods. However, this approach requipgr

0 02 04 0.6 08 1 1.2 1.4 16 1.8 2
(b) Time () x10° knowledge of the repetitive frequencies of the aignwhich
Figure 4. Approximation coefficients of DWT on simulated sigs. might not be readily available in some applicatioms[19],

(a) DOP and (b) DEP



sinusoidal structure element was used and the Hengere
selected based on decay rate of the structure mfefoe
periodic bearing signals. However, it is not ai#fitask to
decide the decay coefficient, natural frequencyd dhe
amplitude of the structure element for such pedaignals. In
[18], triangular structure element was applied tapulsive
periodic signals. The limitation of this type ofustture element
is that it may not match all types of impulses whbe
amplitudes need to be considered.

In this paper, flat structure element is employee to the
simplicity in calculation and the shape has ligféect on the
analysis [20]. To illustrate the selection of lengif structure
element, a simulated signal with different samplipgints
ranging from 2 to 7 apart between the impulses geerated
(Figure 6). Closing operator was used for extractiositive
peaks of the signal as denoted by the red dotaritbe seen
that the length of structure element should betehdhan or
equal to the intervals of impulses for effectivgnsil extraction.

SE length=3 SE length=5 SE length=7
] | ]
=
2
=0
AR
L
21314151617 20314151617 20314151617
10 20 30 40 10 20 30 40 10 20 30 40
Samples Samples Samples

Figure 6. Results of closing operator (red dots) with déferlengths of SEs

To automatically define the lengths of structurerrednt for
creating thresholds, this paper develops an AMTrigpie as
shown in Figure 7. AMT starts with determinationsafmple
number, &c, in each AC cycle and window number,,.N

Maximum 32 windows are used to provide a desirable(c)

resolution while maintaining reasonable computatictmme.
The lengths of structure elements can be set frifiNG to Sc.
Then, closing and opening operations adopting tlstrseture
elements are performed to create upper and lowezl@pes
respectively. Energy is defined as sum of the sguair
amplitude for each data point in each envelope.hVitite
increment of structure element length, more pea&seaclosed
and gradually the energy values of the envelop#snerease.
However, for the envelopes covering the peaks witrall
intervals or the peaks with large intervals but lser@plitudes,
the increase of energy will not be too much (midpdéet of
Figures 8a and 8b). In contrast, if the envelopager the
peaks with large intervals and amplitudes, energyes will
increase dramatically (right-hand side of FigurasaBd 8b).
Taking into account the above scenarios, optimaistiolds
are determined in two steps: (1) taking averagapper/lower
envelopes that provide the longest successive asireihergy
values £10% of energy values); and (2) obtaining the opttim

| Simulated

noisy PD signal |

| Determining number of samples per AC cycle, Sac ‘

Upper threshold
selection

‘ Defining window number, Ny, |

Lower threshold
selection

Lengths of flat structure elements for
positive signals,
SEpos = (Sac/ Nyw)C, where C=1.2..... Ny

| Lengths of flat structure elements for
negative signals,

SEpeg = (Sac/ Ny)C, where ©=12, Ny

1 1
I | 1
1 | |
I 1 | 1
: Performing closing operations to form | Performing opening operations fo form !
| upper envelopes ! lower envelopes :
. 1 | 1 .
1 Calculating energy values, Ey, of 1 Calculating energy values, E,, of 1
1 upper envelopes 1 lower envelopes I
1 I | I 1
1 Averaging upper envelopes with 1 Averaging lower envelopes with 1
1| the longest successive values of E;#10% (]| the longest successive values of Ex10% ||
1 1 1 1 1

1

1

|

Upper threshold, | Lower threshold,
I T, = mean of the averaged envelope

Ty = mean of the averaged envelope

Figure 7. Flowchart of AMT
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Figure 8. Results of AMT on a noisy DEP-type signal. (a) i&yevalues of
upper envelops, (b) Energy values of lower envelpped (c) Averaged upper
(green dots) and lower envelopes (pink dots), anekholds (red lines)

4.2 PROPOSED SELF-ADAPTIVE PD SIGNAL

DE-NOISING METHOD

The overall flowchart of the proposed self-adaptivethod
for PD signal de-noising is depicted in Figure Shit& noise

and periodic noise which are very common in PD data

acquisition [3-5] were injected to the original Péignal.
During on-line PD measurement, white noise candrerated
from ambience, whereas periodic noise can be getefeom
communication systems, radio transmissions, ancepeycles
[3-5]. In this paper, the injected periodic noisensists of
three sinusoidal signals with randomly selectedldunges and
frequencies. The largest amplitude of these sigoatsbe up
to the absolute value of the largest amplitude rofodaginal

aacquired PD signal. The frequencies of these sigaa with

thresholds by taking the mean values of the averagge range up to 1kHz to simulate signal fluctuatidmat could

envelopes (Figure 8c).

be appeared in on-line PD measurements.

Firstly, EEMD is executed to decompose the noignals.
The ensemble number is set to 300 and the amplivfidiee
injected white noise is 0.2 standard deviationhaf original
signal. According to [23], an IMF generally sagsfi the



Cauchy condition after five iterations in the siffi process.
More iterations could not change IMFs significanfiyius ten
iterations are used to guarantee the stability @rmsergence
of IMFs. After EEMD decomposition, kurtosis is ajgpol to
select the IMFs with PD impulses due to the saeiitsitiof
transient signals. In other words, larger valu&wtosis refers
to a signal consisting of abruptly changed impulsdsle
smaller value of kurtosis refers to a slowly fluated signal or
a signal consisting of evenly distributed amplitside.g. white
noise and periodic signal). The kurtosisis defined as:

L T4
kzm 9)

(L-)o?

wherel ,
of IMF respectively.

The selection process starts from IMF1 which coegxithe
highest frequency component of the originally naiserupted
signal. If the kurtosis of an IMF is suddenly dregpto half of
that of previous IMF, it implies that the IMF witihe lower
kurtosis value consists of fluctuations in low fueqcy,
periodic noise, and/or white noise. Thereforesitonsidered

as pure noise without containing any PD impulsesl an

discarded. Otherwise, it is added to the previods$ Ifor
reconstruction and the selection will be continusd the
remaining IMFs. Such kurtosis-based selection dek yp the
noisy IMFs and eliminate the low frequency IMFsttlaae
generated from end effect.

After the above selection process, reconstructian be
created. Since some noise with the same frequeraless of
the selected IMFs may be included in the recontdusignal,

the AMT can be employed to create upper and low

thresholds of the signal. De-noised signal can then
produced by applying hard thresholding.

PD signal with white noise
and periodic noise

Initiating reconstructed signal
after EEMD, RECegyp = 0
and
IMF number, N = 1

Executing EEMD on the
noisy PD signal

I

1

I

1

[}

I N=N+1 Calculating kurtosis, k(N), on IMFN
! — g 0 |
1

1

1

1

1

1

1

1

1

1

1

1

Yy I

RECempn= IMFN Je—=— N=17 = I

~— |

P

1| RECgewp = RECggup + IMFN I(_"-'—':,k K(N) 2 k(N-1)2? = :
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[ Performing AMT on RECeeus |

De-noised signal

Figure 9. The proposed self-adaptive PD signal de-noisinthate

5 EXPERIMENTAL SETUP

L, ando are the mean, length, and standard deviation

simulate different insulation defects in HV equiptheModel
1 simulates internal discharge. It consists ofdhpeessboards
with a void at the center of the middle pressbdeetiveen the
HV and grounding electrodes. Model 2 simulates tiitmp
discharge by putting four metal particles on a ghesrd
between HV and grounding electrodes. Model 3 siteala
protrusion of conductor by using needle—sphereigorstion.
Model 4 simulates normal insulation condition with
pressboard between HV and grounding electrodes.eMbd
simulates corona using needle—plane configuratitodels 1
to 4 were immersed in mineral oil, whereas modehbS in air.

ll High-Voltage Area Test cell

Coupling
capacitor BNC

Impedance

5
o

8 rdor -

£ |_Ibatery

Safe area
Measurement

devices -

PC
(monitoring device)

Figure 10. Experimental setup [24]

4
T

(b)

10mm Smm $

L |

@) (d) (e)

Figure 11. PD source models. (a) Model 1 - pressboards witbid. (in oil),
e(’b) Model 2 - pressboard with 4 metal particlesd(ip, (c) Model 3 - needle
sphere (in oil), (d) Model 4 - 1 pressboard (i,a@hd (e) Model 5 - needle
plane (in air)

6 RESULTS AND ANALYSIS

6.1 EVALUATION MEASURES

To evaluate the de-noising performance of the mego
method, three measures including mean square VISE),
M, correlation coefficient (CC)y, and impulse number error,

IE, were adopted. They are defined as:

L
M=13(0-D)? (10)
i=1
Z (O, -0)(D; - D) ”
11
\/Z. @ - 0)22 (D; - D)2
IE=[IM, - IM| (12)

wherelL is the length of signa) denotes the original signd,
denotes the de-noised signé, and D are the mean values of

PD signals were acquired by a commercially availablO andD respectively]M, is the number of impulse in original

equipment (Omicron,
IEC60270 standard [24] as shown in Figure 10.
Five different PD models (Figure 11) were consgdcto

MPD 600), which complies withsignal, andM is the number of impulse in de-noised signal.

Since different types of insulation defects proddidterent
patterns of PD signals, M and can be used to indicate the



When compared with the performances in terms olis®

integrity of PD impulses. number error, larger reduction can be found in the
comparisons of DWT in both DOP and DEP. This coe®pli

6.2 RESULTS ON SIMULATED PD SIGNALS with the left-hand side of Figure 12c, which regetilat the

This section provides comparison between the peIEpOS{e-noised signals obtained by DWT consist of mamgalls
method, DWT and EMD-based methods for PD signal dgnpulses. In Table 1, 100% oE indicates that there is no
noising on the simulated signals. In the compariddWT-  aqdition/deduction of impulse in the proposed metho
based method applied a commonly used thresholdhéo tyhereas "N/A" means that no addition/deductiomugiilse in
method used the same approach of the proposed @nbthto that there is no addition/deduction of impulse praetl in the

the decomposition of EEMD was replaced by EMD. st ide-noised signals obtained by the proposed metlithdSMRs
termed as EMD+AMT in the remaining of the paper.eThfom 1dB to 5dB.

results and evaluations of DWT and EMD+AMT are show

similarity of PD patterns whered& is for examining the

Figure 12 and Table 1. Original signal Noisy signal
Figure 12 presents de-noised DEP-type PD sign&lR(S - g2 g

5dB) obtained from DWT (mother wavelet = db5), & ° B S g O'T\A')MM}\‘\/W

EMD+AMT, and the proposed method. It can be obgkthat < -20 <-20

some impulses are missing in the de-noised sigid&ined by 0 0.01 0.02 0 0.01 0.02

DWT (right-hand side of Figure 12c). This coulddzaised by () Time (s) (b) Time (s)

excessive noise rejection when thresholds wereieppd the
coefficients. Also, the impulses' polarities (pogt and
negative directions) are ambiguous. Although thianitges of
impulses can be preserved by using EMD+AMT, notdé s
exists while some impulses disappear in the deedoggnal
(right-hand side of Figure 12d). Such remainingsactomes ©
from mode mixing of EMD, in which the selected IMFs

embrace

relatively low frequency and

large fludtuat

periodic noise as well as PD impulses. Therefdre,periodic
noise still appears in the reconstructed signalEMD as
shown in the left-hand side of Figure 12d. Since TANS
originally designed for filtering noise in the rewtructed
signals of EEMD (left-hand side of Figure 12e) witl the
present of mode mixing, some noise can thus silfdund in

the de-noised signal of EMD+AMT.

It can be clearly observed that the proposed method

outperforms DWT and EMD+AMT. The de-noised signa
preserves all the PD impulses with correct poksitand
locations and only has minor changes in the angsguright-

hand side of Figure 12e).

Table 1 tabulates the results in terms of the tereguation
measures with varying SNRs. In the tablgM'(%)", "1 » (%)",

and "|IE (%)" refer to the percentage of MSE reduction, CC

increment, and impulse number error reduction retbpay of
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Figure 12. De-noising results of a DEP-type signal. (a) @rgisignal, (b)
Noisy signal (SNR=-5dB), (c) Impulses enlargemertt de-noised signal of
DWT (db5), (d) Reconstructed and de-noised sigoREEMD+AMT, and (e)
Reconstructed and de-noised signals of proposeldaaiet

Table 1. Comparisons of measures on (a) DOP-type and (IP-Dfe
signals

@)

DOP

the proposed method with respect to the correspgnde-  SNR Comparison with DW Comparison with EMD+AM
noising methods (i.e. DWT and EMD+AMT). The resutfs (@B)  IM(%) T7(%) [E®%) IM©®%) 17(*) JIE%)
DWT in Table 1 are the average of the results obthifrom 5 25 4 100 14 N/A
various mother wavelets including db2, db4, db5,0jlb25, 513 gg s igg éz 188
db45, biorl.5, bior6.8, and coif5. 1 55 12 97 48 85
It can be observed from Table 1 that the amourM8E -3 60 25 99 46 76
reductions and CC increments are larger when SNies_a -5 69 34 99 52 74
smaller in both the comparisons of DWT and EMD+AK6F
DOP (Table 1a) and DEP (Table 1b). The amount teads (b) - — DEP - —
reduce when the SNRs become larger. This indidatesthe ~ SNR omparison Wi omparison wi
. ) (@B) M@ Tr®) LE®) IM@®) 17() |IE®%)
de-nosing performance of the proposed method &edio that 5 68 5 100 59 8 N/A
of DWT and EMD+AMT in slight noise situation. Oneth 3 71 12 100 68 6 N/A
other hand, this implies that the proposed metbamhpable of 1 71 15 100 65 13 100
extracting PD signals contaminated by severe noise. -1 74 22 99 76 17 89
-3 85 28 9 79 24 87
5 87 39 97 91 46 72




6.3 RESULTS ON REAL PD SIGNALS
PD signals acquired from the five PD models (FigLte

with added noise were used to compare the de-goisin
performances of DWT, EMD+AMT, and the proposed rodth

Figure 13 presents both time and phase-resolvegraiies of
the original signal, noisy signal, and de-noisaghals in 2 AC
cycles for model 1. Figure 14 presents the de-igos#sults of
models 3 and 5 (due to the space limitation, tealte of other
two models are not provided here). Table 2 comptresie-

nosing performances of DWT, EMD+AMT, and the progubs

method with the signals obtained from 100 AC cycles

From Figures 13 and 14, it can be seen that, tteipes of
most impulses after de-noising by DWT are blurr&dich
situation is especially serious in model 1 (FigWrgcl): a
whole cluster of PD impulses at the right-hand sidiéts from
positive to the middle position; and a large amafritnpulses
disappear. The result can also be observed in
corresponding phase diagram (Figure 13c2). It dan he
seen from Figures 13 and 14 that some impulsesn&sing
and noise still remains in the de-noised signalgiobd by
EMD+AMT. The results reveal the superiority of {m®posed
method. It can effectively remove the noise whilgimtaining
the integrity of PD signals by preserving the Bl impulses
and their locations.
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Figure 13. De-noising results (2 AC cycles) of model 1. (é3) Original
signal, noisy signal (SNR=-5dB), and de-noised algof DWT (db5),
EMD+AMT, and proposed method, and (a2)-(e2) Theasponding phase
diagrams
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Table 2. Comparisons on real PD signals with SNR = -5dB)(AC cycles)

Model Comparison with DWT Comparison with EMD+AMT
No. IM@) 17 IE®) M@ 17 ) |IE®)
1 74 32 99 44 6 0
2 81 14 99 87 24 92
3 81 29 96 81 27 40
4 68 12 97 28 15 0
5 91 23 96 87 12 14

For the results in Table 2 with 100 AC cycles of §ignals,
the proposed method still outperforms the otherslinfive
models. A higher reduction of impulse number eran be
noticed in the comparison of DWT when compared it
in EMD+AMT. The results imply that the wavelet-bdsde-
noising technique may not be suitable for PD sigla-nosing
since additional impulses can be induced in thenased
signals.

7 DISCUSSION

This section discusses some practical issues dgiagphe
proposed method for PD signal de-noising. The toas of
improving the proposed method will also be ideetfi

7.1 ROBUSTNESS OF PROPOSED METHOD ON
DIFFERENT TYPES OF NOISE

There are different types of noise in PD measurésnen
which include periodic noise, white noise, and késtic
transient noise. Periodic noise that consists olstidal
components can be generated by communication system
radio transmissions, and power cycles. The frequesioge of
this type of noise can be up to 2000 MHz [3-5]. Whioise is
a wide-band noise, which can be generated fromambiand
its frequency components distribute over entirecspen.
Stochastic transient noise is also a kind of wideebnoise,
which can be generated by automobile spark plugs an
detection circuits [5].

The method proposed in this paper aims to remowerlo
frequency periodic noise (up to 1000 kHz) and winitése.
For removing the periodic noise, notch filter can used [2].
However, frequencies of the noise can vary depgndimthe
noise sources, notch filter is not able to provisheadaptive



means for de-noising. Bandwidth and forgetting dacare
required to be selected a priori [2, 25]. AlthoupiWvT and
EMD can also extract and remove periodic noise dase
decomposition, their decomposition abilities ammitéd as
shown in the comparative study in Section 3 andltgsn
Section 6. The de-noising performance of DWT isitkah by
the selected mother wavelets, whereas EMD is ntg &b
clearly separate noise from PD signals.

For removing white noise, the above limitationsNT
and EMD also exist (please refer to the discussiddection 3
and Section 6). By contrast, by using the propasethod,
both periodic and white noise can be separated fRibn
signals adaptively without considering the motheavelet
selection. Also, due to the ability of separatirignals in
distinctive frequency bands, the proposed methodbie to

effectively extract PD signals from the noise dgrin

decomposition.

Removing stochastic noise is the most challengasd in
PD de-noising due to the similarity between therabieristics
of stochastic noise and PD signals. Further ingastin is
required for removing stochastic noise from thegioal
acquired PD signals.

7.2 COMPUTATIONAL TIME ON ON-LINE PD
MEASUREMENT

For on-line PD measurements, computational timerusial

From the results, although DWT and EMD+AMT require
relatively short computational time, their de-nogsi
performances as discussed in this paper cannottisfiexd.
The proposed method outperforms these two method&Di
signal de-noising. Therefore, for practical on-lineD
measurements, there will be a trade-off betweemaising
performance and computational time. This issue si¢edbe
investigated in future research. The possibilityirmproving

the processing speed of the proposed method without

significantly compromising its performance also aedo be
investigated.

8 CONCLUSION

This paper
technique by using EEMD and mathematical morpholtmy
deal with the limitations of wavelet and EMD-basdd-
noising techniques. By using a kurtosis-based #etec
criterion, the proposed method can effectively aottriIMFs
embedded with real PD impulses for reconstructidmles
discard the
morphology-based AMT technique, upper and lowezgholds
can be automatically formed in the reconstructionftirther
eliminating the noise with the same frequency scafahe real
PD impulses. Comparative study on both simulatedi raal

PD signals demonstrated that the proposed methad ca

for PD signal de-noising and subsequently PD smurc@reserve the integrity of PD signals without conmpising the

recognition. Table 3 provides the comparisons
computational time using different de-noising melhoon

different numbers of power cycles. The PD signaksrew
sampled at around 1GHz and then re-sampled to 1fékz

processing. A program was written

dyolarities and quantity of PD impulses.
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Table 3. Comparisons on computational time
Computational time (sec.)

No. of

power cycle DWT EMD+AMT Proposed
metho
10 0.0013 0.0009 0.2028
20 0.0013 0.0037 0.8948
30 0.0013 0.0060 1.4563
40 0.0013 0.0083 2.0127
50 0.0013 0.0108 2.6624
60 0.0013 0.013: 3.052:
70 0.0013 0.016¢ 3.746:
80 0.0013 0.01¢4 4.394¢
90 0.0013 0.022¢ 5.304¢
100 0.0013 0.0313 7.8469

From the table, it can be seen that the computtiime is
different between different de-noising methods.cAllonger
time is required for de-noising for EMD+AMT and pased
method if the PD signals are longer. On the cowtréne
computational time remains unchanged in DWT. Onvthele,
DWT requires the shortest time among all methodslevthe
proposed method needs the longest time due tortbentble
process in EEMD.

anonymous
suggestions.
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