
Self-adaptive Salp Swarm Algorithm for
Optimization Problems
So�an Kassaymeh (samsaak@gmail.com)

Universiti Kebangsaan Malaysia https://orcid.org/0000-0003-0586-1961
Salwani Abdullah

Universiti Kebangsaan Malaysia
Mohammed Al-Betar

Al-Balqa' Applied University
Mohammed Alweshah

Al-Balqa' Applied University
Mohamad Al-Laham

Al-Balqa' Applied University
Zalinda Othman

Universiti Kebangsaan Malaysia

Research Article

Keywords: Salp Swarm Algorithm, Initial Population Diversity, Self-Adaptive Parameters Tuning, Swarm
Algorithms, Optimization, Metaheuristic

Posted Date: May 2nd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1600365/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1600365/v1
mailto:samsaak@gmail.com
https://orcid.org/0000-0003-0586-1961
https://doi.org/10.21203/rs.3.rs-1600365/v1
https://creativecommons.org/licenses/by/4.0/

Self-Adaptive Salp Swarm Algorithm for Optimization Problems

Sofian Kassaymeh 1a, Salwani Abdullaha, Mohammed Azmi Al-Betarb, Mohammed Alweshahc,d,
Mohamad Al-Lahamc, Zalinda Othmana

aData Mining and Optimization Research Group, Center for Artificial Intelligence Technology, Universiti Kebangsaan
Malaysia, Bangi Selangor, Malaysia

p86165@siswa.ukm.edu.my, salwani@ukm.edu.my, zalinda@ukm.edu.my
bDepartment of Information Technology, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan.

mohbetar@bau.edu.jo
cDepartment of Computer Science, Prince Abdullah bin Ghazi Faculty of Communication and Information Technology,

Al-Balqa Applied University, Salt, Jordan. weshah@bau.edu.jo, Dr laham@bau.edu.jo
dArtificial Intelligence Department,College of Information Technology, Aqaba University of Technology, Aqaba, Jordan.

Abstract

In this paper, an enhanced version of the Salp Swarm Algorithm (SSA) for global optimization problems
was developed. Two improvements have been proposed: (i) diversification of the SSA population referred
as SSAstd, (ii) SSA parameters are tuned using a self-adaptive technique based Genetic Algorithm (GA)
referred as SSAGA−tuner. The novelty of developing a self-adaptive SSA is to enhance its performance
through balancing search exploration and exploitation. The enhanced SSA versions are evaluated using
twelve benchmark functions. The diversified population of SSAstd enhances convergence behavior, and
self-adaptive parameter tuning of SSAGA−tuner improves the convergence behavior as well, thus improving
performance. The comparative evaluation against nine well-established methods shows the superiority of
the proposed SSA versions. The enhancement amount in accuracy was between 2.97% and 99% among all
versions of algorithm. In a nutshell, the proposed SSA version shows a powerful enhancement that can be
applied to a wide range of optimization problems.

Keywords:

Salp Swarm Algorithm, Initial Population Diversity, Self-Adaptive Parameters Tuning, Swarm Algorithms,
Optimization, Metaheuristic.

1. Introduction

Algorithms of type swarm intelligence are inspired from foraging behavior or biological evolution in
nature simulation [1, 2, 3, 4]. The recent swarm-based intelligence algorithms are Whale Optimization
Algorithm (WOA) [5, 6], Grasshopper Optimization Algorithm (GOA) [7, 8], Artificial Bee Colony (ABC)
[9, 10, 11], Ant Colony Optimization (ACO) [12], Particle Swarm Optimization (PSO) [13], Biogeography-
Based Algorithm [14, 15], Bacterial Foraging Optimization(BFO) [16, 17], Grey Wolf Optimizer (GWO) [18,
19, 20], Fruit Fly Optimization (FOA) [21, 22], Kidney-Inspired Algorithm (KA)[23, 24], Firefly Algorithm
[25, 26], and Harris Hawk Optimizer (HHO) [27]. The common features among these algorithms are their
collaborative behavior strategies. They are able to achieve the evolution principle through iterative process
where the current swarm is improved by attracting them to the local or global best solutions found in previous
generations. Therefore, swarm-based intelligence algorithms can intelligently strike the right balance between
diversification and intensification aspects [28, 29].

Due to their success features, swarm-based intelligence algorithms have been widely tailored for various
types of optimization problems. However, the efficiency of these algorithms is directly affected by the search
space nature of optimization problems [30]. Therefore, the theoretical aspects of the solvent algorithm could

1Corresponding Author

Preprint submitted to Elsevier

be improved in line with the search space properties of such an optimization algorithm. The improvements
are normally on either parameter settings or operator behavior. Sometimes, the improvement can be achieved
by hybridizing such algorithms with other algorithms to enhance convergence characteristics. In another
perspective, these algorithms do not have the same structure and searching mechanism. They are different
in properties, and they also behave differently based on the problem under consideration. For instance, it
is a remark that the BFO has complex structure while PSO has so simple structure [31], at the same time
the PSO converges easy but ACO converges slowly [32]. Moreover, exploration and exploitation for ABC
and BFO are well-organized and have better capability whereas it is poor in for ACO [33]. Next, ABC and
ACO are strongly affected and sensitive to parameter setting and initial values, instead PSO sensitive to
problem dimension. Finally, ABC has strong randomness behavior with low accurate outcomes [34, 35, 36].

Based on ”No Free Lunch” (NFL) theorem [37], no algorithm has the ability to handle all types of
problems. Several works were attempts to improve the performance of swarm intelligence algorithms to get
efficient and accurate outcomes. A new swarm intelligence algorithm was introduced a few years ago by
[38] called Salp Swarm Algorithm (SSA). This algorithm mimics the behavior of the Salp fish in the sea. In
addition, SSA has been verified by different engineering applications and several benchmark problems [38].
So, it has been applied to a lot of variety of optimization problems. For instance in [39, 40, 41, 42], the SSA
algorithm is employed for Feature Selection Problem, whereas in [43], SSA is utilized for Polymer Electrolyte
Membrane (PEM) fuel cells to extract the optimal parameters. Another noticeable use for SSA is designing
the Complementary Metal–Oxide–Semiconductor (CMOS) analog integrated circuit (IC) by [44]. Also, [45]
employs the SSA algorithm in calibrating the power system stabilizer for a power system for multi-machine.
Next, the SSA is then used by [46] to estimate the activities of a chemical substance. Furthermore, in [47],
the study of Short-Term Load Forecasting utilizing the SSA classifier was conducted. Also, the problem of
fish image segmentation utilizing SSA in [48]. Moreover, SSA employed for predicting parameter values for
the curve of soil water retention which proposed in [49], where SSA is proposed for parameter optimization
of a detection model used for photovoltaic cell techniques [50]. Furthermore, utilizing SSA for power load
frequency control and for load frequency control of power systems was done in [51] and [52] respectively.

Despite the variety of applications for the SSA algorithm, but it still suffers from some limitations.
Like finding the right balance between diversification and intensification, [53, 42, 54, 55, 56, 42, 54], bad
convergence accuracy [57, 58, 59], slow convergence rate [57, 58, 60, 61, 62, 63, 64, 65, 54, 42, 66, 67, 68, 69,
70], Lack of randomization components, [60], problems in discrete domain [71], deficiency of optimization
ability, [65], and exploration ability [54].

A few improvements attempts on SSA were proposed in the last years. [55] enhances the SSA structure
through tuning control parameters. In addition, a binary SSA algorithm was introduced to tackle the
Arctan transformation problem [56]. Also, a chaos-induced SSA is proposed in [72] where the variables of
chaotic initialized through a chaotic sequence which employed to substitute random variables. Furthermore,
a Chaos-Induced and Mutation-Driven Schemes based SSA, and greedy criteria are hybridized with the SSA
algorithm to improve convergence [54, 42].

Therefore, as mentioned previously, from the limitations of the SSA algorithm and the modifications
made on it by several researchers, we conclude that the SSA algorithm does not work in the required form
in its standard form, and it needs to be modified and enhanced in order to come up with satisfactory and
competitive results. This motivates us to try to modify the SSA algorithm that enhances its performance.

The main objective of this work is to propose a new improved Salp Swarm Algorithm (SSA) by means
of incorporating two improvement strategies in the initial population and the parameter tuning. To achieve
such objective, the following contributions are made:

1. In the first improvement strategy, the initial population is chosen based on the diversity measurement
where several populations are generated and the one with the highest diversity value is selected which
is called diversified SSA algorithm (SSAstd).

2. In the second strategy, self-adaptive parameter control is utilized in SSA parameters using a genetic
algorithm to find the optimal parameter for SSA which is called self-adaptive SSA (SSAGA−tuner).

3. For verification and validation purposes, the proposed self-adaptive SSA algorithm is compared against
the standard SSA algorithm and also with state of the art algorithms using twelve standard benchmark

2

functions.

4. The results prove the high impact of the self-adaptive SSA on the final outcomes.

The rest of the paper is organized as follows: Section 2 scans the Related Works. The fundamental
background for the standard SSA and GA are discussed in Section 3. The proposed diversified SSA algorithm
and self-adaptive SSA algorithms are described in Section 4. Results and discussions are thoroughly discussed
and analyzed in Section 5. Finally, the conclusion and possible future directions are illustrated in Section 6.

2. Related Works

In this section, the two main concepts of diversity and parameter control are overviewed. These related
to the main contributions of the present paper. Initially the related work of population diversity is provided
in Section 2.1 while the proper and relevant literature about control parameters are given in Section 2.2.

2.1. Population Diversity

As conventionally known, the initial parameter affects the convergence behavior of any swarm-based or
evolutionary-based metaheuristic algorithms. When the population-based algorithm initiated with a strong
population with appreciated diversity, the problem search space can be entirely navigated with an effective
scan. Recall, the optimization domain concurs that the search shall be a concern with diversity in the initial
stage and it will be turned toward equilibrium state until the search is stagnated in which the intensification
state is reached. In general, two population diversity strategies can be categorized: on-line (diversity
preservation) and off-line (diversity preservation) [73, 74]. Off-line diversity strategy defined as the process
of initialized a diverse population before metaheuristic is executed. Whereas, diversity preservation strategy
can be defined as the process of monitoring and keeping the population with as much as possible diverse
through the algorithm execution. Population diversity must be maintained even before or through algorithm
execution because metaheuristics performance is sensitive to the initial population diversity [75, 74].

Several research studies on initial population diversity were proposed to investigate its impact on algo-
rithm performance and the final solution quality. Some of those studies are summarised in Table 1.

Table 1: Research Studies on Initial Population Diversity

Study What Proposed to Achieve Population Diversity
[76, 77] Avoiding excessive gathering in promising optimal areas
[78, 79] Avoiding premature convergence by use the dissipation method
[80, 81, 82] Utilized niching techniques to accelerate the convergence
[83, 84, 85] Adaptively calibrate swarm number
[86, 87] Mutation method based individual level

All the mentioned methods focus on increasing the initial population diversity in order to increases the
robustness of the proposed algorithm toward premature convergence [77, 88, 89], not trapped in local optima
[90], and achieve balance among exploitation and exploration [91].

2.2. Parameter Control Strategies

Normally, the parameter settings of any optimization algorithm can be classified into two types: param-
eter tuning and parameter control [92]. Parameter tuning is the process of choosing the right parameter
before the search. These parameter values will remain unchanged during the search. Normally parameter
tuning is carried out by either experienced users or by exhausted ad-hoc experimental parameters study. On
the other hand, parameter control defined as the process of finding the optimal parameter settings for the
optimization algorithm during the search to empower its search process thus improving the final outcomes
[93]. The main purpose of parameter controls is twofold: (i) to build a parameter-less optimization algo-
rithm that can be used by naive users as a black-box. (ii) to make use of the full utilization of the algorithm

3

efficiency by striking the right balance among wide-area exploration and local-nearby exploitation during
the search.

Figure 1: Global Taxonomy of Parameter Setting in EAs [94]

There are three types of parameter control strategies: deterministic, adaptive and self-adaptive illus-
trated in Figure 1. Deterministic parameter control modifies the value of the parameters during the search
using normally the number of generations without feedback from the accumulative search process. While
the adaptive parameter control is a strategy that updates the value of the parameters during the search
based on feedback from the accumulative search. For example, when the search frequently improves the
population, the parameters are updated to control their operator to focus on intensification rather than
diversification. In contrast, when the search is stagnated and the population became ideal, the parameter
values are updated to control their operator to focus on diversification rather than intensification. The third
type is the self-adaptive or ”evolution of evolution” parameter control in which the parameter values of the
outer evolutionary algorithm is updated using another inner evolutionary algorithm. The inner evolutionary
algorithm uses the set of parameters as a chromosome to be optimized and evaluated by the outer evolu-
tionary algorithm. This type of parameter control strategy is the core contribution of this paper where the
SSA is the outer evolutionary algorithm and GA is the inner evolutionary algorithm. Some researchers from
the literature on parameter control strategies are summarized in Table-2.

Table 2: Research Studies on Parameter Control

Strategy Study What Proposed to Achieve Parameter Control

Deterministic Parameter Control [95] particular amount of generations
[96] target computational time
[97] particular amount of fitness function evaluations

Adaptive Parameter Control [98] particular amount of generations
[99] target computational time
[100] particular amount of fitness function evaluations

Self-Adaptive Parameter Control [101]
[102]
[103]

3. Research Background

In order to provide a self-exploratory paper, this section presents the standard Salp Swarm Algorithm
(SSA) in Section 3.1 and standard Genetic Algorithm (GA) in Section 3.2.

3.1. Fundamentals to Salp Swarm Algorithm

Salp Swarm Algorithm (SSA) was proposed by [38]. It inspired the sea salps swarming behavior. Salp
is considered as a type of Salpidae family and it has a cylindrical shape as shown in Figure 2 (a). In order

4

Figure 2: (a) Single salp, (b) Salps chain (salps swarm) [104]

Figure 3: Standard SSA Algorithm Population Representation

to move in the sea, salps are able to form a chain, namely ”swarm chain” shown also in Figure 2 (b). The
swarm behavior assists salps for foraging and moving easily. The first salp in the chain is called the leader,
and the rest of the salps are called the followers.

To elaborate, the leader has an important task to guide the swarm chain in movement and foraging.
Therefore, the salps position is formulated as dim−dimension in the search area, where dim is the number
of decision variables (or solution dimension) for a certain problem. Moreover, the salps position is saved in
a matrix namely x. Furthermore, food source (F) in the search area is the main target of the salp chain.

SSA mechanism begins with a set of random positions for salps. Formally, the positions of the salps are
generated using Eq.(5)

xi = rand(xi
j) ∗ (ub− lb) + lb (1)

Where every solution is represented as xi vector where i ∈ (1, 2, . . . , n) in which n is the population size,
j ∈ (1, 2, . . . , dim). Each decision variable xi

j ∈ [lbj , ubj] where ubj and lbj are the upper and lower bounds
of decision variable j, respectively. A set of salps constitute one solution, and a set of solutions constitute
one population as shown in Figure 3.

5

After computing the fitness value for every solution, the best solution can be found and appointed to
source food (F). In addition, the leader movement is computed using Eq.(2).

x
1
j =

{

Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0.5

Fj − c1((ubj − lbj)c2 + lbj) c3 < 0.5
(2)

where x1
j represent the salp leader coordinates in the jth dimension, Fj is the food source coordinates

in the jth dimension, ubj announce the upper bound of jth dimension, lbj announce the lower bound of the
jth dimension, c1 computed using Eq.(3), c2 and c3 are random values.

It can be notable from Eq.(2) that the leader movement updated according to the food source. Also,
the parameter c1 which is computed using Eq.(3) is the most important parameter, thus it is responsible
significantly for the balance among exploration and exploitation [40].

c1 = 2e−(
4l
L)

2

(3)

where (l) and (L) are the current iteration and a maximum number of iterations respectively. The parameters
c2 and c3 are random numbers uniformly initialized in the range of [0, 1]

On the other hand, follower salps positions are computed using Eq.(4).

xi
j =

1

2

(

xi
j + xi−1

j

)

(4)

where i ≥ 2 and xi
j represent the ith follower salp position in the jth dimension.

The simulation for salp swarm behavior is as follows. The algorithm starts the initialization stage by
initializing a collection of salp chains representing a group of solutions, these solutions in combine considered
as the initial population of the algorithm. In sequence, the fitness for all solutions is calculated, and the best
solution is determined. After initialization, the SSA algorithm improvement stage starts by calculating the
c1, c2, and c3 parameters values. Then, the position for salps is updated, even by Eq.(2) for the first salp in
the chain or by Eq.(4) for the rest of the salps in the chain. Updating solutions step is followed by checking
whether the salps are still within the upper and lower limit range, if any salp is above the upper limits it
is reset to the upper bound and if any salp below the lower limit it is reset to the lower bound. At this
point, the fitness for updated solutions is calculated and compared with the fitness of the initial solutions
and chose the best one as the best solution.

The above-mentioned steps are carried out iteratively until the termination criteria are met, of course
except for the initializing step. At last, the Standard Salp Swarm Algorithm flowchart is presented in
Figure 4, and the pseudo code is given in Algorithm 1.

3.2. Fundamentals to Genetic Algorithm

Genetic Algorithm (GA) is a popular population-based evolutionary-based algorithm proposed by [105].
It is initiated with a population of individuals. Each individual has a set of genes. GA has conventionally
utilized the survival of the fittest rule in the natural selection principle [106, 107]. Evolution after evolution,
GA regenerates the current population using three main operators: selection, crossover, and mutation. Each
GA gene is a decision variable and each individual is a solution, as shown in Figure 5. All individuals in the
GA population have to be evaluated to get their fitness by utilizing what’s called the objective function. For
the purpose of promoting low fitting individuals, an elitism mechanism for selecting the best individuals are
employed. Also, the probability of selecting poor solutions mechanism employed to raise the local optima
prevention.

In addition, the GA algorithm considered as a reliable algorithm and trustworthy to find the global
optimum [108, 109, 110], so that, its technique preserves the best solutions through all generation and utilize
it to enhance the poor solutions. So, all the population individuals turn out to be better. Crossover among
individuals leads to exploitation of the ”zone” between the two parental solutions given. Also, mutation
benefits the algorithm, where this operator modifies the genes inside the chromosomes randomly, which
will preserve the population individual’s diversity and raise the GA behavior of exploration. Furthermore,

6

Figure 4: Standard SSA Algorithm Flow Chart

7

Algorithm 1 Standard Salp Swarm Algorithm Pseudo Code

1: −−−−−−−Stage 1: Initialization: Random Population−−−−−−−

2: initialize a random initial population as Popinit using Eq.(5)
3: calculate the initial fitness of all solutions in Popinit

4: find the best solution referred as Solbest
5: −−−−−Stage 2: Improvement: Salp Swarm Algorithm−−−−−

6: set maximum number of iterations (L)
7: set counter l← 1
8: while (l < L) do
9: update c1 using Eq.(3)

10: for each solution in Popinit do

11: update the first salp using Eq.(2)
12: update the remaining salps using Eq.(4)
13: end for

14: update Popinit referred as Poptemp

15: for each salp in each solution in Poptemp do

16: if xi
j > ub then

17: xi
j = ub

18: else if xi
j < lb then

19: xi
j = lb

20: end if

21: end for

22: update Poptemp referred as Popnew

23: calculate the fitness of all solutions in the updated population (Popnew)
24: l ++
25: end while

26: select best solution in Popnew referred as Solnew

27: if Solnew is better than Solbest then

28: Solbest = Solnew

29: end if

30: return Solbest

Figure 5: Standard GA Algorithm Population Representation

8

Figure 6: GA Algorithm Crossover Technique

the mutation operator may cause essential better solutions and guide other solutions to the global minima.
Procedurally, GA has several steps to be executed, discussed as follows:

Initial Population: GA begins its process with a random population, which comprises multi individuals
called chromosomes. Every chromosome has a group of variables that imitates the natural genes, as
presented in Figure 5.

Selection: the main inspiration for the GA algorithm is natural selection. The fittest individual has the
more chance to be selected for mating, which increases their genes contribution in the production of
the next generation. The selection of individuals depends on their probability values, which in turn
depends on the fitness values assigned by the GA algorithm.

Crossover: the crossover process is about an exchange of genes between two individuals (parent solutions)
who have been pre-selected based on their fitness to generate two new individuals (children solutions),
as seen in Figure 6. The two popular methods for crossover are single-point and double-point methods.
This operator is normally controlled by crossover rate γr where γr ∈ [0, 1].

Mutation: The mutation is the process of altering single or multi genes in the children’s solutions, which
presented in Figure 7. Usually, the mutation rate set to be low because raising it may cause the
GA algorithm to be just a random search technique. In addition to this, it takes advantage of the
mutation that it preserves the diversity of the population by proposing more randomness and raising
the possibility to prevent trapping in the local optimum. This operator is normally controlled by
mutation rate µr where µr ∈ [0, 1].

In a nutshell, GA always begins its process with random individuals comprising its population, and
across its process, it utilizes the early mentioned operators (Selection, Crossover, and Mutation) to
enhance the population. Also, the best solution is considered the global optimum best approximation
for the problem under solution. Finally, the high-level schemata of the Standard Genetic Algorithm
are given in Algorithm 2.

4. Proposed Method

As aforementioned, in this paper, two main contributions are proposed to improve the performance of
SSA:

9

Figure 7: GA Algorithm Mutation Technique

Algorithm 2 Standard GA Algorithm Pseudo Code

1: START
2: Initialize random population
3: Calculate fitness for all solutions in population
4: Compute fitness
5: for each solution in population do

6: Selection
7: Crossover
8: Mutation
9: Calculate fitness

10: UNTIL population has converged
11: end for

12: STOP
13: Return best solution

10

1. Initial Population Diversification of SSA: This is achieved by generating multiple initial popu-
lations and chooses the most diversified one based on the statistical indications related to standard
deviation. The diversified population selected is referred to as SSAstd.

2. Self-Adaptive SSA: Incorporating the self-adaptive concepts in order to select the most appreciated
parameters of SSA using the GA algorithm. The self-adaptive algorithm is referred to as SSAGA−tuner.

The following subsection will be thoroughly discussed the two contributions.

4.1. Diversification of Initial Population

The standard SSA algorithm structure is improved by modifying the initial population initialization
strategy. The modification includes a statistical indication based on the idea of computing the standard
deviations of the initial populations. Therefore, the diversity of SSA is improved by means of striking the
right balance between exploration and exploitation during the search. The proposed algorithm is referred
to as SSAstd.

Initially, multiple random populations as many as (Max#Pop) are generated using Eq.(5). This done
in a loop of k cycles as shown in Figure 8. At each k cycle (say i), the standard deviation of the generated
population std(Xk) is calculated. To elaborate, for every decision variable (xi

j)(k) in the population k the

standard deviation is calculated using Eq.(6), and the average of standard deviations (i.e., avg(std(xi
j)), ∀i =

(1, 2, . . . , dim)
∧

∀j = (1, 2, . . . , n)) of the decision variables are calculated using Eq.(7). Thereafter, a
comparison between the average of standard deviations (i.e., avg(std(xi

j)(k))) for all generated populations
is conducted. The population with the highest average standard deviation is selected and used for SSA. The
generation process of diversified initial population for SSA pseudo-coded found in Algorithm 3.

xi = rand(xi
j) ∗ (ub− lb) + lb (5)

xi represents the the ith generated solution, where (i = 1, 2, . . . , N) (j = 1, 2, . . . , dim). In addition, N
represents the size of the population. Also, the dim represents the dimensions of the solution (size). The ub
and lb represent the upper and lower bounds of the solution space.

std(xi) =

√

√

√

√

1

n

n
∑

i=1

(xi − x)
2

(6)

xi represents the the ith generated solution. In addition, x represents the average of the generated
solution. Also, the n represents the population size.

avg(std(xi)j) =

∑dim

j=1 std(x
i)

dim
(7)

where std(xi) is the standard deviation of the ith decision variable xi, (j = 1, 2, . . . , dim), and dim is
the number of decision variables (or solution dimension).

4.2. Self-Adaptive Salp Swarm Algorithm

The second contribution of this work implies proposing a self-adaptive salp swarm algorithm where the
genetic algorithm (GA) is used in each iteration of the salp swarm algorithm to tune its parameters. The
proposed algorithm is referred to as SSAGA−tuner. In SSAGA−tuner, GA plays a crucial rule in determining
the optimal parameters for SSA.

The proposed SSAGA−tuner has five steps as shown in the Flowchart visualized in Figure 10 and pseudo-
coded in Algorithm 5. These steps can be thoroughly discussed as follows:

Initialization Initially the individual of GA is represented as a vector (i.e., y = (p1, p2)) of length d = 2.
The decision variables in the individual are the p1 and p2 which is the first and second parameters
to determine c1 presented in Eq.(9). To evaluate each individual, the SSA is used as a standard

11

Figure 8: Multiple Random Populations Structure

Algorithm 3 Generating a Diversified Initial Population

1: −−−Stage 1: Initialization: Constructive Heuristic−−−

2: set maximum number of initial population as Max#Pop

3: set counter k ← 1
4: while (k ≤Max#Pop) do
5: calculate standard deviation for every decision variable (xi

j)(k) in Popinitk referred as std(xi
j)(k) using Eq.(6)

6: calculate the average of standard deviations avg(std(xi
j)(k)) of the decision variables using Eq.(7)

7: k ++
8: end while

9: select the best population based on highest value of avg(std(xi
j)(k)) referred as Popinitbest

10: calculate the fitness of all solutions in Popinitbest

11: find the best solution referred as Solbest
12: −−−−−Stage 2: Improvement: Salp Swarm Algorithm−−−−−

13: as in Algorithm 1 (from line-6 to line-30)

benchmark function with predefined population size and specific maximum number of iteration (i.e.
maxItr). The results obtained by SSA for each individual is considered as the fitness function value.
For GA, the initial population of size (GAPopSize) is randomly generated with the discrete range of
p1, p2 ∈ (0, 1, . . . , 15). This value range is selected after intensive experiments whereby this value range
yields the best results.

The idea of the evolution of evolution can be used to implement the self-adaptation of parameters.
Here the parameters to be adapted are encoded into the chromosomes and undergo mutation and
recombination. The better values of these encoded parameters lead to better individuals, which in
turn are more likely to survive and produce offspring and hence propagate these better parameter
values.

Selection The proportional selection scheme (i.e., roulette wheel selection) that is utilized the survival-of-

12

the-fittest principle is used to select the fittest individuals. In the proportional selection scheme fitness
function of each individual is calculated using SSA. This is done by using any individual as an input
parameter for SSA and the fittest solution produced is considered as the objective function value for
that solution. The selection probability of each individual is calculated by the fitness function value
of that individual relative to the fitness function values of the other individuals in the GA population
(GAPop). Formally, let the ϕi is the selection probability of the individual i. The value of ϕi is
calculated as in Eq. (8).

ϕi =
f(x i)

∑PopSize

j=1 f(x j)
(8)

Note that the
∑PopSize

j=1 ϕi is unity. For example, Figure 9 pie-charts the probability of five indi-
vidual GAPop = (x 1,x 2,x 3,x 4,x 5) where the fitness vector is (f(x 1) = 0.54, f(x 2) = 1.5, f(x 3) =
2.66, f(x 4) = 3.22, f(x 5) = 4.13). The selection probability of the each individual is represented as
a portion in the pie-chart. In a nutshell, the larger portion means higher chance of selecting that
individual.

Figure 9: Pie-chart of proportional selection scheme example.

Encoding In the encoding step, the whole decision variables in the individuals stored in GAPop are refor-
mulated using a binary format. For example, let the individual be x = {6, 14}, it will be reformulated
to binary as follows: x = {0110, 1110}. It is worth noting that, the individual is called a chromosome,
and each bit of the chromosome is called a gene. Finally, Figure 5 illustrates the chromosome and
gene structure.

Crossover The selected individuals pass to a crossover operator in which two encoded parents are randomly
chosen. Thereafter, single and double point crossover is used as shown in Figure 6. In the single-point
crossover, the parent solutions chromosomes exchanging after a randomly selected cut point to yield two
new chromosomes. Where in the double-point crossover, two parents are chosen randomly. Therefore,
two cut-points are pinned. The genes between the two cut-points are exchanged to yield two new
chromosomes. The crossover rate γr where γr ∈ [0, 1] is used to determine the probability of using
a crossover operator. The higher value of γr closed to one leads to the use of a crossover operator
for almost the entire population of individuals. This means that the genes will be heavily inherited
between individuals. In the proposed method, γr = 70%.

Mutation mutation is the next GA operator where one or more genes, based on mutation rate mr is
altered in the chromosome to avoid similarity between solutions and to keep solutions away from local
solutions. In addition, the mutation rate was assigned very low to ensure that the GA algorithm search
process in not primitive random. An example of this operator is shown in Figure 7. From the figure,

13

it is clear that only a trivial change has occurred in the chromosome genes after the mutation process.
Conventionally, µr is assigned by small value to control the search better. In the proposed method,
µr = 1%.

Decoding The new chromosomes is decoded from binary into decimal format.

Evaluation using SSA To evaluate each individual, SSA is used. The gene values in each individual are
used by SSA as initialized values for p1 and p2 using one benchmark function for all GA population.
Thereafter, the optimal value obtained by SSA is the fitness function value for each solution. Note that
to evaluate any individual, the SSA is repeated 31 replications and the average of the best-solutions
obtained by all replications is calculated to be the fitness value. The pseudo-code for calculating
fitness is given in Algorithm 4. It is worth mentioning that the diversified Initial Population strategy
presented in Sec. 4.1 is used in SSA to generate the initial population.

Algorithm 4 Evaluating GA Individuals (p1, p2) using SSA Pseudo Code

1: set GA population size referred as GAPopSize

2: set No of SSA Runs referred as repetition
3: set counter j ← 1
4: while (j ≤ GAPopSize) do
5: set counter k ← 1
6: while (k ≤ repetition) do
7: Calculate (SSA(fj , Solk)) using Popinitbest
8: Calculate (best− average(fj ,Solk)

)

9: k ++
10: end while
11: set counter i← 1
12: while (i ≤ GAPopSize) do
13: sum(Soli) = sum(Soli) + best− average(fj−Soli)

14: f(Soli) = sum(Soli)/repetition
15: i++
16: end while
17: j ++
18: end while

GA Termination Criteria The selection, encoding, crossover, mutation, decoding and evaluation with
elitism operators are repeated until the maximum number of generations (GAMaxGen) is reached.
After GAMaxGen is met, the best individual is selected to be the optimized parameter for SSA.

c1 = p1e
−(p2l

L)
2

(9)

5. Results and Discussion

To evaluate the performance of the proposed algorithms, two sets of experiments are conducted. In the
first set of experiments, the effect of the proposed diversified population in SSAstd is studied by comparing
it against the standard SSA algorithm over twelve benchmark functions. In the second set of experiments,
the effect of the self-adaptive tuning parameter in the diversified population SSAGA−tuner is studied and
compared against a diversified population SSAstd without self-adaptive tuning parameter, as well as the
standard SSA algorithm using the same twelve benchmark functions. In order to comparatively evaluate the
proposed method, nine comparative algorithms are used using ten benchmark functions. Finally, statistical
evaluation is also conducted where the Wilcoxon Mann-Whitney Statistical test is used to provide statistical
indications for significant results.

14

Algorithm 5 SSAGA−tuner Pseudo Code

1: −−−−−−−− Stage 1: Initialization: Constructive Heuristic−−−−−−−−
2: as in Algorithm 3 (from line-2 to line-11)
3: −−−− Stage 2: Parameters Initialization: Using Genetic Algorithm−−−−
4: set GA maximum generation GAMaxGen

5: set GA population size GAPopSize

6: set counter i← 1
7: while (i ≤ GAPopSize) do
8: generate random values for (p1, p2) to form a GA population GAPop

9: calculate the fitness for Solbest using SSA
10: i++
11: end while
12: set counter j ← 1
13: while (j ≤ GAMaxGen) do
14: Selection: select 2-pairs of (p1, p2) at random referred as (parents)
15: Encoding: encode the selected parents in binary format
16: Crossover: apply single or double point crossover {considering probability}
17: Mutation: mutate one or two digit randomly {considering probability}
18: Decoding: decode the generated offspring
19: calculate the fitness for each offspring using SSA
20: if offspring fitness better than parents fitness then
21: replace parent with offspring
22: end if
23: j ++
24: end while
25: return best (p1, p2)
26: −−−−−−−Stage 3: Improvement: Salp Swarm Algorithm−−−−−−−
27: as in Algorithm 1 (from line-6 to line-8)
28: update c1 based on the best (p1, p2) using Eq.(9)
29: as in Algorithm 1 (from line-10 to line-30)

5.1. Benchmark Functions

The benchmark functions are grouped into two types, a uni-modal and multi-modal, and are listed with
their mathematical formulations, boundaries, global optima, and dimension in the Table 4 and Table 5. In
general, the uni-modal functions are convenient for examining the algorithm exploitation capabilities, where
the multi-modal problems that have multi-local minima are more convenient for examining the algorithm
exploration capability.

For the purpose of evaluating the performance of the proposed algorithms, a collection of parameter
settings is given as shown in Table 3 as suggested in [38], and a collection of evaluation criteria was conducted
in this work as follows:

❼ Mean Value: It is the average of best-obtained values over multiple experimental runs.

❼ Standard Deviation (STD): Show if the proposed algorithm has the ability to generate the best
value for multiple experimental runs.

5.2. Effect of Diversified Population on SSAstd

The comparison among proposed diversified SSAstd and the standard SSA algorithm performance over 31
experimental runs are illustrated in Table 6. The performance measures of the obtained results are calculated,
including mean and standard deviation for each benchmark function. It is notable that the SSAstd algorithm
is able to obtain the best results and outperforms the standard SSA in almost all tested functions. Results
of SSAstd algorithm demonstrate that the more diverse initial population has a remarkable positive impact
on the quality of the algorithm’s final results.

15

Table 3: Parameters Settings

Parameter Standard SSA SSAstd SSAGA−tuner

SSA Max Iteration (L) 500 500 500
SSA Termination Criteria L L L
SSA Population Size (N) 20 20 20
SSA Decision Variables No. based on - based on - based on -

benchmark function benchmark function benchmark function
No. of Runs 31 31 31
Max No. of Initial Population (Max#Pop) – 2000 2000
GA Maximum Generation (GAMaxGen) – – 2000
GA Termination Criteria – – GAMaxGen

GA Population Size (GAPopSize) – – 31
p1 and p2 – – determined by GA
c1 calculated by Eq.(3) calculated by Eq.(3) calculated by Eq.(9)
c2 and c3 random random random
(lb) and (ub) based on - based on - based on -

benchmark function benchmark function benchmark function

Table 4: Benchmark Functions Configurations

No. Function Type Range fmin Dimension

F1 Sphere unimodal [−100, 100] 0 30
F2 Rastrigin multimodal [−5.12, 5.12] 0 10
F3 Ackley multimodal [−32.768, 32.768] 0 10
F4 Griewank multimodal [−600, 600] 0 10
F5 Rosenbrock multimodal [−5, 10] 0 10
F6 Bukin No.6 multimodal [−15,−5] 0 10
F7 Bohachevsky No.1 unimodal [−100, 100] 0 10
F8 Zakharov unimodal [−5, 10] 0 10
F9 Booth unimodal [−10, 10] -959.640 10
F10 Michalewicz multimodal [0, pi] -9.66015 10
F11 Eggholder multimodal [−512, 512] 0 10
F12 Himmelblau multimodal [−6, 6] 0 10

Table 5: Mathematical Definition of the Employed Benchmark Functions

No. Mathematical Definition
F1 F1(x) =

∑n

i=1 x
2
i

F2 f(x, y) = 10n+
∑n

i=1(x
2
i − 10cos(2πxi))

F3 f(x) = −a.exp(−b
√

1
n

∑n

i=1 x
2
i)− exp(1

n

∑n

i=1 cos(cxi)) + a+ exp(1)

F4 f(x) = 1 +
∑n

i=1
x2

i

4000 −
∏n

i=1 cos(
xi√

i
)

F5 f(x, y) =
∑n

i=1[b(xi+1 − x2
i)

2 + (a− xi)
2]

F6 f(x, y) = 100
√

|y − 0.01x2|+ 0.01|x+ 10|
F7 F (x, y) = x2 + 2y2 − 0.3cos(3πx)− 0.4cos(4πy) + 0.7
F8 f(x) = f(x1, ..., xn) =

∑n

i=1 x
2
i + (

∑n

i=1 0.5ixi)
2 + (

∑n

i=1 0.5ixi)
4

F9 f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2

F10 f(x) = −
∑d

i=1 sin(xi)sin
2m(

ix2

i

pi
)

F11 f(x) = −(x[, 2] + 47) ∗ sin(sqrt(abs(x[, 2] + (x[, 1]/2) + 47)))−
x[, 1] ∗ sin(sqrt(abs(x[, 1]− (x[, 2] + 47))))

F12 f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2

16

Table 6: Mean (avg) and Standard Deviation (std) of best obtained results between standard SSA, SSAstd, and
SSAGA−tuner algorithms

No. Function Statistical Standard SSAstd SSAGA−tuner

Measure SSA

F1 Sphere avg 2.59E-04 1.92E-08 1.91E-31

std 4.61E-04 5.51E-09 1.05E-30

F2 Rastrigin avg 2.45E+01 1.92E+01 1.91E+01

std 8.66E+00 7.94E+00 6.78E+00

F3 Ackley avg 1.10E+00 5.56E-01 3.32E-01

std 1.07E+00 8.62E-01 6.94E-01

F4 Griewank avg 1.95E-01 2.06E-01 2.64E-02

std 1.56E-01 1.02E-01 1.03E-02

F5 Rosenbrock avg 5.66E+01 4.05E+01 1.04E+01

std 8.12E+01 7.77E+01 1.66E+01

F6 Bukin avg 8.06E-02 6.29E-02 8.00E-04

std 4.64E-02 3.93E-02 1.44E-02

F7 Bohachevsky avg 2.87E-11 9.52E-12 0.00E+00

std 3.59E-11 9.95E-12 0.00E+00

F8 Zakharov avg 1.80E-10 1.59E-11 1.92E-62

std 2.81E-10 8.45E-12 9.87E-62

F9 Booth avg 7.38E-14 2.17E-14 0.00E+00

std 8.35E-14 3.84E-14 0.00E+00

F10 Michalewicz avg -7.06E+00 -7.27E+00 -7.55E+00

std 8.94E-01 8.00E-01 8.30E-02

F11 Eggholder avg -9.47E+02 -9.51E+02 -9.60E+02

std 3.63E+01 2.25E+01 5.78E-13

F12 Himmelblau avg 2.36E-13 7.26E-14 1.58E-31

std 4.11E-13 1.01E-13 3.21E-31

* best results in bold

17

Figure 10: Proposed Self-Adaptive Salp Swarm Algorithm Flowchart

5.3. The Effect of Self-Adaptive Parameter Tuning on SSAGA−tuner

The comparison between proposed tuned SSAGA−tuner algorithm, diversified SSAstd, and the standard
SSA algorithm performance over 31 experimental runs are shown in Table 6. The performance measures
of the algorithms are calculated, including mean and standard deviation for twelve benchmark problems.
It is notable that the SSAGA−tuner outperforms both SSAstd and the standard SSA for almost all tested
functions. In addition, SSAGA−tuner is able to obtain the best result in all functions in comparison with the
other two algorithms. Results of SSAGA−tuner proof that parameter tuning gives the algorithm the ability
to deal with different population nature without proper experience from the users. Furthermore, parameter
tuning enhances algorithm outcomes.

In order to validate the significance of the obtained results, the Wilcoxon Mann-Whitney Statistical test
is conducted and its results are recorded in Table 7. These results are according to the best-obtained results.
The statistical indications proof that the obtained results for SSAstd algorithm has significant difference
(p-value < 0.05) in comparison with Standard SSA algorithm except on functions: F2, F4, F6, F9, and F10
and comparing with SSAGA−tuner (except on functions: F4, F6, F7, F8, F9, F11, and F12). On the other

18

hand, obtained results for SSAGA−tuner algorithm has significant differences comparing with Standard SSA
algorithm (except for functions: F3, F4, F6, and F9). In addition, there is no significant difference among
SSAstd and SSAGA−tuner results, as there are seven functions with p-values greater than 0.05.

Table 7: p-values of Wilcoxon test for Standard SSA, SSAstd and SSAGA−tuner Algorithms: best obtained results for
employed benchmark functions

No. Function SSAstd vs. SSAGA−tuner vs. SSAGA−tuner

Standard SSA Standard SSA vs. SSAstd

F1 Sphere 0.000001 0.001197 0.000001

F2 Rastrigin 0.377861 0.000001 0.000001

F3 Ackley 0.001660 0.491077 0.021711

F4 Griewank 0.121592 0.176324 0.680686
F5 Rosenbrock 0.021077 0.000001 0.000002

F6 Bukin 0.624195 0.543524 0.147018
F7 Bohachevsky 0.000001 0.000001 1.000000
F8 Zakharov 0.000001 0.000001 1.000000
F9 Booth 0.124834 0.627534 1.000000
F10 Michalewicz 0.066394 0.000001 0.000001

F11 Eggholder 0.002470 0.033703 0.256839
F12 Himmelblau 0.008151 0.008151 1.000000

* best results in bold

5.4. Computational Time

It is clear from Table-8 that the improved versions of the algorithm have more computational time than
the standard algorithm. The increase in computational time is due to the algorithm performing additional
tasks before proceeding with the main optimization process. For example, the SSAstd algorithm, search for
high diverse population before moving to the optimization process, and the SSAGA−tuner algorithm has two
additional tasks in addition to the main optimization process (e.i., searching for a high diverse population
and finding the optimal parameter values for a specific problem). In addition, it is noticeable that the
SSAGA−tuner algorithm has a large increase in computational time over the rest of the algorithms, as this
is due to the large time required to find parameter values.

Table 8: Computational Time

No. Function Standard SSA SSAstd SSAGA−tuner

F1 Sphere 0.6531415 1.0665227 39.9758610
F2 Rastrigin 0.6529071 1.0726981 42.5873026
F3 Ackley 0.6634043 1.0226595 43.7113842
F4 Griewank 0.6342823 1.0413952 41.8555096
F5 Rosenbrock 0.6050359 1.0282158 40.0824403
F6 Bukin 0.6014451 0.995241 39.5723763
F7 Bohachevsky 0.5983824 1.0317213 40.4998779
F8 Zakharov 0.6149669 1.0155977 40.9370118
F9 Booth 0.5762804 1.0061036 38.7605723
F10 Michalewicz 0.7500612 0.9888142 47.4073201
F11 Eggholder 0.6176157 0.9313977 39.4852418
F12 Himmelblau 0.6145091 0.9157816 38.6021651

* results in seconds

5.5. Comparative Evaluation

To validate our work, two comparisons with state of the art methods were conducted. These state of
the art methods used ten benchmark functions in the first comparison and seven benchmark functions in

19

the second comparison that were adopted in this research. Note that the results of comparative methods
are selected from [111] and [112] for the first and second comparisons, respectively. In the first comparison,
the comparative algorithms are Artificial Bee Colony (ABC) [9], Imperialist Competitive Algorithm (ICA)
[113], Grey Wolf Optimizer (GWO) [18], Invasive Weed Optimization (IWO) [114], Genetic Algorithm
(GA) [115], Particle Swarm Optimization (PSO) [116], differential Evolution (DE) [117], and Harmony
Search (HS) [118, 119]. Where in the second comparison , the comparative algorithms are practical genetic
algorithm (RGA) [120], gravitational search algorithm (GSA) [121], disruption GSA (D-GSA) [122], black
hole GSA (BH-GSA) [123], clustered GSA (C-GSA) [124] and attractive repulsive GSA (AR-GSA) [125].
The parameter settings are shown in Table 9 as used by all comparative methods to allow a fair comparison.

Table 9: Experimental Configuration for First Comparison as in [111]

Parameter Value

Max Iterations (L) 100
Termination Criteria L

Population Size (N) 20
Decision Variables No. based on benchmark function
No. of Runs 31
Lower Bound (lb) and Upper Bound (ub) based on benchmark function

The mean and standard deviation results of the first and second comparisons over 30 experimental runs
are shown in Table 10 and Table 11 respectively.The best results are highlighted in the bold font. For the first
comparison, it can be seen that the proposed method is able to achieve the best results for Sphere, Bukin,
Bohachevsky, Zakharov, Booth, and Michalewicz functions. Also, for the uni-modal function with no local
minima such as “Sphere” function outcome clarify that SSAGA−tuner algorithm has the best result. On the
other hand, the Emperor Penguins Colony (EPC) algorithm achieved the best results for Rastrigin, Ackley,
and Griewank functions, with multi-local minima. Furthermore, SSAGA−tuner obtains the best results for
Michalewicz function which is complex and a multi-modal type. Based on the conducted experiments, the
overall results confirm that the proposed SSAGA−tuner algorithm is appropriate for optimization, whether
the optimization problems subject has uni-modal or multi-modal search space nature. For the standard
deviation results in the same table, it is notable that the proposed SSAGA−tuner algorithm performance is
stable.

For the second comparison, it can be seen that the proposed SSAGA−tuner is able to achieve the best
results for Sphere and Ackley functions only. Where the SSARM-SCA algorithm gets the best results
in Rastrigin and Griewank functions. In addition, RGA and BH-GSA algorithms gets the best results
in Rosenbrock function. Although the proposed algorithm did not get the best results in most of the
functions, but its results were close to the competing algorithms. This comparison confirm that the proposed
SSAGA−tuner algorithm is appropriate for optimization, whether the optimization problems subject has uni-
modal or multi-modal search space nature.

6. Conclusion

This paper proposes an enhanced version of the Salp Swarm Algorithm (SSA) for optimization problems.
The enhancements of SSA involve the initial population diversity and the parameter control strategy. Firstly,
the diversification of the Salp Swarm population is introduced to control the exploration aspects. Secondly,
a new version of SSA referred as SSAGA−tuner is proposed to enhance the parameters control of SSA using
a self-adaptive parameter setting whereby genetic algorithm is adopted to find the optimal parameters for
SSA at each generation.

Initially, the effect of the diversified population on the convergence behavior of SSAstd version is studied.
The proposed algorithm is able to excel in the standard version of SSA in all benchmark functions. In
conclusion, there is a positive impact of the diversified population on the performance of SSAstd. In order
to evaluate the impact of the self-adaptive parameter control on the convergence of SSAGA−tuner, the

20

Table 10: Mean (avg) and Standard Deviation (std) of best obtained results for employed benchmark functions

Function Statistical GA ICA PSO ABC DE
Measure

Sphere avg 2.80E-03 4.95E-06 9.04E-08 1.02E-02 1.34E-08
std 4.80E-03 2.50E-05 1.30E-07 6.60E-03 1.45E-08

Rastrigin avg 9.37E-01 1.21E+00 2.90E+00 1.08E+01 2.99E-01
std 6.57E-01 1.40E+00 2.05E+00 3.08E+00 6.40E-01

Ackley avg 9.07E-02 2.63E-04 6.09E-04 1.42E-01 1.77E-04
std 7.68E-02 3.20E-04 4.68E-04 7.87E-02 8.09E-05

Griewank avg 4.37E-02 2.64E-02 2.22E-02 1.33E-01 1.39E-02
std 3.59E-02 1.25E-02 1.40E-02 4.10E-02 1.44E-02

Rosenbrock avg 2.64E+00 3.39E+00 1.78E+00 1.55E+01 1.99E+00
std 1.99E+00 6.88E+00 1.40E+00 7.82E+00 1.24E+00

Bukin avg 1.17E+00 7.59E-02 2.30E-01 7.34E-01 8.87E-01
std 2.76E+00 5.09E-02 1.05E-01 4.07E-01 5.17E-01

Bohachevsky avg 8.50E-03 3.64E-13 4.97E-10 3.01E-07 8.45E-13
std 3.58E-02 1.03E-12 9.82E-10 5.02E-07 1.49E-12

Zakharov avg 2.23E+00 3.91E-01 4.70E-06 3.96E+00 1.83E-01
std 3.69E+00 6.46E-01 9.76E-06 2.64E+00 1.50E-01

Booth avg 5.82E-02 2.80E-03 8.49E-11 8.10E-06 2.80E-05
std 1.22E-01 1.47E-02 1.38E-10 1.49E-05 4.36E-05

Michalewicz avg -4.56E+00 -4.57E+00 -4.12E+00 -2.83E+00 -4.80E+00
std 2.85E-01 3.13E-01 4.86E-01 2.11E-01 6.83E-02

HS IWO GWO EPC SSAGA−tuner

Sphere avg 4.33E-01 9.21E-07 2.76E-12 3.32E-16 1.23E-44

std 3.58E-01 5.21E-07 1.21E-11 1.36E-16 6.72E-44

Rastrigin avg 7.38E+00 1.50E+01 2.64E+00 5.80E-14 2.01E+01
std 2.23E+00 7.44E+00 3.74E+00 2.58E-14 8.05E+00

Ackley avg 2.09E+00 1.90E-03 1.92E-05 3.18E-08 1.19E+00
std 6.41E-01 5.74E-04 5.85E-05 6.78E-09 1.11E+00

Griewank avg 4.44E-02 4.35E-02 5.42E-02 1.31E-02 1.94E-01
std 1.14E-02 4.10E-02 1.70E-01 1.18E-02 1.44E-01

Rosenbrock avg 6.95E+01 9.45E+00 1.75E+00 3.88E+00 2.69E+01
std 6.33E+01 2.89E+01 2.04E+00 4.35E-02 5.02E+01

Bukin avg 1.97E+00 2.86E-01 1.51E-01 9.56E-02 5.48E-02

std 1.01E+00 1.25E-01 9.22E-02 2.50E-02 3.85E-02
Bohachevsky avg 5.60E-03 2.00E-07 7.18E-10 1.11E-17 0.00E+00

std 8.70E-03 2.86E-07 2.22E-09 4.47E-17 0.00E+00

Zakharov avg 4.44E+00 2.49E-06 1.69E-08 5.49E-16 1.34E-23

std 3.27E+00 1.39E-06 6.48E-08 1.82E-16 7.15E-23

Booth avg 1.60E-02 2.76E-08 1.97E+00 7.34E-18 0.00E+00

std 3.50E-02 2.66E-08 1.44E-01 6.47E-18 0.00E+00

Michalewic avg -4.49E+00 -3.94E+00 -2.49E+00 -1.80E+00 -7.05E+00

std 1.60E-01 5.18E-01 4.40E-01 2.61E-01 9.32E-01

* best results in bold

21

Table 11: Mean (avg) and Standard Deviation (std) of best obtained results for employed benchmark functions

Function Statistical RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA SSAGA−tuner

Measure
Sphere avg 2.82E+02 7.58E-14 9.75E-01 3.33E-12 2.76E-13 0.0E+00 0.0E+00 1.23E-44

std 3.16E+01 1.08E-13 1.97E-01 1.03E-12 9.44E-14 0.0E+00 0.0E+00 6.72E-44
Rastrigin avg 1.44E+02 1.90E+02 1.87E+02 1.79E+01 1.87E+02 1.83E+01 1.74E+01 2.01E+01

std 9.16E+00 2.35E+01 2.18E+01 5.21E+00 2.14E+01 4.47E+00 4.32E+00 8.05E+00
Ackley avg 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.12E+01 2.09E+01 1.85E+01 1.19E+00

std 4.67E-02 4.79E-02 5.29E-02 5.62E-02 1.59E-01 7.14E-02 4.54E-02 1.11E+00
Griewank avg 5.91E+01 5.61E-03 1.57E+00 2.56E-03 7.39E-03 1.69E-03 1.53E-03 1.94E-01

std 6.75E+00 6.39E-03 2.68E-01 5.05E-03 6.02E-03 3.83E-03 3.67E-03 1.44E-01
Rosenbrock avg 1.13E+02 5.18E+01 7.36E+01 2.26E+01 5.13E+01 3.37E+01 3.15E+01 2.69E+01

std 1.20E+01 2.51E+01 2.46E+01 2.68E+01 2.50E+01 2.73E+01 2.58E+01 5.02E+01
* best results in bold

comparative results against standard SSA and SSAstd show that the SSAGA−tuner is able to yield the
best results. Briefly, the results prove that the self-adaptive parameter control has a direct impact on the
performance of the proposed SSA versions. In a nutshell, the proposed SSA versions are a very powerful
enhancement that can be applied for a wide range of optimization problems.

Based on the experimental evaluation and verification carried out, it is notable that proposed methods
tackle the exploration issue through increasing the population diversity, which in turn insure covering the
entire search area as much as possible. In addition, the proposed methods tune the SSA algorithm to
address the variation in different problems nature, so the algorithm become suitable to tackle any prediction
problem.

Additionally, the experimental results confirm that the robustness of the diverse and parameter controlled
algorithm that develops an optimal set of weights and biases values for the BPNN predictor added an edge
to the prediction process, in addition to build a parameter-less optimization algorithm and to make use of
the full utilization of the algorithm efficiency by striking the right balance among wide-area exploration and
local-nearby exploitation during the search, in order to helped enhance the BPNN’s performance.

As the proposed SSA versions reveal very successful outcomes, in the future, the proposed SSA versions
can be adapted for combinatorial optimization problems such as scheduling problems. Furthermore, other
ways of parameter tuning such as control parameter tuning and adaptive parameter control strategies can be
investigated. Other enhancement in the SSA can be studied such as adapting structural population methods
and fusing natural selection principles.

Acknowledgment

This work is supported by University Kebangsaan Malaysia (DIP-2016-024)

Compliance with Ethical Standards

This manuscript is the authors’ original work and has not been published nor has it been submitted
simultaneously elsewhere. All authors have checked the manuscript and have agreed to the submission.

References

[1] H. Faris, A.-Z. Ala’M, A. A. Heidari, I. Aljarah, M. Mafarja, M. A. Hassonah, H. Fujita, An intelligent system for spam
detection and identification of the most relevant features based on evolutionary random weight networks, Information
Fusion 48 (2019) 67–83.

[2] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris, A.-Z. Ala’M, S. Mirjalili, Evolutionary population
dynamics and grasshopper optimization approaches for feature selection problems, Knowledge-Based Systems 145 (2018)
25–45.

[3] M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li, S. Mirjalili, Binary dragonfly optimization for
feature selection using time-varying transfer functions, Knowledge-Based Systems 161 (2018) 185–204.

22

[4] A. A. Heidari, P. Pahlavani, An efficient modified grey wolf optimizer with lévy flight for optimization tasks, Applied
Soft Computing 60 (2017) 115–134.

[5] S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in engineering software 95 (2016) 51–67.
[6] H. Chen, Y. Xu, M. Wang, X. Zhao, A balanced whale optimization algorithm for constrained engineering design

problems, Applied Mathematical Modelling 71 (2019) 45–59.
[7] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application, Advances in Engineering

Software 105 (2017) 30–47.
[8] J. Luo, H. Chen, Y. Xu, H. Huang, X. Zhao, et al., An improved grasshopper optimization algorithm with application

to financial stress prediction, Applied Mathematical Modelling 64 (2018) 654–668.
[9] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony

(abc) algorithm, Journal of global optimization 39 (3) (2007) 459–471.
[10] S. K. Nseef, S. Abdullah, A. Turky, G. Kendall, An adaptive multi-population artificial bee colony algorithm for dynamic

optimisation problems, Knowledge-based systems 104 (2016) 14–23.
[11] S. Abdullah, S. K. Nseef, A. Turky, An interleaved artificial bee colony algorithm for dynamic optimisation problems,

Connection Science 30 (3) (2018) 272–284.
[12] A. Colorni, M. Dorigo, V. Maniezzo, et al., Distributed optimization by ant colonies, in: Proceedings of the first European

conference on artificial life, Vol. 142, Cambridge, MA, 1992, pp. 134–142.
[13] R. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE international conference on neural

networks, Vol. 4, Citeseer, 1995, pp. 1942–1948.
[14] M. Alweshah, A. I. Hammouri, S. Tedmori, Biogeography-based optimisation for data classification problems, Interna-

tional Journal of Data Mining, Modelling and Management 9 (2) (2017) 142–162.
[15] M. Alweshah, Construction biogeography-based optimization algorithm for solving classification problems, Neural Com-

puting and Applications (2018) 1–10.
[16] K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE control systems magazine

22 (3) (2002) 52–67.
[17] Z. Cai, J. Gu, C. Wen, D. Zhao, C. Huang, H. Huang, C. Tong, J. Li, H. Chen, An intelligent parkinson’s disease

diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy knn approach, Computational and
mathematical methods in medicine (2018) 24.

[18] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances in engineering software 69 (2014) 46–61.
[19] H. Al Nsour, M. Alweshah, A. I. Hammouri, H. Al Ofeishat, S. Mirjalili, A hybrid grey wolf optimiser algorithm for

solving time series classification problems, Journal of Intelligent Systems 29 (1) (2018) 846–857.
[20] X. Zhao, X. Zhang, Z. Cai, X. Tian, X. Wang, Y. Huang, H. Chen, L. Hu, Chaos enhanced grey wolf optimization

wrapped elm for diagnosis of paraquat-poisoned patients, Computational biology and chemistry 78 (2019) 481–490.
[21] W.-T. Pan, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowledge-Based

Systems 26 (2012) 69–74.
[22] L. Shen, H. Chen, Z. Yu, W. Kang, B. Zhang, H. Li, B. Yang, D. Liu, Evolving support vector machines using fruit fly

optimization for medical data classification, Knowledge-Based Systems 96 (2016) 61–75.
[23] N. S. Jaddi, J. Alvankarian, S. Abdullah, Kidney-inspired algorithm for optimization problems, Communications in

Nonlinear Science and Numerical Simulation 42 (2017) 358–369.
[24] N. S. Jaddi, S. Abdullah, Kidney-inspired algorithm with reduced functionality treatment for classification and time

series prediction, PloS one 14 (1) (2019) e0208308.
[25] M. Alweshah, Firefly algorithm with artificial neural network for time series problems, Research Journal of Applied

Sciences, Engineering and Technology 7 (19) (2014) 3978–3982.
[26] M. Alweshah, S. Abdullah, Hybridizing firefly algorithms with a probabilistic neural network for solving classification

problems, Applied Soft Computing 35 (2015) 513–524.
[27] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and

applications, Future Generation Computer Systems 97 (2019) 849–872.
[28] A. Rahiminasab, P. Tirandazi, M. Ebadi, A. Ahmadian, M. Salimi, An energy-aware method for selecting cluster heads

in wireless sensor networks, Applied Sciences 10 (21) (2020) 7886.
[29] Z.-Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, Y. Wang, Fractional-order discrete-time sir epidemic model with

vaccination: Chaos and complexity, Mathematics 10 (2) (2022) 165.
[30] M. Tubishat, N. Idris, L. Shuib, M. A. Abushariah, S. Mirjalili, Improved salp swarm algorithm based on opposition based

learning and novel local search algorithm for feature selection, Expert Systems with Applications 145 (2020) 113122.
[31] T. Sun, M.-h. Xu, A swarm optimization genetic algorithm based on quantum-behaved particle swarm optimization,

Computational intelligence and neuroscience (2017) 1–15.
[32] W. Zhang, W. Hou, D. Yang, Z. Xing, M. Gen, Multiobjective pso algorithm with multi-directional convergence strategy

to solve flow shop scheduling problems, in: International Conference on Management Science and Engineering Manage-
ment, Springer, 2019, pp. 750–759.

[33] S. L. Edathil, S. P. Singh, Aco and cs-based hybrid optimisation method for optimum sizing of the shes, IET Renewable
Power Generation 13 (10) (2019) 1789–1801.

[34] F. Heydarpour, E. Abbasi, M. Ebadi, S.-M. Karbassi, Solving an optimal control problem of cancer treatment by artificial
neural networks., International Journal of Interactive Multimedia & Artificial Intelligence 6 (4) (2020).

[35] T.-H. Zhao, M. I. Khan, Y.-M. Chu, Artificial neural networking (ann) analysis for heat and entropy generation in flow
of non-newtonian fluid between two rotating disks, Mathematical Methods in the Applied Sciences (2021).

[36] F. Heydarpoor, S. M. Karbassi, N. Bidabadi, M. J. Ebadi, Solving multi-objective functions for cancer treatment by

23

using metaheuristic algorithms, algorithms 21 (2020) 22.
[37] D. H. Wolpert, W. G. Macready, et al., No free lunch theorems for optimization, IEEE transactions on evolutionary

computation 1 (1) (1997) 67–82.
[38] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired

optimizer for engineering design problems, Advances in Engineering Software 114 (2017) 163–191.
[39] H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A.-Z. Ala’M, S. Mirjalili, H. Fujita, An efficient binary salp swarm

algorithm with crossover scheme for feature selection problems, Knowledge-Based Systems 154 (2018) 43–67.
[40] R. A. Ibrahim, A. A. Ewees, D. Oliva, M. A. Elaziz, S. Lu, Improved salp swarm algorithm based on particle swarm

optimization for feature selection, Journal of Ambient Intelligence and Humanized Computing (2018) 1–15.
[41] M. Khamees, A. Albakry, K. Shaker, Multi-objective feature selection: Hybrid of salp swarm and simulated annealing

approach, in: International Conference on New Trends in Information and Communications Technology Applications,
Springer, 2018, pp. 129–142.

[42] G. I. Sayed, G. Khoriba, M. H. Haggag, A novel chaotic salp swarm algorithm for global optimization and feature
selection, Applied Intelligence 48 (10) (2018) 3462–3481.

[43] A. A. El-Fergany, Extracting optimal parameters of pem fuel cells using salp swarm optimizer, Renewable Energy 119
(2018) 641–648.

[44] S. Asaithambi, M. Rajappa, Swarm intelligence-based approach for optimal design of cmos differential amplifier and
comparator circuit using a hybrid salp swarm algorithm, Review of Scientific Instruments 89 (5) (2018) 054702.

[45] S. Ekinci, B. Hekimoglu, Parameter optimization of power system stabilizer via salp swarm algorithm, in: 2018 5th
International Conference on Electrical and Electronic Engineering (ICEEE), IEEE, 2018, pp. 143–147.

[46] A. G. Hussien, A. E. Hassanien, E. H. Houssein, Swarming behaviour of salps algorithm for predicting chemical compound
activities, in: 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), IEEE,
2017, pp. 315–320.

[47] J. Wang, Y. Gao, X. Chen, A novel hybrid interval prediction approach based on modified lower upper bound estimation
in combination with multi-objective salp swarm algorithm for short-term load forecasting, Energies 11 (6) (2018) 1561.

[48] A. Ibrahim, A. Ahmed, S. Hussein, A. E. Hassanien, Fish image segmentation using salp swarm algorithm, in: Interna-
tional Conference on Advanced Machine Learning Technologies and Applications, Springer, 2018, pp. 42–51.

[49] J. Zhang, Z. Wang, X. Luo, Parameter estimation for soil water retention curve using the salp swarm algorithm, Water
10 (6) (2018) 815.

[50] R. Abbassi, A. Abbassi, A. A. Heidari, S. Mirjalili, An efficient salp swarm-inspired algorithm for parameters identification
of photovoltaic cell models, Energy Conversion and Management 179 (2019) 362–372.

[51] A. K. Barik, D. C. Das, Active power management of isolated renewable microgrid generating power from rooftop solar
arrays, sewage waters and solid urban wastes of a smart city using salp swarm algorithm, in: 2018 Technologies for
Smart-City Energy Security and Power (ICSESP), IEEE, 2018, pp. 1–6.

[52] D. Guha, P. Roy, S. Banerjee, A maiden application of salp swarm algorithm optimized cascade tilt-integral-derivative
controller for load frequency control of power systems, IET Generation, Transmission and Distribution (oct 2018).
doi:10.1049/iet-gtd.2018.6100.

[53] N. Singh, F. Chiclana, J.-P. Magnot, et al., A new fusion of salp swarm with sine cosine for optimization of non-linear
functions, Engineering with Computers (2019) 1–28.

[54] Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu, P. Wang, Y. Li, C. Li, Chaos-induced and mutation-driven schemes
boosting salp chains-inspired optimizers, Ieee Access 7 (2019) 31243–31261.

[55] A. E. Hegazy, M. Makhlouf, G. S. El-Tawel, Improved salp swarm algorithm for feature selection, Journal of King Saud
University-Computer and Information Sciences 32 (3) (2020) 335–344.

[56] R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, M. Gunasekaran, A new binary salp swarm algorithm: development
and application for optimization tasks, Neural Computing and Applications (2018) 1–23.

[57] H. Zhang, Z. Cai, X. Ye, M. Wang, F. Kuang, H. Chen, C. Li, Y. Li, A multi-strategy enhanced salp swarm algorithm
for global optimization, Engineering with Computers (2020) 1–27.

[58] J. Wu, R. Nan, L. Chen, Improved salp swarm algorithm based on weight factor and adaptive mutation, Journal of
Experimental & Theoretical Artificial Intelligence 31 (3) (2019) 493–515.

[59] L. Zhang, C. Li, Y. Wu, J. Huang, Z. Cui, An improved salp swarm algorithm with spiral flight search for optimizing
hybrid active power filters’ parameters, IEEE Access (2020).

[60] Y. Yin, Q. Tu, X. Chen, Enhanced salp swarm algorithm based on random walk and its application to training feedforward
neural networks, Soft Computing (2020) 1–17.

[61] M. Mao, H. Huang, L. Zhang, B. Chong, L. Zhou, Maximum power exploitation for grid-connected pv system under
fast-varying solar irradiation levels with modified salp swarm algorithm, Journal of Cleaner Production (2020) 122158.

[62] S. S. Alresheedi, S. Lu, M. Abd Elaziz, A. A. Ewees, Improved multiobjective salp swarm optimization for virtual machine
placement in cloud computing, Human-centric Computing and Information Sciences 9 (1) (2019) 15.

[63] J. Zhang, J. Wang, Improved salp swarm algorithm based on levy flight and sine cosine operator, IEEE Access (2020).
[64] P. Chen, C. You, P. Ding, Event classification using improved salp swarm algorithm based probabilistic neural network

in fiber-optic perimeter intrusion detection system, Optical Fiber Technology 56 (2020) 102182.
[65] B. Ma, H. Ni, X. Zhu, R. Zhao, A comprehensive improved salp swarm algorithm on redundant container deployment

problem, IEEE Access 7 (2019) 136452–136470.
[66] A. A. Ateya, A. Muthanna, A. Vybornova, A. D. Algarni, A. Abuarqoub, Y. Koucheryavy, A. Koucheryavy, Chaotic salp

swarm algorithm for sdn multi-controller networks, Engineering Science and Technology, an International Journal 22 (4)
(2019) 1001–1012.

24

[67] F. Mohanty, S. Rup, B. Dash, B. Majhi, M. Swamy, An improved scheme for digital mammogram classification using
weighted chaotic salp swarm algorithm-based kernel extreme learning machine, Applied Soft Computing (2020) 106266.

[68] X. Zhao, F. Yang, Y. Han, Y. Cui, An opposition-based chaotic salp swarm algorithm for global optimization, IEEE
Access 8 (2020) 36485–36501.

[69] A. Ibrahim, S. Mohammed, H. A. Ali, S. E. Hussein, Breast cancer segmentation from thermal images based on chaotic
salp swarm algorithm, IEEE Access 8 (2020) 122121–122134.

[70] A. Altan, S. Karasu, Recognition of covid-19 disease from x-ray images by hybrid model consisting of 2d curvelet
transform, chaotic salp swarm algorithm and deep learning technique, Chaos, Solitons & Fractals (2020) 110071.

[71] W. H. El-Ashmawi, A. F. Ali, A modified salp swarm algorithm for task assignment problem, Applied Soft Computing
(2020) 106445.

[72] Y. Yu, H. Wang, N. Li, H. Zhang, Z. Su, X. Shao, Finite-time model-assisted active disturbance rejection control with
a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances, Aerospace Science and
Technology 79 (2018) 588–600.

[73] R. Senkerik, A. Viktorin, M. Pluhacek, T. Kadavy, I. Zelinka, How unconventional chaotic pseudo-random generators
influence population diversity in differential evolution, in: International Conference on Artificial Intelligence and Soft
Computing, Springer, 2018, pp. 524–535.

[74] S. Dash, S. Dey, A. Augustine, R. S. Dhar, J. Pidanic, Z. Nemec, G. Trivedi, Riveropt: A multiobjective optimization
framework based on modified river formation dynamics heuristic, in: 2019 32nd International Conference on VLSI Design
and 2019 18th International Conference on Embedded Systems (VLSID), IEEE, 2019, pp. 233–238.

[75] E.-G. Talbi, Metaheuristics: from design to implementation, Vol. 74, John Wiley & Sons, 2009.
[76] T. M. Blackwell, P. Bentley, Don’t push me! collision-avoiding swarms, in: Proceedings of the 2002 Congress on Evolu-

tionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 2, IEEE, 2002, pp. 1691–1696.
[77] Z. Song, B. Liu, H. Cheng, Adaptive particle swarm optimization with population diversity control and its application

in tandem blade optimization, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 233 (6) (2019) 1859–1875.

[78] X.-F. Xie, W.-J. Zhang, Z.-L. Yang, Dissipative particle swarm optimization, in: Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 2, IEEE, 2002, pp. 1456–1461.

[79] M. I. Menhas, M. Fei, L. Wang, X. Fu, A novel hybrid binary pso algorithm, in: International Conference in Swarm
Intelligence, Springer, 2011, pp. 93–100.

[80] R. Brits, A. P. Engelbrecht, F. Van den Bergh, A niching particle swarm optimizer, in: Proceedings of the 4th Asia-Pacific
conference on simulated evolution and learning, Vol. 2, Singapore: Orchid Country Club, 2002, pp. 692–696.

[81] L. Huang, C.-T. Ng, A. H. Sheikh, M. C. Griffith, Niching particle swarm optimization techniques for multimodal buckling
maximization of composite laminates, Applied Soft Computing 57 (2017) 495–503.

[82] Y. Li, Y. Chen, J. Zhong, Z. Huang, Niching particle swarm optimization with equilibrium factor for multi-modal
optimization, Information Sciences 494 (2019) 233–246.

[83] X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function
optimization, in: Genetic and Evolutionary Computation Conference, Springer, 2004, pp. 105–116.

[84] P. A. Wilhelm, Pheromone particle swarm optimization of stochastic systems, Ph.D. thesis (2008).
[85] M. Kovaleva, B. A. Zeb, D. Bulger, K. P. Esselle, Radiation performance enhancement of a compact fabry-perot cavity

antenna using particle swarm optimization, in: 2015 International Symposium on Antennas and Propagation (ISAP),
IEEE, 2015, pp. 1–3.

[86] A. Lin, W. Sun, H. Yu, G. Wu, H. Tang, Global genetic learning particle swarm optimization with diversity enhancement
by ring topology, Swarm and evolutionary computation 44 (2019) 571–583.

[87] F. Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, Evolutionary applica-
tions 12 (3) (2019) 365–383.

[88] Zhang, Y. Yu, S. Zheng, Y. Todo, S. Gao, Exploitation enhanced sine cosine algorithm with compromised population
diversity for optimization, in: 2018 IEEE International Conference on Progress in Informatics and Computing (PIC),
IEEE, 2018, pp. 1–7.

[89] W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling
problem, IEEE Access 7 (2019) 20281–20292.

[90] L. Eskandari, A. Jafarian, P. Rahimloo, D. Baleanu, A modified and enhanced ant colony optimization algorithm for
traveling salesman problem, in: Mathematical Methods in Engineering, Springer, 2019, pp. 257–265.

[91] U. Balande, D. Shrimankar, Srifa: Stochastic ranking with improved-firefly-algorithm for constrained optimization engi-
neering design problems, Mathematics 7 (3) (2019) 250.

[92] Á. E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on evolu-
tionary computation 3 (2) (1999) 124–141.

[93] C. Huang, Y. Li, X. Yao, A survey of automatic parameter tuning methods for metaheuristics, IEEE Transactions on
Evolutionary Computation (2019).

[94] A. Eiben, J. Smith, Parameter control, in: Introduction to Evolutionary Computing, Springer, 2015, pp. 131–146.
[95] E. Mezura-Montes, Deterministic parameter control in differential evolution with combined variants for constrained search

spaces, Numerical and Evolutionary Optimization–NEO 2017 785 (2019) 3.
[96] T. Kuno, Deterministic parameter selection of artificial bee colony based on diagonalization, in: Hybrid Intelligent

Systems: 18th International Conference on Hybrid Intelligent Systems (HIS 2018) Held in Porto, Portugal, December
13-15, 2018, Vol. 923, Springer, 2019, p. 85.

[97] G. Bernstein, K. O’Brien, Stochastic agent-based simulations of social networks, in: Proceedings of the 46th annual

25

simulation symposium, Society for Computer Simulation International, 2013, p. 5.
[98] G. Sun, Y. Lan, R. Zhao, Differential evolution with gaussian mutation and dynamic parameter adjustment, Soft Com-

puting 23 (5) (2019) 1615–1642.
[99] W.-J. Yu, M. Shen, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, Y. Lin, O. Liu, J. Zhang, Differential evolution with two-level

parameter adaptation, IEEE Transactions on Cybernetics 44 (7) (2014) 1080–1099.
[100] W. Zhu, Y. Tang, J.-A. Fang, W. Zhang, Adaptive population tuning scheme for differential evolution, Information

Sciences 223 (2013) 164–191.
[101] M. Kavoosi, M. A. Dulebenets, O. F. Abioye, J. Pasha, H. Wang, H. Chi, An augmented self-adaptive parameter control

in evolutionary computation: A case study for the berth scheduling problem, Advanced Engineering Informatics 42 (2019)
100972.

[102] X. Chen, F. Kopsaftopoulos, Q. Wu, H. Ren, F.-K. Chang, A self-adaptive 1d convolutional neural network for flight-state
identification, Sensors 19 (2) (2019) 275.

[103] A. El Afia, O. Aoun, S. Garcia, Adaptive cooperation of multi-swarm particle swarm optimizer-based hidden markov
model, Progress in Artificial Intelligence (2019) 1–12.

[104] A. N. Haiman, Creature feature: Salps (2015).
URL https://theethogram.com/2015/05/04/featured-creature-salps

[105] H. Holland John, Adaptation in natural and artificial systems, Ann Arbor: University of Michigan Press (1975).
[106] D. E. Goldberg, J. H. Holland, Genetic algorithms and machine learning, Machine learning 3 (2) (1988) 95–99.
[107] J. H. Holland, Genetic algorithms, Scientific american 267 (1) (1992) 66–73.
[108] K. Premalatha, A. Natarajan, Hybrid pso and ga for global maximization, Int. J. Open Problems Compt. Math 2 (4)

(2009) 597–608.
[109] N. Ghorbani, A. Kasaeian, A. Toopshekan, L. Bahrami, A. Maghami, Optimizing a hybrid wind-pv-battery system using

ga-pso and mopso for reducing cost and increasing reliability, Energy 154 (2018) 581–591.
[110] S. Mirjalili, Genetic algorithm, in: Evolutionary Algorithms and Neural Networks, Springer, 2019, pp. 43–55.
[111] S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Emperor penguins colony: a new metaheuristic algorithm

for optimization, Evolutionary Intelligence (2019) 1–16.
[112] M. Zivkovic, C. Stoean, A. Chhabra, N. Budimirovic, A. Petrovic, N. Bacanin, Novel improved salp swarm algorithm:

An application for feature selection, Sensors 22 (5) (2022) 1711.
[113] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic

competition, in: 2007 IEEE congress on evolutionary computation, IEEE, 2007, pp. 4661–4667.
[114] A. R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecological

informatics 1 (4) (2006) 355–366.
[115] S. Sivanandam, S. Deepa, Introduction to genetic algorithms, Springer Science & Business Media, 2007.
[116] J. Kennedy, Particle swarm optimization, Springer, US, 2017, p. 760–766.
[117] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,

Journal of global optimization 11 (4) (1997) 341–359.
[118] Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, simulation 76 (2)

(2001) 60–68.
[119] A. Turky, S. Abdullah, A. Dawod, A dual-population multi operators harmony search algorithm for dynamic optimization

problems, Computers & Industrial Engineering 117 (2018) 19–28.
[120] C. W. Ahn, Practical genetic algorithms, Advances in Evolutionary Algorithms: Theory, Design and Practice (2006)

7–22.
[121] E. Rashedi, H. Nezamabadi-pour, Improving the precision of cbir systems by feature selection using binary gravitational

search algorithm, in: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP
2012), IEEE, 2012, pp. 039–042.

[122] R. H. Ginardi, A. Izzah, A new operator in gravitational search algorithm based on the law of momentum, in: International
Conference on Information, Communication Technology and System, 2014, pp. 105–110.

[123] M. Doraghinejad, H. Nezamabadi-Pour, Black hole: a new operator for gravitational search algorithm, International
Journal of Computational Intelligence Systems 7 (5) (2014) 809–826.

[124] M. Shams, E. Rashedi, A. Hakimi, Clustered-gravitational search algorithm and its application in parameter optimization
of a low noise amplifier, Applied Mathematics and Computation 258 (2015) 436–453.

[125] H. Zandevakili, E. Rashedi, A. Mahani, Gravitational search algorithm with both attractive and repulsive forces, Soft
Computing 23 (3) (2019) 783–825.

26

