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Abstract. In this paper, we present a new method for skin detection
and segmentation, relying on spatial analysis of skin-tone pixels. Our
contribution lies in introducing self-adaptive seeds, from which the skin
probability is propagated using the distance transform. The seeds are
determined from a local skin color model that is learned on-line from a
presented image, without requiring any additional information. This is
in contrast to the existing methods that need a skin sample for the adap-
tation, e.g., acquired using a face detector. In our experimental study, we
obtained F-score of over 0.85 for the ECU benchmark, and this is highly
competitive compared with several state-of-the-art methods.

Keywords: skin detection, skin segmentation, skin color, adaptive skin
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1 Introduction

Detection and segmentation of human skin regions is a challenging computer vi-
sion and pattern recognition task, which has attracted a number of contributions
over the years. Potential applications include gesture recognition, objectionable
content filtering, image retrieval, image coding, and more [1, 14].

Existing approaches are based on modeling the skin color in various color
spaces in order to discriminate between skin and non-skin pixels based on their
position in the color space [8]. Skin color models can be defined as a set of rules
and thresholds [2,3,13], or they may be generated using machine learning. Given
a sufficiently large training set, the Bayesian classifier is effective here [7], while
for smaller sets Gaussian mixture models (GMMs) are often used [5]. In general,
these methods, as well as other machine learners, transform an input color image
into a skin probability map (SPM) that is binarized to extract the skin regions.
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Although the chrominance is considered as the most discriminative skin pres-
ence feature, the efficacy of pixel-wise classification schemes is limited due to low
specificity and high variance of the skin color. This has been addressed in several
ways. A skin color model can be dynamically adapted to each presented image
based on a skin sample acquired using face [11,12,19] or hand [1] detectors. From
a detected skin sample, a local skin model is learned, combined with the global
one and applied to the image. In [19], the face-based adaptation is performed in
the error signal (ES) space [2]. Alternatively, the lighting conditions are analyzed
to select the most suitable skin model [14], or to set its parameters [18].

Adaptive skin color modeling increases the specificity, however in most cases
the skin cannot be completely separated from the background in a color space [20].
The errors can also be reduced by analyzing the neighborhood, either relying on
the texture [17] or using spatial analysis. The latter takes advantage of the fact
that skin pixels form consistent regions [9, 16]. First, skin seeds are determined
using a high-probability threshold, and then the skin probability (termed skin-

ness, PS) is propagated from them. This improves the detection, but the outcome
is sensitive to the seed extraction procedure. Basically, a seed should appear in
every skin region, and errors committed here cannot be fixed during propagation.

There have been some attempts to combine different improvement techniques.
Color, texture and spatial analysis were used in a system proposed in [6]. We
proposed to extract textural features from SPMs and exploit them to compute
the weights for the distance transform (DT) [10]. Two other methods combine
face-based model adaptation with the spatial analysis. In [12], a local model
learned from a facial region is used to obtain the foreground weights for the
graph-cut image segmentation. The background weights are obtained using a
global model. In [11], we applied a local model to the image to determine the
seeds for the DT, whose weights are computed based on the global model [9].

In the work reported here, we introduce a new method for generating the skin-
ness propagation seeds. First, we analyze SPMs, obtained using a global model,
to determine the initial skin seeds (ISSs). Next, the ISSs are enlarged using the
DT to include more skin pixels for training a local skin model. Subsequently,
this model is applied to obtain the final adapted seeds, and the skinness is prop-
agated over the entire image. Overall, our contribution consists in extracting
skin samples for the adaptation directly from SPMs without relying on face or
hand detectors. Results of our experimental study indicate that the achieved
detection accuracy is comparable with that obtained using face-based methods,
and definitely better than in case of other state-of-the-art techniques.

In Section 2, the baseline techniques exploited in our study are outlined. The
proposed skin detection method is described in Section 3, the experimental study
is reported in Section 4, and the paper is concluded in Section 5.

2 Baseline Methods

In this section, we briefly present our earlier strategy to combine model adap-
tation with spatial analysis [11]. First, a local skin color model is learned from
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the facial region pixels, using a single multivariate Gaussian. Afterwards, we
compute the skin probability based on the pixel color c in RGB:

PS(c) = exp
[

−0.5(c− c)TΣ−1(c− c)
]

/
√

(2π)3|Σ|, (1)

where c is the mean color value and Σ is the color covariance matrix of the skin
pixels. The local model detects skin with high precision, but low recall, hence
it serves to determine the seeds, from which the skinness is propagated in the
image using the Dijkstra’s algorithm [9]. We determine the skinness propagation
paths so as to minimize the sum of local distances between the neighboring pixels
(pi and pi+1) along the path: Γ =

∑l−1
i=0 γ (pi → pi+1). The skin probability is

determined based on Γ (PS = 1 for the seeds, where Γ = 0, and PS = 0 for
Γmax). The local costs from pixel x to y are computed taking into account two
components: (i) obtained from the color image (γc), and (ii) from the SPM
(γp): γ (x → y) = γc (x, y) · [1 + γp (x → y)]. Here, we use two different costs γc,
discussed later in Section 3, and we adopt the SPM cost introduced in [9]:

γp (x → y) =

{

1− PS(y) for PS(y) > Pβ

∞ for PS(y) ≤ Pβ
, (2)

where Pβ is the propagation threshold.

3 Skin Segmentation Using Self-adaptive Skin Seeds

A flowchart of our method is presented in Fig. 1, and the process is illustrated
using two examples in Fig. 2. First of all, an input image (Fig. 2a) is converted
into an SPM (Fig. 2b) using a global skin color model (we used the Bayesian
classifier). The obtained SPM is analyzed to determine the ISSs, i.e., small skin
patches (black pixels inside the gray regions in Fig. 2c). The general goal here is
to obtain a skin sample at the smallest possible false positive rate, and the exact
procedure is described later in Section 3.1. Subsequently, the ISSs are expanded
using the DT to include more skin pixels (gray regions in Fig. 2c).

From the enlarged seeds, a local GMM is trained on-line and applied in order
to determine the final seeds for the propagation (black regions in Fig. 2d). Here,
the goal is to find at least a single seed in every skin region, while keeping the
false positives low (see Section 3.2). From the final seeds, the skinness is propa-
gated over the image to obtain the final SPM (Fig. 2e) and the skin regions are
extracted (Fig. 2f, where red indicates false positives and blue – false negatives).

In Fig. 2g, we present the segmentation result obtained from the global SPM.
For the image in the upper row, the adaptation reduced false positives (the
background objects have skin-like color), while in the bottom row, false negatives
were decreased (the skin does not have a typical color here due to a flash light).

3.1 Initial Skin Seeds Extraction

This step consists in finding skin samples, which in alternative methods [11, 19]
are acquired from a facial region. Our intention is to perform the adaptation
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Fig. 1. Flowchart of the proposed skin segmentation process
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Fig. 2. Subsequent steps of the process: input color image (a), global SPM (b), ISSs
before (black) and after (gray) the DT-based expansion (c), seeds after adaptation (d),
final SPM (e), and segmentation result from the adapted (f) and global SPM (g)

without the necessity of engaging face detectors, and we this can effectively
be done relying on the SPM obtained using a global model. The procedure is
presented in Alg. 1. First, we compute the integrated histogram of the SPM to
find a threshold value (ts) that selects Rs = 5% out of all the pixels with the
highest probability. In order to avoid adapting to images without any skin pixels,
we assume that ts cannot be less than Tmin = 0.6. Otherwise, the original SPM is
used. We have observed that false positives are scattered after the binarization,
while true positive pixels are organized in spatially consistent groups. Hence, we
use only 10% of the largest blobs as the ISSs, and the seeds are subject to the
morphological skeletonization to further reduce the false positive rate.

3.2 Seeds Expansion and Adaptation

The ISSs indicate the skin regions with high precision, but they do not appear in
every skin blob (see Fig. 2c). Hence, a local skin model is created to propagate
the skinness not only in the spatial domain, but also across the color space. The
ISSs contain too few pixels to build a local model that would detect the seeds
in every skin region, hence the seeds are first expanded using the DT, outlined
earlier in Section 2. To minimize the number of adjoined non-skin pixels during
the expansion, we use a restrictive local cost in 4-neighborhood:

γ(Y H)
c (x, y) = max (|Y (x) − Y (y)| , |H(x) −H(y)|) , (3)
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Algorithm 1. Seeds initialization

Require: PS ⊲ The SPM obtained using a global model
1: HI ← IntegratedHistogram(PS); ⊲ Compute integrated histogram of the SPM
2: ts ← GetHighest(HI , Rs); ⊲ Rs (%) pixels have skin probability over ts

3: if ts ≥ Tmin then

4: PS ← Binarize(PS , ts); ⊲ Binarize the SPM with a threshold ts

5: B ← FindBlobs(PS); ⊲ Find a set of blobs B in the ISSs image
6: B ← FilterBlobSize(B); ⊲ Select 10% of the largest blobs
7: PS ← Render(B); ⊲ PS gets a mask of the filtered blobs
8: PS ← MorphologicalSkeleton(PS); ⊲ Now PS presents a mask of the ISSs
9: end if

whereH(·) is the hue and Y (·) is the luminance. Also, we ignore the pixels, whose
total cost is above LT = 3γc, where γc is the average local cost in the image.

The enlarged seeds are used to model the skin distribution with a single
multivariate Gaussian, and the model is applied to the entire image to extract
the final seeds. In order to avoid propagation from isolated pixels, the seeds
are subject to the erosion using 5 × 5 kernel. From these seeds, the skinness is
propagated using less restrictive local cost computed in the RGB color space:

γ(RGB)
c (x, y) = (|R(x)−R(y)|+ |G(x)−G(y)|+ |B(x)−B(y)|) . (4)

After propagation, the distance map is normalized to obtain the final SPM.

4 Experimental Validation

In our experiments, we used the ECU benchmark set [15]. Out of 4000 images
with annotated ground-truth skin regions, 2000 were used to train the Bayesian
classifier (there were 1.0 · 108 skin and 4.7 · 108 non-skin pixels in the training
set), and the remaining 2000 images formed a test set. We used the same setup1

as in our earlier work [11], and we set Pβ = 0.3 for spatial analysis as justified
in [10]. To assess the skin detection performance, we used the F-score, precision,
recall, and false positive rate (δfp – the percentage of background pixels classified
as skin). Also, we verified whether the proposed method adapts to the images
which do not present the skin at all. To do so, we removed the skin pixels from
the tested images, and we report the false positive rate for these images (δNS

fp ).

Naturally, δNS
fp = δfp in case of pixel-wise schemes. The experiments were run

using a computer equipped with an Intel Core i7-3740QM 2.7 GHz (16 GB RAM)
processor.

The obtained results are reported in Tab. 1, and most relevant precision-
recall curves [4] are shown in Fig. 3. In the table, the acceptance thresholds
used to binarize the SPMs were set so as to maximize the F-score. We catego-
rize the methods into several groups, namely: (1) the global pixel-wise schemes,
(2) texture and spatial analysis, (3) adaptive methods, and (4) the proposed

1 http://sun.aei.polsl.pl/~mkawulok/icip2013

http://sun.aei.polsl.pl/~mkawulok/icip2013
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Table 1. Skin detection scores obtained using various methods

Group Method F-score Precision Recall δfp δNS
fp

(1)
Global Bayesian classifier [7] 0.7772 73.15% 82.89% 9.13% 9.13%
Global model in the ES space [2] 0.7434 68.07% 81.88% 11.79% 11.79%
Global rule-based model in RGB [3] 0.6869 55.29% 91.61% 23.11% 23.11%

(2)
Discriminative skin-presence features [10] 0.8305 78.09% 88.69% 5.95% 5.24%
DT from high-probability seeds [9] 0.8177 75.79% 88.78% 9.61% 10.06%
Color, texture and spatial information [6] 0.7894 76.34% 81.73% 8.43% 9.01%

(3)
Face-based adaptation in the ES space [19] 0.7672 69.67% 85.34% 14.13% 11.79%
DT from face-based adaptive seeds [11] 0.8661 82.70% 90.92% 6.53% 9.13%

(4)

Proposed method 0.8543 82.26% 88.85% 5.57% 10.38%
ISSs 0.9247* 90.99% 94.01%* — —
Enlarged ISSs 0.9345* 91.62% 95.36%* — —
Final seeds 0.9548* 91.91% 99.34%* — —

* potential recall, assuming correct propagation from the seeds.
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Fig. 3. Precision-recall curves obtained for the ECU data set using various methods

approach. It may be observed that our method outperforms the non-adaptive
schemes from groups (1) and (2), as well as the face-based adaptation in the ES
space. Although the obtained scores are slightly worse compared with the DT
from the face-based adaptive seeds [11], our method does not use any additional
information delivered by a face detector. This is an obvious advantage in case of
images which do not present a face (e.g., in hand gesture recognition).

It can be seen from Tab. 1 (δNS
fp ) that in some cases our method adapts to

the images without any skin regions, resulting in some false positives. This is the
most important potential pitfall in our approach, however as δNS

fp is only 1.25%
larger than using the Bayesian classifier, this is not a significant drawback. In
the table, we also report the scores obtained within the seeds. Here, we show
a potential recall, considered as an upper bound for the spatial analysis (if a
ground-truth skin blob contains a seed inside, then it is regarded as correctly
detected). Due to small size of the seeds, δfp is close to zero, and we do not quote
it here. It is worth noting that for subsequent seeds in the processing chain, the
scores are improved. This justifies the proposed seed extraction procedure.

Our algorithm processed 512× 512 images at 2 fps. However, the adaptation
may be carried out only for the first video frame, and then the detector’s speed
increases to 4 fps, which is similar to the speeds reported in [9, 10].
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(original)
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(ours)
[7] [2] [10] [9] [6] [19] [11]

Fig. 4. Examples of skin detection outcome (red: false positives, blue: false negatives)

In Fig. 4, we present some examples of skin segmentation using various meth-
ods grouped as in Tab. 1. In general, the proposed method delivers comparable
results to those obtained using face-based adaptation [11]. An interesting exam-
ple is shown in the second row from the top. Here, both face-based adaptation
schemes [11,19] treated the dark shade from the glasses as skin, and as a result,
the dark background was also classified as skin. Such problems appear, if the
face is occluded or if a face detector does not indicate the facial region precisely.
It is worth noting that the introduced method deals well with such cases.

5 Conclusions and Future Work

In this paper, we introduced a new self-adaptive method for detecting skin seeds,
and combine it with spatial analysis using the DT. The most significant contri-
bution consists in proposing an adaptation scheme that does not require any
explicit skin sample, which makes it independent from face detectors. As a con-
sequence, the method is applicable to images that do not present a face, and
may be particularly useful for hand gesture recognition purposes.

Our ongoing work is aimed at incorporating the textural features into the
proposed adaptation scheme. Furthermore, our research plans include improving
the image-level skin detection so as to reduce the false positive rate for the images
that do not present the skin at all.
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